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ABSTRACT

In this paper, we study the tradeoffs between the time and the
number of communication rounds of the best arm identification
problem in the heterogeneous collaborative learning model, where
multiple agents interact with possibly different environments and
they want to learn in parallel an objective function in the aggregated
environment. By proving almost tight upper and lower bounds, we
show that collaborative learning in the heterogeneous setting is
inherently more difficult than that in the homogeneous setting in
terms of the time-round tradeoff.
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1 INTRODUCTION

As data continue to grow, multi-agent learning has emerged as an
important direction in scalable machine learning and has attracted
much attention under the name of federated learning [15, 16, 18],
where multiple agents try to learn an objective function in paral-
lel via communication. While the majority of work in federated
learning focuses on the distributed training of neural networks,
a few papers [14, 24, 25] studied parallel reinforcement learning
problems in a very similar model named the collaborative learning
(CL) model. However, most work in the literature of collaborative
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learning only considered the homogeneous environment (or, IID
data), in which agents interact with the same data distribution. Real
world applications of multi-agent learning often involve heteroge-
neous environments (or, non-IID data), in which agents interact
with possibly different data distributions.! Indeed, heterogeneous
environments have been identified as a key feature of the federated
learning model [10].

In this paper, we investigate heterogeneous collaborative learn-
ing. We will use a basic problem in bandit theory named best arm
identification in multi-armed bandits (BAI) as a vehicle to deliver
the following message: Collaborative learning in the heterogeneous
environment is provably more difficult than that in the homogeneous
environment w.r.t. communication rounds.

In the following, we first introduce the BAI problem and the
CL model, and then summarize our results and contributions. We
conclude the section by discussing related work.

Best Arm Identification in Multi-Armed Bandits. In BAI we
have n arms, each of which is associated with an unknown distribu-
tion D; (i € [n]) with support [0, 1].2 We aim at identifying the arm
whose associated distribution has the largest mean by a sequence of
T pulls. In each arm pull, we choose an arm based on the previous
pulls and outcomes, and obtain a sample from the arm’s associated
distribution. Assuming that each pull takes unit time, we call T the
time horizon. The goal of BAL is to identify the arm with the highest
mean with the smallest error probability under time horizon T.3

BAI is a basic problem in bandit theory and reinforcement learn-
ing, and has been studied extensively in the literature since 1950s
(e.g., [2,3,5-7,9, 11, 20]). The problem has numerous real-world
applications, including clinical trials, article/ad/channel selection,
computer game play, financial portfolio design, adaptive routing,
crowd-sourced ranking, hyperparameter optimization, etc.

LetI = {1,2,...,n} be an input instance of n arms. W.lo.g., we
assume that there is a unique best arm, which is denoted by i,. Let
15 be the mean of D;,, and for any i € [n], let y; be the mean of
D;. Let A;j = py — p; be the mean gap of the best arm and the i-th
arm. The instance complexity of BAI on input I is defined as:

Z 1/A2. 1)

ie[n],i#i.

H(D) =

IWe felt that the words “IID/non-IID", which are widely used in the literature of
federated learning, are somewhat confusing. In the rest of this paper, we will use
the words “homogeneous" and “heterogeneous" to denote the scenarios where agents
interact with identical and different data distributions, respectively.

2We use [n] to denote {1,2,...,n}.

3For readers who are familiar with the bandit literature, we are considering the fixed-
time/budget best arm identification. Another version of this problem is called fixed-
confidence, where we want to solve BAI with a fixed error probability § with the
smallest number of pulls.
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Intuitively, the term 1/ Alz. is the number of pulls needed to separate
the best arm and the i-th arm with a good probability. We will
sometimes write H = H(I) for convenience. It is known that under
time horizon O(H), there exists a centralized algorithm that solves
BAI with probability 0.99 [2].4 On the other hand, no centralized
algorithm can solve the BAI problem with probability 0.99 under
time horizon H [4].

The Collaborative Learning Model. Most study for BAI has
been done in the centralized model, in which just one agent pulls
the set of arms sequentially. [14, 24] studied BAI in the collaborative
learning (CL) model, where there are K agents, who try to learn the
best arm in parallel via communication. The learning proceeds in
rounds. In each round, each agent takes a sequence of pulls (one at
each time step) and observes the outcomes. At the end of each round
there is a communication phase; the agents communicate with each
other to exchange newly observed information and determine the
number of time steps for the next round (the length of the first
round is determined at the beginning of the first round). At the end
of the last round, all agents have to output the same answer without
any further communication. The goal of BAI in the CL model is
for all agents to output the correct answer with the smallest error
probability under time horizon T (i.e., the number of time steps
over all rounds) and the number of rounds R. Note that the number
of communication phases is (R — 1), since we do not allow any
communication at the end of the last round.

Depending on whether the agents have real-time computing
and policy-updating ability, the CL algorithms are divided into
two categories: adaptive and non-adaptive. In the adaptive case,
agents can change their pull policies at each time step based on
new observations. While in the non-adaptive case, policy updates
can only happen at the beginning of each round. In this paper, we
focus on the adaptive case; the lower bound proof for the adaptive
case is more challenging than the non-adaptive case due to agents’
local adaptivity within a round.

Minimizing communication in the CL model is critical due to
network bandwidth constraints and latency, energy consumption
(think of deep-sea/outer-space exploration), and data usage (e.g.,
if messages are sent by mobile devices). In this paper, we mainly
focus on the round complexity. Like parallel/distributed computa-
tion models such as MapReduce, initiating a new round of learn-
ing process can be very expensive due to various communication
overheads. The communication cost (i.e., the total number of bits
exchanged between agents) of our algorithm is optimal up to a
logarithmic factor based on a recent lower bound result in [12] (see
Remark 21).

Heterogeneous Environments. Inthe CL model studied by [24]
and [14], each agent interacts with the same environment; for the
BAI problem in particular, by pulling the same arm, the agents
sample from the same data distribution. However, as mentioned
earlier, heterogeneous environments are inherent in many real-
world collaborative learning applications.

For example, in the setting of channel selection in cognitive ra-
dio networks, a base station utilizes a number of mobile devices

4For the convenience of presentation, we sometimes use " on O, Q, © to hide non-
critical logarithmic factors. All logarithmic factors will be spelled out in our theorems
explicitly.
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(e.g., cell phones) to select the best channel for data transformation
in a particular area. Here each mobile device represents an agent
and each channel represents an arm. At each time step, an agent
selects a channel and attempts to transmit a message. If the message
is successfully delivered, the agent receives a reward of 1; other-
wise, the reward is 0. This corresponds to the bandit setting. Since
mobile devices sit at different geographic locations, the channel
availability distributions they observe may be very different. The
base station needs to identify the best arm with respect to the aggre-
gation of local channel availability distributions. Another example
is the task of item-selection in recommendation systems, where a
group of servers work together to learn the globally most popular
item via communication, while each server can only interact with
users in a certain region (and thus get samples from a distinct data
distribution).

In BAI with heterogeneous environments, by pulling the same
arm, the agents sample from possibly different distributions. Let
7; i be the distribution associated with the i-th arm that the k-th
agent samples from, and let y; j be the mean of 7; j. Define the
global mean of the i-th arm as

Bt D ik @
ke[K]
Our task is to identify the arm i, with the largest global mean,
while each agent k € [K] can only pull each arm i € [n] under
its local distribution 7; . In the heterogeneous setting, we define
mean gaps based on the global means, that is, A; = p. — y;, and the
instance complexity H again as 3;c[n],i#i, I/Alz..

Our Results. The main result of this paper is the following im-
possibility result.

logn

24loglogn and

THEOREM 1 (MAIN THEOREM). Forany1l < R <

any T < HnQ(%)/K, any R-round T-time K-agent algorithm that
solves n-arm BAI in the heterogeneous CL model has a success proba-
bility less than 0.99.

We complement the impossibility result by the following algo-
rithmic result.

THEOREM 2. ForanyR > 1andanyT > cTHn%/Kfora universal
constant ct, there exists a R-round T-time K-agent algorithm that
solves n-arm BAI in the heterogeneous CL model with probability
0.99.

We note that for a fixed time budget, the number of rounds R in
the lower and upper bounds in Theorem 1 and Theorem 2 match
up to a constant factor.

We would like to highlight a couple of points regarding Theo-
rem 1. First, this is the first lower bound result that addresses the
local agent adaptivity in the CL models. In particular, it shows that
the capacity of each agent to utilize newly observed information
within each round does not contribute to reducing the round com-
plexity in the heterogeneous CL model. This is in stark contrast
with the homogeneous CL model in which local agent adaptivity
can significantly reduce the round complexity. Second, our hard
input distribution for proving Theorem 1 is the first one that uses
asymmetric arm means constructions. It exploits the heterogeneous
property, enabling us to establish a higher lower bound for BAI
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than the one presented in the homogeneous setting [24]. We will
give a more detailed technical overview in Section 2.

1.1 Related Work

We summarize previous work that is closely related to this paper in
the CL model, and refer readers to the book by [17] for an overview
on BAI in the centralized model.

The (homogeneous) CL model was first used in the work [8] for
studying multi-agent BAI, but the model was not formally defined
there. The results for fixed-time BAI in [8] only consider the special
case where there is only one communication phase (i.e., R = 2). The
CL model was rigorously formulated in [24], where the authors
obtained almost tight tradeoffs between the learning time and the
round cost for BAI The followup work [14] extended this line of
research to the top-m arm identifications problem. [25] studied
regret minimization in multi-armed bandits in essentially the same
model, but it focused on the total bits of communication exchanged
between the agents (or, the communication cost) instead of the
number of rounds. Recently, [12] studied the tradeoff between the
learning time and the communication cost in the CL model for BAI,
and [1] studied linear bandits in a similar setting.

The authors of [21] studied BAI and regret minimization in multi-
armed bandits in a model similar to the CL model, but mainly in the
fixed-confidence setting. That is, their algorithm takes a confidence
parameter § (instead of a time horizon T) as an input, and try to
use the smallest possible number of time steps to identify the best
arm with probability (1 — §). Their lower bound results are proved
for the setting that agents can communicate at each time step.

In the heterogeneous CL model, [22, 23] studied regret minimiza-
tion in multi-armed bandits. The authors considered the communi-
cation cost of the CL algorithms, but the cost has been embedded
into the regret formulation. [19] studied BAI in the CL model where
arms are partitioned into groups, and each agent can only pull arms
from one particular group. This model can be thought as a special
case of the heterogeneous CL model studied in this paper, where
for any arm i € [n], there exists a unique agent k € [K] such that
Hi g > 0, while y; i = 0 for all k¥ € [K]\{k}. This special case
does not capture the inherent difficulty of the heterogeneous CL
model where the information about a particular arm can spread
over multiple agents, and their results cannot be generalized to the
heterogeneous CL model.

2 TECHNICAL OVERVIEW OF THE MAIN
RESULT

Before delving into the full proof of our main result (Theorem 1),
which is very technical, we would like to provide an overview.

We note that all the parameters used in this technical overview
are merely for the illustration purpose. They may not correspond to
the actual, typically more complex, parameters used in the actual
proof. We will also frequently ignore lower-order logarithmic terms
for the sake of readability.

Generalized Round Elimination and Challenges. Let us start
by briefly illustrating the generalized round elimination technique
introduced in [24], and then explain the challenges in applying it
in the heterogeneous setting.
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Generalized round elimination can be thought as an induction
on a sequence of hard distribution classes Dy, Dy, . . ., DR, where
Dy = {$} consists of the original hard input distribution ¢.> At
the i-th induction step, we show that for any input distribution
in o € Dj_y, if the agents do not conduct enough non-adaptive
pulls (due to the time budget constraint) in a round, then after
some “input massage" which will only make the problem easier,
the posterior distribution ¢’ belongs to D;. For the base case, we
show that no 0-round CL algorithm can solve the problem for any
distribution o € Dr with a non-trivial success probability. We can
thus prove that no R-round algorithm for solving the problem on the
original input distribution ¢ with a non-trivial success probability.

The lower bound proof using generalized round elimination in
[24] was carried out on non-adaptive algorithms in the homoge-
neous CL setting. For adaptive algorithms, only in the case when
n < K (that is, the number of arms is no more than the number of
agents), we can show that adaptive pulls do not have much advan-

tage against non-adaptive pulls via a coupling argument. This is
. logmin{K,n}

why in [24], only a Q (—log Togmin (K,

proved for adaptive algorithms. As mentioned, for the heteroge-
logn

loglogn

bound for adaptive algorithms for any value n. To this end, we

must design a new, harder input distribution that leverages the

heterogeneous property of the data distributions.

) round lower bound can be

neous CL setting, our goal is to prove an Q ( ) round lower

An Interleaved Local Mean Construction. Our new input dis-
tribution for heterogeneous data is easier to visualize with two
agents, Alice and Bob, but it can easily be extended to multiple
agents.

We will focus on the Q(logn) round case (ignoring a loglog
factor), while our lower bound result covers the entire time-round
tradeoff. The formal definition of our hard input distribution and
its properties can be found in Section 3.1.

Our hard input distribution has L = ©(logn) terms, with odd
terms held by Alice and even terms held by Bob. The global mean
of each arm can be written as

L
1 Xy
e
2 =1 4
where X1, ..., X € {0, 1} are i.i.d. Bernoulli random variables with
mean % When X; = --- = X1 = 1, p achieves its maximum possible
value. The local mean of each arm at Alice’s side is
1 2X.
,uA . 20+1 ,
42(’+1
£:1<2{+1<L

and that at Bob’s side is

1 2X.
B_1 20
= 2 + Z 42t "

€:1<2(<L

Note that g = (u + pB)/2. Let 7, 74 and 78 be the underlying
distributions of y, p*, and pB.

SWe need to use input distribution instead of a single hard input instance because we
are proving a lower bound for randomized algorithms. By Yao’s minimax lemma [26],
we can instead prove a lower bound for deterministic algorithms on a hard input
distribution.
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Proof Intuition and New Challenges. We say an arm is at level
Cif X1 = ... = Xp = 1and Xg; = 0 (if £ < L). The high-level
intuition of proving an Q(L)(= Q(log n)) lower bound is that Alice
and Bob must learn the set of n arms level by level under a time
budget O(H), where H is the input instance complexity. That is, at
the end of the ¢-th round, they can only identify and eliminate those
arms that are in the first £ levels, while for the remaining arms the
uncertainty is still large. As a result, they need L = Q(log n) rounds
to identify the best arm. Ideally, we hope to show that at each odd
round ¢, Alice is able to identify and eliminate those arms who are
in level ¢ but not higher, while Bob is not able to do much as he
lacks information about X, of each arm. And a similar situation
holds at each even round ¢ with Alice and Bob’s positions swapped.

The difficulty in formalizing the above intuition is that it is
actually possible for each party to learn information about the bits
(i.e., the X;’s) at all levels using their local samples and messages
received from the other party. What we need to show is that this
information is not enough to allow parties to “jump” w(1) levels
after each round given the total sample budget.

We try to formalize this intuition using generalized round elimi-
nation. There are two challenges in proving a Q(log n) round lower
bound for BAI in the heterogeneous CL model.

(1) Explicit forms of distribution classes like those used in [24]
in the homogeneous setting are difficult to obtain in the
heterogeneous setting due to the intricate structures of the
hard input distributions y* and 5.

(2) Since the coupling argument which reduces adaptive CL
algorithms to non-adaptive CL algorithms is inapplicable
when n > K, we have to prove the lower bound for adaptive
CL algorithms directly.

In the following, we briefly illustrate how we address these two
challenges.

Implicit Forms of Distribution Classes. Our first technical
innovation is that we implicitly define the classes of distributions for
the generalized round elimination by quantifying the relationship
between each distribution in the class and the original hard input
distribution. The discussion below is again a simplified version of
the actual construction, whose details can be found in Section 3.2.

The distribution classes for Alice and Bob are defined in a similar
way. Here we use Alice for example, and define the distribution
classes Z)gl (¢ =0,1,...) for Alice. The combined distribution class
will be denoted by Dy = (D4, Df), where Z)? is the one defined
for Bob.

Let S? be the set of all possible local means at Alice’s side for arms
in levels ¢,...,L, and let ¢ = n!/L For each level £ = 0,1,...,L,
define input class Z)? to be the set of distributions ¢ with support
S? such that

A PI'IJANO.A[[JAZX] Proa_qalp®=x] ¢
Vx,yesf:PrA TR T A[yA=y]'eg' ©)
pi~o pA~m

Note that Z)(‘)4 = {x} where 74 is the original input distribution at
Alice’s side. Intuitively, Equation (3) states that for any distribution

ol e D?, the ratio between the probability mass on any two

A

possible mean values in o** is close to that in the original input
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distribution 7. Consequently, if the original input distribution

74 is quite “uncertain”, then any distribution ¢4 € D? is also

quite uncertain. The extra eig is a relaxation term that counts the
influence of the pull outcomes in the first £ rounds on the posterior
distribution of 4.

We have the following lemma. Its formal statement can be found
in Lemma 11 in Section 3.2. We slightly rewrite and simplify the
statement here for the illustration purpose.

LEMMA 3. Forany{ € {0,1,...,L — 1}, any distribution ot e
Z)?‘, and any good sequence of pull outcomes 6 = (01,...,04) in

the current round, the posterior distribution of c after observing a
sequence of pull outcomes being 0 and conditioning on the mean of

the arm 4 € S?H, denoted by (64 | 0, 4 € S[‘flﬂ), belongs to the

. . A
distribution class Dt’+1‘

On the other hand, we can also show that the pull sequence 6
is good with high probability if its length is not too large, which
holds if there is a time budget constraint.

Lemma 3 helps in establishing the foundation of the induction
in the round elimination without having to go through the spelling
of the posterior distributions after a round of arm pulls.

A Lower Bound for Adaptive CL Algorithms. Our second
technical contribution is to prove the lower bound for adaptive
CL algorithms directly, instead of via a reduction from a lower
bound for non-adaptive CL algorithms. The details can be found in
Section 3.3.

Let us first recall the proof for non-adaptive algorithms in [24].
After the first round of pulls, we set a threshold n and publish
those arms who have been pulled more than 5 times in the first
round; we call these arms the heavy arms. By publishing an arm
we mean revealing its mean to all agents; note that this will only
make the problem easier, and consequently make the lower bound
proof stronger. This arm publishing procedure is what we formerly
referred to as the “ input massage".

We use the arm publishing procedure to ensure that the means
of remaining arms belong to the next class (i.e., y4 € S";‘H). For

the set of distribution classes D? (¢ =0,1,...) used in this paper,
we can use Lemma 3 to show that the posterior distribution of
some o4 € Z)?, after the publishing procedure, belongs to the next

distribution class Z)?ﬂ.

In order for the induction to proceed, we need to make sure that
if we publish all heavy arms, the probability of the best arm being
published is small, since otherwise the problem would already be
solved and the round elimination process cannot continue. This is
easy to do with non-adaptive algorithms, because the whole pull
sequence and consequently the set of heavy arms are determined
at the beginning of each round. If the time budget is small, then the
number of heavy arms must be small. Consequently, the probability
that the set of heavy arms contain the best arm is also small, because
all arms are almost equally uncertain at the beginning of each round.
In other words, the set of heavy arms would be an almost random
subset of all arms.

Adaptive algorithms, however, can utilize their adaptivity to look
for arms with high means and make more pulls on those arms.
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To handle this challenge, we choose to explicitly analyze for
each heavy arm its probability of being the best arm after the first
round of pulls, and then show that the sum of these probabilities
is small. This analysis is much more complicated than that for the
non-adaptive algorithms. We try to illustrate the main ideas below.

The key to the analysis for each individual arm is that, because
of the interleaved mean structure, Alice misses most information
of half of the terms held by Bob. Without this information, her
adaptivity cannot help much in the task of identifying which arm is
more likely to be the best arm. On the other hand, the time budget
constraint also prevents Alice from extracting and revealing to Bob
too much information about her local means of arms which are not
published in the next round (see the algorithm Arm Publishing and
Additional Pulls in Section 3.3 for details on how we publish arms).
A similar argument holds for Bob. Despite appearing natural, it is
highly non-trivial to put this intuition into a formal proof since
we need to carefully bound the “help" of the historical information
exchange. The adaptivity of the algorithm further complicates the
description of the posterior distribution of the arms after one round
of pulls. Fortunately, our implicit representation of the distribution
classes is flexible enough to handle this additional complexity.

Finally, we would like to mention that due to technical needs, in
each step of our induction we have to “consume” multiple, but still
0O(1), levels out of the L levels of arms, but this will not change the
asymptotic round bound.

Generalizing to K Parties. Finally, we comment that we can
easily generalize the lower bound for 2 agents to K agents via a
reduction. See Section 3.4 for details.

3 THE IMPOSSIBILITY RESULT

In this section, we give the proof to Theorem 1.

We start with the case when there are two agents (i.e., K = 2),
and then generalize the results to all K. Below are a few notations
that we will be using in this section.

e R: The number of rounds used by the algorithm. We will
logn
24loglogn "
e L = 6R: The number of terms in the means of arms in the
hard input distribution.

focus on the range 1 < R <

1 1 .. . .
e 1 £ n2L = n1R: Intuitively, it is the ratio between the
maximum contributions of consecutive terms in the mean

construction. For 1 < R < Mll(ig%, we always have n >
log? n.
1
o[ = \2—@ = 'I;—‘;R: A parameter related to the time of the CL
algorithm.
1
oy = 217 = ";R = ©({?): A parameter for the convenience

of the presentation.
e Ber(p) denotes the Bernoulli distribution with mean p.

For convenience, when we writec = a+ b (orc +d = a = b), we
meanc € [a—b,a+ b] (or [c —d,c+d] C [a—b,a+ b]). Without
this simplification, some formulas may be difficult to read.

We will use the following standard concentration bound.

LEMMA 4 (CHERNOFF-HOEFFDING INEQUALITY). LetXy,..., X, €
[ai, bi] be independent random variables. Let X = Y7, X;. For any
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t > 0, it holds that

212

Pr[X > E[X] +t] < exp (—m
=130

), and

Pr(X <E[X]-t] <ex (—L)
- =P mbi—a)?)

In the rest of this section, we first introduce the hard input
distribution that we use to prove the lower bound and discuss
its properties. We then introduce the classes of distributions on
which we will perform the generalized round elimination. After
these preparation steps, we present our main lower bound proof
for K = 2, and then extend it to the general case.

3.1 The Hard Input Distribution (When K = 2)
and Its Properties.
Define random variable

X
— 4)
7

L
p=pX, .., X)) = +Z
(=1
where for each ¢ € [L], Xy ~ Ber (q_z) are drawn independently.
Let 7 be the distribution of random variable p.
Let (i1, ..., 4n) ~ m®", where y; is the global mean of arm i.
We divide each p; into two local means /1;4 and /1%3 for Alice and
Bob respectively, where

1 2X. 1 2X.
,uA:—+ 2: z€+17 and ”B:_+ z: 2{’.
,72€+1 2 nzt’
C:1<2(+1<L C:1<2(<L

N =

That is, Alice takes all odd terms in the summation of (4), and Bob
takes all even terms in the summation of (4); the factor 2 is just to
make sure that y = (4 + ;B)/2. It is clear that y and p® are inde-
pendent, because they depend on disjoint subsets of {Xi, ..., X1 }.
Let 74 and 78 be the underlying distributions of random variables
u? and pB, respectively. We can write 7 = (14, 75).

Key Properties of the Support of Distribution 7 = (x4, 7B).
Foreach ¢ € {0,1,...,L}, we define the following two sets:

gA 2 1 2 + 2Xok+1
t 2 Z p2k+1 Z p2k+1
k:1<2k+1<¢ k:6<2k+1<L

Xok+1 € {0, 1}} ,

®)

1 2 2X.
S?={§+ Z ,72_k+ Z 2?<k

k:1<2k<¢ k:t<2k<L

Xok € {0»1}}- (6)

Intuitively, the set S? consists of values in supp(z4) with X; =
X3 =...=Xp =1, where ¢’ is the largest odd integer no more
than ¢. And the set Sf consists of values in supp(r®) with X, =
X4 =...=Xp =1, where ¢’ is the largest even integer no more
than ¢. It is easy to see that

supp(rt) = s o s =5t o5t =585 L,

and
supp(nB)zS(l)s:S{sDSf=5£DSf=....
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Let 0 =(04,..., 9,1) € {0, 1}7 be a sequence of q pull outcomes
on an arm with mean x. For convenience, we write
0 B P 0 =140]. 7
pOIx) = | Pr [0=0] )
We have
q
pO1x) =] [x%(-x!%. ®
j=1

The following two lemmas give key properties of the sets S? and
Sf . Intuitively, it says that if we can only pull the arm whose mean
isx € S? (orx € Sf) for a small number of times, then it is hard to

differentiate its true mean x from other values in S? (or Sf ) based
on the pull outcomes. Due to the space constraints, we leave the
proof of this technical lemma to the full version of this paper [13].

LEMMA 5. For any x € S?, let® = (©4,.. .,®q) be a sequence

20-1
ofq € [173, '727 ] pull outcomes on an arm with mean x. For any
y € S? (y # x), we have
[p(eny) - ] o
~Ber(x)®q P(©]x)

and

[P(Q ly)
r
O~Ber(x)®? p(©]x)

The following lemma is symmetric to Lemma 5, and can be
proved using a similar line of arguments.

2
> e

LEMMA 5’ For anyx € SB let® = (©1,...,04) be a sequence

of q € [n°, ] pull outcomes on an arm with mean x. For any

ye Sf (y # x), we have

p© ]y 7} o
< 10, 9
O~Ber(x)®4 [p(® B @
and ©1y
pP@O |y 2 _n
< 10 10
O~Ber(x)®4 [p(® Bla (10)
®n

Instance Complexity under Distribution 7°". We now try to
bound the instance complexity of an input sampled from distribu-
tion 7®". Let p, = % + Z?:l L. The following event stands for

the case when there is only one best arm with mean p.
&Eo : Junique i* € [n] s.t. pjr = pa. (11)
The following lemma shows that &y holds with at least a constant
probability.

LEMMA 6. Pr(,, . . )~zen[E0] 2 1/e.

.....

Proor. We have

—
<
5
<

H

I
I

—_

|
S
S —
3
-

v
Q| =
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[m]

We now try to upper bound the instance complexity of inputs
sampled from distribution 7", conditioned on event &.

LEMMA 7. Ey,,... py)~nen [H | E0] < nerelp,

.....

Proor. Conditioned on &y, let i* be the unique best arm with
mean . We can write

E(#l,---,yn%n@" [H | &l
Z (e — i) 72
i€[n],i#i*

(=D Epr [(re =72 | p < puu] - (12)

To upper bound (12), we partition the values in supp(r) into L
disjoint sets. For each ¢ € [L], we define

-1 L
1 1 0 X
Pﬁ{f D Y+
el AR AP

E(uy,....pn)~mon r;;'cg{ui} < s

(Xg, ..., X0) € {0, 1}”“}.

(13)
Clearly, we have UIE:1 Pp = supp(n) \ {i+}, and for any ¢ € [L]
and any p € Py,
1
He=p 2 —. (14)
n

Plugging (14) to (12), we have

L
(12) < (n—l)-Z(Fjgz[uePelu<u*]"72€)
=W
- 1) ZL: (PrPN;T M E Ppypt < pi] "72[)
= Prywzlp < pal
-1
L (—) (1 i)
-1, ¥
=1
1\ <&
= n- (1 — _2) . Z ’72
=
< pPLn= ¥,
O
Define event
&1 : & holds A (H < 2n°*2LL). (15)

By Markov’s inequality and Lemma 7, we have
Pr[H > 2p*T2L | &) < 1/2,
which, combined with Lemma 6, gives the following lemma.

LemMA 8. Pr[E1] = 1/(2e).

Hard Input Distribution. The hard input distribution we use
for proving the lower bound is (7®" | &1). That is, the probability
mass is uniformly distributed among the support of 7" except
those instances in which there is 0 or multiple arms with means
pix (ie., when &g does not hold) and those of which the instance
complexity is more than 27%+2LL,
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In our lower bound proof in Section 3.3, we will spend most of
our time working on the input distribution 7®". We will switch to
(r®" | &1) at the end of the proof.

3.2 Classes of Hard Distributions

In this section, we define the classes of hard distributions that we
use for the generalized round elimination. We start by introducing
a concept called good pull outcome sequences.

Good Pull Outcome Sequences. We say a pull outcome se-

quence 6 = (01, .. .,0q) good w.rt. S?‘ if for any x,y € S?, p(0x)

and p(0y) are close. More precisely, we define the set of good pull
p0 | x)

outcome sequences w.r.t. S? as
[Fe]) a9
€ e 'l,e"] . 16
P@1y)

Similarly, we define the set of good pull outcome sequences w.r.t.
R LCAED)

Sf as
[.pw'y)e[e_ﬁ,e;]}. (17)

The following lemma says that when the length of sequence g is
not large, then with high probability, the pull outcome sequence is
good.

G?é{ﬁ Vx,yeS?:

G?é{e Vx,yes

20-1
n

27 ]
pull outcomes on an arm with mean uA. For any distribution o with

[@ ¢G4 ] <n 10,

LEMMA 9. Let © = (@1,...,04) be a sequence of q € [,

A
support S%', we have PryA~O'A,®~Ber(}IA)®q

Proor. By the law of total probability, we write
Pr lo¢cy|

pA~cA,@~Ber(uA)®

- 3

A
Z€S;

pr[oecy|

Pr A=2]. 18
O~Ber(z)®9 A~0'A[y ]) (18)

p

By definition, 0 ¢ G{‘? if and only if there exists a pair of x,y € S?
such that

pO1x) & pO]x) s
> e < n 19
P01y P01y (19)
We first consider the case zgg:;g > e%. In this case, for any
z € S?, we have
pl@lx) 2 ply) -2
— < >en —=C<e 7,
p(01]2) p(01]2)
Consequently,
. [p(@) %) ¢
O~Ber(z)®9 p@|y)
< . [p(Glx) 5 ol ) [p(GIy) B 6-5]
O~Ber(z)®9 p(©]2) O~Ber(z)®? p(©]2)
< 207, (20)

where in the last inequality we have used Lemma 5.
By a similar argument, we can show

r [p(@ %) < e_ﬂ < 2e
O~Ber(z)®9 p©|y)

i/
. (21)
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By (20), (21), and the definition of G? in (16), we have
pr[e¢cy|
O~Ber(z)®?

PGIE ]
< L (ewge’l(z)@q [p(@|y> T

x,yeS{A
) [p<®|x) < 7}

O~Ber(z)®? p(©]y)

‘2

_
< 4 ‘5? e 2, (22)
where in the last inequality we have taken a union bound on all
pairs (x,y) € S? X S?.
Plugging (22) to (18), we have
Pr o6t
pA~cA,0~Ber(uA)®?

2 U
AlY o710 A _
< Z (4 ‘S[ e 2 ,,AIirUA['u = z])
zeSf
2 U/
= 4‘5?} e 20 <p7l0
where the last inequality is due to 5 > log? n. O

The following lemma is symmetric to Lemma 9, and can be
proved using a similar line of arguments.

20-1
LEMMA 9’. Let © = (0y,...,0q) be a sequence of q € [, ”2—7]
pull outcomes on an arm with mean 8. For any distribution o with
support Sf, we have Pr”BNUB O~Ber(B)®4 [@ ¢ G? ] <n’10
Classes of Distributions Z)?, Df, and Dy (€ =0,1,...,L). We
are now ready to define classes of input distributions on which we

will perform the induction.
For¢ € {0,1,...,L}, we define Z)? to be the class of distributions

o4 with support S? such that

PI'IJANO.A[HA =x] B Prya_za [pA = x] L4

= -e” 1. (23)
Prya_galpd =yl Prya_,a [pt =y]

Vx,yeS?:

Similarly, we define .‘Df to be the class of distributions o with
support Sf such that
B

=x]  Prys_ s (1B = x| .

PT#B~UB [ y

PrﬂB~o.B[[lB =1y] - PrﬂBNH.B [,UB = y]
Let D, = (DA, Df). We say a distribution o = (64, 08) € Dy iff
o e .’D? and 0B € Z){]?.

We have the following simple fact.

FacT 10. D(‘;‘ = {r4}, Z)(I)S = {xB}, and Dy = {x}.

SR

Vx,y € Sf : . (29)

The following lemma shows a key property of distribution classes
D?. Intuitively, if the mean of an arm follows a distribution ole

Z)?, then after observing a good sequence of pulls that belongs to
G? for a k > € + 1, the posterior distribution of the arm belongs to
distribution class Dl‘:\.
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LEmMMA 11. Forany € € {0,1,...,L—1},anyk e {{+1,...,L},
any distribution o € D4, and any good sequence of pull outcomes
0=(01,...,0¢) € G4, the posterior distribution of o after observ-
ing a sequence of pull outcomes being 0 and conditioning on the mean
of the arm p? € 4, denoted by (6* | 0, u” € S?), belongs to the
distribution class Z)?.

Proor. Fix two arbitrary fixed values x, y € S?. By Bayes’ theo-
rem, we have

Pr A=x|@=0,uytesd
[1A~UA,@~BCI(/1A)®‘7[’” | H k]

— A A A _ A _
PrA [@=0,u" €S | p” =x] APr [ =x]

A A

Ho~o, pi~o
O~Ber(u?)®9

P 0=0,u4est
,uA~crA,®~liSer(,uA)®q[ a k]
A

Pr@~Ber(x)®q [©=10] PI‘I_[ANO.A [p =x]

PrﬂANO.A,@~Ber(ﬂA)®q [@) = 9, yA € S?]

~ PO | %) Prya_yalp? = x] 5
Pr/,lA~o'A,®~Ber(yA)®q [@ = 9, /,lA € S‘]?]’

where in the second equality we have used the fact y4 = x € Sf,
and in the third equality we have used the definition of p(6|x) in

).

Similarly, we have

A _ _ A A
,,ANUA,@IirBer(,,A)m pr=y|©=0,u" €S

PO 1Y) -Prya_galp? = y]
PrpA~o'A,®~Ber(pA)®q [@ = 9, yA € S?] '

We next have

PryA~0'A,®~Ber(;1A)®q [:UA =x|©=0, /JA € S?]

PrﬂANO.A’QNBer(”A)@q [ﬂA =y | 0= 9, ,uA € 5?]

(25),(26) Prja_qa [p? = x] p(0]x)

(26)

Prya_galpd =yl p@ly)
Proa_palpt=x] L a4

— P~ - .ei” .et” (27)
Prya_galp? =yl
Pr”AN,rA [pA =x]  La

= v e, (28)
Prya_galp? =yl

where from (26) to (27) we have used the definition of distribution
class Z)’(f\ in (23) and the fact S;? c S?, as well as the definition of

G? and the fact 6 € Gf. From (27) to (28) we have used the fact
k>C+1.
By (28) and the definition of Z)]‘? in (23), we have

(0?10, 4 € 5{) € D
O

The following lemma is symmetric to Lemma 11, and can be
proved using a similar line of arguments.
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Lemma 11", Foranyl € {0,1,...,L—1},anyk € {¢+1,...,L},
any distribution o8 € DB, and any good sequence of pull outcomes
0=(01,...,0q) € GB, the posterior distribution of B after observing
a sequence of pull outcomes being 0 and conditioning on the mean
of the arm B € SB, denoted by (o8 | 0, B € SE), belongs to the
distribution class Df.

Let

1
Z 20+1
e1<2t+1<L "
be the mean of local best arm at Alice’s side, and let

1 1
B_ - —
He = 2 +2 Z 2t
£:1<26<L

1
pl =< +2

be the mean of local best arm at Bob’s side. The following lemma
shows that an arm whose mean is distributed according to o € Z)?
has a small probability being a local best arm.

LEMMA 12. Forany{ € {0,1,...,L}, and any oAe Z)é, we have
4

Pr [pA =pA] <enn 2 wheredy = |{k € Z|€<2k+1<L}
pA~gA

is the number of odd integers in the set {{ + 1,...,L}.

Proor. We first define a few quantities. Let
Prja_ga [pA = x]

max )
xes PrﬂANHA[[JA =x|pte S‘?]

(29)

Pmax =
and slightly abusing the notation, let x € S? be the value that
achieves pmyax. Let

Pmin = Mmin PrﬂANUA[/JA =yl
min —

yess Pr#AN”A[[lA =y|pte S?]’

(30)

and let y € S? be the value that achieves pp,. It is clear that
Pmin < 1 < pmax. We also have

Prmax Prya_galp® =x] Prya_ga A=yt e S‘;]
pmin Pra_galpt =yl Prya_palpd =x|ph €SP
PI'PANO.A [yA =x] PrﬂA~7l.A [yA =1y]
Prya_ga (14 =y] Prja_qa [p4 = x]
— et (31)

where in the second equation we have used the fact that x,y € S?,

and in the last equation we have used the fact that o4 € Z)g“.
_4a 4
We thus have e 7 < ppin < 1 < pmax < e 7. The last inequal-
4
ity pmax < e 7 implies

A_ A A_ A A Al 4
”AEUA[u =p] < #AfirﬂA[ﬂ Spe | K GSg] en
1\4
whered; ={keZ|{<2k+1<L} O

The following lemma is similar to Lemma 12, and can be proved
using a similar line of arguments.
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LemMmA 12’. Forany{ € {0,1,...,L}, and any B € DB, we have

o 2
PrﬂBNO.B[[JB =puBl < e 2, wheredy = |{k € Z | £ < 2k < L}|
is the number of even integers in the set {{ + 1,...,L}.

3.3 The Lower Bound for K = 2

In this section, we show the following lower bound result for the
case of two agents.
log n
THEOREM 13. Forany1 < R < Zaloglogn’
algorithm that solves n-arm BAI in the heterogeneous CL model with

any R-round 2-agent

1
probability 0.99 needs to use at least Hn%R time.

By Yao’s Minimax Lemma, we can just prove for any determinis-
tic algorithm over the hard input distribution (7®" | &1).

We will first analyze the success probability of any deterministic
algorithm A on input distribution 7®". We say A succeeds on an
input instance I if A outputs an index i such that y; = p.. Note
that there could be multiple i € [n] such that y; = p. and A can
output any index in this set.

The Induction Step. Let the quantity A, be the largest success
probability of a (R — r)-round 2¢7%+?LL-time algorithm on some
input distribution in Z)SK for some k € [n]. That is,
Ar £ max max max Pr[A succeeds on I], (33)
k€[n]veDfr A I~v

where max # runs over all algorithms A that use (R — r) rounds
and 2¢n*T2L L time.

The following lemma connects the error probabilities A, and
Ar+1, and is the key for the induction.

LEMMA 14. Foranyr =1,...,R -1, it holds that
1oL 5
Ar S App1 +4e qu_5 +n70.

The rest of Section 3.3 devotes to the proof of Lemma 14. Slightly
abusing the notation, let x be the value that maximizes the er-
ror in the definition of A, (the first max in (33)). We write v =
(O'iA, . .,0',‘?, af, .. .,0',?). Since v ~ ng = ((Dg‘r)@", (Dfr)‘x”c),
we have for any i € [k], 04 € D4 and 0B € DB

Consider the first round of the collaborative learning process. Let
random variables H“ and H B be the pull history (i.e., the sequence
of (arm index, pull outcome) pairs) of Alice and Bob, respectively.
Let random variables 6‘;1 and @? be the sequence of pull outcomes
in the pull history H4 and H® projecting on arm i, respectively.
Let tlA be the number of pulls Alice makes on arm i, and let tiB be
the number of pulls Bob makes on arm i.

For € ={0,1,...,L}, we introduce the following sets of arms.
Ef = (i yn? D <o <yn?ly, (34)
B} = A{ilyn® Y <P <y} (35)

To facilitate the analysis, we augment the algorithm after the
first round of pulls by publishing a set of arms, as well as making
some additional pulls on the remaining arms so as to massage the
posterior mean distribution. By publishing arm i we mean revealing
its local means ,u;.“ and pf} (and thus also its global mean p; =
(y? + ,ulB )/2) to both Alice and Bob. We remove arm i from the set
of arms if y; # p«, otherwise we just output arm i and be done. Note
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that such an augmentation only leads to a stronger lower bound,
since the success probability of the augmented algorithm can only
increase compared with the algorithm before the augmentation.
We also include all additional pulls to 4 and HB.

Arm Publishing and Additional Pulls

(1) Publish all arms in the following set:

E=EAUEB
A _ A B _ B
where E° = U E, and E° = U E,.
£=6(r+1) £=6(r+1)

(2) For each arm i € [k]\E, Alice makes additional pulls on it
until her number of pulls on arm i reaches y}yz(ﬁ(r“)_l), and
Bob makes additional pulls on it until his number of pulls

on arm i reaches yp2¢(r+1)-1),

A _ s A A B _ ) B B
(3) Let P9 = {l ‘,ui € S6<r+1)}, and P° = {1 ‘yi € S6(r+l)}'
Publish all arms in [<]\(P4 n PB).

Let T = {i € [k] | pi = p+} be the set of best arms. We try to
analyze the probability that the augmented algorithm correctly
outputs an arm in T, which is upper bounded by the sum of the
probabilities of the following three events:

(1) TNEA #0.

(2) TNEB £0.

(3) A succeeds on (PA N PB) \E, where A is the (R — (r + 1))-
round algorithm obtained from A conditioned on the pull
history of the first round being H* and HB.

The following lemma upper bounds the first probability. Its proof

is quite technical and lengthy; due to space constraints, we leave it
to the full version of this paper [13].

10L
LEMMA 15. Pry_, ¢4 9B [Tn EA # 0] <2en Lzr]_% +n7°,

The following lemma upper bounds the second probability. It is
symmetric to Lemma 15, and can be proved using a similar line of
arguments.

10L
LEmMA 15", Pry_,, g4 qB [T NEB 2 0] <2e Lzr]_% +n7°,
The next lemma upper bounds the third probability.

LEMMA 16. Let A be the (R — (r + 1))-round algorithm obtained
from A, conditioned on the pull history of the first round being H*
and HB. We have

Pr A succeeds on (PA n PB) \E] < Ay +2n7°.
I~v, HA, HB

Before proving Lemma 16, we begin with some preparation.

Define two events

x*:3ie PAE st 01 ¢Gy,,), (36)
xP:3iePP\E st ©F ¢Gg,.,). (37)

In the next two lemmas, we show that ¥ and y® do not happen
with high probability.



SPAA ’24, June 17-21, 2024, Nantes, France
A -9
LEMMA 17. Pry_, gqa qu[x?] < n™7.

ProoF. Recall that each arm in PA\E has been pulled for ¢ =

26(r+1))-1
yr26r+0-1) ¢ [p3 1 . times.
Pr [x"]
I~v,HA, HB X
K
< Pr ot¢ch e st
£ yA 5 A ~Ber(u o i 6(r+1) | Fi 6(r+1)
(38)
< nonl0=pn (39)
where from (38) to (39) we have used Lemma 9. O

The following lemma is symmetric to Lemma 17, and can be
proved using a similar line of arguments.

Lemma 17’. Prp_, ga q8 [xB]<n™.

PRrooOF oF LEMMA 16. For the convenience of writing, we further
introduce the following event.

[/ A succeeds on (PA al PB) \E. (40)
‘We write
Pr
I~v,'HA,7{B[¢]
< Pr , A,—| B + Pr A
I~v,7—{A,(HB[¢ xX5-x] I~v,‘HA,‘HB[X ]
+ Pr B 41
I~v,‘HA,‘HB[X ] (41)
< Pr A B+ 2n7? 42
INV’W’(HBW x5 -x] (42)
= 2 (Pr [ a1 HAHE) = (WA P
I~v
(h#,hB)
Pr [(HA, HB) = 04, mB)| +2n~°, (43)
HA, B

where from (41) to (42) we have used Lemma 17 and Lemma 17’.

Consider a fixed pull history (A, hB). For any i € (PA n PB)\E,
its sequence of pull outcomes (9{‘, HIB ) in the first round is fully
determined by (hA, nB ). We consider two cases.

Case I: Y or ¥B holds. In this case, we have
Priy, -~y —x P L HAHE) = (A k) =0 (49)

Case II: =y and =B holds. In this case, by the definition of y in

(36) and y®B in (37), we have for any i € (P4 N PB)\E, 9;4 € G6A(r+1)
and 913 € sz " The posterior distribution of the local mean of

arm i at Alice’s side can be written as

= (ot [ ut e s, (A9 = (b4, 1P )
— A A A A _ pA A A
= (Gi | Hi € S@(r+1)’®i = 91‘ € Gé(r+1)) € Dé(r+1)'

Similarly, the posterior distribution of the local mean of arm i at
Bob’s side can be written as

~B_( B| B _cB A q/By _ (1A 1B B
o = (”i |/‘i 656(r+1)’(7_{ SHT) = (b, h )) € Dgrr1):
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Thus, for any i € (P4 N PB)\E, we have &; = (5'iA, &I.B) € Dg(r+1)-
Recall that A is a (R — (r + 1))-round algorithm working on a set of
arms (P4 N PB)\E with & = |(PA n PB)\El < n, conditioned on the
first round pull history being (4, HB). By the definition of A,11
in (33) and the fact that conditioned on the pull history (HA, HB),

the distribution of the ¥ arms belongs to 5% ¢ D§f+1),
Priyx ~x P L HAHE) = (AP < A (49)
~V

Combining (43), (44) and (45), we have

Pr
I~v,7‘{A,'H8[l//]
< (Am Pr [(HAHB) = (WA 1BY]| + 20
4}.{A 7—{3
(h4,hB) ’
< Apgq 2070

[m]

Summing Up. Combining Lemma 15, Lemma 15’, and Lemma 16,

Pr [A succeeds on I]

I~v,HA, HB
< Pr [TNnEA#0]+ Pr [TnEB=%0]
I~v,HA, HB I~v,HA, HB
+ Pr [A succeeds on (PA N PB) \E] (46)
I~v, HA, HB
BL o, 5 -9
< 4(e'7L172+n )+(/1r+1+2n ) (47)
1oL 9 _5 5
< Appr+den LPp 2z 4070, (48)

Since (48) holds for any algorithm (A, distribution v, and x € [n],

Mz_i 5
we have A, < Ap1 +4e 7 L°p" 2 +n™>.

The Base Case. In the base case we consider 0-round algorithm
(i.e., when r = R). We have the following lemma.

48R
LEMMA 18. ForR = %,AR <enp2

PROOF. Any 0-round algorithm needs to output an arm i as the
best arm without making any pulls. For any i with mean y; ~ o0; €
Der, by Lemma 12 and Lemma 12/, we have

R — A_ A B _ B
ﬂifirm[uz =p] = ,,fIira;‘[”i —u*]u?firgiB[u,- =p] (49)
6R .
< en g g (50)

48R
= e n n_z(dﬂ"'dl)’ (51)

wheredy+d; = |{k | 6R < k < L}|.ForR = Ig,wehave Pry~o; (i =
48R
] < e’ gl u]

Putting Things Together (Proof for Theorem 13). By Lemma 18
and Lemma 14, we have

A

&2 5 5
Ao < AR+R-(4e'7L17_5+n_)

A

48R 10L
< enp?+(L)6)- (4e " Lzrf% +n’5) <yl
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Therefore, any R-round collaborative algorithm that uses 2¢n?*2LL

time (i.e., each agent can make at most 2¢#%*2LL pulls in total) can
succeed with probability at most 1.

Recall the definition of event &; in (15): 3 a unique i* € [n] such
that p;+ = p. and the instance complexity H = H(I) < 2p**2LL
where I ~ (7" | &1).

By Lemma 8, Pr[E1] > 1/(2e). We thus have

Pry.zen[A succeeds on I]

Pr A succeeds on I <
I~(7f®"|81)[ ] Pry_qen[&1]
< Ao (2e)
(52)  2e
< — <0.9.
logn

Therefore, any R-round (1 < R < 24Tloglogn

rithm that succeeds on input distribution (7®" | ;) with probabil-
1
ity at least 0.9 needs time at least 207°**LL > H-{ > H - n®R.

) collaborative algo-

3.4 General K

We now consider the general case where there are K agents. The
following theorem is a restatement of Theorem 1.
logn

24loglogn
algorithm that solves n-arm BAI in the heterogeneous CL mode with

probability 0.99 uses time at least Hng(%)/K.

THEOREM 19. Forany1 < R < , any R-round K -agent

Proor. We prove the general K case by a reduction from the
K = 2 case. Suppose there exists a R-round algorithm for BAI in
the heterogeneous CL model with n arms using K agents and uses
time smaller than H nﬁ /K, we show that there also exists a R-
round algorithm for the same problem using 2 agents and uses time
smaller than H nﬁ, contradicting Theorem 13.

The reduction works as follows. Given any algorithm A for the
K-agent case, we construct an algorithm A’ for the 2-agent case:
We divide the K agents to two groups each having K/2 agents.
Let Alice simulate the first group, and Bob simulate the second
group. In each round, the sequence of arm pulls Alice makes is
simply the concatenation of arm pulls made by the K/2 agents
that she simulates, and the sequence of arm pulls Bob makes is
the concatenation of arm pulls made by the K/2 agents that he
simulates. The messages sent by Alice in each communication step
is a concatenation of the messages sent by agents in the group she
simulates in the corresponding communication step in A; similar
for Bob. Now if ‘A uses time at most Hnﬁ /K, then A’ uses time at
most Hn %R /K- (K/2) < Hnﬁ, contradicting to Theorem 13. O

4 THE ALGORITHM

In this section, we present a CL algorithm that gives Theorem 2.
Our algorithm is non-adaptive. It follows the successive elimination
approach, and can be seen as a generalization of the algorithm
for the heterogeneous CL setting in [12] to the entire time-round
tradeoff curve.

Intuitively, we partition the learning process into R rounds with
predefined lengths ¢4, . . ., tg. In each round r, each of the K agents
simply pulls each remaining arm for ¢, times. At the end of each
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Algorithm 1: CL-HETEROGENEOUS(I, R, T)

Input: a set of n arms I, round parameter R, number of
agents K, and time horizon T.

Output: the arm with the largest global mean.

Initialize Iy = I;

r/R
set Ty < 0, Ty Lﬁ*ﬁTTRJ forr=1,...,R;

set ny «— {#J forr=0,...,R—1,and ng « 1;

forr=0,1,...,R-1do
each agent pulls each arm in I, for (Ty4+1 — T;) times;

the k-th agent computes the local empirical mean ﬁgrll
forieI,;
let i —  Sker) i)

let I 41 be the set of ny41 arms in I, with the highest

global empirical means ﬁgr);

return the single element in I.

round, the K agents communicate and compute the global em-
pirical means of each arm, and then select the n, arms with the
highest global empirical means and proceed to the next round,
where ny, ..., ng are also predefined. We set ng to be 1 so that at
the end of the R-round, there will be just one arm left, which can
be proven to be the best arm with high probability.

The algorithm is described in Algorithm 1. It gives the following
guarantees. Due to the space constraints, we leave its proof to the
full version of this paper [13].

THEOREM 20. For any R > 1, Algorithm 1 solves BAI in the het-
erogeneous CL model with K agents and n arms using T time steps
and R rounds, with a success probability at least

1-2nR - exp (—KT/(Zn%RH)) . (52)

Note that Theorem 2 (in the introduction) is an immediate corol-
lary of Theorem 20.

REMARK 21. We note that the total messages exchanged between
the agents in Algorithm 1 is O(nK) words, which is optimal (up to a
logarithmic factor) based on a lower bound result in [12].
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