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Abstract

Few-shot action recognition aims at quickly adapt-
ing a pre-trained model to the novel data with
a distribution shift using only a limited num-
ber of samples. Key challenges include how
to identify and leverage the transferable knowl-
edge learned by the pre-trained model. We there-
fore propose CDTD, or Causal Domain-Invariant
Temporal Dynamics for knowledge transfer. To
identify the temporally invariant and variant rep-
resentations, we employ the causal representation
learning methods for unsupervised pertaining, and
then tune the classifier with supervisions in next
stage. Specifically, we assume the domain infor-
mation can be well estimated and the pre-trained
image decoder and transition models can be well
transferred. During adaptation, we fix the trans-
ferable temporal dynamics and update the image
encoder and domain estimator. The efficacy of
our approach is revealed by the superior accuracy
of CDTD over leading alternatives across standard
few-shot action recognition datasets.

1. Introduction

Action recognition continues to be a potent and produc-
tive area of research. For instance, (Xing et al., 2023; Ahn
et al., 2023; Zhou et al., 2023; Zhang et al., 2023) show
great results in learning action representations with a large
amount of labels. However, these supervised learning ap-
proaches may fall short when faced with the challenge of
few-shot learning, where only a limited number of samples
are available for novel action classes that exhibit significant
distributional differences from the pre-training data (Cao
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Figure 1: In the few-shot learning setting, what aspects can
be effectively transferred from the base data to the novel
data? Despite the different temporal dynamics in these two
videos, the underlying physical laws are domain-invariant.

et al., 2020; Perrett et al., 2021a; Thatipelli et al., 2022;
Tseng et al., 2020; Luo et al., 2023).

The efficient and effective few-shot action recognition re-
quires solving two main problems. One entails identifying
the transferable, temporal invariant knowledge that can be
readily applied to new data. The other involves optimizing
the non-transferable, temporal variant knowledge to facil-
itate swift updates, ensuring effective adaptation to new
contexts. The existing literature relies on a large amount of
labels and treats these two problems in various ways, based
on different assumptions about transferability. For instance,
one set of methods assumes all parameters should be fine-
tuned on the new data, such as ActionCLIP (Wang et al.,
2021b), ORVIiT (Herzig et al., 2022), and SViT (Ben Avra-
ham et al., 2022). Other methods fix all parameters in the
pre-trained model and learn new modules for data-efficient
updates, such as the prompt learning methods VideoPrompt
(Juet al., 2022) and VL Prompting (Rasheed et al., 2023).
By identifying and fixing domain-invariant parameters and
only updating a small number of domain-specific param-
eters without introducing new modules during adaptation,
CDTD offers a great improvement in adaptation efficiency
over both of these approaches. We contrast our model also
with prototypical network-based methods that focus only on
the transferable part, learning the transferable knowledge
via meta-learning and directly transferring a metric model
for the recognition of new actions (Wang et al., 2021a; Zhu
et al., 2021; Fu et al., 2020; Perrett et al., 2021b)
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In this paper, we propose a method, CDTD, that aims to learn
domain-invariant features and optimizes the latter efficiently
when faced with novel data. The recent minimal change
principle (Kong et al., 2022) states when adapting a model to
new data, one should make the smallest necessary changes
to accommodate the new data. Taking inspiration from this
principle, our key assumption is that domain information
can be well estimated and temporal dynamic models are
transferable. This assumption is inspired by the fact that the
laws of physics remain constant across time, and therefore
across all frames in any real-world video, and yet these laws
are not directly observable. Any knowledge of the laws of
physics learned by the pre-trained model should be trans-
ferable. We hypothesize that this is a general phenomenon,
where temporal invariance in the relations between latent
variables yields greater transferability.

Figure 1 exemplifies an example of our assumption by com-
paring “Moving Sth.” to “Dropping Sth.”. For both actions,
the movement of a hand leads to the movement of an object.
In each frame, we observe the position and orientation of
the hand and the object, while their velocity and angle of
motion are latent. Newton’s laws of motion determine the
acceleration (change in velocity) due to gravity in free fall,
how the motion of the hand influences the motion of the
object, etc. These relations are temporally invariant and
can be transferred. Simultaneously, the two samples differ
in aspects like the angle of motion of the hand. These as-
pects can change across the frames from a single sample
and hence we expect them to be updated.

Specifically, we employ the temporal causal representation
learning (Yao et al., 2022a; Chen et al., 2024) as the first
unsupervised stage. Conversely, we assume that domain
information is estimable and therefore does not require do-
main labels, making it a fully unsupervised learning process.
Furthermore, we design the representation learning model
with four modules: temporal dynamics generation, temporal
dynamics transitions, visual encoder, domain estimator, and
classifier. Classifier is learned after representation learning
stage using labeled action classes while fixing the represen-
tation models. In the representation learning stage, we use
the same temporal dynamic models for different domain and
visual embeddings, by assuming that temporal dynamics
are transferable. During adaption with few-shot examples,
we fix the invariant temporal dynamics generation and tran-
sitions modules, and update the image encoder, domain
estimator, and classifier.

Contributions. 1) We find that the temporal dynamics
are transferable, and thus propose CDTD, a new framework
with causal representation learning as a preliminary stage to
distinguish invariant temporal dynamics and other variant
knowledge. 2) We demonstrate the superior accuracy of
CDTD over existing models across five standard benchmark

datasets and validate our modeling assumptions through
comprehensive ablation experiments. Our positive results
are consistent with our central assumption that domain-
invariance of the learned temporal dynamics suggests trans-
ferability to novel contexts.

2. Related Work

Few-shot action recognition. Existing work on few-shot
learning uses various approaches to deal with the temporal
nature of action recognition (Finn et al., 2017). For instance,
STRM (Thatipelli et al., 2022) introduces a spatio-temporal
enrichment module to look at visual and temporal context
at the patch and frame level. HyRSM (Wang et al., 2022)
uses a hybrid relation model to learn relations within and
across videos in a given few-shot episode. However, recent
work has shown that these methods do not generalize well
when the base and novel data have significant distribution
disparities (Wang et al., 2023c; Samarasinghe et al., 2023).

The recent success of cross-modal vision-language learning
has inspired works like ActionCLIP (Wang et al., 2021b),
XCLIP is presented by the authors of (Ni et al., 2022), Video-
Prompt (Ju et al., 2022), as well ViFi-CLIP is introduced in
(Rasheed et al., 2023). Most of these methods apply transfer
learning by adopting the pre-trained CLIP and adapting it
for few-shot action recognition tasks with popular tuning
strategies. For example, VL prompting fixes the backbone of
CLIP and tunes the additional visual prompt (Jia et al., 2022)
to adapt to the novel data. Nevertheless, if the CLIP model
is pre-trained on a base dataset that is too dissimilar from
the novel data, the issues from distribution disparity per-
sist. Unlike previous work, our approach to few-shot action
recognition leverages intuition from recent advancements in
causal representation learning, providing an advantage for
handling distribution disparities.

Domain-invariant feature learning. Domain generaliza-
tion (DG), or out-of-distribution generalization, aims to
enable domain adaptation when the base and novel data are
not i.i.d and none of the novel data is available when train-
ing on the base data. Approaches for achieving DG include
meta-learning (Li et al., 2018), data augmentation (Shorten
& Khoshgoftaar, 2019), and domain-invariant feature learn-
ing (Matsuura & Harada, 2020; Lu et al., 2022). Domain-
invariant feature learning naturally seeks to learn transfer-
able knowledge that generalizes across domains but to im-
prove the efficacy of few-shot learning we must also work
with non-transferable knowledge.

The way CDTD distinguishes the transferable knowledge
from the non-transferable knowledge is based on recent
advances in causal representation learning on temporal data
(Yao et al., 2022b; Feng et al., 2022; Yao et al., 2022a).
Those works assume the disentanglement of the known
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Figure 2: Represent-predict pipeline. (a) We first learn
feature representation unsupervisedly for video frames and
then supervisedly train the action prediction model. (b)
In the “Represent” stage, we design a temporal dynamics
model where parameters ( ¢ , 7 ) are domain-invariant.

auxiliary domain index from the data generation process. In
contrast, without known values for the auxiliary variable,
we propose to estimate it instead.

3. Methodology

3.1. Few-shot Learning Framework Overview

Two-phase model training. A typical few-shot setting has
two phases of model training on two sets of data: base and
novel. The phase 1 training is on the base data D, where
the video action labels are from the set Cpus.. The novel
data consists of two parts, the support set S for updating
the model and the query set Q for inference. Notably, there
only exist limited samples for S, and the video action labels
are from the set C,,0y¢; that is disjoint from Cpqs.. The phase
2 training updates the model on the support set S, aiming to
improve the inference accuracy for novel classes in Q.

Represent-predict pipeline. For each video clip with T’
frames, let x;.7 be the frame images and y be the action
label. During each phase of model training, we follow the
popular approach (Tong et al., 2022) to divide the pipeline
into two stages (Fig. 2 (a)). During the representation learn-
ing stage, we train the model to extract feature z;.7 from
frame images x1.7 in an unsupervised manner. During the
prediction stage, we fix the feature extractor and train the
classifier to predict the action label ¢. In this paper, we
apply this framework and learn the causal representation
in the first stage to better distinguish the invariant causal
dynamics and other variant knowledge.

3.2. Causal Temporal Dynamics Model

Inspired by previous works on temporal causal modeling,
we design a generative model based on the variational au-
toencoder (VAE) in the representation learning stage.

Data generation process. Each observation x; is gen-
erated from a nonlinear mixing function g that maps la-
tent variables z¢ to x;, where z¢ refers to the variables

involved in the temporal dynamics. For every dimension
i €1,...,m of the latent variable z¢, z{ (i) is derived from
a non-stationary, non-parametric time-delayed causal rela-
tion:

Xt = g(zl(fi) )

———

Generation process

2(0) = fi ({z0 ()2 (5) € Pa(= (1)}, 2/ (i), e (d)) -

Non-stationary non-parametric transition

ey
The non-stationary information is captured by the repre-
sentation zj; and we assume that this information can be
estimated from observed data. Here, we use the superscripts
d and u to denote dynamic and domain information, re-
spectively. The validity of this assumption is strong but
reasonable since humans can typically estimate the domain
information from the observed videos. We also verify the
validity of this assumption in the experiments.

Probabilistic formulation. Without specifying, our nota-
tions follow the TDRL framework (Yao et al., 2022a). As
shown in part (b) of Figure 2, we formulate the temporal
dynamics model with {x,z%, z"}. Specifically, for the con-
venience, we formulate the joint distribution with setting
time-lag as 1:
d u _ d d|,u u

p(X1r,21.7, 21.7) = Py(X1]27)Pe (21|27 )p(27)

T
d dy,d u ul,,u 2

Py (xe|2f) po (271251, 7)) p(2i]2f 1), (2)

t=2 D
temporal dynamics

In the VAE framework, one can consider v as the parame-
ters for the image decoder (generation process) p-, (x;|z¢),
and ¢ as the parameters for the temporal dynamics transi-
tion py(z¢|z¢_,,z¢). To learn visual representation z{ and
domain information z; , we also introduce two modules
including image encoder g, (z{|x;) with parameters w and
domain estimator gp(z}'|z}"_;, %) with parameters 6.

3.3. Network Designs

Image encoder ¢, (z{|x;). We denote the image encoder us-
ing qw(it |x;). We assume z{ is conditionally independent
of all z¢, for ¢’ # t conditioned on x, and therefore we can

decompose the ]omt probability distribution of the posterior

by qu.(2%|x) = H qu (2

q by an 1sotrop1c Gauss1an characterized by mean y; and
covariance ;. To learn the posterior we use an encoder
composed of an MLP followed by leaky ReL.U activation:

2? ~ N(Mtvat)v

9|x;). We choose to approximate

= LeakyReLUMLP(x;)). (3)

Ht, Ot

Domain estimator gy (z}'|z}_;,x;) . Since we assume that
z}' captures the domain variance for the transition of z;, u;
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Figure 3: Our CDTD model for the representation learning stage. (a) During phase 1 on the base data, we train the whole
causal temporal dynamics model. (b) During phase 2 on the novel data, we fine-tune both the image encoder and the domain
estimator while freezing the image encoder and the temporal dynamicsOur CDTD model for the representation learning
stage. (a) During phase 1 on the base data, we train the whole causal temporal dynamics model. (b) During phase 2 on
the novel data, we fine-tune both the image encoder and the domain estimator while freezing the image encoder and the
temporal dynamics transition module trained during phase 1. transition module trained during phase 1.

needs to be updated when adapting. In our task, we assume
that the prior p(z}') is not observed but we can estimate it.
Specifically, we build the domain estimator on latent domain
learning (Deecke et al., 2022). For each domain, we use a set
of learnable gating functions, denoted as A;, As, ..., Ag,
to obtain z}':

5
zy = GRU(z;_,, Z Ag(x¢)Convg(x¢)). 4)

s=1

Here, Conv denotes a 1 X 1 convolution, enabling linear
transformations for x. The GRU models any temporal de-
pendencies. We refer the readers to (Deecke et al., 2022) for
more details.

Temporal Dynamics Transition pg(z¢|z{_;,z%). Since
the prior distribution of p(z¢|z{ ,,z¥) is not tractable, we
employ a flow network to convert this computation with the
distribution of the Gaussian noise ¢;. For i—th dimension of
the noise vector, we formulate the prior module as é;(7) =
FH(24(i)|29_,, 24()). Then the prior distribution of the
i-th dimension of the temporal dynamics, z¢(i), can be
computed as
s -1

polF 01 210) | s

This flow model is built with the MLP layers. For a detailed
derivation please refer to Appendix A.

E &)

Image decoder p. (x;|z). The image decoder pairs with
our image encoder to generate an estimate of the action
representations %; from the estimated latent variables z¢.
We estimate p- (x;|z¢) using the decoder, which consists of
a stacked MLP followed by leaky ReL.U activation:

%; = LeakyReLU(MLP(2Y)). (6)

Classifier p, (y|z%.1). We have two choices of ).

The first one is to the end of obtaining the standard one-
hot embedding. We first concatenate Z{.;- along the time
dimension and apply an MLP model for classification:

/ = MLP(Concat(2%.,.)). 7N

The alternative is the text embedding layer:
é = embed(y) Q)

We implement the text embedding layer using a transformer-
based text encoder with eight attention heads, following the
architecture used in (Rasheed et al., 2023).

3.4. Training Objectives

Representation learning stage. CDTD first employs the
ELBO loss to learn v, ¢, 0,and w aforementioned. The
ELBO loss combines the reconstruction loss from using
our decoder to estimate x; with the KL-divergence between
the posterior and prior:

T
1 Z N
T BCE(Xt,Xt)

t=1

LeLBo =

ACRecon

T
1
T Z /BEiquw ( log g (if|xt)
t=1

£KLD

— logp(2{ 2] 1, 2})) -

®

Here, Lrecon measures the discrepancy between x; and X;
using binary cross-entropy (BCE), and 3 is the hyperparam-
eter to balance the two losses.

Prediction stage. Depending on the choice of the classifier,
we use the corresponding loss function. The first choice is
to use the CE loss using a one-hot encoding of y,

LGE = —E;(one-hot(y) - log(softmax(g))).  (10)
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Another choice is the NCE loss (Gutmann & Hyvirinen,
2010). For the k" video sequence, let m be the indices
of the action labels. We use the temporal pooling over z¢
obtain z,;. ;.

7,50 €k)/T)
il kaem)/T) (an

exp(sim(2¢ ;-
Z

rNCE _

Las Zl Zexp sim(
where sim(+, -) is the cosine similarity between the text em-
bedding of the action label and our learned Ztli:ﬂ i and 7 is
the temperature parameter. In practice, we use Eq. 10 or
Eq. 11 (Rasheed et al., 2023) for a fair comparison with
previous methods, denoted as CDTD¢ g and CDTD o Te-
spectively.

3.5. Training, Adapting and Inference

The overall framework is illustrated in Figure 3. The model
training involves two phases: in Phase 1, we train all mod-
ules with base data, while in Phase 2, we only adapt a part
of modules with novel few-shot data.

Phase 1: Training on the base data D. For the basic
training, we first learn the causal temporal dynamics in an
unsupervised way. Specifically, we jointly optimize the im-
age encoder (w), domain estimator (¢), dynamics transition
(¢), and the image decoder () with the ELBO loss in equa-
tion 9. Then, in the next stage, we fix the whole model and
learn the classifier v with either CE or NCE losses in Eq. 10
and 11.

Phase 2: Adaptation on the novel data support set S.
Given the assumption that temporal dynamics are invariant
on both base and novel data, we keep the learned temporal
dynamics model unchanged in this phase. Specifically, in
the representation stage for adaptation of the novel data, we
only update the image encoder (w) and domain encoder (6).
Then, we update the prediction model parameter (/) with a
few shot labels.

Inference on the novel data query set Q. To perform
inference, we sample 2¢ according to Eq. 3 using our image
encoder, and we either choose the maximum value (highest
probability) from the prediction 3 or choose the label whose
text embedding maximizes cosine similarity.

4. Experiments
4.1. Experimental Setup

We carry out two types of few-shot learning experiments;
all-way-k-shot and 5-way-k-shot. (Ju et al., 2022) proposes
the setting of all-way-k-shot: we try to classify all action
classes in the class for the novel dataset (Cy,ope1), While in
5-way-k-shot learning we only try to estimate 5 label classes

at a time in a series of trials. The number of shots (k) refers
to the number of training samples in S available for each
action label. Once we partition our data into base set D
and novel set S U Q, the number k£ determines how many
samples for each action class we choose for S and the rest
are used for the query set Q.

Datasets. In this work, we conduct experiments on five
datasets: 1. Something-Something v2 (SSv2) is a dataset
containing 174 action categories of common human-object
interactions; 2. Something-Else (Sth-Else) exploits the com-
positional structure of SSv2, where a combination of a verb
and a noun defines an action; 3. HMDB-51 contains 7k
videos of 51 categories; 4. UCF-101 covers 13k videos
spanning 101 categories; 5. Kinetics covers around 230k
10-second video clips sourced from YouTube. For the ex-
periments that perform training and testing on the Sth-Else
dataset, we use the official split of data (Materzynska et al.,
2020; Herzig et al., 2022; Ben Avraham et al., 2022). Sim-
ilarly, for experiments using other datasets, we split the
data into D, S, and Q following the prior work we use as
benchmarks, as described late. The other datasets we use for
novel data are SSv2 (Goyal et al., 2017), SSv2-small (Zhu
& Yang, 2018), HMDB-51 (Kuehne et al., 2011), and UCF-
101 (Soomro et al., 2012). Evaluation metrics. In all
experiments, we compare the Top-1 accuracy, i.e., the maxi-
mum accuracy on any action class, of CDTD against leading
benchmarks for few-shot action recognition. The results
of the top-performing model are given in bold, and the
second-best are underlined.

Implementation details. In each experiment, there is a
backbone used to extract the action representations x; used
for training, and in all experiments, the backbone is either
ResNet-50 (He et al., 2016) or ViT-B/16 (Radford et al.,
2021) trained on the base data set D, where the choice of
backbone matches what was used in the benchmark experi-
ments. We use the AdamW optimizer (Loshchilov & Hutter,
2019) and cosine annealing to train our network with a
learning rate initialized at 0.002 and weight decay of 10~2.
For all video sequences we use T' = 16 uniformly selected
frames. To compute the ELBO loss, we choose = 0.02
to balance the reconstruction loss and KL-divergence. Also,
we set 7 = 0.07 for the NCE loss. Regarding the hyper-
parameters, we set d = 12 in Eq. 1, and S = 35 in Eq. 4.
The hyperparameter analysis is reported in Table 5. For
a detailed summary of our network architectures see Ta-
ble 9 in the appendix. Our models are implemented using
PyTorch, and experiments are conducted on four Nvidia
GeForce 2080Ti graphics cards.

4.2. Benchmark Results

In the first part of our experiment, we compare the results
from CDTD against state-of-the-art few-shot action recog-
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Table 1: Benchmark results on the Sth-Else dataset with the
same ViT-B/16 backbone but two different loss functions.

Loss Sth-Else
5-shot | 10-shot
ORVIT (Herzig et al., 2022) 333 40.2
SViT (Ben Avraham et al., 2022) CE 344 42.6
CDTD( £ (ours) 37.6 44.0
" ViFi-CLIP (Rasheed et al., 2023) | | 445 | 540
VL Prompting (Rasheed et al., 2023) | NCE | 44.9 58.2
CDTD yc £ (ours) 48.5 63.9

nition methods. To obtain fair comparisons, we compare
CDTD with the leading approaches using identical back-
bones and classification loss on each dataset.

Sth-Else Experiments. Table 1 shows two experiments
against benchmarks for all-way-k-shot learning using the
ViT-B/16 backbone for the Sth-Else dataset. We com-
pare CDTD¢ g to leading benchmarks on Sth-Else that use
cross-entropy loss, ORViT and SViT (Herzig et al., 2022;
Ben Avraham et al., 2022). We also compare CDTD ¢ £ to
the state-of-the-art methods that employ contrastive learn-
ing, ViFi-CLIP, and VL-Prompting (Rasheed et al., 2023).

It is evident that CDTD y¢c g and CDTD¢ r had the highest
accuracy in both experiments. CDTD outperforms all four
leading benchmarks by amounts ranging from 1.4 to 5.7
percentage points. For this dataset we see the greatest im-
provement for kK = 5, improving from 34.4 to 37.6 and
from 44.9 to 48.5 over the leading benchmarks, and with
improvements from 58.2 to 63.9 for k = 10.

Figure 5 further shows the number of parameters updated
during transfer. Our CDTD necessitates tuning the fewest
parameters among all the approaches when adapting from
the base data to the novel data, bringing great parameter
efficiency. Notably, ViFi-CLIP, ORViT, and SViT require an
order of magnitude more parameters to be tuned for adap-
tation to novel data compared to CDTD. Similarly, the VPT
(Jia et al., 2022) of CLIP needed for VL Prompting results
in more than 40 million parameters needing updating.

Fig. 4 shows that CDTD outperforms VL-Prompting on the
majority of action classes. Notably, CDTD exceeds the VL
prompt in 72 out of 86 action classes, such as “plugging
something into something” and “spinning so it continues
spinning.” We also note significant improvements in other
categories, including “approaching something with some-
thing” and “pulling two ends of something but nothing hap-
pens”. However, CDTD does have some limitations. Specifi-
cally, VL-Prompting surpasses our method in label classes
like “burying something in something” and “lifting a surface
with something on it”.

All-way-k-shot Experiments. Table 2 show the exper-
imental results using the ViT-B/16 backbone comparing

CDTD ¢ to leading benchmarks for all-way-k-shot learn-
ing for k € {2,4,8,16}. For all-way-k-shot learning, our
benchmarks are: ActionCLIP (Wang et al., 2021b), XCLIP
(Ni et al., 2022), VideoPrompt (Ju et al., 2022), VL Prompt-
ing and ViFi-CLIP (Rasheed et al., 2023), VicTR (Kahatapi-
tiya et al., 2023) and VideoMAE (Tong et al., 2022).

We follow (Wang et al., 2021b; Ni et al., 2022; Ju et al.,
2022; Rasheed et al., 2023) in using Kinetics-400 (K-400)
from (Carreira & Zisserman, 2017) as the base dataset D
and repeat the experiment using novel data from the SSV2,
HMDB-51, and UCF-101 datasets. We can observe that
CDTD y ¢ g had the highest accuracy in 11 out of 12 of these
experiments and had the second highest accuracy in the
remaining experiment trailing by only 0.4.

5-way-k-shot Experiments. Table 3 shows the results of
experiments comparing CDTDc g to leading benchmarks
for 5-way-k-shot learning. All models are trained on K-
400 as the base data using the ResNet-50 backbone. In
each trial, we select 5 action classes at random and update
our model using only %k samples for each of those classes
to form &, and the remaining novel data compose Q. To
ensure the statistical significance, we conduct 1000 trials
with random samplings for selecting the action classes in
each trial by following (Wang et al., 2023c¢), and report the
mean accuracy as the final result. Our leading benchmarks
are: OTAM (Cao et al., 2020), TRX (Perrett et al., 2021a),
STRM (Thatipelli et al., 2022), DYDIS (Islam et al., 2021),
STARTUP (Phoo & Hariharan, 2021), and SEEN (Wang
et al., 2023c). CDTD¢ g has the highest accuracy in 7 out of
8 experiments, by a margin ranging from 0.6 to 5.3, and has
the second highest accuracy on the remaining experiment,
trailing by only 0.1.

4.3. Ablation Studies

Components of CDTD. In this section, we demonstrate the
contribution of each component of our CDTD model. We
proceeded by comparing our CDTD model to four simpler
baselines: w/o temporal dynamic transition, w/o domain
encoder, w/o temporal modeling, and the full model with all
components fine-tuned CDTD-FT. The model w/o temporal
dynamic transition removes the temporal dynamic transi-
tion and domain encoder. The posterior is regularized by
KL-divergence with the standard normal distribution. The
model w/o temporal modeling assumes z;_; = z, for all ¢.
Per time step, the posterior in w/o temporal baseline regular-
izes the prior by KL-divergence independently from other
time steps. The model w/o domain encoder removes the
domain encoder module so only the image encoder w and
classifier ¢ are updated during adaptation. For CDTD-FT,
we also finetune the temporal dynamic transition and image
decoder rather than fixing them during adaptation. CDTD-
UG updates the temporal dynamic transition module during
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Figure 4: Comparing performance of CDTD ¢ g (blue) against VL-Prompting (orange) across all action classes on the

Sth-Else dataset.

Table 2: Benchmark results for the all-way-k-shot learning setting. All models use ViT-B/16 backbone and the NCE loss.

SSv2 HMDB-51 UCF-101
2-shot 4-shot 8-shot 16-shot | 2-shot 4-shot 8-shot 16-shot | 2-shot 4-shot 8-shot 16-shot
XCLIP(Ni et al., 2022) 39 4.5 6.8 10.0 53.0 57.3 62.8 64.0 70.6 715 73.0 91.4
ActionCLIP(Wang et al., 2021b) 4.1 5.8 8.4 11.1 47.5 579 57.3 59.1 70.6 715 73.0 914
VicTR(Kahatapitiya et al., 2023) 4.2 6.1 79 10.4 60.0 63.2 66.6 70.7 87.7 923 93.6 95.8
VideoPrompt(Ju et al., 2022) 4.4 5.1 6.1 9.7 39.7 50.7 56.0 62.4 714 79.9 85.7 89.9
ViFi-CLIP(Rasheed et al., 2023) 6.2 74 8.5 12.4 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7
VL Prompting(Rasheed et al., 2023) 6.7 7.9 10.2 13.5 63.0 65.1 69.6 72.0 91.0 93.7 95.0 96.4
VideoMAE (Tong et al., 2022) 82 100 151 182 | 637 694 709 753 | 91.0 941 948 977
CDTD g (ours) 9.5 11.6 14.8 19.5 65.8 70.2 72.5 77.9 90.6 94.7 96.2 98.5
shift across data sets. The superiority of CDTD over both
i oG EE w/o causal and w/o temporal demonstrates the advantage of
modeling the action generation process.
46 VL Prompting ViFi-CLIP
44 L] Hyperparamter sensitivity. CDTD has three hyperparam-
h eters: the numbers of latent variables d in Eq. 1, and the
g o ® ORVIT number of latent domains S in Eq. 4. We also extend the
§3§Dm_ce svit time lags by choosing [ = 1 to ! = 3 in Eq. 2 We report
* i the results varying these h rameters in Table 5 usin
% ® VL Prompting e results varying these hyperparameters able 5 using
9 @ CDTD_NCE Ny CDTD y ¢ on the Sth-Else dataset. We vary one variable at
* COThCE d a time, keeping the others constant.
0 20 40 60 80 100 120 140

Tunable Parameters (millions)

Figure 5: The comparison of the parameters that need to be
updated during adapting on Sth-Else dataset.

adaptation, while the temporal dynamic generation module
remains fixed. CDTD-UT updates all modules during the
adaptation process.

We summarize the results of our ablation study in Table 4.
First, notice that the accuracy of 45.1 by the w/o temporal
modeling is already better than the 44.5 and 44.9 achieved
by ViFi-CLIP and VL-prompting, respectively (Rasheed
et al., 2023) (Table 1). This demonstrates the superior trans-
portability of our method. Moreover, CDTD performs even
better because it captures the temporal relations of the latent
causal variables, and @ and w help capture the distribution

Based on our ablation experiments in Table 5 we fix d = 12,
Il =1,and S = 35 in all of our experiments unless oth-
erwise stated. CDTDyc g performs better with bigger d,
verifying that the latent causal variables facilitate action rep-
resentation. We choose d = 12 because beyond this point
the performance gain becomes marginal and the computa-
tional cost spikes. If we allow the parents of each z to be
further back in time (I > 1), allowing causal relationships
between non-consecutive time steps, the change in accuracy
is negligible. Therefore, we choose that the parents of each
z are only in the previous time step (I = 1). Finally, a con-
sistent improvement is observed when increasing .S from 10
to 50. However, considering the increased computational
cost associated with the linear transformations and 1 x 1
convolutions involved in Eq. 4, we have opted for S = 35
as the standard across our experiments.
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Table 3: Benchmark results for the 5-way-k-shot learning setting. All models use the ResNet-50 backbone and the CE loss.

1-shot 5-shot
UCF-101 HMDB-51 SSv2 SSv2-small | UCF-101 HMDB-51 SSv2  SSv2-small
OTAM(Cao et al., 2020) 50.2 34.4 24.0 224 61.7 41.5 27.1 25.8
TRX(Perrett et al., 2021a) 47.1 32.0 23.2 229 66.7 439 27.9 26.0
STRM(Thatipelli et al., 2022) 49.2 33.0 23.6 22.8 67.0 45.2 28.7 26.4
DYDIS(Islam et al., 2021) 63.4 35.2 25.3 24.8 71.5 50.8 29.3 27.2
STARTUP(Phoo & Hariharan, 2021) 654 35.5 25.1 25.0 79.5 50.4 31.3 28.7
SEEN(Wang et al., 2023c) 64.8 357 26.1 253 79.8 51.1 344 29.3
CDTDc £ (ours) 66.0 37.6 314 28.5 79.7 54.4 37.0 32.8

Table 4: Ablation study results on the effect of each compo-
nent on the Sth-Else dataset.

5-shot  10-shot
w/o temporal dynamic transition | 41.0 443
w/o domain encoder 42.8 50.6
w/o temporal modeling 45.1 54.4
CDTD ¢ g-FT 44.8 58.3
CDTDycp-UG 46.0 61.3
CDTDycp-UT 46.2 60.8
CDTDyNCE 48.5 63.9

Table 5: Ablation study results on the hyperparameter sensi-
tivity on the Sth-Else dataset.

5-shot  10-shot

d=14 442 49.0

d=28 46.0 55.7

d=12 | 48.5 63.9

d=16 48.9 65.1
I=1 | 485 639

=2 48.5 64.0

=3 48.8 64.6
S=10] 425 511

S=20| 464 59.8

S =35 485 63.9

S =501 49.1 65.0

4.4. Discussion

The distributional disparities between the base and novel
data. To illustrate the distributional differences between the
base and novel data sets, we employed a pre-trained ViT-
B/16 backbone to extract action representations from each.
As demonstrated in Figure 6a, the Sth-Else dataset is charac-
terized by significant distributional disparities between the
base and novel data. This aspect notably intensifies the com-
plexity of the few-shot action recognition task, highlighting
the challenges inherent in adapting models from the base
data to the novel data.

Validating of our assumptions. To validate our theoretical
assumptions, we independently trained two CDTD models
on the base and novel data sets, respectively.

We visualized several examples of the temporal dynamic
transition module through pairplots representing the rela-
tionship between the latent variables across three consec-
utive time steps. We assume that if the temporal dynamic
transition is consistent across the data, there should be a
significant alignment between these variables. This align-
ment is indeed observed in Figure 6d even under the severe
data distributional disparities in Figure 6a. Additionally, the
impact of u on the temporal dynamics is shown in Figure 6c.
The better accuracy scores from Table 1 to 4 support our
assumption that u captures the distributional discrepancies.

Figure 6b similarly displays the pairplots between x and
z for all time steps, illustrating the relationship between
observed data and latent variables, i.e., temporal dynamic
generation. The apparent overlap suggests that our assump-
tion that holding the temporal dynamic generation fixed
holds true.

We also empirically validate our assumptions on SSv2,
HMDB-51, and UCF-101 datasets in Figures 7 in the ap-
pendix. We would like to highlight the consistency of the
evidence regardless of the size of distributional disparities
between the base and novel data.

5. Conclusion

We introduced the Domain-Invariant Temporal Dynamics
(CDTD) framework for few-shot action recognition. Follow-
ing the common two-stage training strategy, our framework
involves unsupervised feature learning followed by super-
vised label prediction. In the unsupervised feature learning
stage, we incorporate a learnable domain index to help the
learned temporal dynamics modules to be more invariant to
domain shift. These modules remain fixed during few-shot
adaptation. Empirically, we validate the effectiveness of
this assumption by achieving new state-of-the-art results on
various standard action recognition datasets with minimal
parameter updates during the adaptation process.

Limitations. This paper demonstrates the effectiveness of
the learned temporal dynamics empirically. However, we
believe that the effectiveness of any adaptation strategy from
the base to novel data should be theoretically grounded, par-
ticularly concerning the generalization bound. Currently,
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Figure 6: Visualizations to substantiate our hypotheses on
the Sth-Else dataset. Red: base data. Blue: novel data.
(a) This UMap visualization contrasts the action features
extracted using a static ViT-B/16 backbone (Radford et al.,
2021) from the base and novel data within the Sth-Else
dataset. The stark distributional disparities underscore the
challenges inherent in few-shot action recognition learning.
(b) A pairplot of UMap projections for the action feature
embeddings, x, and the latent variables, z, derived from
two instances of our model’s temporal dynamics generation
module, trained separately on the base and novel data. (c)
A pairplot comparing values of z,, ; from two models’ tem-
poral dynamics transition modules, each integrating the u
from the base and novel data, respectively. (d) The temporal
dynamics of latent variables using a consistent z;' across
both base and novel data. The close alignment observed
across datasets implies that the temporal dynamics transi-
tion modules are consistent, confirming the stability of these
functions regardless of the data source.

this aspect is not adequately addressed in our work. Such an
investigation could provide deeper insights into which com-
ponents of a model should remain fixed versus which should
be updated during adaptation. Extending CDTD to address
instantaneous causal relations and providing a generaliza-
tion bound are clear directions for future work. Lastly, we
mention that exploring the merits of CDTD for LLM agents
might be an interesting direction (Yao et al., 2023; Wang
et al., 2023a).
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The challenge of recognizing human actions from video
sequences is currently at the frontier of machine learning. It
has many real-world applications ranging from security and
behavior analysis to gaming and human-robot interaction.
One of the major difficulties identified in the literature on
action recognition is the perennial dearth of labeled data for
certain action classes due to the sheer number of possible
actions. Few-shot learning is one of the primary approaches
to this problem of scarcity. However, few-shot learning
struggles when there is a significant distribution shift be-
tween the original data used for the pre-trained model and
the novel data from which one wishes to recognize actions.
Our approach develops a model of temporal relations that
distinguishes the parts of the model that transfer to the novel
context from those that do not. By limiting the number of
parameters that must be fine-tuned to the novel data we have
developed a model that can be adapted efficiently and pro-
vides higher accuracy than the previous leading benchmarks.
Our hope is that future work will extend our approach with
increasingly realistic temporal relation models that enable
action recognition with higher accuracy. While we recog-
nize that the field of action recognition broadly does pose
risks, including related to automated surveillance, our work
does not present any significant new risk to the field. Ulti-
mately, this paper presents work whose goal is to advance
the field of Machine Learning, and particularly action recog-
nition. There are many potential societal consequences of
our work, none of which we feel must be specifically high-
lighted here.
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A. Transition Prior Likelihood Derivation

Consider a paradigmatic instance of latent causal processes. In this case, we are concerned with two time-delayed latent
variables, namely, z, = (21 ¢, z2 ¢]. Crucially, there is no inclusion of u. We set time lag is defined as 1 for simplicity. This
implies that each latent variable, z,, ;, is formulated as z,, ; = f,,(z;—1, €,,¢), where the noise terms, ¢, ;, are mutually
independent. To represent this latent process more succinctly, we introduce a transformation map, denoted as f. It’s worth
noting that in this context, we employ an overloaded notation; specifically, the symbol f serves dual purposes, representing
both transition functions and the transformation map.

Z1,t—1 Z1,t—1
Z2t—-1 Z2t—1
’ =f ’ . (12)
Z1t €1,t
Zot €2t

By leveraging the change of variables formula on the map f, we can evaluate the joint distribution of the latent variables
p(Z1,4-1,22,-1, 21,4, Z2,t) as:

D(Z1,4—1,2Z2,0—1,Z1,t,Z2,t) = P(Z1,4—1,2Z2,4—1, €14, €2,¢)/ |det T |, (13)

where J¢ is the Jacobian matrix of the map f, which is naturally a low-triangular matrix:

1 0 0 0
0 1 0 0
Jf = Oz 4 0z1,1 0z1 ¢
azl,t—l BZQ,t—l 861,1,
Szz,t 8zz,t 0 8Z2,t

Oz1,¢—1 Oz24—1 O€a ¢

Given that this Jacobian is triangular, we can efficiently compute its determinant as [ [ ng . Furthermore, because the

noise terms are mutually independent, and hence €, + 1 ¢, form #nande; L z,_;, we can write Eq. 13 as:

P(Z14—1,224-1,214,22¢) = P(Z14—1,22,4—1) X D(€1,¢,€2¢)/ |det Tg|  (because e; L z;_1)

=p(Z1,4-1,22,4-1) X Hp(ﬁn,t)/ |det J¢|  (because €14 L €2y)

n

(14)

By eliminating the marginals of the lagged latent variable p(z1,_1, z2,,—1) on both sides, we derive the transition prior
likelihood as:

P20, 224|210 1,22,01) = [ [ pen)/ |det Tg| = [ [ plens) x |det Tg] . (15)

n

Let {f,, 1}n:172}3,,, be a set of learned inverse dynamics transition functions that take the estimated latent causal variables
in the fixed dynamics subspace and lagged latent variables, and output the noise terms, i.e., €.t = fr, " (Zn,t, Pa(Zn t))-

The differences of our model from Eq. 15 are that the learned inverse dynamics transition functions take z}* as input

arguments to out the noise terms, i.€, €1 = fr * (Zn.t, Pa(Zn1), ).

ofyt
0%, ¢+

N N
logp (z:|2:1,2¢) = > _logp(énlzy) + > log ‘

n=1 n=1

| (16)

B. Assumption validation on SSv2, HMDBS51 and UCF101 dataset

Figure 7 showcases the similar motivating examples of a few-shot action recognition task with CDTD in using SSv2,
HMDB-51 and UCF-101 as novel data, while the K-400 serves as base data. Please see the caption for the detailed
explanations.
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Figure 7: Visualizations validating hypotheses on SSv2, HMDB-51 and UCF-101 datasets (from top row to bottom row), respectively.

Red: base data (K-400), blue: novel data. (a,e,i) UMap of action embeddings. (b.f,j) Pairplots of UMap projections for embeddings and

latent variables. (c,g,k) Pairplots of latent variables from temporal invariance functions. (d,h,1) Temporal dynamics of latent variables with
consistent z;'.

C. Visual results on the Sth-Else dataset

Fig. 8 shows a few examples of action recognition results of our CDTD on the Sth-Else dataset.
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[X]Prediction: Moving a part of something //

Figure 8: The visual examples of CDTD ycp on Sth-Else dataset. CDTDycg correctly predicts the four actions but
misclassifies two videos of “lifting a surface with something on it”, and “Burying something in something” as “Moving a
part of something”
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D. Additional Experiments

In this section, we focus on comparisons with state-of-the-art metric-based methods, including MoLo (Wang et al., 2023b),
HySRM (Wang et al., 2022), HCL (Zheng et al., 2022), OTAM (Cao et al., 2020), TRX (Perrett et al., 2021a) and STRM
(Thatipelli et al., 2022). For a fair evaluation, we perform experiments across the SSv2, UCF-101, HMDB-51, and Kinetics
datasets. In the SSv2-Full and SSv2-Small datasets, we randomly selected 64 classes for D and 24 for S and Q. The main
difference between SSv2-Full and SSv2-Small is the dataset size, with SSv2-Full containing all samples per category and
SSv2-Small including only 100 samples per category. For HMDB-51, we chose 31 action categories for D and 10 for S and
Q, while for UCF-101, the selection was 70 and 21 categories, respectively. For Kinect, we used 64 action categories for D
and 24 for S and Q. To maintain statistical significance, we executed 200 trials, each involving random samplings across
categories. After training on D, we used k video sequences from each action category to form S for model updates. The
inference phase utilized the remaining data from Q.

Table 6 and Table 7 show additional experiments for 5-way-k-shot learning where the base and novel data are taken from the
same original dataset. Between the two tables we observe that CDTD g achieves the highest Top-1 accuracy in 11 out of 12
experiments, coming in second by only 0.4 with £ = 5 on the UCF-101 dataset.

Table 6: Comparing CDTD¢ g to benchmarks for 5-way-k-shot learning on the SSv2 and SSv2-small using the ResNet-50 backbone

SSv2 SSv2-small
1-shot  3-shot 5-shot | 1-shot 3-shot 5-shot
OTAM 42.8 51.5 52.3 36.4 45.9 48.0
TRX 42.0 57.6 62.6 36.0 51.9 56.7
STRM 42.0 59.1 68.1 37.1 49.2 55.3
HyRSM 54.3 65.1 69.0 40.6 52.3 56.1
HCL 473 59.0 64.9 38.7 49.1 55.4
MoLo 56.6 670 706 | 4277 529 @ 564
CDTDcE 60.0 68.3 71.9 45.8 53.6 58.0

Table 7: Comparing CDTDc £ to benchmarks for 5-way-k-shot learning on the UCF-101, HMDB-51, and Kinectics datasets using the
ResNet-50 backbone.

UCF-101 HMDB-51 Kinects
1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot
OTAM 79.9 88.9 54.5 68.0 79.9 88.9
TRX 78.2 96.1 53.1 75.6 78.2 96.2
STRM 80.5 96.9 52.3 77.3 80.5 96.9
HyRSM 83.9 94.7 60.3 76.0 83.9 94.7
HCL 82.8 93.3 59.1 76.3 73.7 85.8
MoLo 86.0 95.5 60.8 77.4 86.0 95.5
CDTDcE 87.3 96.5 61.9 80.5 86.1 98.0

D.1. Comparisons to Augmented Models

We further assess if adding u to other methods would further improve the results in Table 8. The results indicate marginal
improvements over the original methods. Again, our CDTD obtains the highest accuracy among these methods.

E. Network Architectures

Tab. 9 illustrates the details of our implementation on CDTDy ¢ .
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Table 8: Additional comparisons by augmenting existing methods on the Sth-Else dataset using the ViT-B/16 backbone. +u means the
method updates the domain encoder when adapting instead of fine-tuning. Since VL Prompting uses VPT (Jia et al., 2022) within the
ViFi-CLIP framework, we only test ViFi-CLIP+u.

Sth-Else
5-shot  10-shot
ORVIT 333 40.2
ORVIT + u 339 41.8
SViT 344 42.6
SViT + u 35.2 44.0
CDTDcE 37.6 44.0
" ViFi-CLIP ~ ~ | 445 540
VL Prompting 449 58.2
ViFi-CLIP +u | 45.2 58.0
CDTDNCE 48.5 59.9

Table 9: The details of our network architectures for CDTD y ¢ g, Where BS means batch size.

Configuration Description Output dimensions

Image encoder

Input: concat(xy.7) BS x T x 1024
Dense 256 neurons, LeakyReLU BS x T x 256
Dense 256 neurons, LeakyReLU BS x T x 256
Dense Temporal embeddings BS xT x 2N
Bottleneck Compute mean and variance of posterior i, o
Reparameterization Sequential sampling Z1.7

Temporal dynamic generation

Input: z1.p BSxT x N
Dense 256 neurons, LeakyReLU BS x T x 256
Dense 256 neurons, LeakyReLU BS x T x 256
Dense input embeddings BS x T x 1024

Temporal dynamic transition

Input Z1.T BS xT x N
InverseTransition €t BSxT x N
JacobianCompute log det|J| BS

Classifier

Input: Concat(z.7) BS xT x N
Dense 256 neurons, LeakyReLU BS x T x 256
Dense 256 neurons, LeakyReLU BS x T x 256
Dense output embeddings BS x T x 1024
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