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ABSTRACT
In this paper, we study the tradeoffs between the time and the

number of communication rounds of the best arm identification

problem in the heterogeneous collaborative learning model, where

multiple agents interact with possibly different environments and

theywant to learn in parallel an objective function in the aggregated

environment. By proving almost tight upper and lower bounds, we

show that collaborative learning in the heterogeneous setting is

inherently more difficult than that in the homogeneous setting in

terms of the time-round tradeoff.

CCS CONCEPTS
• Theory of computation → Communication complexity; •
Computingmethodologies→Multi-agent reinforcement learn-
ing.
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1 INTRODUCTION
As data continue to grow, multi-agent learning has emerged as an

important direction in scalable machine learning and has attracted

much attention under the name of federated learning [15, 16, 18],
where multiple agents try to learn an objective function in paral-

lel via communication. While the majority of work in federated

learning focuses on the distributed training of neural networks,

a few papers [14, 24, 25] studied parallel reinforcement learning

problems in a very similar model named the collaborative learning
(CL) model. However, most work in the literature of collaborative
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learning only considered the homogeneous environment (or, IID

data), in which agents interact with the same data distribution. Real

world applications of multi-agent learning often involve heteroge-
neous environments (or, non-IID data), in which agents interact

with possibly different data distributions.
1
Indeed, heterogeneous

environments have been identified as a key feature of the federated

learning model [10].

In this paper, we investigate heterogeneous collaborative learn-

ing. We will use a basic problem in bandit theory named best arm
identification in multi-armed bandits (BAI) as a vehicle to deliver

the following message: Collaborative learning in the heterogeneous
environment is provably more difficult than that in the homogeneous
environment w.r.t. communication rounds.

In the following, we first introduce the BAI problem and the

CL model, and then summarize our results and contributions. We

conclude the section by discussing related work.

Best Arm Identification in Multi-Armed Bandits. In BAI, we

have n arms, each of which is associated with an unknown distribu-

tionDi (i ∈ [n])with support [0, 1].2 We aim at identifying the arm

whose associated distribution has the largest mean by a sequence of

T pulls. In each arm pull, we choose an arm based on the previous

pulls and outcomes, and obtain a sample from the arm’s associated

distribution. Assuming that each pull takes unit time, we call T the

time horizon. The goal of BAI is to identify the arm with the highest

mean with the smallest error probability under time horizon T .3

BAI is a basic problem in bandit theory and reinforcement learn-

ing, and has been studied extensively in the literature since 1950s

(e.g., [2, 3, 5–7, 9, 11, 20]). The problem has numerous real-world

applications, including clinical trials, article/ad/channel selection,

computer game play, financial portfolio design, adaptive routing,

crowd-sourced ranking, hyperparameter optimization, etc.

Let I = {1, 2, . . . ,n} be an input instance of n arms. W.l.o.g., we

assume that there is a unique best arm, which is denoted by i∗. Let
µ∗ be the mean of Di∗ , and for any i ∈ [n], let µi be the mean of

Di . Let ∆i = µ∗ − µi be the mean gap of the best arm and the i-th
arm. The instance complexity of BAI on input I is defined as:

H (I ) ≜
∑

i ∈[n],i,i∗

1/∆2

i . (1)

1
We felt that the words “IID/non-IID", which are widely used in the literature of

federated learning, are somewhat confusing. In the rest of this paper, we will use

the words “homogeneous" and “heterogeneous" to denote the scenarios where agents

interact with identical and different data distributions, respectively.

2
We use [n] to denote {1, 2, . . . , n }.

3
For readers who are familiar with the bandit literature, we are considering the fixed-
time/budget best arm identification. Another version of this problem is called fixed-
confidence, where we want to solve BAI with a fixed error probability δ with the

smallest number of pulls.
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Intuitively, the term 1/∆2

i is the number of pulls needed to separate

the best arm and the i-th arm with a good probability. We will

sometimes write H ≜ H (I ) for convenience. It is known that under

time horizon Õ(H ), there exists a centralized algorithm that solves

BAI with probability 0.99 [2].4 On the other hand, no centralized

algorithm can solve the BAI problem with probability 0.99 under

time horizon H [4].

The Collaborative Learning Model. Most study for BAI has

been done in the centralized model, in which just one agent pulls

the set of arms sequentially. [14, 24] studied BAI in the collaborative

learning (CL) model, where there are K agents, who try to learn the

best arm in parallel via communication. The learning proceeds in

rounds. In each round, each agent takes a sequence of pulls (one at

each time step) and observes the outcomes. At the end of each round

there is a communication phase; the agents communicate with each

other to exchange newly observed information and determine the

number of time steps for the next round (the length of the first

round is determined at the beginning of the first round). At the end

of the last round, all agents have to output the same answer without

any further communication. The goal of BAI in the CL model is

for all agents to output the correct answer with the smallest error

probability under time horizon T (i.e., the number of time steps

over all rounds) and the number of rounds R. Note that the number

of communication phases is (R − 1), since we do not allow any

communication at the end of the last round.

Depending on whether the agents have real-time computing

and policy-updating ability, the CL algorithms are divided into

two categories: adaptive and non-adaptive. In the adaptive case,

agents can change their pull policies at each time step based on

new observations. While in the non-adaptive case, policy updates

can only happen at the beginning of each round. In this paper, we

focus on the adaptive case; the lower bound proof for the adaptive

case is more challenging than the non-adaptive case due to agents’

local adaptivity within a round.

Minimizing communication in the CL model is critical due to

network bandwidth constraints and latency, energy consumption

(think of deep-sea/outer-space exploration), and data usage (e.g.,

if messages are sent by mobile devices). In this paper, we mainly

focus on the round complexity. Like parallel/distributed computa-

tion models such as MapReduce, initiating a new round of learn-

ing process can be very expensive due to various communication

overheads. The communication cost (i.e., the total number of bits

exchanged between agents) of our algorithm is optimal up to a

logarithmic factor based on a recent lower bound result in [12] (see

Remark 21).

Heterogeneous Environments. In the CL model studied by [24]

and [14], each agent interacts with the same environment; for the

BAI problem in particular, by pulling the same arm, the agents

sample from the same data distribution. However, as mentioned

earlier, heterogeneous environments are inherent in many real-

world collaborative learning applications.

For example, in the setting of channel selection in cognitive ra-

dio networks, a base station utilizes a number of mobile devices

4
For the convenience of presentation, we sometimes use ‘ ˜ ’ on O , Ω, Θ to hide non-

critical logarithmic factors. All logarithmic factors will be spelled out in our theorems

explicitly.

(e.g., cell phones) to select the best channel for data transformation

in a particular area. Here each mobile device represents an agent

and each channel represents an arm. At each time step, an agent

selects a channel and attempts to transmit a message. If the message

is successfully delivered, the agent receives a reward of 1; other-

wise, the reward is 0. This corresponds to the bandit setting. Since

mobile devices sit at different geographic locations, the channel

availability distributions they observe may be very different. The

base station needs to identify the best arm with respect to the aggre-
gation of local channel availability distributions. Another example

is the task of item-selection in recommendation systems, where a

group of servers work together to learn the globally most popular

item via communication, while each server can only interact with

users in a certain region (and thus get samples from a distinct data

distribution).

In BAI with heterogeneous environments, by pulling the same

arm, the agents sample from possibly different distributions. Let

πi ,k be the distribution associated with the i-th arm that the k-th
agent samples from, and let µi ,k be the mean of πi ,k . Define the
global mean of the i-th arm as

µi ≜
1

K

∑
k ∈[K ]

µi ,k . (2)

Our task is to identify the arm i∗ with the largest global mean,

while each agent k ∈ [K] can only pull each arm i ∈ [n] under
its local distribution πi ,k . In the heterogeneous setting, we define

mean gaps based on the global means, that is, ∆i = µ∗ − µi , and the
instance complexity H again as

∑
i ∈[n],i,i∗ 1/∆

2

i .

Our Results. The main result of this paper is the following im-

possibility result.

Theorem 1 (Main Theorem). For any 1 ≤ R ≤
logn

24 log logn and

any T < HnΩ(
1

R )/K , any R-round T -time K-agent algorithm that
solves n-arm BAI in the heterogeneous CL model has a success proba-
bility less than 0.99.

We complement the impossibility result by the following algo-

rithmic result.

Theorem 2. For anyR ≥ 1 and anyT ≥ cTHn
1

R /K for a universal
constant cT , there exists a R-round T -time K-agent algorithm that
solves n-arm BAI in the heterogeneous CL model with probability
0.99.

We note that for a fixed time budget, the number of rounds R in

the lower and upper bounds in Theorem 1 and Theorem 2 match

up to a constant factor.

We would like to highlight a couple of points regarding Theo-

rem 1. First, this is the first lower bound result that addresses the

local agent adaptivity in the CL models. In particular, it shows that

the capacity of each agent to utilize newly observed information

within each round does not contribute to reducing the round com-

plexity in the heterogeneous CL model. This is in stark contrast

with the homogeneous CL model in which local agent adaptivity

can significantly reduce the round complexity. Second, our hard

input distribution for proving Theorem 1 is the first one that uses

asymmetric arm means constructions. It exploits the heterogeneous

property, enabling us to establish a higher lower bound for BAI
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than the one presented in the homogeneous setting [24]. We will

give a more detailed technical overview in Section 2.

1.1 Related Work
We summarize previous work that is closely related to this paper in

the CL model, and refer readers to the book by [17] for an overview

on BAI in the centralized model.

The (homogeneous) CL model was first used in the work [8] for

studying multi-agent BAI, but the model was not formally defined

there. The results for fixed-time BAI in [8] only consider the special

case where there is only one communication phase (i.e., R = 2). The

CL model was rigorously formulated in [24], where the authors

obtained almost tight tradeoffs between the learning time and the

round cost for BAI. The followup work [14] extended this line of

research to the top-m arm identifications problem. [25] studied

regret minimization in multi-armed bandits in essentially the same

model, but it focused on the total bits of communication exchanged

between the agents (or, the communication cost) instead of the

number of rounds. Recently, [12] studied the tradeoff between the

learning time and the communication cost in the CL model for BAI,

and [1] studied linear bandits in a similar setting.

The authors of [21] studied BAI and regret minimization in multi-

armed bandits in a model similar to the CL model, but mainly in the

fixed-confidence setting. That is, their algorithm takes a confidence

parameter δ (instead of a time horizon T ) as an input, and try to

use the smallest possible number of time steps to identify the best

arm with probability (1 − δ ). Their lower bound results are proved

for the setting that agents can communicate at each time step.

In the heterogeneous CL model, [22, 23] studied regret minimiza-

tion in multi-armed bandits. The authors considered the communi-

cation cost of the CL algorithms, but the cost has been embedded

into the regret formulation. [19] studied BAI in the CL model where

arms are partitioned into groups, and each agent can only pull arms

from one particular group. This model can be thought as a special

case of the heterogeneous CL model studied in this paper, where

for any arm i ∈ [n], there exists a unique agent k ∈ [K] such that

µi ,k > 0, while µi ,k ′ = 0 for all k ′ ∈ [K]\{k}. This special case
does not capture the inherent difficulty of the heterogeneous CL

model where the information about a particular arm can spread

over multiple agents, and their results cannot be generalized to the

heterogeneous CL model.

2 TECHNICAL OVERVIEW OF THE MAIN
RESULT

Before delving into the full proof of our main result (Theorem 1),

which is very technical, we would like to provide an overview.

We note that all the parameters used in this technical overview

are merely for the illustration purpose. They may not correspond to
the actual, typically more complex, parameters used in the actual

proof. We will also frequently ignore lower-order logarithmic terms
for the sake of readability.

Generalized Round Elimination and Challenges. Let us start

by briefly illustrating the generalized round elimination technique

introduced in [24], and then explain the challenges in applying it

in the heterogeneous setting.

Generalized round elimination can be thought as an induction

on a sequence of hard distribution classes D0,D1, . . . ,DR , where

D0 = {ϕ} consists of the original hard input distribution ϕ.5 At
the i-th induction step, we show that for any input distribution

in σ ∈ Di−1, if the agents do not conduct enough non-adaptive
pulls (due to the time budget constraint) in a round, then after

some “input massage" which will only make the problem easier,

the posterior distribution σ ′ belongs to Di . For the base case, we

show that no 0-round CL algorithm can solve the problem for any

distribution σ ∈ DR with a non-trivial success probability. We can

thus prove that noR-round algorithm for solving the problem on the

original input distribution ϕ with a non-trivial success probability.

The lower bound proof using generalized round elimination in

[24] was carried out on non-adaptive algorithms in the homoge-

neous CL setting. For adaptive algorithms, only in the case when

n ≤ K (that is, the number of arms is no more than the number of

agents), we can show that adaptive pulls do not have much advan-

tage against non-adaptive pulls via a coupling argument. This is

why in [24], only a Ω
(

logmin{K ,n }
log logmin{K ,n }

)
round lower bound can be

proved for adaptive algorithms. As mentioned, for the heteroge-

neous CL setting, our goal is to prove an Ω
(

logn
log logn

)
round lower

bound for adaptive algorithms for any value n. To this end, we

must design a new, harder input distribution that leverages the

heterogeneous property of the data distributions.

An Interleaved Local Mean Construction. Our new input dis-

tribution for heterogeneous data is easier to visualize with two

agents, Alice and Bob, but it can easily be extended to multiple

agents.

We will focus on the Ω(logn) round case (ignoring a log log

factor), while our lower bound result covers the entire time-round

tradeoff. The formal definition of our hard input distribution and

its properties can be found in Section 3.1.

Our hard input distribution has L = Θ(logn) terms, with odd

terms held by Alice and even terms held by Bob. The global mean

of each arm can be written as

µ =
1

2

+

L∑
ℓ=1

Xℓ

4
ℓ
,

whereX1, . . . ,XL ∈ {0, 1} are i.i.d. Bernoulli random variables with

mean
1

2
. WhenX1 = · · · = XL = 1, µ achieves its maximum possible

value. The local mean of each arm at Alice’s side is

µA =
1

2

+
∑

ℓ:1≤2ℓ+1≤L

2X
2ℓ+1

4
2ℓ+1

,

and that at Bob’s side is

µB =
1

2

+
∑

ℓ:1≤2ℓ≤L

2X
2ℓ

4
2ℓ
.

Note that µ = (µA + µB )/2. Let π , πA and πB be the underlying

distributions of µ, µA, and µB .

5
We need to use input distribution instead of a single hard input instance because we

are proving a lower bound for randomized algorithms. By Yao’s minimax lemma [26],

we can instead prove a lower bound for deterministic algorithms on a hard input

distribution.
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Proof Intuition and New Challenges. We say an arm is at level

ℓ if X1 = . . . = Xℓ = 1 and Xℓ+1 = 0 (if ℓ < L). The high-level
intuition of proving an Ω(L)(= Ω(logn)) lower bound is that Alice

and Bob must learn the set of n arms level by level under a time

budget Õ(H ), where H is the input instance complexity. That is, at

the end of the ℓ-th round, they can only identify and eliminate those

arms that are in the first ℓ levels, while for the remaining arms the

uncertainty is still large. As a result, they need L = Ω(logn) rounds
to identify the best arm. Ideally, we hope to show that at each odd

round ℓ, Alice is able to identify and eliminate those arms who are

in level ℓ but not higher, while Bob is not able to do much as he

lacks information about Xℓ of each arm. And a similar situation

holds at each even round ℓ with Alice and Bob’s positions swapped.

The difficulty in formalizing the above intuition is that it is

actually possible for each party to learn information about the bits

(i.e., the Xi ’s) at all levels using their local samples and messages

received from the other party. What we need to show is that this

information is not enough to allow parties to “jump" ω(1) levels
after each round given the total sample budget.

We try to formalize this intuition using generalized round elimi-

nation. There are two challenges in proving a Ω(logn) round lower
bound for BAI in the heterogeneous CL model.

(1) Explicit forms of distribution classes like those used in [24]

in the homogeneous setting are difficult to obtain in the

heterogeneous setting due to the intricate structures of the

hard input distributions µA and µB .
(2) Since the coupling argument which reduces adaptive CL

algorithms to non-adaptive CL algorithms is inapplicable

when n > K , we have to prove the lower bound for adaptive

CL algorithms directly.

In the following, we briefly illustrate how we address these two

challenges.

Implicit Forms of Distribution Classes. Our first technical

innovation is that we implicitly define the classes of distributions for

the generalized round elimination by quantifying the relationship

between each distribution in the class and the original hard input

distribution. The discussion below is again a simplified version of

the actual construction, whose details can be found in Section 3.2.

The distribution classes for Alice and Bob are defined in a similar

way. Here we use Alice for example, and define the distribution

classesDA
ℓ
(ℓ = 0, 1, . . .) for Alice. The combined distribution class

will be denoted by Dℓ = (D
A
ℓ
,DB

ℓ
), where DB

ℓ
is the one defined

for Bob.

Let SA
ℓ
be the set of all possible local means at Alice’s side for arms

in levels ℓ, . . . , L, and let ς = n1/L . For each level ℓ = 0, 1, . . . , L,
define input classDA

ℓ
to be the set of distributions σA with support

SA
ℓ
such that

∀x,y ∈ SAℓ :

PrµA∼σA [µ
A = x]

PrµA∼σA [µ
A = y]

=
PrµA∼πA [µ

A = x]

PrµA∼πA [µ
A = y]

· e
± ℓ
ς . (3)

Note thatDA
0
= {πA} where πA is the original input distribution at

Alice’s side. Intuitively, Equation (3) states that for any distribution

σA ∈ DA
ℓ
, the ratio between the probability mass on any two

possible mean values in σA is close to that in the original input

distribution πA. Consequently, if the original input distribution

πA is quite “uncertain", then any distribution σA ∈ DA
ℓ
is also

quite uncertain. The extra e
± ℓ
ς
is a relaxation term that counts the

influence of the pull outcomes in the first ℓ rounds on the posterior

distribution of πA.
We have the following lemma. Its formal statement can be found

in Lemma 11 in Section 3.2. We slightly rewrite and simplify the

statement here for the illustration purpose.

Lemma 3. For any ℓ ∈ {0, 1, . . . , L − 1}, any distribution σA ∈
DA

ℓ
, and any good sequence of pull outcomes θ = (θ1, . . . , θq ) in

the current round, the posterior distribution of σA after observing a
sequence of pull outcomes being θ and conditioning on the mean of
the arm µA ∈ SA

ℓ+1
, denoted by (σA | θ, µA ∈ SA

ℓ+1
), belongs to the

distribution class DA
ℓ+1

.

On the other hand, we can also show that the pull sequence θ
is good with high probability if its length is not too large, which

holds if there is a time budget constraint.

Lemma 3 helps in establishing the foundation of the induction

in the round elimination without having to go through the spelling

of the posterior distributions after a round of arm pulls.

A Lower Bound for Adaptive CL Algorithms. Our second

technical contribution is to prove the lower bound for adaptive

CL algorithms directly, instead of via a reduction from a lower

bound for non-adaptive CL algorithms. The details can be found in

Section 3.3.

Let us first recall the proof for non-adaptive algorithms in [24].

After the first round of pulls, we set a threshold η and publish
those arms who have been pulled more than η times in the first

round; we call these arms the heavy arms. By publishing an arm

we mean revealing its mean to all agents; note that this will only

make the problem easier, and consequently make the lower bound

proof stronger. This arm publishing procedure is what we formerly

referred to as the “ input massage".

We use the arm publishing procedure to ensure that the means

of remaining arms belong to the next class (i.e., µA ∈ SA
ℓ+1

). For

the set of distribution classes DA
ℓ
(ℓ = 0, 1, . . .) used in this paper,

we can use Lemma 3 to show that the posterior distribution of

some σA ∈ DA
ℓ
, after the publishing procedure, belongs to the next

distribution class DA
ℓ+1

.

In order for the induction to proceed, we need to make sure that

if we publish all heavy arms, the probability of the best arm being

published is small, since otherwise the problem would already be

solved and the round elimination process cannot continue. This is
easy to do with non-adaptive algorithms, because the whole pull

sequence and consequently the set of heavy arms are determined

at the beginning of each round. If the time budget is small, then the

number of heavy arms must be small. Consequently, the probability

that the set of heavy arms contain the best arm is also small, because

all arms are almost equally uncertain at the beginning of each round.

In other words, the set of heavy arms would be an almost random
subset of all arms.

Adaptive algorithms, however, can utilize their adaptivity to look

for arms with high means and make more pulls on those arms.
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To handle this challenge, we choose to explicitly analyze for

each heavy arm its probability of being the best arm after the first

round of pulls, and then show that the sum of these probabilities

is small. This analysis is much more complicated than that for the

non-adaptive algorithms. We try to illustrate the main ideas below.

The key to the analysis for each individual arm is that, because

of the interleaved mean structure, Alice misses most information

of half of the terms held by Bob. Without this information, her

adaptivity cannot help much in the task of identifying which arm is

more likely to be the best arm. On the other hand, the time budget

constraint also prevents Alice from extracting and revealing to Bob

too much information about her local means of arms which are not
published in the next round (see the algorithm Arm Publishing and
Additional Pulls in Section 3.3 for details on how we publish arms).

A similar argument holds for Bob. Despite appearing natural, it is

highly non-trivial to put this intuition into a formal proof since

we need to carefully bound the “help" of the historical information

exchange. The adaptivity of the algorithm further complicates the

description of the posterior distribution of the arms after one round

of pulls. Fortunately, our implicit representation of the distribution

classes is flexible enough to handle this additional complexity.

Finally, we would like to mention that due to technical needs, in

each step of our induction we have to “consume” multiple, but still

O(1), levels out of the L levels of arms, but this will not change the
asymptotic round bound.

Generalizing to K Parties. Finally, we comment that we can

easily generalize the lower bound for 2 agents to K agents via a

reduction. See Section 3.4 for details.

3 THE IMPOSSIBILITY RESULT
In this section, we give the proof to Theorem 1.

We start with the case when there are two agents (i.e., K = 2),

and then generalize the results to all K . Below are a few notations

that we will be using in this section.

• R: The number of rounds used by the algorithm. We will

focus on the range 1 ≤ R ≤
logn

24 log logn .

• L ≜ 6R: The number of terms in the means of arms in the

hard input distribution.

• η ≜ n
1

2L = n
1

12R : Intuitively, it is the ratio between the

maximum contributions of consecutive terms in the mean

construction. For 1 ≤ R ≤
logn

24 log logn , we always have η ≥

log
2 n.

• ζ ≜
√
η
2
7
= n

1

24R

2
7

: A parameter related to the time of the CL

algorithm.

• γ ≜
η
2
7
= n

1

12R

2
7
= Θ(ζ 2): A parameter for the convenience

of the presentation.

• Ber(µ) denotes the Bernoulli distribution with mean µ.

For convenience, when we write c = a ± b (or c ± d = a ± b), we
mean c ∈ [a − b,a + b] (or [c − d, c + d] ⊆ [a − b,a + b]). Without

this simplification, some formulas may be difficult to read.

We will use the following standard concentration bound.

Lemma 4 (Chernoff-Hoeffding Ineqality). LetX1, . . . ,Xn ∈
[ai ,bi ] be independent random variables. Let X =

∑n
i=1 Xi . For any

t ≥ 0, it holds that

Pr [X ≥ E[X ] + t] ≤ exp

(
−

2t2∑n
i=1(bi − ai )

2

)
, and

Pr [X ≤ E[X ] − t] ≤ exp

(
−

2t2∑n
i=1(bi − ai )

2

)
.

In the rest of this section, we first introduce the hard input

distribution that we use to prove the lower bound and discuss

its properties. We then introduce the classes of distributions on

which we will perform the generalized round elimination. After

these preparation steps, we present our main lower bound proof

for K = 2, and then extend it to the general case.

3.1 The Hard Input Distribution (When K = 2)
and Its Properties.

Define random variable

µ = µ(X1, . . . ,XL) =
1

2

+

L∑
ℓ=1

Xℓ

ηℓ
, (4)

where for each ℓ ∈ [L], Xℓ ∼ Ber

(
η−2

)
are drawn independently.

Let π be the distribution of random variable µ.
Let (µ1, . . . , µn ) ∼ π ⊗n , where µi is the global mean of arm i .

We divide each µi into two local means µAi and µBi for Alice and

Bob respectively, where

µA =
1

2

+
∑

ℓ:1≤2ℓ+1≤L

2X
2ℓ+1

η2ℓ+1
, and µB =

1

2

+
∑

ℓ:1≤2ℓ≤L

2X
2ℓ

η2ℓ
.

That is, Alice takes all odd terms in the summation of (4), and Bob

takes all even terms in the summation of (4); the factor 2 is just to

make sure that µ = (µA + µB )/2. It is clear that µA and µB are inde-

pendent, because they depend on disjoint subsets of {X1, . . . ,XL}.

Let πA and πB be the underlying distributions of random variables

µA and µB , respectively. We can write π = (πA, πB ).

Key Properties of the Support of Distribution π = (πA, πB ).
For each ℓ ∈ {0, 1, . . . , L}, we define the following two sets:

SAℓ ≜

{
1

2

+
∑

k :1≤2k+1≤ℓ

2

η2k+1
+

∑
k :ℓ<2k+1≤L

2X
2k+1

η2k+1

����� X2k+1 ∈ {0, 1}

}
,

(5)

and

SBℓ ≜

{
1

2

+
∑

k :1≤2k≤ℓ

2

η2k
+

∑
k :ℓ<2k≤L

2X
2k

η2k

����� X2k ∈ {0, 1}

}
. (6)

Intuitively, the set SA
ℓ
consists of values in supp(πA) with X1 =

X3 = . . . = Xℓ′ = 1, where ℓ′ is the largest odd integer no more

than ℓ. And the set SB
ℓ
consists of values in supp(πB ) with X2 =

X4 = . . . = Xℓ′ = 1, where ℓ′ is the largest even integer no more

than ℓ. It is easy to see that

supp(πA) = SA
0
⊃ SA

1
= SA

2
⊃ SA

3
= SA

4
⊃ . . . ,

and

supp(πB ) = SB
0
= SB

1
⊃ SB

2
= SB

3
⊃ SB

4
= . . . .
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Let θ = (θ1, . . . , θq ) ∈ {0, 1}
q
be a sequence of q pull outcomes

on an arm with mean x . For convenience, we write

p(θ | x) ≜ Pr

Θ∼Ber(x )⊗q
[Θ = θ ]. (7)

We have

p(θ | x) =

q∏
j=1

xθ j (1 − x)1−θ j . (8)

The following two lemmas give key properties of the sets SA
ℓ
and

SB
ℓ
. Intuitively, it says that if we can only pull the arm whose mean

is x ∈ SA
ℓ
(or x ∈ SB

ℓ
) for a small number of times, then it is hard to

differentiate its true mean x from other values in SA
ℓ
(or SB

ℓ
) based

on the pull outcomes. Due to the space constraints, we leave the

proof of this technical lemma to the full version of this paper [13].

Lemma 5. For any x ∈ SA
ℓ
, let Θ = (Θ1, . . . ,Θq ) be a sequence

of q ∈
[
η3,

η2ℓ−1

2
7

]
pull outcomes on an arm with mean x . For any

y ∈ SA
ℓ
(y , x), we have

Pr

Θ∼Ber(x )⊗q

[
p(Θ | y)

p(Θ | x)
< e
− 2

η

]
≤ e
−

η
2
10 ,

and

Pr

Θ∼Ber(x )⊗q

[
p(Θ | y)

p(Θ | x)
> e

2

η

]
≤ e
−

η
2
10 .

The following lemma is symmetric to Lemma 5, and can be

proved using a similar line of arguments.

Lemma 5
′
. For any x ∈ SB

ℓ
, let Θ = (Θ1, . . . ,Θq ) be a sequence

of q ∈ [η3, η
2ℓ−1

2
7
] pull outcomes on an arm with mean x . For any

y ∈ SB
ℓ
(y , x), we have

Pr

Θ∼Ber(x )⊗q

[
p(Θ | y)

p(Θ | x)
< e
− 2

η

]
≤ e
−

η
2
10 , (9)

and

Pr

Θ∼Ber(x )⊗q

[
p(Θ | y)

p(Θ | x)
> e

2

η

]
≤ e
−

η
2
10 . (10)

Instance Complexity under Distribution π ⊗n . We now try to

bound the instance complexity of an input sampled from distribu-

tion π ⊗n . Let µ∗ =
1

2
+

∑L
ℓ=1

1

ηℓ . The following event stands for

the case when there is only one best arm with mean µ∗.

E0 : ∃ unique i
∗ ∈ [n] s.t. µi∗ = µ∗. (11)

The following lemma shows that E0 holds with at least a constant

probability.

Lemma 6. Pr(µ1, ...,µn )∼π ⊗n [E0] ≥ 1/e .

Proof. We have

Pr

(µ1, ...,µn )∼π ⊗n
[E0] =

n∑
i=1

©­«Pr[µi = µ∗]
∏

j ∈[n], j,i

Pr[µ j , µ∗]
ª®¬

= n ·
1

η2L
·

(
1 −

1

η2L

)n−1
=

(
1 −

1

n

)n−1
≥

1

e
.

□

We now try to upper bound the instance complexity of inputs

sampled from distribution π ⊗n , conditioned on event E0.

Lemma 7. E(µ1, ...,µn )∼π ⊗n [H | E0] ≤ η
2+2LL.

Proof. Conditioned on E0, let i
∗
be the unique best arm with

mean µ∗. We can write

E(µ1, ...,µn )∼π ⊗n [H | E0]

= E(µ1, ...,µn )∼π ⊗n


∑
i ∈[n],i,i∗

(µ∗ − µi )
−2

����max

i,i∗
{µi } < µ∗


= (n − 1)Eµ∼π

[
(µ∗ − µ)

−2 | µ < µ∗
]
. (12)

To upper bound (12), we partition the values in supp(π ) into L
disjoint sets. For each ℓ ∈ [L], we define

Pℓ ≜

{
1

2

+

ℓ−1∑
k=1

1

ηk
+

0

ηℓ
+

L∑
k=ℓ+1

Xk
ηk

����� (Xℓ , . . . , XL ) ∈ {0, 1}
L−ℓ+1

}
.

(13)

Clearly, we have

⋃L
ℓ=1 Pℓ = supp(π ) \ {µ∗}, and for any ℓ ∈ [L]

and any µ ∈ Pℓ ,

µ∗ − µ ≥
1

ηℓ
. (14)

Plugging (14) to (12), we have

(12) ≤ (n − 1) ·
L∑

ℓ=1

(
Pr

µ∼π
[µ ∈ Pℓ | µ < µ∗] · η

2ℓ

)
= (n − 1) ·

L∑
ℓ=1

(
Prµ∼π [µ ∈ Pℓ, µ < µ∗]

Prµ∼π [µ < µ∗]
· η2ℓ

)

= (n − 1) ·
L∑

ℓ=1

©­­«
(
1

η2

)ℓ−1 (
1 − 1

η2

)
1 − 1

n
· η2ℓ

ª®®¬
= n ·

(
1 −

1

η2

)
·

L∑
ℓ=1

η2

≤ η2Ln = η2+2LL.

□

Define event

E1 : E0 holds ∧ (H < 2η2+2LL). (15)

By Markov’s inequality and Lemma 7, we have

Pr[H ≥ 2η2+2LL | E0] ≤ 1/2,

which, combined with Lemma 6, gives the following lemma.

Lemma 8. Pr[E1] ≥ 1/(2e).

Hard Input Distribution. The hard input distribution we use

for proving the lower bound is (π ⊗n | E1). That is, the probability
mass is uniformly distributed among the support of π ⊗n except
those instances in which there is 0 or multiple arms with means

µ∗ (i.e., when E0 does not hold) and those of which the instance

complexity is more than 2η2+2LL.
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In our lower bound proof in Section 3.3, we will spend most of

our time working on the input distribution π ⊗n . We will switch to

(π ⊗n | E1) at the end of the proof.

3.2 Classes of Hard Distributions
In this section, we define the classes of hard distributions that we

use for the generalized round elimination. We start by introducing

a concept called good pull outcome sequences.

Good Pull Outcome Sequences. We say a pull outcome se-

quence θ = (θ1, . . . , θq ) good w.r.t. SA
ℓ
if for any x,y ∈ SA

ℓ
, p(θ |x)

and p(θ |y) are close. More precisely, we define the set of good pull

outcome sequences w.r.t. SA
ℓ
as

GA
ℓ ≜

{
θ

���� ∀x,y ∈ SAℓ :

p(θ | x)

p(θ | y)
∈

[
e
− 4

η , e
4

η
] }
. (16)

Similarly, we define the set of good pull outcome sequences w.r.t.

SB
ℓ
as

GB
ℓ ≜

{
θ

���� ∀x,y ∈ SBℓ :

p(θ | x)

p(θ | y)
∈

[
e
− 4

η , e
4

η
] }
. (17)

The following lemma says that when the length of sequence q is

not large, then with high probability, the pull outcome sequence is

good.

Lemma 9. Let Θ = (Θ1, . . . ,Θq ) be a sequence of q ∈ [η3,
η2ℓ−1

2
7
]

pull outcomes on an arm with mean µA. For any distribution σA with

support SA
ℓ
, we have PrµA∼σA ,Θ∼Ber(µA)⊗q

[
Θ < GA

ℓ

]
≤ n−10.

Proof. By the law of total probability, we write

Pr

µA∼σA ,Θ∼Ber(µA)⊗q

[
Θ < GA

ℓ

]
=

∑
z∈SA

ℓ

(
Pr

Θ∼Ber(z)⊗q

[
Θ < GA

ℓ

]
Pr

µA∼σA
[µA = z]

)
. (18)

By definition, θ < GA
ℓ
if and only if there exists a pair of x,y ∈ SA

ℓ
such that

p(θ | x)

p(θ | y)
> e

4

η
or

p(θ | x)

p(θ | y)
< e
− 4

η . (19)

We first consider the case
p(θ |x )
p(θ |y) > e

4

η
. In this case, for any

z ∈ SA
ℓ
, we have

p(θ | x)

p(θ | z)
> e

2

η
or

p(θ | y)

p(θ | z)
< e
− 2

η .

Consequently,

Pr

Θ∼Ber(z)⊗q

[
p(Θ | x)

p(Θ | y)
> e

4

η

]
≤ Pr

Θ∼Ber(z)⊗q

[
p(Θ | x)

p(Θ | z)
> e

2

η

]
+ Pr

Θ∼Ber(z)⊗q

[
p(Θ | y)

p(Θ | z)
< e
− 2

η

]
≤ 2e

−
η
2
10 , (20)

where in the last inequality we have used Lemma 5.

By a similar argument, we can show

Pr

Θ∼Ber(z)⊗q

[
p(Θ | x)

p(Θ | y)
< e
− 4

η

]
≤ 2e

−
η
2
10 . (21)

By (20), (21), and the definition of GA
ℓ
in (16), we have

Pr

Θ∼Ber(z)⊗q

[
Θ < GA

ℓ

]
≤

∑
x ,y∈SA

ℓ

(
Pr

Θ∼Ber(z)⊗q

[
p(Θ | x)

p(Θ | y)
> e

4

η

]
+

Pr

Θ∼Ber(z)⊗q

[
p(Θ | x)

p(Θ | y)
< e
− 4

η

])
≤ 4

���SAℓ ���2 e− η
2
10 , (22)

where in the last inequality we have taken a union bound on all

pairs (x,y) ∈ SA
ℓ
× SA

ℓ
.

Plugging (22) to (18), we have

Pr

µA∼σA ,Θ∼Ber(µA)⊗q

[
Θ < GA

ℓ

]
≤

∑
z∈SA

ℓ

(
4

���SAℓ ���2 e− η
2
10

Pr

µA∼σA
[µA = z]

)
= 4

���SAℓ ���2 e− η
2
10 ≤ n−10,

where the last inequality is due to η ≥ log
2 n. □

The following lemma is symmetric to Lemma 9, and can be

proved using a similar line of arguments.

Lemma 9
′
. Let Θ = (Θ1, . . . ,Θq ) be a sequence of q ∈ [η3,

η2ℓ−1

2
7
]

pull outcomes on an arm with mean µB . For any distribution σB with

support SB
ℓ
, we have PrµB∼σ B ,Θ∼Ber(µB )⊗q

[
Θ < GB

ℓ

]
≤ n−10.

Classes of DistributionsDA
ℓ
,DB

ℓ
, andDℓ (ℓ = 0, 1, . . . , L). We

are now ready to define classes of input distributions on which we

will perform the induction.

For ℓ ∈ {0, 1, . . . , L}, we defineDA
ℓ
to be the class of distributions

σA with support SA
ℓ
such that

∀x,y ∈ SAℓ :

PrµA∼σA [µ
A = x]

PrµA∼σA [µ
A = y]

=
PrµA∼πA

[
µA = x

]
PrµA∼πA

[
µA = y

] ·e± 4ℓ
η . (23)

Similarly, we define DB
ℓ
to be the class of distributions σB with

support SB
ℓ
such that

∀x,y ∈ SBℓ :

PrµB∼σ B [µB = x]

PrµB∼σ B [µB = y]
=

PrµB∼π B
[
µB = x

]
PrµB∼π B

[
µB = y

] · e± 4ℓ
η . (24)

Let Dℓ = (D
A
ℓ
,DB

ℓ
). We say a distribution σ = (σA,σB ) ∈ Dℓ iff

σA ∈ DA
ℓ
and σB ∈ DB

ℓ
.

We have the following simple fact.

Fact 10. DA
0
= {πA}, DB

0
= {πB }, and D0 = {π }.

The following lemma shows a key property of distribution classes

DA
ℓ
. Intuitively, if the mean of an arm follows a distribution σA ∈

DA
ℓ
, then after observing a good sequence of pulls that belongs to

GA
k for a k ≥ ℓ + 1, the posterior distribution of the arm belongs to

distribution class DA
k .
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Lemma 11. For any ℓ ∈ {0, 1, . . . , L − 1}, any k ∈ {ℓ + 1, . . . , L},
any distribution σA ∈ DA

ℓ
, and any good sequence of pull outcomes

θ = (θ1, . . . , θq ) ∈ G
A
k , the posterior distribution of σA after observ-

ing a sequence of pull outcomes being θ and conditioning on the mean
of the arm µA ∈ SAk , denoted by (σA | θ , µA ∈ SAk ), belongs to the
distribution class DA

k .

Proof. Fix two arbitrary fixed values x,y ∈ SAk . By Bayes’ theo-

rem, we have

Pr

µA∼σA ,Θ∼Ber(µA)⊗q
[µA = x | Θ = θ, µA ∈ SAk ]

=

Pr

µA∼σA ,
Θ∼Ber(µA)⊗q

[Θ = θ, µA ∈ SAk | µ
A = x] Pr

µA∼σA
[µA = x]

Pr

µA∼σA ,Θ∼Ber(µA)⊗q
[Θ = θ , µA ∈ SAk ]

=
PrΘ∼Ber(x )⊗q [Θ = θ ] PrµA∼σA [µ

A = x]

PrµA∼σA ,Θ∼Ber(µA)⊗q [Θ = θ , µ
A ∈ SAk ]

=
p(θ | x) · PrµA∼σA [µ

A = x]

PrµA∼σA ,Θ∼Ber(µA)⊗q [Θ = θ, µ
A ∈ SAk ]

, (25)

where in the second equality we have used the fact µA = x ∈ SAk ,

and in the third equality we have used the definition of p(θ |x) in
(7).

Similarly, we have

Pr

µA∼σA ,Θ∼Ber(µA)⊗q
[µA = y | Θ = θ, µA ∈ SAk ]

=
p(θ | y) · PrµA∼σA [µ

A = y]

PrµA∼σA ,Θ∼Ber(µA)⊗q [Θ = θ , µ
A ∈ SAk ]

.

We next have

PrµA∼σA ,Θ∼Ber(µA)⊗q [µ
A = x | Θ = θ, µA ∈ SAk ]

PrµA∼σA ,Θ∼Ber(µA)⊗q [µ
A = y | Θ = θ , µA ∈ SAk ]

(25),(26)
=

PrµA∼σA [µ
A = x]

PrµA∼σA [µ
A = y]

·
p(θ | x)

p(θ | y)
(26)

=
PrµA∼πA [µ

A = x]

PrµA∼πA [µ
A = y]

· e
± 4ℓ
η · e

± 4

η
(27)

=
PrµA∼πA [µ

A = x]

PrµA∼πA [µ
A = y]

· e
± 4k

η , (28)

where from (26) to (27) we have used the definition of distribution

class DA
ℓ
in (23) and the fact SAk ⊆ SA

ℓ
, as well as the definition of

GA
ℓ
and the fact θ ∈ GA

k . From (27) to (28) we have used the fact

k ≥ ℓ + 1.
By (28) and the definition of DA

k in (23), we have

(σA | θ, µA ∈ SAk ) ∈ D
A
k .

□

The following lemma is symmetric to Lemma 11, and can be

proved using a similar line of arguments.

Lemma 11
′
. For any ℓ ∈ {0, 1, . . . , L − 1}, any k ∈ {ℓ + 1, . . . , L},

any distribution σB ∈ DB
ℓ
, and any good sequence of pull outcomes

θ = (θ1, . . . , θq ) ∈ G
B
k , the posterior distribution ofσ

B after observing
a sequence of pull outcomes being θ and conditioning on the mean
of the arm µB ∈ SBk , denoted by (σB | θ, µB ∈ SBk ), belongs to the
distribution class DB

k .

Let

µA∗ =
1

2

+ 2
∑

ℓ:1≤2ℓ+1≤L

1

η2ℓ+1

be the mean of local best arm at Alice’s side, and let

µB∗ =
1

2

+ 2
∑

ℓ:1≤2ℓ≤L

1

η2ℓ

be the mean of local best arm at Bob’s side. The following lemma

shows that an arm whose mean is distributed according to σ ∈ DA
ℓ

has a small probability being a local best arm.

Lemma 12. For any ℓ ∈ {0, 1, . . . , L}, and any σA ∈ DA
ℓ
, we have

Pr

µA∼σA
[µA = µA∗ ] ≤ e

4ℓ
η η−2d1 ,whered1 = |{k ∈ Z | ℓ < 2k + 1 ≤ L}|

is the number of odd integers in the set {ℓ + 1, . . . , L}.

Proof. We first define a few quantities. Let

ρmax = max

x ∈SA
ℓ

PrµA∼σA [µ
A = x]

PrµA∼πA [µ
A = x | µA ∈ SA

ℓ
]
, (29)

and slightly abusing the notation, let x ∈ SA
ℓ
be the value that

achieves ρmax. Let

ρmin = min

y∈SA
ℓ

PrµA∼σA [µ
A = y]

PrµA∼πA [µ
A = y | µA ∈ SA

ℓ
]
, (30)

and let y ∈ SA
ℓ
be the value that achieves ρmin. It is clear that

ρmin ≤ 1 ≤ ρmax. We also have

ρmax

ρmin

=
PrµA∼σA [µ

A = x]

PrµA∼σA [µ
A = y]

·
PrµA∼πA [µ

A = y | µA ∈ SA
ℓ
]

PrµA∼πA [µ
A = x | µA ∈ SA

ℓ
]

=
PrµA∼σA [µ

A = x]

PrµA∼σA [µ
A = y]

·
PrµA∼πA [µ

A = y]

PrµA∼πA [µ
A = x]

= e
± 4ℓ
η . (31)

where in the second equation we have used the fact that x,y ∈ SA
ℓ
,

and in the last equation we have used the fact that σA ∈ DA
ℓ
.

We thus have e
− 4ℓ
η ≤ ρmin ≤ 1 ≤ ρmax ≤ e

4ℓ
η
. The last inequal-

ity ρmax ≤ e
4ℓ
η
implies

Pr

µA ∈σA
[µA = µA∗ ] ≤ Pr

µA∼πA

[
µA = µA∗

��� µA ∈ SAℓ ]
· e

4ℓ
η

=

(
1

η2

)d1
· e

4ℓ
η , (32)

where d1 = {k ∈ Z | ℓ < 2k + 1 ≤ L}. □

The following lemma is similar to Lemma 12, and can be proved

using a similar line of arguments.
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Lemma 12
′
. For any ℓ ∈ {0, 1, . . . , L}, and any σB ∈ DB

ℓ
, we have

PrµB∼σ B [µB = µB∗ ] ≤ e
4ℓ
η η−2d0 , where d0 = |{k ∈ Z | ℓ < 2k ≤ L}|

is the number of even integers in the set {ℓ + 1, . . . , L}.

3.3 The Lower Bound for K = 2

In this section, we show the following lower bound result for the

case of two agents.

Theorem 13. For any 1 ≤ R ≤
logn

24 log logn , any R-round 2-agent
algorithm that solves n-arm BAI in the heterogeneous CL model with
probability 0.99 needs to use at least Hn

1

25R time.

By Yao’s Minimax Lemma, we can just prove for any determinis-

tic algorithm over the hard input distribution (π ⊗n | E1).
We will first analyze the success probability of any deterministic

algorithm A on input distribution π ⊗n . We say A succeeds on an

input instance I if A outputs an index i such that µi = µ∗. Note
that there could be multiple i ∈ [n] such that µi = µ∗ and A can

output any index in this set.

The Induction Step. Let the quantity λr be the largest success
probability of a (R − r )-round 2ζη2+2LL-time algorithm on some

input distribution in D⊗κ
6r for some κ ∈ [n]. That is,

λr ≜ max

κ ∈[n]
max

ν ∈D⊗κ
6r

max

A
Pr

I∼ν
[A succeeds on I ], (33)

where maxA runs over all algorithms A that use (R − r ) rounds
and 2ζη2+2LL time.

The following lemma connects the error probabilities λr and

λr+1, and is the key for the induction.

Lemma 14. For any r = 1, . . . ,R − 1, it holds that

λr ≤ λr+1 + 4e
10L
η L2η−

5

2 + n−5.

The rest of Section 3.3 devotes to the proof of Lemma 14. Slightly

abusing the notation, let κ be the value that maximizes the er-

ror in the definition of λr (the first max in (33)). We write ν =

(σA
1
, . . . ,σAκ ,σ

B
1
, . . . ,σBκ ). Since ν ∼ D

⊗κ
6r =

(
(DA

6r )
⊗κ , (DB

6r )
⊗κ

)
,

we have for any i ∈ [κ], σAi ∈ D
A
6r and σ

B
i ∈ D

B
6r .

Consider the first round of the collaborative learning process. Let
random variablesHA

andHB
be the pull history (i.e., the sequence

of ⟨arm index, pull outcome⟩ pairs) of Alice and Bob, respectively.

Let random variables ΘA
i and ΘB

i be the sequence of pull outcomes

in the pull historyHA
andHB

projecting on arm i , respectively.
Let tAi be the number of pulls Alice makes on arm i , and let tBi be

the number of pulls Bob makes on arm i .
For ℓ = {0, 1, . . . , L}, we introduce the following sets of arms.

EAℓ = {i | γη2(ℓ−1) < tAi ≤ γη
2ℓ} , (34)

EBℓ = {i | γη2(ℓ−1) < tBi ≤ γη
2ℓ} . (35)

To facilitate the analysis, we augment the algorithm after the

first round of pulls by publishing a set of arms, as well as making

some additional pulls on the remaining arms so as to massage the

posterior mean distribution. By publishing arm i wemean revealing

its local means µAi and µBi (and thus also its global mean µi =

(µAi + µ
B
i )/2) to both Alice and Bob. We remove arm i from the set

of arms if µi , µ∗, otherwise we just output arm i and be done. Note

that such an augmentation only leads to a stronger lower bound,

since the success probability of the augmented algorithm can only

increase compared with the algorithm before the augmentation.

We also include all additional pulls toHA
andHB

.

Arm Publishing and Additional Pulls

(1) Publish all arms in the following set:

E = EA ∪ EB

where EA =
∞⋃

ℓ=6(r+1)

EAℓ and EB =
∞⋃

ℓ=6(r+1)

EBℓ .

(2) For each arm i ∈ [κ]\E, Alice makes additional pulls on it

until her number of pulls on arm i reaches γη2(6(r+1)−1), and
Bob makes additional pulls on it until his number of pulls

on arm i reaches γη2(6(r+1)−1).

(3) Let PA =
{
i
��� µAi ∈ SA6(r+1) }, and PB =

{
i
��� µBi ∈ SB6(r+1) }.

Publish all arms in [κ]\(PA ∩ PB ).

Let T = {i ∈ [κ] | µi = µ∗} be the set of best arms. We try to

analyze the probability that the augmented algorithm correctly

outputs an arm in T , which is upper bounded by the sum of the

probabilities of the following three events:

(1) T ∩ EA , ∅.
(2) T ∩ EB , ∅.

(3) Ã succeeds on

(
PA ∩ PB

)
\E, where Ã is the (R − (r + 1))-

round algorithm obtained from A conditioned on the pull

history of the first round beingHA
andHB

.

The following lemma upper bounds the first probability. Its proof

is quite technical and lengthy; due to space constraints, we leave it

to the full version of this paper [13].

Lemma 15. PrI∼ν ,HA ,HB
[
T ∩ EA , ∅

]
≤ 2e

10L
η L2η−

5

2 + n−6.

The following lemma upper bounds the second probability. It is

symmetric to Lemma 15, and can be proved using a similar line of

arguments.

Lemma 15
′
. PrI∼ν ,HA ,HB

[
T ∩ EB , ∅

]
≤ 2e

10L
η L2η−

5

2 + n−6.

The next lemma upper bounds the third probability.

Lemma 16. Let Ã be the (R − (r + 1))-round algorithm obtained
from A, conditioned on the pull history of the first round beingHA

andHB . We have

Pr

I∼ν ,HA ,HB

[
Ã succeeds on

(
PA ∩ PB

)
\E

]
≤ λr+1 + 2n

−9.

Before proving Lemma 16, we begin with some preparation.

Define two events

χA : ∃i ∈ PA\E s.t. ΘA
i < G

A
6(r+1), (36)

χB : ∃i ∈ PB\E s.t. ΘB
i < G

B
6(r+1). (37)

In the next two lemmas, we show that χA and χB do not happen
with high probability.
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Lemma 17. PrI∼ν ,HA ,HB [χA] ≤ n−9.

Proof. Recall that each arm in PA\E has been pulled for q =

γη2(6(r+1)−1) ∈ [η3,
η2(6(r+1))−1

2
7
] times.

Pr

I∼ν ,HA ,HB
[χA]

≤

κ∑
i=1

Pr

µAi ∼σ
A
i ,ΘAi ∼Ber(µ

A
i )
⊗q

[
ΘA
i < G

A
6(r+1)

��� µAi ∈ SA6(r+1) ]
(38)

≤ n · n−10 = n−9, (39)

where from (38) to (39) we have used Lemma 9. □

The following lemma is symmetric to Lemma 17, and can be

proved using a similar line of arguments.

Lemma 17
′
. PrI∼ν ,HA ,HB [χB ] ≤ n−9.

Proof of Lemma 16. For the convenience of writing, we further

introduce the following event.

ψ : Ã succeeds on

(
PA ∩ PB

)
\E. (40)

We write

Pr

I∼ν ,HA ,HB
[ψ ]

≤ Pr

I∼ν ,HA ,HB
[ψ ,¬χA,¬χB ] + Pr

I∼ν ,HA ,HB
[χA]

+ Pr

I∼ν ,HA ,HB
[χB ] (41)

≤ Pr

I∼ν ,HA ,HB
[ψ ,¬χA,¬χB ] + 2n−9 (42)

=
∑
(hA ,hB )

(
Pr

I∼ν
[ψ ,¬χA,¬χB | (HA,HB ) = (hA,hB )]

Pr

HA ,HB
[(HA,HB ) = (hA,hB )]

)
+ 2n−9, (43)

where from (41) to (42) we have used Lemma 17 and Lemma 17
′
.

Consider a fixed pull history (hA,hB ). For any i ∈ (PA ∩ PB )\E,
its sequence of pull outcomes (θAi , θ

B
i ) in the first round is fully

determined by (hA,hB ). We consider two cases.

Case I: χA or χB holds. In this case, we have

Pr

I∼ν
[ψ ,¬χA,¬χB | (HA,HB ) = (hA,hB )] = 0. (44)

Case II: ¬χA and ¬χB holds. In this case, by the definition of χA in

(36) and χB in (37), we have for any i ∈ (PA ∩ PB )\E, θAi ∈ G
A
6(r+1)

and θBi ∈ G
B
6(r+1). The posterior distribution of the local mean of

arm i at Alice’s side can be written as

σ̃Ai =
(
σAi

��� µAi ∈ SA6(r+1), (HA,HB ) = (hA,hB )
)

=
(
σAi | µ

A
i ∈ S

A
6(r+1),Θ

A
i = θ

A
i ∈ G

A
6(r+1)

)
∈ DA

6(r+1).

Similarly, the posterior distribution of the local mean of arm i at
Bob’s side can be written as

σ̃Bi =
(
σBi

��� µBi ∈ SB6(r+1), (HA,HB ) = (hA,hB )
)
∈ DB

6(r+1).

Thus, for any i ∈ (PA ∩ PB )\E, we have σ̃i = (σ̃
A
i , σ̃

B
i ) ∈ D6(r+1).

Recall that Ã is a (R − (r + 1))-round algorithm working on a set of

arms (PA ∩ PB )\E with κ̃ =
��(PA ∩ PB )\E�� ≤ n, conditioned on the

first round pull history being (HA,HB ). By the definition of λr+1
in (33) and the fact that conditioned on the pull history (HA,HB ),

the distribution of the κ̃ arms belongs to σ̃ ⊗κ̃ ∈ D⊗κ̃
6(r+1),

Pr

I∼ν
[ψ ,¬χA,¬χB | (HA,HB ) = (hA,hB )] ≤ λr+1. (45)

Combining (43), (44) and (45), we have

Pr

I∼ν ,HA ,HB
[ψ ]

≤
∑
(hA ,hB )

(
λr+1 Pr

HA ,HB
[(HA,HB ) = (hA,hB )]

)
+ 2n−9

≤ λr+1 + 2n
−9.

□

Summing Up. Combining Lemma 15, Lemma 15
′
, and Lemma 16,

Pr

I∼ν ,HA ,HB
[A succeeds on I ]

≤ Pr

I∼ν ,HA ,HB
[T ∩ EA , ∅] + Pr

I∼ν ,HA ,HB
[T ∩ EB , ∅]

+ Pr

I∼ν ,HA ,HB

[
Ã succeeds on

(
PA ∩ PB

)
\E

]
(46)

≤ 4

(
e
10L
η L2η−

5

2 + n−6
)
+ (λr+1 + 2n

−9) (47)

≤ λr+1 + 4e
10L
η L2η−

5

2 + n−5. (48)

Since (48) holds for any algorithm A, distribution ν , and κ ∈ [n],

we have λr ≤ λr+1 + 4e
10L
η L2η−

5

2 + n−5.

The Base Case. In the base case we consider 0-round algorithm

(i.e., when r = R). We have the following lemma.

Lemma 18. For R = L
6
, λR ≤ e

48R
η η−2.

Proof. Any 0-round algorithm needs to output an arm i as the
best arm without making any pulls. For any i with mean µi ∼ σi ∈
D6R , by Lemma 12 and Lemma 12

′
, we have

Pr

µi∼σi
[µi = µ∗] = Pr

µAi ∼σ
A
i

[µAi = µ
A
∗ ] Pr

µBi ∼σ
B
i

[µBi = µ
B
∗ ] (49)

≤ e
4·6R
η η−2d1 · e

4·6R
η η−2d0 (50)

= e
48R
η η−2(d0+d1), (51)

whered0+d1 = |{k | 6R < k ≤ L}|. ForR = L
6
, we have Prµi∼σi [µi =

µ∗] ≤ e
48R
η η−2. □

PuttingThingsTogether (Proof forTheorem13). By Lemma 18

and Lemma 14, we have

λ0 ≤ λR + R ·
(
4e

10L
η L2η−

5

2 + n−5
)

≤ e
48R
η η−2 + (L/6) ·

(
4e

10L
η L2η−

5

2 + n−5
)
≤ η−1.
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Therefore, any R-round collaborative algorithm that uses 2ζη2+2LL
time (i.e., each agent can make at most 2ζη2+2LL pulls in total) can

succeed with probability at most η−1.
Recall the definition of event E1 in (15): ∃ a unique i∗ ∈ [n] such

that µi∗ = µ∗ and the instance complexity H = H (I ) ≤ 2η2+2LL
where I ∼ (π ⊗n | E1).

By Lemma 8, Pr[E1] ≥ 1/(2e). We thus have

Pr

I∼(π ⊗n |E1)
[A succeeds on I ] ≤

PrI∼π ⊗n [A succeeds on I ]

PrI∼π ⊗n [E1]

≤ λ0 · (2e)

(52)
≤

2e

η
< 0.9 .

Therefore, any R-round (1 ≤ R ≤
logn

24 log logn ) collaborative algo-

rithm that succeeds on input distribution (π ⊗n | E1) with probabil-

ity at least 0.9 needs time at least 2ζη2+2LL ≥ H · ζ ≥ H · n
1

25R .

3.4 General K
We now consider the general case where there are K agents. The

following theorem is a restatement of Theorem 1.

Theorem 19. For any 1 ≤ R ≤
logn

24 log logn , any R-round K-agent
algorithm that solves n-arm BAI in the heterogeneous CL mode with
probability 0.99 uses time at least HnΩ(

1

R )/K .

Proof. We prove the general K case by a reduction from the

K = 2 case. Suppose there exists a R-round algorithm for BAI in

the heterogeneous CL model with n arms using K agents and uses

time smaller than Hn
1

26R /K , we show that there also exists a R-
round algorithm for the same problem using 2 agents and uses time

smaller than Hn
1

25R , contradicting Theorem 13.

The reduction works as follows. Given any algorithm A for the

K-agent case, we construct an algorithm A ′ for the 2-agent case:

We divide the K agents to two groups each having K/2 agents.

Let Alice simulate the first group, and Bob simulate the second

group. In each round, the sequence of arm pulls Alice makes is

simply the concatenation of arm pulls made by the K/2 agents

that she simulates, and the sequence of arm pulls Bob makes is

the concatenation of arm pulls made by the K/2 agents that he

simulates. The messages sent by Alice in each communication step

is a concatenation of the messages sent by agents in the group she

simulates in the corresponding communication step in A; similar

for Bob. Now ifA uses time at mostHn
1

26R /K , thenA ′ uses time at

most Hn
1

26R /K · (K/2) < Hn
1

25R , contradicting to Theorem 13. □

4 THE ALGORITHM
In this section, we present a CL algorithm that gives Theorem 2.

Our algorithm is non-adaptive. It follows the successive elimination

approach, and can be seen as a generalization of the algorithm

for the heterogeneous CL setting in [12] to the entire time-round

tradeoff curve.

Intuitively, we partition the learning process into R rounds with

predefined lengths t1, . . . , tR . In each round r , each of the K agents

simply pulls each remaining arm for tr times. At the end of each

Algorithm 1: CL-Heterogeneous(I ,R,T )
Input: a set of n arms I , round parameter R, number of

agents K , and time horizon T .
Output: the arm with the largest global mean.

Initialize I0 = I ;

set T0 ← 0, Tr ←
⌊
nr /RT
n1+1/RR

⌋
for r = 1, . . . ,R;

set nr ←
⌊

n
nr /R

⌋
for r = 0, . . . ,R − 1, and nR ← 1;

for r = 0, 1, . . . ,R − 1 do
each agent pulls each arm in Ir for (Tr+1 −Tr ) times;

the k-th agent computes the local empirical mean µ̂
(r )
i ,k

for i ∈ Ir ;

let µ̂
(r )
i ←

1

K
∑
k ∈[K ] µ̂

(r )
i ,k ;

let Ir+1 be the set of nr+1 arms in Ir with the highest

global empirical means µ̂
(r )
i ;

return the single element in IR .

round, the K agents communicate and compute the global em-

pirical means of each arm, and then select the nr arms with the

highest global empirical means and proceed to the next round,

where n1, . . . ,nR are also predefined. We set nR to be 1 so that at

the end of the R-round, there will be just one arm left, which can

be proven to be the best arm with high probability.

The algorithm is described in Algorithm 1. It gives the following

guarantees. Due to the space constraints, we leave its proof to the

full version of this paper [13].

Theorem 20. For any R ≥ 1, Algorithm 1 solves BAI in the het-
erogeneous CL model with K agents and n arms using T time steps
and R rounds, with a success probability at least

1 − 2nR · exp
(
−KT /(2n

1

R RH )
)
. (52)

Note that Theorem 2 (in the introduction) is an immediate corol-

lary of Theorem 20.

Remark 21. We note that the total messages exchanged between
the agents in Algorithm 1 is O(nK) words, which is optimal (up to a
logarithmic factor) based on a lower bound result in [12].
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