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Abstract. Video temporal grounding (VTG) is a fine-grained video un-
derstanding problem that aims to ground relevant clips in untrimmed
videos given natural language queries. Most existing VTG models are
built upon frame-wise final-layer CLIP features, aided by additional tem-
poral backbones (e.g ., SlowFast) with sophisticated temporal reasoning
mechanisms. In this work, we claim that CLIP itself already shows great
potential for fine-grained spatial-temporal modeling, as each layer o!ers
distinct yet useful information under di!erent granularity levels. Moti-
vated by this, we propose Reversed Recurrent Tuning (R2-Tuning), a
parameter- and memory-e"cient transfer learning framework for video
temporal grounding. Our method learns a lightweight R2 Block contain-
ing only 1.5% of the total parameters to perform progressive spatial-
temporal modeling. Starting from the last layer of CLIP, R2 Block re-
currently aggregates spatial features from earlier layers, then refines tem-
poral correlation conditioning on the given query, resulting in a coarse-
to-fine scheme. R2-Tuning achieves state-of-the-art performance across
three VTG tasks (i.e., moment retrieval, highlight detection, and video
summarization) on six public benchmarks (i.e., QVHighlights, Charades-
STA, Ego4D-NLQ, TACoS, YouTube Highlights, and TVSum) even with-
out the additional backbone, demonstrating the significance and e!ec-
tiveness of the proposed scheme. Our code is available at https://
github.com/yeliudev/R2-Tuning.

Keywords: Video Temporal Grounding · Transfer Learning · CLIP

1 Introduction

Video is becoming the major content media in our daily lives. The variety
of video domains has extended beyond daily activities [5,22] but broader scenes
such as egocentric [10] and surveillance [60]. They maintain large information
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Fig. 1: Video temporal grounding (VTG) con-
tains three video-language understanding prob-
lems, i.e., moment retrieval (MR), highlight de-
tection (HD), and video summarization (VS).
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Fig. 2: Moment retrieval mAP with
di!erent backbones on QVHighlights
val split. CLIP’s potential of tempo-
ral modeling was not fully exploited.

capacities within multi-granularities, and thus can convey both high-level context
and low-level details e!ectively.

In the content production and consumption industry, such a flourishing is ac-
companied by the increasing demand for browsing untrimmed videos e"ciently
with di!erent user interests. This derives the topic of video temporal grounding
(VTG) [26], which is a fine-grained video-language understanding problem aim-
ing to ground video clips conditioning on natural language queries. As shown
in Figure 1, VTG can be disentangled into three tasks based on di!erent out-
put formats, i.e., moment retrieval (MR) [9, 10, 22, 31] for regressing start-end
timestamps, highlight detection (HD) [22,47] for predicting frame-level saliency
curves, and video summarization (VS) [2, 11,45] for classifying disjoint shots.

Encouraged by the recent success in adopting vision-language models (VLMs)
for video understanding [4,15,19,28,32,37], most existing VTG methods [16,22,
31, 34, 35, 46, 56] are built upon frame-wise final-layer features from CLIP [41].
However, due to CLIP’s misaligned pre-training objective (image-text contrast),
these methods fail to capture temporal correlations well. As a feasible compro-
mise, an additional backbone (e.g ., SlowFast [8]) is incorporated to complement
the temporal information, followed by carefully designed modules such as text-
guided queries [31], dynamic anchors [35], and event reasoning [16].

We refer to the paradigm above as a post-processing scheme (shown in Fig-
ure. 3 (a)), whereas two natural drawbacks exist due to the sub-optimal design.
First, leveraging two backbones with similar capabilities is unintuitive and in-
e"cient during inference. A single model with both vision-text alignment and
spatial-temporal modeling abilities is more preferred. Second, queries for VTG
could be of di!erent granularities from coarse (e.g ., the family is traveling) to
fine (e.g ., when did I take the golf club from the man with white hair). Leveraging
only frame-wise & final-layer features is not granularity flexible, as it would focus
more on high-level scene transitions while overlooking low-level details. Prelim-
inary experiments in Figure 2 also demonstrate that the potential of spatial-
temporal modeling for CLIP is not fully exploited by existing methods. Some
recent works [15,19,57] tried to tackle the first problem by fine-tuning (part of)
the CLIP encoders (Figure 3 (b) and (c)), but they are all ine"cient in terms of
data, learnable parameters, or memory.
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Fig. 3: Di!erent architectural designs for CLIP-based image-to-video transfer learning.
The gray rectangle in (d) denotes the progressively refined spatial-temporal features.

This paper intends to answer the research question: how to e!ciently transfer
an image-language foundation model to video temporal grounding? We consider
the above question by exploring two aspects: e!ciency and granularity flexibil-
ity. To address these issues, a novel image-to-video transfer learning framework
called Reversed Recurrent Tuning (R2-Tuning) is proposed for fine-grained un-
derstanding on untrimmed videos. Our insight is that multi-layer CLIP features
o!er distinct yet useful information, while their integration should be tailored to
the downstream task. As illustrated in Figure 3 (d), based on a frozen CLIP [41],
our method learns a side-block (R2 Block) containing only 1.5% of the total pa-
rameters to perform spatial-temporal modeling. R

2 Block is recurrently attached
to the last few layers of CLIP encoders from back to front, performing query-
modulated spatial pooling and recurrent temporal refinement from coarse to fine.
Aside from the new architecture, we also introduce video-level and layer-wise con-
straints to calibrate the granularities of visual and text encoders. During training,
gradient flows do not pass through the CLIP encoders, thus our scheme is both
parameter- and memory-e"cient. It is also granularity-flexible as R

2 Block can
adaptively control the spatial pooling strategy conditioning on queries.

We conduct extensive experiments across three VTG tasks on six public
benchmarks, including QVHighlights [22], Ego4D-NLQ [10], Charades-STA [9],
TACoS [9], YouTube Highlights [47], and TVSum [45]. Without bells and whis-
tles, R

2-Tuning achieves more than 3 MR mAP gain on QVHighlights test split
compared with 4→ heavier counterparts [34] with additional temporal backbones
and carefully designed post-processing modules. Further analysis also shows that
our method can better handle multi-granularity information. Overall, our contri-
butions are summarized as: (1) We introduced R

2-Tuning, a novel image-to-video
transfer learning framework tailored for video temporal grounding. (2) We de-
signed two e!ective strategies, i.e., query-modulated spatial pooling and recurrent
temporal refinement, to model spatial-temporal information from coarse to fine.
(3) To calibrate the granularities of CLIP visual and text encoders, we further
introduce video-level and layer-wise contrastive constraints to distill distinct in-
formation from each layer. (4) Extensive experiments across three tasks on six
benchmarks demonstrate the significance and e!ectiveness of R

2-Tuning.
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2 Related Work

CLIP for Video Understanding With powerful transfer learning abilities,
CLIP [41] has been widely used for many image-language tasks [18,29], and how
to extend them to video understanding is an emerging and crucial research topic.
Early attempts have been made to transfer CLIP to trimmed videos for action
recognition [28,37,42] and video-text retrieval [4,15,19,32]. Specifically, E"cient-
Prompt [19] introduces learnable prompt tokens to the text encoder, and ViFi-
CLIP [42] further adopts learnable prompts at the visual encoder. Other works
also tried to learn external modules designed for temporal modeling. EVL [28]
proposes a temporal decoder in parallel with the main network. CLIP4Clip [32]
investigated multiple temporal fusion strategies for video frames. Nevertheless,
how to e!ectively transfer CLIP to untrimmed videos remains unexplored. To our
best knowledge, R

2-Tuning is the first solution for fine-grained video temporal
grounding via memory-e"cient transfer learning.

Video Temporal Grounding Video temporal grounding (VTG) [26] is a bun-
dle of video understanding problems including moment retrieval (MR) [9,16,22,
31, 35, 36, 52, 56, 57, 61], highlight detection (HD) [3, 14, 47, 55], and video sum-
marization (VS) [11,45]. Although these tasks are closely related, they have not
been jointly studied until recently. QVHighlights [22] is the first dataset that
supports both MR and HD, breaking the moment distribution bias in previous
MR datasets [9,43]. The authors also proposed Moment-DETR, a strong baseline
method for MR/HD. Most following works were built upon the Moment-DETR
framework with specially designed modules. Notably, UMT [31] tackles flexible
MR and HD through a unified multi-modal architecture. QD-DETR [35] benefits
from query-dependent video representations and dynamic anchors. EaTR [16]
incorporates moment reasoning to provide reliable referential search areas for
moment queries. Nevertheless, their design space is still within pre-extracted
CLIP [41] and SlowFast [8] features. A recent work [57] revealed the possibility
of fine-tuning CLIP for MR, while their solution (post pre-training) is extremely
resource-consuming. Compared with existing works, R

2-Tuning can e!ectively
learn strong temporal modeling abilities without any pre-training on videos.

Parameter-E!cient Transfer Learning Foundation models [41, 49] have
achieved remarkable successes in vision and language understanding. E!orts
have been made to e"ciently transfer knowledge from these models to new sce-
narios. One line of research is to conduct context-based tuning (e.g ., prompt-
tuning [17,65,66]), which does not modify the model architectures but incorpo-
rates learnable embeddings in the inputs. Another paradigm is introducing an ex-
tra lightweight adapter to the original model, and keeping the rest of the param-
eters frozen [39]. Recent works also consider memory-e"cient transfer learning
(METL) that introduces parameters whose gradient flows do not go through the
main model [28, 40, 48]. R

2-Tuning is also a METL framework, where we adopt
a novel recurrent tuning strategy to ensure parameter- and memory-e"cient.



Reversed Recurrent Tuning 5

Spatial

A w�i�� p���y 
is ���i�g ����

Video

Query

Step N+1

Step N

1/1 1/2 1/4

t

s

Saliency Scores

Moment Boundaries

Tokenize

Patchify Spatial

Spatial

Textual

Textual

Spatial
Textual

Textual

Background Foreground

89.9s 95.1s

Id
en

tit
y

1D
 C

on
v

1D Conv   
 2

Foreground Cls.

Boundary Reg.

Step 3 Step 2 Step 1

Adaptive 
Pooling

Fig. 4: Overall architecture of our framework. The input video and query are first
encoded by frozen CLIP [41] encoders. Their multi-layer outputs are then recurrently
fused and refined by a learnable R2 Block to construct spatial-temporal representations
h, which would be scaled up/down to construct a temporal feature pyramid, followed
by three heads for MR, HD, and VS, respectively.

3 Methodology

3.1 Problem Formulation

Given a video V = {vi}Ti=1 and a natural language query Q = {qi}Li=1, where
T and L are the numbers of video frames and text tokens, VTG aims to densely
predict a set of labels (bi, si, fi) for each frame, defined as follows:

– Moment Retrieval is to find the most relevant moments (i.e. sets of con-
secutive frames) in V according to Q, so that bi = [bsi , b

e
i ] ↑ R2 represents

the temporal displacements from frame vi to the start and end timestamps
of the nearest target moment.

– Highlight Detection requires estimating frame-level relevancies between
V and Q, thus si ↑ [0, 1] is a continuous saliency score denoting to what
extent frame vi is semantically aligned with Q.

– Video Summarization aims to select a subset of video frames according
to Q to form a concise summary, therefore, fi ↑ {0, 1} is a binary score
indicating whether frame vi belongs to the summary.

3.2 Overview

Figure 4 shows an overview of the proposed framework. Our model derives
from a pre-trained and frozen CLIP [41] with ViT [6] backbone, which has a two-
stream architecture for spatial and textual encoding, respectively. A learnable R

2

block is iteratively attached to the last K encoder layers to refine the temporal
correlation. The resulting features are then scaled up/down to build a feature
pyramid, followed by three heads to decode the task-specific predictions.

Specifically, the input video V and query Q are first tokenized into frame
patches and word tokens, then sent into the visual encoder Ev and query en-
coder Eq. The encoded visual and textual features can be denoted as ev ↑
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tokens of visual features are omitted for clarity.

RB↑N↑T↑(P+1)↑Dv and eq ↑ RB↑N↑L↑Dq , where B, N , T , P , L, Dv and Dq

indicate batch size, number of encoder layers, number of video frames, number of
patches per frame, number of query tokens, and the dimensions of visual/query
features, respectively. These features are recurrently fused and refined by R

2

block to construct spatial-temporal features h ↑ RB↑T↑C , in which each token
preserves the C-dimensional features for a frame. This process will be introduced
in detail in Section. 3.3.

3.3 Reversed Recurrent Tuning

Given pre-trained visual and query encoders, existing works [16,22,26,31,35]
merely take features from the last hidden layer, which is sub-optimal due to the
limited information. In this work, we propose R

2-Tuning to exploit the potential
of spatial-temporal modeling based on multi-layer CLIP features. Our scheme
learns a lightweight R

2 Block which maintains a zero-initialized hidden state h ↑
RB↑T↑C as frame-level spatial-temporal features. The R

2 Block is recurrently
attached to the last K layers of CLIP encoders from back to front to refine the
hidden state h for K steps, with each step defined as follows:

hk
= Fω(e

n
v , e

n
q , h

k↓1
) (1)

Here, Fω is the refinement operation parameterized by ω. k ↑ [1,K] is the index
of current step. n = N ↓ k + 1 denotes the CLIP layer index for step k, thus
env and enq are visual and query features from the n-th CLIP encoder layer. The
refinement operation Fω can be decomposed into two parts: 1) query-modulated
spatial pooling, and 2) recurrent temporal refinement. Details are discussed as
follows.

Query-Modulated Spatial Pooling Figure 5 (a) presents the data flow of
query-modulated spatial pooling. The goal of this process is to adaptively pool
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spatial features from patch-level representations env to a single token enpool con-
ditioning on the query enq . We first adopt two separate MLPs to map env and enq
into the same space:

ênv = MLP(env ) ↑ RB↑T↑(P+1)↑C (2)

ênq = MLP(enq ) ↑ RB↑L↑C (3)

Here, C is the reduced hidden size. We further align the shape of ênv and ênq by
merging dimension T into B and repeat ênq for T times in an interleaved style,
resulting ênv ↑ R(B↑T )↑(P+1)↑C and ênq ↑ R(B↑T )↑L↑C . Then, we compute the
similarities for patch-token pairs using normalized Embedded Gaussian [50]:

a = softmax(
(wq ênq )

↔wv ênv↔
C

) ↑ R(B↑T )↑L↑P (4)

Here, wv and wq are learnable matrices for projecting features. This operation
derives from cross-attention but discards the linear projection on value. We then
multiply the similarities a with visual features ênv to pool them into each token,
such that tokens can interact with patches independently. After that, a max
pooling along the L dimension is applied:

entoken = MaxPooling(aênv + ênq ) ↑ RB↑T↑C (5)

Here, ênq serves as residuals [13] to stabilize training. Our visualizations in Fig-
ure 8 show that this strategy can guide the model to focus more on query-
related regions. Finally, we combine entoken with the [CLS] token to generate
query-modulated spatial features:

enpool = en,0v + gk · entoken ↑ RB↑T↑C (6)

Here, gk ↑ (↓1, 1) is a zero-initialized learnable gate for step k constrained by
Tanh. We allow negative values here to remove useless information from [CLS]
tokens. enpool is then used to model temporal correlations and are refined in a
recurrent manner.

Recurrent Temporal Refinement Figure 5 (b) displays the flow of recurrent
temporal refinement. Specifically, the pooled visual features enpool is first fused
with the hidden state hk↓1 from the previous step:

ĥk↓1
= εk · enpool + (1 ↓ εk

) · hk↓1 (7)

where εk ↑ (0, 1) is the learnable gate for step k. Then, we adopt a sequence
of standard multi-head cross-attention (ênq as k, v), multi-head self-attention,
followed by a feed-forward network [50] to update the hidden state:

hk
= FFN(MHSA(MHCA(ĥk↓1, ênq ))) (8)

For each block, we adopt DropPath [21] with p = 0.1 to prevent overfitting. The
query features ênq are utilized both in spatial and temporal modeling as guidance.



8 Y. Liu et al.

Granularity Calibration The refinement process above is based on the as-
sumption that visual and query features from the same layer of CLIP [41] are
well aligned at the same granularity level. However, this cannot be guaranteed
as the two encoders are learned in isolation during pre-training. Therefore, we
need to add manual constraints to calibrate their granularities.

We apply a video-level constraint and a layer-wise constraint by designing
two contrastive losses. We first denote e0v ↑ RB↑K↑T↑C as the features of K
[CLS] tokens from Eq. 6. Then, we select all positive frames (i.e., frames within
[bsi , b

e
i ] or with si or fi higher than a threshold) from e0v and perform average

pooling to obtain video-level representations ẽv ↑ RB↑K↑C .

ẽv = AvgPool({e0,iv }i↗ε) (9)

Here, ϑ is the set of positive frame indices. To obtain query-level representations
ẽq ↑ RB↑K↑C , a token-wise adaptive pooling is applied following previous work
[26]. We adopt InfoNCE loss [38] along two dimensions to calculate the video-
level and layer-wise constraints:

Lvideo = ϖvideo
1

B

∑

b↗B

InfoNCE(ẽbv, ẽ
b
q) (10)

Llayer = ϖlayer
1

K

∑

k↗K

InfoNCE(ẽkv , ẽ
k
q ) (11)

Here, Lvideo performs contrast among samples in the same batch (diversifying
features are diverse among moment-query pairs), and averages the loss across
K layers. It also implicitly models temporal correlations between videos and
queries. Llayer performs contrast among layers and averages across the batch.
ϖvideo and ϖlayer serve as re-weighting terms for the losses. A fixed temperature
parameter of 0.07 is used.

3.4 Prediction Heads

After refining spatial-temporal features h, a temporal feature pyramid is
constructed by applying 1D convolutions with stride = 2 on h. The number
of convolutions used for each level is subjected to l ↓ 1, where l is the level
index starting from 1. We concatenate features from all levels by the temporal
dimension to form ĥ and predict once in all heads. Following a similar but
simplified design from [26], we adopt three heads for video temporal grounding,
described in detail as follows.

Foreground-Background Classification Given ĥ, a two-layer 1D convolution
module with (1→3) kernels is adopted to predict f̂i for each frame. It is optimized
using a focal loss [27] with ϱ = 0.9 and ς = 2.0:

Lcls = ↓ϖclsϱ(1 ↓ f̂i)
ϑ

log(f̂i) (12)

We find that focal loss perform better than binary cross-entropy when the num-
bers of foreground/background frames are severely imbalanced as noted in [26].
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Table 1: Video moment retrieval (MR) and highlight detection (HD) results on
QVHighlights test split. Note that [16] and [57] only reported their results on val
split. and are CLIP-B/32 and B/16 [41], denotes SlowFast R-50 [8], and is
PANN [20] for audio features extraction. → means estimated parameters. The best and
second-best metrics are marked with bold and underline, respectively.

Method Backbone
Post

Pre-train

MR HD

#ParamsR1 mAP ↭ Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

BeautyThumb [44] ✁ – – – – – 14.36 20.88 –
DVSE [30] ✁ – – – – – 18.75 21.79 –
MCN [1] ✁ 11.41 2.72 24.94 8.22 10.67 – – –
CAL [7] ✁ 25.49 11.54 23.40 7.65 9.89 – – –
XML [23] ✁ 41.83 30.35 44.63 31.73 32.14 34.49 55.25 –
XML+ [22] ✁ 46.69 33.46 47.89 34.67 34.90 35.38 55.06 –
Moment-DETR [22] ✁ 52.89 33.02 54.82 29.40 30.73 35.69 55.60 4.8M
UMT [31] ✁ 56.23 41.18 53.83 37.01 36.12 38.18 59.99 14.9M
MomentDi! [24] ✁ 58.21 41.48 54.57 37.21 36.84 – – –
QD-DETR [35] ✁ 62.40 44.98 62.52 39.88 39.86 38.94 62.40 7.6M
MH-DETR [56] ✁ 60.05 42.48 60.75 38.13 38.38 38.22 60.51 8.2M
UniVTG [26] ✁ 58.86 40.86 57.60 35.59 35.47 38.20 60.96 41.3M
TR-DETR [46] ✁ 64.66 48.96 63.98 43.73 42.62 39.91 63.42 7.9M
CG-DETR [34] ✁ 65.43 48.38 64.51 42.77 42.86 40.33 66.21 12.0M
EaTR [16] ✁ 61.36 45.79 61.86 41.91 41.74 37.15 58.65 9.0M

Moment-DETR [22] 236K ASR Cap. 59.78 40.33 60.51 35.36 36.14 37.43 60.17 4.8M
UMT [31] 236K ASR Cap. 60.83 43.26 57.33 39.12 38.08 39.12 62.39 14.9M
UniVTG [26] 4.2M Corpus 65.43 50.06 64.06 45.02 43.63 40.54 66.28 41.3M
UnLoc [57] 650K Videos 64.50 48.80 – – – – – 87.9M→

R2
-Tuning (Ours) ✁ 68.03 49.35 69.04 47.56 46.17 40.75 64.20 2.7M

Boundary Regression Similar to foreground-background classification, bound-
ary regression for moments is also realized by a two-layer 1D convolution module.
The di!erence is that its output dimension is set to 2 instead of 1, represent-
ing the boundary displacements [b̂si , b̂

e
i ] for start-end timestamps. This head is

optimized by an L1 loss:

Lreg = ϖreg(|bsi ↓ b̂si | + |bei ↓ b̂ei |) (13)

where bsi and bei are the ground truths. This loss is only applied to frames inside
the ground truth boundaries. We observe that using an L1 loss already works
better than the combination of Smooth L1 Loss and GIoU Loss as in [26].

Saliency Prediction To obtain the saliency scores ŝi for HD, we calculate
the cosine similarities between the adaptive pooled query features at the last
refinement step ẽKq and each token in the spatial-temporal features h:

ŝi =
h↔
i ẽ

K
q

||hi||2||ẽKq ||2
(14)

The training objective is applied through a contrastive loss between sampled
positive frames (with index p ↑ P ) and the adaptively pooled query ẽKq :

Lsal = ↓ϖsal log
exp(ŝp/φ)

exp(ŝp/φ) +
∑

i↗ϖ exp(ŝi/φ)
(15)
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Table 2: Video moment retrieval results on Ego4D-NLQ, Charades-STA, and TACoS
datasets. means using both CLIP-B/32 and SlowFast R-50 as feature extractors.

indicates using CLIP-B/32 only. The best and second-best metrics are marked
with bold and underline, respectively. Our method shows significant advantages in
high-quality retrievals (R@0.7) even without a video backbone.

Method

Ego4D-NLQ [10] Charades-STA [9] TACoS [43]

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

2D-TAN [64] 4.33 1.83 0.60 3.39 58.76 46.02 27.50 41.25 40.01 27.99 12.92 27.22
VSLNet [62] 4.54 2.40 1.01 3.54 60.30 42.69 24.14 41.58 35.54 23.54 13.15 24.99
Moment-DETR [22] 4.34 1.81 0.65 3.53 65.83 52.07 30.59 45.54 37.97 24.67 11.97 25.49
UniVTG [26] 7.28 3.95 1.32 4.91 70.81 58.01 35.65 50.10 51.44 34.97 17.35 33.60

R2
-Tuning (Ours) 7.20 4.49 2.12 4.94 70.91 59.78 37.02 50.86 49.71 38.72 25.12 35.92

Here, ↼ is the set of frame indices where si < sp, and φ is a fixed temperature
parameter set to 0.07.

Training & Inference The whole model is jointly optimized using a sum of the
five losses mentioned above. In practice, the loss weights are set as ϖvideo = 0.1,
ϖlayer = 0.1, ϖcls = 1.0, ϖreg = 0.1, and ϖsal = 0.1. During inference, we form an
moment retrieval prediction by combining fi and bi, i.e., calculating the start-
end timestamps from frame index i and boundary displacements [bsi , b

e
i ], while

regarding fi as the confidence. NMS with IoU threshold ωIoU = 0.7 is applied to
reduce duplicates. For highlight detection and video summarization, we directly
use the frame-level output from saliency prediction si.

4 Experiments

4.1 Datasets & Evaluation Metrics

We conduct experiments on six datasets covering various domains includ-
ing daily vlogs & news (QVHighlights [22]), in-door scenes (TACoS [43] and
Charades-STA [9]), egocentric videos (Ego4D-NLQ [10]), and sports (YouTube
Highlights [47] and TVSum [45]). Details about the datasets are provided in the
supplementary material.

We adopt the same evaluation metrics with previous works [22, 26, 31]. To
be specific, we compute Recall@1 with IoU threshold ωIoU = 0.5 and 0.7, mean
average precision (mAP) with ωIoU = 0.5 and 0.7, and mAP with a series of
thresholds [0.5:0.05:0.95] for MR on QVHighlights [22]. mAP and HIT@1 where
positive samples are defined as with the saliency score of Very Good are adopted
for HD. On Ego4D-NLQ [10], Charades-STA [9], and TACoS [43] datasets, we
utilize Recall@1 with ωIoU = {0.3, 0.5, 0.7} and mIoU to measure the MR per-
formance. On YouTube Highlights [47] for HD and TVSum [45] for VS, we
follow [26, 31] and use the same train/val split with mAP and Top-5 mAP as
metrics, respectively.
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Table 3: Class-wise video highlight detection results (mAP) on YouTube Highlights
dataset. , , and denote image, video, and audio backbones, respectively.

Method Dog Gym. Par. Ska. Ski. Sur. Avg.

RRAE [58] 49.0 35.0 50.0 25.0 22.0 49.0 38.3
GIFs [12] 30.8 33.5 54.0 55.4 32.8 54.1 46.4
LSVM [47] 60.0 41.0 61.0 62.0 36.0 61.0 53.6
LIM-S [54] 57.9 41.7 67.0 57.8 48.6 65.1 56.4
SL-Module [55] 70.8 53.2 77.2 72.5 66.1 76.2 69.3
PLD [53] 74.9 70.2 77.9 57.5 70.7 79.0 73.0

MINI-Net [14] 58.2 61.7 70.2 72.2 58.7 65.1 64.4
TCG [59] 55.4 62.7 70.9 69.1 60.1 59.8 63.0
Joint-VA [3] 64.5 71.9 80.8 62.0 73.2 78.3 71.8
CO-AV [25] 60.9 66.0 89.0 74.1 69.0 81.1 74.7
UMT [31] 65.9 75.2 81.6 71.8 72.3 82.7 74.9
UniVTG [26] 71.8 76.5 73.9 73.3 73.2 82.2 75.2

R2
-Tuning 75.6 73.5 73.0 74.6 74.8 84.8 76.1

Table 4: Class-wise video summarization results (Top-5 mAP) on TVSum dataset.
, , and denote image, video, and audio backbones, respectively. Our method does
not require any additional video/audio features.

Method VT VU GA MS PK PR FM BK BT DS Avg.

sLSTM [63] 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1
SG [33] 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2
LIM-S [54] 55.9 42.9 61.2 54.0 60.4 47.5 43.2 66.3 69.1 62.6 56.3
Trailer [51] 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8
SL-Module [55] 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3
PLD [53] 84.5 80.9 70.3 72.5 76.4 87.2 71.9 74.0 74.4 79.1 77.1

MINI-Net [14] 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2
TCG [59] 85.0 71.4 81.9 78.6 80.2 75.5 71.6 77.3 78.6 68.1 76.8
Joint-VA [3] 83.7 57.3 78.5 86.1 80.1 69.2 70.0 73.0 97.4 67.5 76.3
CO-AV [25] 90.8 72.8 84.6 85.0 78.3 78.0 72.8 77.1 89.5 72.3 80.1
UMT [31] 87.5 81.5 88.2 78.8 81.4 87.0 76.0 86.9 84.4 79.6 83.1
UniVTG [26] 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0

R2
-Tuning 85.0 85.9 91.0 81.7 88.8 87.4 78.1 89.2 90.3 74.7 85.2

4.2 Implementation Details

In all experiments, we adopt the visual and text encoders of CLIP ViT-
B/32 [41] as our backbones. The whole CLIP model is frozen during training, i.e.,
only the parameters in R

2 Block, temporal feature pyramid, prediction heads are
learnable. Without further specification, we set K = 4, i.e., attaching R

2 Block
to the last 4 layers of CLIP encoders. In R

2 Block, the hidden size is set to 256.
Only one transformer layer with post-norm style and 8 attention heads is used
for temporal modeling. The number of layers for the temporal feature pyramid
is set to 4 for QVHighlights, Ego4D-NLQ, Charades-STA, and TACoS, while 1

for other datasets. Please refer to the supplementary material for details.

4.3 Comparison with State-of-the-Arts

Joint Moment Retrieval and Highlight Detection We first evaluate our
method on QVHighlights [22] test split, the only dataset that supports both
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Fig. 6: Visualization of joint moment retrieval and highlight detection results on
QVHighlights val split. We compare our method with UniVTG [26], which is a
strong baseline leveraging both additional temporal backbone and large-scale post pre-
training. R2-Tuning can accurately regress the boundaries of moments and predict
highlight saliency scores through its novel feature refinement design.

moment retrieval and highlight detection. The results are shown in Table 1.
The first group of methods utilizes more than one feature extractor. The second
group is that with large-scale post pre-training (defined as the extra pre-training
stage between loading backbone weights and training on downstream datasets.).
Without any additional backbone and extra pre-training, R

2-Tuning achieves
start-of-the-art performance compared with all previous methods with the fewest
learnable parameters. Figure 6 visualizes the model predictions.

Moment Retrieval We then evaluate our model on moment retrieval task in
egocentric [10] and in-door [9, 43] domains. The results are shown in Table 2.
We follow [26] and compare only with the methods using CLIP + SlowFast
features. R

2-Tuning still works better than all baselines with extra features.
We also observe that R

2-Tuning shows its significance on high-quality retrievals
(R1@0.7), which requires accurate temporal modeling. This benefits from the
fine-grained temporal modeling ability of reversed and recurrent designs.

Highlight Detection & Video Summarization The performances of high-
light detection on YouTube Highlights [47] and extractive video summarization
on TVSum [45] are reported in Table 3 and Table 4, respectively. Following
previous works [26, 31], we trained the model separately on each domain. The
first group of methods is based on video backbones, which naturally have basic
temporal modeling abilities. The second group of methods is enhanced by extra
features such as image and audio. R

2-Tuning can still reach the best performance
when trained on small-scale data.
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Fig. 7: Di!erent feature refinement strategies for MR on QVHighlights val split. Single
means utilizing the K-th layer only, while Mean denotes averaging the features from
last K layers. Forward and Reversed indicate di!erent feature refinement directions.

QUERY: A young man talks and gestures with his hands while a woman watches him.

QUERY: A person holding a bucket stands around penguins in an enclosure.

Fig. 8: Visualization of the attention maps for
query-modulated spatial pooling. Diverse regions
are learned for di!erent queries.
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Fig. 9: Cosine similarities of video
(x-axis) and text (y-axis) features
among 7→12 CLIP layers.

4.4 Detailed Analysis

Multi-Granularity Features To investigate the significance of granularity
flexibility, we set up a simple baseline that only attaches R

2 Block to one layer
of CLIP encoders. Then, we make use of the multi-layer information by aver-
aging the features from the last K layers. These two variants are compared in
Figure 7 (a). It can be observed that for the single-layer setting, higher-level fea-
tures are more discriminative than lower-level ones. However, even a naive fusion
strategy for the multi-layer information brings significant performance gains.

Reversed Recurrent Feature Refinement We then further justify our de-
sign by comparing two refinement directions (i.e., forward and reversed) in Fig-
ure 7 (b). Note that when K=1, all four designs in Figure 7 are of the same
architecture. When utilizing more layers, both forward and reversed refinement
benefit from more information, while the reversed scheme statically performs
better, as the multi-granularity features shall be refined from coarse to fine.

Query-Modulated Spatial Pooling We visualize the attention maps learned
by query-modulated spatial pooling in Figure 8. A query generally has multi-
ple keywords that provide discriminative information to localize moments. The
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Table 5: E!ectiveness justification of granu-
larity calibration on QVHighlights val split.

Lvideo Llayer

MR HD

R1@0.5 R1@0.7 mAP mAP HIT@1

64.48 48.60 44.01 37.94 62.67
✂ 67.68 51.61 46.74 39.81 65.16

✂ 64.71 48.84 44.60 38.91 63.35
✂ ✂ 68.71 52.06 47.59 40.59 64.32

Table 6: MR mAP with di!erent query
lengths on QVHighlights val split.

Method

#Words

1-10 11-20 21-30 31-40 ↭41

QD-DETR [35] 40.30 42.32 29.01 0.10 26.67
EaTR [16] 38.94 39.54 24.58 12.03 41.43
UniVTG [26] 32.38 32.65 20.88 0.00 31.11
R2

-Tuning 47.08 49.13 28.79 67.24 72.38

token-wise attention in Eq. 4 can guide the model to focus on multiple regions
simultaneously, as can be seen in the diverse but meaningful patterns.

Granularity Calibration To verify the e!ectiveness of granularity calibration,
we also visualize the cosine distances of all the visual-query pairs from 7↗ 12
layers in Fig. 9. Before calibration, the visual-text features are not well-aligned.
Adding the video-level constraint makes higher-level features aligned with each
other (b), while adding layer-wise constraint makes the model distill diverse
information across di!erent layers (c). The diagonal in (d) verifies that both
calibration constraints can maximize the mutual similarities of paired visual and
text features. Some quantitative results are presented in Table 5. Both video-level
and layer-wise contrastive can help align the multi-granularity visual & query
semantics, while their combination can further boost the performances. We also
group the queries in QVHighlights into 5 bins with di!erent lengths (acting as
multi-granularities) and compute the means of MR mAP in Tab. 6. Although
most training queries are coarse-grained (↭ 30 words), R

2-Tuning can easily
generalize to fine-grained queries (↫ 31 words), surpassing previous methods.

5 Conclusion

This paper introduces R
2-Tuning, a parameter- and memory-e"cient transfer

learning framework for video temporal grounding. It learns a lightweight side-
adapter (R2 Block) that is recurrently attached to the last few layers of a frozen
CLIP to adaptively pool spatial details and refine temporal correlations. Two
contrastive constraints (video-level and layer-wise) are utilized to calibrate the
granularities of CLIP visual and text encoders. Experiments across three VTG
tasks on six public benchmarks demonstrate the significance and e!ectiveness
of the proposed scheme. We hope that the proposed framework sparks further
research on e"cient image-to-video transfer learning for untrimmed videos.

Acknowledgments

This work was supported in part by Hong Kong Research Grants Council
GRF-15229423, US NIH grant R01HD104969, and NSF award IIS-2239688.



Reversed Recurrent Tuning 15

References

1. Anne Hendricks, L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Lo-
calizing moments in video with natural language. In: ICCV. pp. 5803–5812 (2017)

2. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Video sum-
marization using deep neural networks: A survey. Proceedings of the IEEE 109(11),
1838–1863 (2021)

3. Badamdorj, T., Rochan, M., Wang, Y., Cheng, L.: Joint visual and audio learning
for video highlight detection. In: ICCV. pp. 8127–8137 (2021)

4. Bain, M., Nagrani, A., Varol, G., Zisserman, A.: A clip-hitchhiker’s guide to long
video retrieval. Tech. Rep. arXiv:2205.08508 (2022)

5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR. pp. 6299–6308 (2017)

6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: ICLR (2020)

7. Escorcia, V., Soldan, M., Sivic, J., Ghanem, B., Russell, B.: Temporal localization
of moments in video collections with natural language. Tech. Rep. arXiv:1907.12763
(2019)

8. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recogni-
tion. In: ICCV. pp. 6202–6211 (2019)

9. Gao, J., Sun, C., Yang, Z., Nevatia, R.: Tall: Temporal activity localization via
language query. In: ICCV. pp. 5267–5275 (2017)

10. Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Ham-
burger, J., Jiang, H., Liu, M., Liu, X., et al.: Ego4d: Around the world in 3,000
hours of egocentric video. In: CVPR. pp. 18995–19012 (2022)

11. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries
from user videos. In: ECCV. pp. 505–520 (2014)

12. Gygli, M., Song, Y., Cao, L.: Video2gif: Automatic generation of animated gifs
from video. In: CVPR. pp. 1001–1009 (2016)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

14. Hong, F.T., Huang, X., Li, W.H., Zheng, W.S.: Mini-net: Multiple instance rank-
ing network for video highlight detection. In: ECCV. pp. 345–360 (2020)

15. Huang, S., Gong, B., Pan, Y., Jiang, J., Lv, Y., Li, Y., Wang, D.: Vop: Text-video
co-operative prompt tuning for cross-modal retrieval. In: CVPR. pp. 6565–6574
(2023)

16. Jang, J., Park, J., Kim, J., Kwon, H., Sohn, K.: Knowing where to focus: Event-
aware transformer for video grounding. In: ICCV. pp. 13846–13856 (2023)

17. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.:
Visual prompt tuning. In: ECCV. pp. 709–727 (2022)

18. Jiang, R., Liu, L., Chen, C.: Clip-count: Towards text-guided zero-shot object
counting. In: ACM MM (2023)

19. Ju, C., Han, T., Zheng, K., Zhang, Y., Xie, W.: Prompting visual-language models
for e"cient video understanding. In: ECCV. pp. 105–124 (2022)

20. Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., Plumbley, M.D.: Panns: Large-
scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 28, 2880–2894 (2020)

21. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. Tech. Rep. arXiv:1605.07648 (2016)



16 Y. Liu et al.

22. Lei, J., Berg, T.L., Bansal, M.: Qvhighlights: Detecting moments and highlights
in videos via natural language queries. In: NeurIPS (2021)

23. Lei, J., Yu, L., Berg, T.L., Bansal, M.: Tvr: A large-scale dataset for video-subtitle
moment retrieval. In: ECCV. pp. 447–463 (2020)

24. Li, P., Xie, C.W., Xie, H., Zhao, L., Zhang, L., Zheng, Y., Zhao, D., Zhang, Y.:
Momentdi!: Generative video moment retrieval from random to real. Tech. Rep.
arXiv:2307.02869 (2023)

25. Li, S., Zhang, F., Yang, K., Liu, L., Liu, S., Hou, J., Yi, S.: Probing visual-audio
representation for video highlight detection via hard-pairs guided contrastive learn-
ing. Tech. Rep. arXiv:2206.10157 (2022)

26. Lin, K.Q., Zhang, P., Chen, J., Pramanick, S., Gao, D., Wang, A.J., Yan, R., Shou,
M.Z.: Univtg: Towards unified video-language temporal grounding. In: CVPR. pp.
2794–2804 (2023)

27. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017)

28. Lin, Z., Geng, S., Zhang, R., Gao, P., de Melo, G., Wang, X., Dai, J., Qiao, Y., Li,
H.: Frozen clip models are e"cient video learners. In: ECCV. pp. 388–404 (2022)

29. Liu, L., Yu, B.X., Chang, J., Tian, Q., Chen, C.W.: Prompt-matched semantic
segmentation. Tech. Rep. arXiv:2208.10159 (2022)

30. Liu, W., Mei, T., Zhang, Y., Che, C., Luo, J.: Multi-task deep visual-semantic
embedding for video thumbnail selection. In: CVPR. pp. 3707–3715 (2015)

31. Liu, Y., Li, S., Wu, Y., Chen, C.W., Shan, Y., Qie, X.: Umt: Unified multi-modal
transformers for joint video moment retrieval and highlight detection. In: CVPR.
pp. 3042–3051 (2022)

32. Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., Li, T.: Clip4clip: An
empirical study of clip for end to end video clip retrieval. Neurocomputing 508,
293–304 (2022)

33. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with
adversarial lstm networks. In: CVPR. pp. 202–211 (2017)

34. Moon, W., Hyun, S., Lee, S., Heo, J.P.: Correlation-guided query-dependency
calibration in video representation learning for temporal grounding. Tech. Rep.
arXiv:2311.08835 (2023)

35. Moon, W., Hyun, S., Park, S., Park, D., Heo, J.P.: Query-dependent video repre-
sentation for moment retrieval and highlight detection. In: CVPR. pp. 23023–23033
(2023)

36. Nan, G., Qiao, R., Xiao, Y., Liu, J., Leng, S., Zhang, H., Lu, W.: Interventional
video grounding with dual contrastive learning. In: CVPR. pp. 2765–2775 (2021)

37. Ni, B., Peng, H., Chen, M., Zhang, S., Meng, G., Fu, J., Xiang, S., Ling, H.:
Expanding language-image pretrained models for general video recognition. In:
ECCV. pp. 1–18 (2022)

38. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. In: NeurIPS (2018)

39. Pan, J., Lin, Z., Zhu, X., Shao, J., Li, H.: St-adapter: Parameter-e"cient image-
to-video transfer learning. In: NeurIPS. pp. 26462–26477 (2022)

40. Qing, Z., Zhang, S., Huang, Z., Zhang, Y., Gao, C., Zhao, D., Sang, N.: Disentan-
gling spatial and temporal learning for e"cient image-to-video transfer learning.
In: CVPR. pp. 13934–13944 (2023)

41. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML. pp. 8748–8763 (2021)



Reversed Recurrent Tuning 17

42. Rasheed, H., Khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Fine-tuned clip
models are e"cient video learners. In: CVPR. pp. 6545–6554 (2023)

43. Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Schiele, B., Pinkal, M.: Ground-
ing action descriptions in videos. Transactions of the Association for Computational
Linguistics 1, 25–36 (2013)

44. Song, Y., Redi, M., Vallmitjana, J., Jaimes, A.: To click or not to click: Automatic
selection of beautiful thumbnails from videos. In: CIKM. pp. 659–668 (2016)

45. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: Tvsum: Summarizing web videos
using titles. In: CVPR. pp. 5179–5187 (2015)

46. Sun, H., Zhou, M., Chen, W., Xie, W.: Tr-detr: Task-reciprocal transformer for
joint moment retrieval and highlight detection. In: AAAI (2024)

47. Sun, M., Farhadi, A., Seitz, S.: Ranking domain-specific highlights by analyzing
edited videos. In: ECCV. pp. 787–802 (2014)

48. Sung, Y.L., Cho, J., Bansal, M.: Lst: Ladder side-tuning for parameter and memory
e"cient transfer learning. In: NeurIPS. pp. 12991–13005 (2022)

49. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and e"cient
foundation language models. Tech. Rep. arXiv:2302.13971 (2023)

50. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS. pp. 5998–6008 (2017)

51. Wang, L., Liu, D., Puri, R., Metaxas, D.N.: Learning trailer moments in full-length
movies. In: ECCV. pp. 300–316 (2020)

52. Wang, Z., Wang, L., Wu, T., Li, T., Wu, G.: Negative sample matters: A renais-
sance of metric learning for temporal grounding. In: AAAI. pp. 2613–2623 (2022)

53. Wei, F., Wang, B., Ge, T., Jiang, Y., Li, W., Duan, L.: Learning pixel-level dis-
tinctions for video highlight detection. In: CVPR. pp. 3073–3082 (2022)

54. Xiong, B., Kalantidis, Y., Ghadiyaram, D., Grauman, K.: Less is more: Learning
highlight detection from video duration. In: CVPR. pp. 1258–1267 (2019)

55. Xu, M., Wang, H., Ni, B., Zhu, R., Sun, Z., Wang, C.: Cross-category video high-
light detection via set-based learning. In: ICCV. pp. 7970–7979 (2021)

56. Xu, Y., Sun, Y., Li, Y., Shi, Y., Zhu, X., Du, S.: Mh-detr: Video moment and high-
light detection with cross-modal transformer. Tech. Rep. arXiv:2305.00355 (2023)

57. Yan, S., Xiong, X., Nagrani, A., Arnab, A., Wang, Z., Ge, W., Ross, D., Schmid, C.:
Unloc: A unified framework for video localization tasks. In: ICCV. pp. 13623–13633
(2023)

58. Yang, H., Wang, B., Lin, S., Wipf, D., Guo, M., Guo, B.: Unsupervised extraction
of video highlights via robust recurrent auto-encoders. In: ICCV. pp. 4633–4641
(2015)

59. Ye, Q., Shen, X., Gao, Y., Wang, Z., Bi, Q., Li, P., Yang, G.: Temporal cue guided
video highlight detection with low-rank audio-visual fusion. In: ICCV. pp. 7950–
7959 (2021)

60. Yuan, T., Zhang, X., Liu, K., Liu, B., Jin, J., Jiao, Z.: Ucf-crime annota-
tion: A benchmark for surveillance video-and-language understanding. Tech. Rep.
arXiv:2309.13925 (2023)

61. Yuan, Y., Ma, L., Wang, J., Liu, W., Zhu, W.: Semantic conditioned dynamic
modulation for temporal sentence grounding in videos. NeurIPS 32 (2019)

62. Zhang, H., Sun, A., Jing, W., Zhou, J.T.: Span-based localizing network for natural
language video localization. Tech. Rep. arXiv:2004.13931 (2020)

63. Zhang, K., Chao, W.L., Sha, F., Grauman, K.: Video summarization with long
short-term memory. In: ECCV. pp. 766–782. Springer (2016)



18 Y. Liu et al.

64. Zhang, S., Peng, H., Fu, J., Luo, J.: Learning 2d temporal adjacent networks for
moment localization with natural language. In: AAAI. pp. 12870–12877 (2020)

65. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-
language models. In: CVPR. pp. 16816–16825 (2022)

66. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language
models. International Journal of Computer Vision 130(9), 2337–2348 (2022)


	R2-Tuning: Efficient Image-to-Video Transfer Learning for Video Temporal Grounding

