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Abstract 
Buildings are expected to be resilient in the face of future 
climate change and increasingly frequent disruptive 
events. Therefore, understanding building performance 
under various future weather conditions and disrupt 
events is crucial. However, accessing available data 
sources is always time-consuming. From this 
perspective, we developed a data generator tool for 
power outage events and future typical weather files, 
which provides both raw and synthetic data for 
researchers. They can download ready-to-use data with 
a single click by simply inputting the city name, time 
span, and CO2 emission scenarios, without the need for 
extensive data preprocessing effort. The future typical 
weather and power outage data could be used for future 
building energy simulation, energy system design and 
operation, etc. To demonstrate its application potential, 
we conducted an EnergyPlus case study to compare 
energy consumption differences and building 
performance under power outages and future weather 
files. The results indicate that in an extreme warm 
weather condition under RCP (Representative 
Concentration Pathway) 8.5, ambient air temperature 
could increase by up to 7°C, which doubles the cooling 
demand. While the 50th and 90th percentile of historical 
power outage is 5.5 hours and 72 hours respectively and 
can be used as reference for resilience-based design. The 
study also identified extreme weather as the dominant 
factor in power outage events, potentially causing up to 
60% uncertainty in energy system management. 
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Introduction 
Over the past decades, climate change has led to an 
increasing occurrence of disruptive events, such as 
extreme weather (e.g., heatwaves, snowstorms), power 
system failures, and natural disasters. For example, as 
reported by the National Centers for Environmental 
Information, 90 disruptive events occurred in the U.S. 
over the past five years, resulting in $624 billion in losses 

and 1,751 deaths (NCEI, 2023). These increasingly 
frequent and intense disruptive events have caused 
enormous damage to society, human health, and 
infrastructure systems (Change, I. C., 2014). In this 
context, buildings are expected to be resilient to meet 
occupants' needs by providing safe, stable, and 
comfortable conditions in the face of varying external 
conditions (United Nations Environment Programme, 
2021). To facilitate resilient building design, it is 
essential to understand building behavior under future 
climate scenarios and disruptive events, where building 
performance simulation (BPS) plays a vital role. 
The most commonly used weather file for BPS is the 
Typical Meteorological Year (TMY), which represents 
average climate conditions based on 15–30 years of 
historical observations (Chan, et al., 2006). To generate 
a future TMY for BPS, the first step is to select a future 
greenhouse gas emission scenario from the 
Intergovernmental Panel on Climate Change (IPCC). 
There are three emission and concentration scenarios, 
namely RCP2.6, RCP4.5, and RCP8.5, where 'RCP' 
stands for 'Representative Concentration Pathways,' a 
framework adopted by the Intergovernmental Panel on 
Climate Change (IPCC) (Pachauri, et al., 2014). These 
emission scenarios provide the initial conditions for 
Global Climate Models (GCMs) to forecast future 
climate changes with a spatial resolution of 100–300 km² 
and a monthly temporal resolution (Moazami, et al., 
2019). Then, the future weather file needs to be 
downscaled to an appropriate spatial and temporal 
resolution for BPS, a detailed discussion on this can be 
found in the review done by (Herrera, et al., 2017). 
However, as the TMY file represents an average of 
climate conditions, it cannot capture the effects of 
extreme weather uncertainties. These uncertainties can 
cause up to a 28.5% increase in energy demand 
compared to typical conditions (Moazami, et al., 2019). 
Furthermore, they can lead to a significant performance 
gap (up to 34% for grid integration) and a decrease in 
power supply reliability (up to 16%) due to extreme 
weather events (Perera et al., 2020). To address this 



   
 

limitation, (Nik, 2016) suggested assessing the effects of 
climate change on building energy performance by using 
not only a typical downscaled year (TDY) but also an 
extreme cold year (ECY) and an extreme warm year 
(EWY). However, generating such weather files for BPS 
is time-consuming. Researchers often face a long 
learning curve dealing with GCMs and huge datasets. 
More detailed methods for future weather data 
generation can be found in (Herrera, et al., 2017), (Li, et 
al., 2023) and (Nik, 2017). Currently, there is a lack of a 
standardized, 'click-and-run' tool for researchers to 
easily obtain future TDY, ECY and EWY files for a 
specified city, time span, and carbon emission scenarios. 
Another important input for resilience-relevant studies 
involves power outage events. According to the Energy 
Information Administration (EIA), occupants in the U.S. 
experienced an average of eight hours of power 
disruptions in 2020, which has doubled compared to five 
years earlier (Sheng, et al., 2023). Furthermore, lots of 
power outage events coincide with extreme weather 
events, highlighting the importance of considering their 
combined effects. However, finding an open-access 
dataset and performing the necessary data cleaning is 
always time-consuming. Additionally, due to the 
absence of a benchmark dataset, many studies (Tian, et 
al., 2021) (Gong, et al., 2021) (Rosales et al., 2023) are 
using predefined fixed schedules for blackout analysis. 
These schedules assume that power outages occur 
periodically with a specific starting point, which has 
limited alignment with real-world cases. 
In summary, this study develops a data tool for 
generating power outage event data and future weather 
files, aimed at providing a benchmark dataset for future 
resilient building design and operation. A detailed 
description of the raw dataset will be introduced in the 
next section. To use this tool for data query, users are 
required to input the city name, the desired time span and 
potential carbon emission scenarios. Two types of data 
are then available for further analysis and download. The 
first type includes raw weather data for the periods 2045 
to 2054 and 2085 to 2094, as well as power outage event 
data from 2002 to 2023. The second type comprises 
synthetic data, including TDY, ECY, EWY weather, 
along with power outage start times and durations 
sampled from history dataset. 

Methods 
1. Data Source 
Argonne National Laboratory (Zeng et al., 2023) has 
recently released an hourly future weather dataset 
derived from the output of a Regional Climate Model 
(RCM). An RCM is a numerical climate prediction 
model capable of simulating atmospheric and land 
surface processes and it can be used for weather 

prediction, understanding the climate, and forecasting 
climate change. This dataset is directly compatible with 
building energy modeling tools such as EnergyPlus and 
ESP-r. A summary of the dataset is shown in Table 1. 

Table 1 Summary of future weather dataset 

Table 2 Summary of power outage dataset 

The power outage dataset originates from the 
Department of Energy's Electric Emergency Incident 
and Disturbance Report (Form DOE-417). The form 

Features   Information 
Coverage North America 
Spatial Resolution 12 km by 12 km 
Time Resolution One Hour 
Time Span 2045 – 2054; 2085 - 2094 
Format EPW 
Emissions Scenarios RCP8.5; RCP4.5(Ongoing) 
Centroid Area 2368 PUMAs (Public Use 

Microdata Area) 
Data Size 7.25GB 
Download Link https://data.openei.org/ 

submissions/5974 
Weather variables Dry-Bulb Temperature, 

Dew Point Temperature, 
Relative Humidity, 
Atmospheric Pressure, 
Horizontal Infrared 
Radiation Intensity from 
Sky, Global Horizontal 
Irradiation, Direct Normal 
Irradiation, Diffuse 
Horizontal Irradiation, 
Wind Speed, Wind 
Direction, Sky Cover, 
Albedo, and Liquid 
Precipitation Depth 

Features Information 
Coverage NERC Regions 
Time Span 2002 – 2023(Still Updating) 
Format xls 
Download Link https://oe.netl.doe.gov/oe417

.aspx 
Event Begin Datetime Start time 
Event Restoration 
Datetime 

End time 

Affected Area \ 
Alert Criteria Loss and duration 
Event Type Weather, Cyber Attack, 

Vandalism, etc. 
Demand Loss Megawatt 
Number of affected 
customers 

\ 

https://data.openei.org/


   
 

requires mandatory filing for any electrical incident or 
disturbance that is significant large to surpass the 
reporting thresholds. A detailed summary of the dataset 
can be found below in Table 2. 
2. Typical and Extreme Weather Generator 
In this study, the TDY is synthesized based on the hourly 
values of outdoor air temperature (Nik, 2016). Taking 
January as an example, we first compile ten years of 
January weather data and calculate the overall 
temperature distribution. The distribution is represented 
by its percentile (dividing the cumulative probability 
interval into 100 evenly spaced probabilities), and these 
100 percentiles are recorded as a reference vector r. Then 
we calculate January temperature distribution for each 
individual year, donated as a comparison vector c. After 
that, we calculate the difference between r and c to 
identify the Typical Meteorological Month (TMM). For 
TDY, TMM is defined as the month with the distribution 
most similar to the reference (the minimal least absolute 
difference between r and c). Conversely, for EWY and 
ECY, TMM is defined as the month with the largest 
positive and negative distribution difference relative to 
the reference (the maximum positive and negative 
difference between r and c, respectively). This process is 
repeated for the remaining 11 months, and the 12 TMMs 
are to form the TDY, EWY, and ECY. 
3. Power Outage Event Generator 
The raw data, spanning the last 20 years, was presented 
in various formats, necessitating thorough data cleaning 
to ensure consistency. The terms “Noon”, “Midnight” 
are replaced by 12:00 PM and 12:00 AM respectively. 
Rows with unknow/NaN (Not a Number) values for 
power outage start time/end time are removed. Finally, 
3496 data points are available from 2002 to 2023, with 
features including “Start time”, “End time”, “NERC 
Region”, “Reason”, “Area”, “Loss”, “People Affect”, 
“Year”, “Month”, “Duration”. We also provide a 
synthetic power outage event generator for resilient 
building energy system design. Generally, disruptive 
events can be categorized into (1) low-probability, high-
impact (LPHI) events (These events have a relatively 
low chance of occurring but can cause significant 
impacts once they do occur) and (2) high-probability, 
low-impact (HPLI) events (In contrast to LPHI events, 
'HPLI' events occur more frequently but have relatively 
minimal impacts) (Perera, et al., 2020). In terms of 
power outages, if the system is designed according to 
HPLI events only (long term outage), the sizing could be 
overestimated and requiring a high capital cost. On the 
contrary, if the sizing is calculated based on LPHI events 
only (short term outage), the building energy system will 
fail once an LPHI event happened. Thus, it is important 
to consider the resilience design problem according to 

different scenarios. From this perspective, our generator 
can generate power outage events duration with different 
probability percentiles. And the event start time can be 
sampled directly from the historical data. For example, 
if the user wants to improve building resilience that can 
cover 60% of power outage scenarios, the generator will 
return the 60th percentiles of the power outage duration 
with a start time sampled from the database. 
4. Framework of RESI 
Figure 1 presents the framework of the RESI tool. Users 
are prompted to input the city name, time span, and 
desired power outage percentile. Then, we query data 
based on the specified location by Google Geo APIs. 
Preprocessed data is then available for download. 
Additionally, we provide synthetic data, which includes 
TDY, EWY, and ECY weather files, as well as power 
outage events for further analysis. The necessary 
statistical distribution of the dataset is also available. 

 
Figure 1 A diagram of RESI instruction  

5. Case Study 
An EnergyPlus case study is employed to demonstrate 
how researchers can benefit from this tool. The model 
used here is a DOE prototype residential building model, 
specifically a single-family house equipped with a heat 
pump. Taking San Francisco under RCP 8.5 as an 
example, we compare the building's performance and 
energy consumption under different scenarios, as shown 
in Table 3. Where the current year is 2023, the mid-term 
represents the years from 2045 to 2055, and the long-
term refers to the years from 2085 to 2095. 



   
 

Table 3 Summary of different simulation scenarios   

Different weather files are used to assess monthly 
building energy consumption under both normal and 
extreme climate conditions. Then the combined effects 
of power outage are analyzed on design days for each 
weather file. The start time of power outage is sample 
from the raw dataset, and the duration is calculated based 
on the 0th, 50th, 90th percentiles of the historical data. 
6. Thermal Resilience Evaluation 
To evaluate the thermal resilience of our case study, we 
use the heat index (HI) (Rothfusz et al., 1990), humidity 
index (humidex) (Steadman et al., 1979) and setpoint 
unmet hours as performance indexes. The HI can be 
calculated by equation 1: 

 𝐻𝐼 = −8.78 + 1.61𝑇 + 2.33𝑅 − 0.14𝑇𝑅
− 0.012𝑇2 − 0.016𝑅2

+ 0.002𝑇2𝑅 + 0.0007𝑇2𝑅
− 0.000003𝑇2𝑅2 

(1) 

Where T represents the ambient dry-bulb temperature 
and R is the relative humidity, a percentage value 
between 0 and 100. HI reflects five different thermal risk 
levels: Safe (below 27°C), Caution (27-32°C), Extreme 
Caution (32-41°C), Danger (41-54°C), and Extreme 
Danger (higher than 54°C) (Sheng, et al., 2023).  
The humidex measures the combined effects of heat and 
humidity on personal comfort and can be calculated by 
equation 2: 

 
𝐻𝑢𝑚𝑖𝑑𝑒𝑥 = 𝑇𝑎𝑖𝑟 +

5

9
(6.11

× 𝑒
5417.7(

1
273.15

−
1

273.15+𝑇𝑑𝑒𝑤
)

− 10) 

(2) 

Where 𝑇𝑎𝑖𝑟  and 𝑇𝑑𝑒𝑤 is the air temperature and dew-
point temperature respectively. Setpoint unmet hour is 
used to quantify overheating hours during power outage 
events, summarizing the time when space temperature 
cannot maintain within the cooling setpoint. 

Discussion and Result Analysis 
1. Future Weather Distribution 

Figure 2 illustrates the differences in dry bulb 
temperature distribution between the current data 
(downloaded from the EnergyPlus weather file 
webpage) and future scenarios, including the TDY 
(Typical Day Year), EWY (Extreme Warm Year), and 
ECY (Extreme Cold Year). Additionally, we have 
summarized the average monthly temperature 
differences under the RCP 8.5 scenario (the highest 
carbon emission condition) in Table 4. We compare 
current temperature conditions with both the mid-term 
(2045 to 2055) and the long-term (2085 to 2095) 
scenarios. This comparison is made for both typical 
years and years with extreme warm or cold conditions. 
Through this analysis, a significant global warming 
phenomenon is observed.  

Table 4 Summary of averaged temperature difference  

2. Power Outage Events Distribution 

 
Figure 3 Categories of reasons for power outage  

Due to the initial disorganization of the raw data,  we 
have regrouped power outage events into five categories, 

Scenarios Weather File Power Outage 
Percentiles 

Scenario 1 Current TMY 

 0th, 50th, 90th 

Scenario 2 Mid Term TDY 
Scenario 3 Mid Term EWY 
Scenario 4 Mid Term ECY 
Scenario 5 Long Term TDY 
Scenario 6 Long Term EWY 
Scenario 7 Long Term ECY 

Month Mid Term[°C] Long Term[°C] 
TDY EWY ECY TDY EWY ECY 

Jan. 4.3 5.2 0.6 5.8 7.1 3.6 
Feb. 2.8 4.4 1.5 3.9 5.1 2.4 
Mar. 4.0 6.8 2.7 4.9 6.3 3.1 
Apr. 3.4 4.6 2.9 3.9 4.8 3.0 
May. 3.4 4.4 2.4 4.9 5.8 3.6 
Jun. 2.6 3.9 1.7 3.7 4.9 3.2 
Jul. 2.6 3.5 1.2 3.6 4.7 3.0 

Aug. 1.6 3.0 0.4 2.9 3.8 1.9 
Sep. 1.1 3.0 0.1 1.8 4.0 0.6 
Oct. 2.3 5.1 0.5 3.5 5.3 2.2 
Nov. 3.0 4.1 2.3 5.2 6.5 2.7 
Dec. 3.8 5.6 2.6 5.4 7.0 3.6 



   
 

as shown in Figure 3: (1) Human-related, such as 
vandalism, theft, physical attacks, human errors for 
example cable cuts and similar causes; (2) Infrastructure 
failures, related to equipment failure, transmission 
equipment failure, cable failure, generator failure, 
breaker failures, and similar infrastructure-related 
issues; (3) Operation issues, such as load shedding, 
voltage reduction, unplanned generator outage, unit 
shutdowns; (4) Weather-related (accounts for around 
40% of the overall power outage events), such as high 
wind, winter storm, heat wave, extreme weather, 
snow/ice storms, wildfires, tropical storms, and other 
weather-related events; (5) Others, including cyber-
attacks, earthquakes, and other external events not 
covered by the previous categories.  
Figure 4 depicts the duration, economic loss and number 
of affected individuals during power outages categorized 
by factors for last 20 years. The Y-axis represents the 
duration, magnitude of loss and number of affected 
people, respectively, while the X-axis displays the years. 
The weather-relate factor has consistently been the 
dominant cause for power outages, leading to significant 
losses, especially in the recent 5 years. A clear trend is 
observed, with the frequency of occurrences nearly 
doubling compared to 2017.  

 

 
Figure 5 Distribution of power outage happening time  

Figure 5 shows the distribution of the timing of power 
outages. Most outages occur in the afternoon, around 
14:00 to 16:00, coinciding with the peak hour for most 
cities. And most power outages happen in the summer 
(June to August) and winter (December to February) 
months. This pattern is largely because extreme weather 
events, such as heatwaves and winter storms, are more 
prevalent during these periods. 
3. EnergyPlus Simulation 
Figure 6 compares the monthly cooling and heating 
energy consumption. Due to increasing outdoor 
temperatures, the projected cooling demand will increase 
by 95% by mid-century and by 159% by the end-century 
under normal weather conditions. In contrast, heating 
demand is expected to decrease by 64% and 76%, 
respectively. Additionally, annual HVAC energy 
consumption is going to decrease by 41.5% by mid-
century and 42.5% by the end-century. We also 
compared the energy consumption differences between 
the mid-term and long-term projections. The long-term 
cooling demand could increase by 32.7% compared to 
the mid-term, alongside a 32.6% reduction in heating 
demand. In terms of extreme weather uncertainty, an 
extreme hot year could double the cooling energy 
consumption and decrease heating energy consumption 
by up to 85%. Additionally, both an extreme cold year 
and an extreme warm year could result in a cooling 
energy difference ranging from -31.3% to 61% and a 
heating energy difference from -42.9% to 64.8%. These 
findings indicate that climate change is likely to have a 
significant impact on building energy performance. 
Extreme weather conditions, in particular, introduce 
considerable uncertainty into building performance 
simulations, highlighting the need for further studies in 
this area. 
According to Table 3, we randomly sampled a power 
outage event start time on the cooling design day (July 
21st), with the outage beginning at 6:00 AM. It is worth 
to note that this process can be enhanced statistically for 
example, through Monte Carlo sampling to get a more 
robust result. Then the power duration time was 
determined based on the percentile from 0th, 50th and 
90th, which is (1) no power outage, (2) 335 minutes (5 
hours and 35 minutes) of power outage and (3) 4491 
(around 3 days) of power outage. Future studies might 
select durations according to specific areas. 
Additionally, it is crucial to consider that the future 
patterns of power outages may differ significantly due to 
upgrades in power grid infrastructure, the 
implementation of onsite energy generation units and the 
impacts of future climate changes. Therefore, a more 
detailed power outage event model should be developed 
in the future studies.   



   
 

Figure 7 illustrates the distributions of space air 
temperature with and without power outages. In case one 
without a power outage, the space effectively maintains 
the cooling setpoint, and no overheating issues are 
observed. But it is important to consider the actual 
system performances and capacities in future studies. For 
case two with a 5.5-hour power outage, the space 
temperature gradually increases until 11:35AM, at which 
point the cooling system begins its recovery process. 
And it took approximately 1 hour and 35 minutes for the 
space to cool down to the desired temperature. 
Additionally, due to climate change, the open-loop space 
temperature in an extreme warm year is 2.17°C higher 
than the current TMY.  

 
Figure 8 Distribution of heat index and humidity index 

of an example day  

For case three, the space temperature continuously rises 
until sunset, reaching a peak indoor temperature of 
32.6°C, with an unmet cooling setpoint duration of 18.3 
hours. In this scenario, the open-loop space temperature 
in an extreme warm year is 5.27°C higher than the 
current TMY, indicating the urgent need for resilience-
based building design. 
Figure 8 presents an example of thermal resilience 
assessment for a building under end-century conditions, 
during an EWY, with a power outage at the 90th 
percentile. We use heat index and humidity index 
calculated by equation (1) and (2) to evaluate the 
overheating level in this case building. At the onset of 
power outage, the space temperature begins to rise 
slowly. By around 1:00 PM, the building starts to 
encounter overheating issues, reaching “Extreme 
Caution” levels at 17:00 and again at 20:00. From 

humidex point of view, occupants are likely to 
experience discomfort throughout the afternoon without 
cooling.  

Conclusion 
In this study, we developed a 'click-and-run' tool to 
generate power outage event data and typical weather 
files, facilitating future research related to building 
resilience. We provided a detailed introduction to the 
processed dataset and demonstrated its application 
through an EnergyPlus case study. We found that the 
weather-related factors are the predominant cause for 
power outages, with an increasing number of events 
occurring in recent years, particularly during afternoon 
peak hours. Seasonally, power outages are more 
common in winter and summer. Furthermore, as outdoor 
air temperatures rise, there is a significant increase in 
cooling demand, accompanied by a noticeable decrease 
in heating energy consumption in the future. Extreme 
weather conditions could result in up to a 60% variance 
in energy operations, underscoring the critical 
importance of incorporating resilience considerations in 
building design and energy system planning. 
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Figure 2 Future temperature distribution of TDY, EWY, ECY  

 
Figure 4 Power outage duration, loss and affected people by year and factors  



   
 

 
Figure 6 Building heating & cooling energy consumptions under different weather conditions   

 
Figure 7 Space air temperature distribution under different weather conditions and power outage events 
 
 
 


