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Abstract

Buildings are expected to be resilient in the face of future
climate change and increasingly frequent disruptive
events. Therefore, understanding building performance
under various future weather conditions and disrupt
events is crucial. However, accessing available data
sources is always time-consuming. From this
perspective, we developed a data generator tool for
power outage events and future typical weather files,
which provides both raw and synthetic data for
researchers. They can download ready-to-use data with
a single click by simply inputting the city name, time
span, and CO2 emission scenarios, without the need for
extensive data preprocessing effort. The future typical
weather and power outage data could be used for future
building energy simulation, energy system design and
operation, etc. To demonstrate its application potential,
we conducted an EnergyPlus case study to compare
energy consumption differences and  building
performance under power outages and future weather
files. The results indicate that in an extreme warm
weather condition under RCP (Representative
Concentration Pathway) 8.5, ambient air temperature
could increase by up to 7°C, which doubles the cooling
demand. While the 50" and 90" percentile of historical
power outage is 5.5 hours and 72 hours respectively and
can be used as reference for resilience-based design. The
study also identified extreme weather as the dominant
factor in power outage events, potentially causing up to
60% uncertainty in energy system management.
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Introduction

Over the past decades, climate change has led to an
increasing occurrence of disruptive events, such as
extreme weather (e.g., heatwaves, snowstorms), power
system failures, and natural disasters. For example, as
reported by the National Centers for Environmental
Information, 90 disruptive events occurred in the U.S.
over the past five years, resulting in $624 billion in losses

and 1,751 deaths (NCEIL, 2023). These increasingly
frequent and intense disruptive events have caused
enormous damage to society, human health, and
infrastructure systems (Change, 1. C., 2014). In this
context, buildings are expected to be resilient to meet
occupants' needs by providing safe, stable, and
comfortable conditions in the face of varying external
conditions (United Nations Environment Programme,
2021). To facilitate resilient building design, it is
essential to understand building behavior under future
climate scenarios and disruptive events, where building
performance simulation (BPS) plays a vital role.

The most commonly used weather file for BPS is the
Typical Meteorological Year (TMY), which represents
average climate conditions based on 15-30 years of
historical observations (Chan, et al., 2006). To generate
a future TMY for BPS, the first step is to select a future
greenhouse gas emission scenario from the
Intergovernmental Panel on Climate Change (IPCC).
There are three emission and concentration scenarios,
namely RCP2.6, RCP4.5, and RCPS8.5, where 'RCP'
stands for 'Representative Concentration Pathways,' a
framework adopted by the Intergovernmental Panel on
Climate Change (IPCC) (Pachauri, et al., 2014). These
emission scenarios provide the initial conditions for
Global Climate Models (GCMs) to forecast future
climate changes with a spatial resolution of 100—-300 km?
and a monthly temporal resolution (Moazami, et al.,
2019). Then, the future weather file needs to be
downscaled to an appropriate spatial and temporal
resolution for BPS, a detailed discussion on this can be
found in the review done by (Herrera, et al., 2017).
However, as the TMY file represents an average of
climate conditions, it cannot capture the effects of
extreme weather uncertainties. These uncertainties can
cause up to a 28.5% increase in energy demand
compared to typical conditions (Moazami, et al., 2019).
Furthermore, they can lead to a significant performance
gap (up to 34% for grid integration) and a decrease in
power supply reliability (up to 16%) due to extreme
weather events (Perera et al., 2020). To address this



limitation, (Nik, 2016) suggested assessing the effects of
climate change on building energy performance by using
not only a typical downscaled year (TDY) but also an
extreme cold year (ECY) and an extreme warm year
(EWY). However, generating such weather files for BPS
is time-consuming. Researchers often face a long
learning curve dealing with GCMs and huge datasets.
More detailed methods for future weather data
generation can be found in (Herrera, et al., 2017), (Li, et
al., 2023) and (Nik, 2017). Currently, there is a lack of a
standardized, 'click-and-run' tool for researchers to
easily obtain future TDY, ECY and EWY files for a
specified city, time span, and carbon emission scenarios.

Another important input for resilience-relevant studies
involves power outage events. According to the Energy
Information Administration (EIA), occupants in the U.S.
experienced an average of eight hours of power
disruptions in 2020, which has doubled compared to five
years earlier (Sheng, et al., 2023). Furthermore, lots of
power outage events coincide with extreme weather
events, highlighting the importance of considering their
combined effects. However, finding an open-access
dataset and performing the necessary data cleaning is
always time-consuming. Additionally, due to the
absence of a benchmark dataset, many studies (Tian, et
al., 2021) (Gong, et al., 2021) (Rosales et al., 2023) are
using predefined fixed schedules for blackout analysis.
These schedules assume that power outages occur
periodically with a specific starting point, which has
limited alignment with real-world cases.

In summary, this study develops a data tool for
generating power outage event data and future weather
files, aimed at providing a benchmark dataset for future
resilient building design and operation. A detailed
description of the raw dataset will be introduced in the
next section. To use this tool for data query, users are
required to input the city name, the desired time span and
potential carbon emission scenarios. Two types of data
are then available for further analysis and download. The
first type includes raw weather data for the periods 2045
to 2054 and 2085 to 2094, as well as power outage event
data from 2002 to 2023. The second type comprises
synthetic data, including TDY, ECY, EWY weather,
along with power outage start times and durations
sampled from history dataset.

Methods
1. Data Source

Argonne National Laboratory (Zeng et al., 2023) has
recently released an hourly future weather dataset
derived from the output of a Regional Climate Model
(RCM). An RCM is a numerical climate prediction
model capable of simulating atmospheric and land
surface processes and it can be used for weather

prediction, understanding the climate, and forecasting
climate change. This dataset is directly compatible with
building energy modeling tools such as EnergyPlus and
ESP-r. A summary of the dataset is shown in Table 1.

Table 1 Summary of future weather dataset

Features Information

Coverage North America

Spatial Resolution 12 km by 12 km

Time Resolution One Hour

Time Span 2045 —2054; 2085 - 2094

Format EPW

Emissions Scenarios RCP8.5; RCP4.5(0Ongoing)

Centroid Area 2368 PUMAs (Public Use
Microdata Area)

Data Size 7.25GB

Download Link https://data.openei.org/
submissions/5974

Weather variables Dry-Bulb Temperature,
Dew Point Temperature,
Relative Humidity,
Atmospheric Pressure,
Horizontal Infrared
Radiation Intensity from
Sky, Global Horizontal
Irradiation, Direct Normal
Irradiation, Diffuse
Horizontal Irradiation,
Wind Speed, Wind
Direction, Sky Cover,
Albedo, and Liquid
Precipitation Depth

Table 2 Summary of power outage dataset

Features Information

Coverage NERC Regions

Time Span 2002 —2023(Still Updating)

Format xls

Download Link https://oe.netl.doe.gov/oe417
.aspx

Event Begin Datetime Start time

Event Restoration End time

Datetime

Affected Area \

Alert Criteria Loss and duration

Event Type Weather, Cyber Attack,
Vandalism, etc.

Demand Loss Megawatt

Number of affected \

customers

The power outage dataset originates from the
Department of Energy's Electric Emergency Incident
and Disturbance Report (Form DOE-417). The form


https://data.openei.org/

requires mandatory filing for any electrical incident or
disturbance that is significant large to surpass the
reporting thresholds. A detailed summary of the dataset
can be found below in Table 2.

2. Typical and Extreme Weather Generator

In this study, the TDY is synthesized based on the hourly
values of outdoor air temperature (Nik, 2016). Taking
January as an example, we first compile ten years of
January weather data and calculate the overall
temperature distribution. The distribution is represented
by its percentile (dividing the cumulative probability
interval into 100 evenly spaced probabilities), and these
100 percentiles are recorded as a reference vector r. Then
we calculate January temperature distribution for each
individual year, donated as a comparison vector ¢. After
that, we calculate the difference between r and c¢ to
identify the Typical Meteorological Month (TMM). For
TDY, TMM is defined as the month with the distribution
most similar to the reference (the minimal least absolute
difference between r and ¢). Conversely, for EWY and
ECY, TMM is defined as the month with the largest
positive and negative distribution difference relative to
the reference (the maximum positive and negative
difference between r and ¢, respectively). This process is
repeated for the remaining 11 months, and the 12 TMMs
are to form the TDY, EWY, and ECY.

3. Power Outage Event Generator

The raw data, spanning the last 20 years, was presented
in various formats, necessitating thorough data cleaning
to ensure consistency. The terms “Noon”, “Midnight”
are replaced by 12:00 PM and 12:00 AM respectively.
Rows with unknow/NaN (Not a Number) values for
power outage start time/end time are removed. Finally,
3496 data points are available from 2002 to 2023, with
features including “Start time”, “End time”, “NERC
Region”, “Reason”, “Area”, “Loss”, “People Affect”,
“Year”, “Month”, “Duration”. We also provide a
synthetic power outage event generator for resilient
building energy system design. Generally, disruptive
events can be categorized into (1) low-probability, high-
impact (LPHI) events (These events have a relatively
low chance of occurring but can cause significant
impacts once they do occur) and (2) high-probability,
low-impact (HPLI) events (In contrast to LPHI events,
'HPLI' events occur more frequently but have relatively
minimal impacts) (Perera, et al., 2020). In terms of
power outages, if the system is designed according to
HPLI events only (long term outage), the sizing could be
overestimated and requiring a high capital cost. On the
contrary, if the sizing is calculated based on LPHI events
only (short term outage), the building energy system will
fail once an LPHI event happened. Thus, it is important
to consider the resilience design problem according to

different scenarios. From this perspective, our generator
can generate power outage events duration with different
probability percentiles. And the event start time can be
sampled directly from the historical data. For example,
if the user wants to improve building resilience that can
cover 60% of power outage scenarios, the generator will
return the 60™ percentiles of the power outage duration
with a start time sampled from the database.

4. Framework of RESI

Figure 1 presents the framework of the RESI tool. Users
are prompted to input the city name, time span, and
desired power outage percentile. Then, we query data
based on the specified location by Google Geo APIs.
Preprocessed data is then available for download.
Additionally, we provide synthetic data, which includes
TDY, EWY, and ECY weather files, as well as power
outage events for further analysis. The necessary
statistical distribution of the dataset is also available.
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Figure 1 A diagram of RESI instruction

5. Case Study

An EnergyPlus case study is employed to demonstrate
how researchers can benefit from this tool. The model
used here is a DOE prototype residential building model,
specifically a single-family house equipped with a heat
pump. Taking San Francisco under RCP 8.5 as an
example, we compare the building's performance and
energy consumption under different scenarios, as shown
in Table 3. Where the current year is 2023, the mid-term
represents the years from 2045 to 2055, and the long-
term refers to the years from 2085 to 2095.



Table 3 Summary of different simulation scenarios

Power Outage

Scenarios Weather File

Percentiles
Scenario 1 Current TMY
Scenario 2 Mid Term TDY
Scenario 3 Mid Term EWY
Scenario 4 Mid Term ECY o™, 50t 90t
Scenario 5 Long Term TDY
Scenario 6  Long Term EWY
Scenario 7 Long Term ECY

Different weather files are used to assess monthly
building energy consumption under both normal and
extreme climate conditions. Then the combined effects
of power outage are analyzed on design days for each
weather file. The start time of power outage is sample
from the raw dataset, and the duration is calculated based
on the 0%, 50", 90™ percentiles of the historical data.

6. Thermal Resilience Evaluation

To evaluate the thermal resilience of our case study, we
use the heat index (HI) (Rothfusz et al., 1990), humidity
index (humidex) (Steadman et al., 1979) and setpoint
unmet hours as performance indexes. The HI can be
calculated by equation 1:

HI = —8.78 + 1.61T + 2.33R — 0.14TR 1)
—0.012T2% — 0.016R?
+ 0.002T?R + 0.0007T?R
—0.000003T2R?

Where T represents the ambient dry-bulb temperature
and R is the relative humidity, a percentage value
between 0 and 100. HI reflects five different thermal risk
levels: Safe (below 27°C), Caution (27-32°C), Extreme
Caution (32-41°C), Danger (41-54°C), and Extreme
Danger (higher than 54°C) (Sheng, et al., 2023).

The humidex measures the combined effects of heat and
humidity on personal comfort and can be calculated by
equation 2:

5
Humidex = T, + 5 (6.11 @

1 1
e5417'7(273.15_273.15+Tdew)
~10)

Where Ty;,- and T, is the air temperature and dew-
point temperature respectively. Setpoint unmet hour is
used to quantify overheating hours during power outage
events, summarizing the time when space temperature
cannot maintain within the cooling setpoint.

Discussion and Result Analysis
1. Future Weather Distribution

Figure 2 illustrates the differences in dry bulb
temperature distribution between the current data
(downloaded from the EnergyPlus weather file
webpage) and future scenarios, including the TDY
(Typical Day Year), EWY (Extreme Warm Year), and
ECY (Extreme Cold Year). Additionally, we have
summarized the average monthly temperature
differences under the RCP 8.5 scenario (the highest
carbon emission condition) in Table 4. We compare
current temperature conditions with both the mid-term
(2045 to 2055) and the long-term (2085 to 2095)
scenarios. This comparison is made for both typical
years and years with extreme warm or cold conditions.
Through this analysis, a significant global warming
phenomenon is observed.

Table 4 Summary of averaged temperature difference

Mid Term[°C] Long Term[°C]

Month —/r V™ FWY ECY 1TDY EWY ECY

Jan. 4.3 52 0.6 5.8 7.1 3.6
Feb. 2.8 4.4 1.5 3.9 5.1 2.4
Mar. 4.0 6.8 2.7 4.9 6.3 3.1
Apr. 34 4.6 2.9 39 4.8 3.0
May. 34 4.4 2.4 4.9 5.8 3.6
Jun. 2.6 39 1.7 3.7 4.9 32
Jul. 2.6 3.5 1.2 3.6 4.7 3.0
Aug. 1.6 3.0 0.4 2.9 3.8 1.9
Sep. 1.1 3.0 0.1 1.8 4.0 0.6
Oct. 23 5.1 0.5 35 53 2.2
Nov. 3.0 4.1 23 5.2 6.5 2.7
Dec. 3.8 5.6 2.6 5.4 7.0 3.6

2. Power Outage Events Distribution

Infrastructurg . = r
$ Human-Related

20.9%

Figure 3 Categories of reasons for power outage

Due to the initial disorganization of the raw data, we
have regrouped power outage events into five categories,



as shown in Figure 3: (1) Human-related, such as
vandalism, theft, physical attacks, human errors for
example cable cuts and similar causes; (2) Infrastructure
failures, related to equipment failure, transmission
equipment failure, cable failure, generator failure,
breaker failures, and similar infrastructure-related
issues; (3) Operation issues, such as load shedding,
voltage reduction, unplanned generator outage, unit
shutdowns; (4) Weather-related (accounts for around
40% of the overall power outage events), such as high
wind, winter storm, heat wave, extreme weather,
snow/ice storms, wildfires, tropical storms, and other
weather-related events; (5) Others, including cyber-
attacks, earthquakes, and other external events not
covered by the previous categories.

Figure 4 depicts the duration, economic loss and number
of affected individuals during power outages categorized
by factors for last 20 years. The Y-axis represents the
duration, magnitude of loss and number of affected
people, respectively, while the X-axis displays the years.
The weather-relate factor has consistently been the
dominant cause for power outages, leading to significant
losses, especially in the recent 5 years. A clear trend is
observed, with the frequency of occurrences nearly
doubling compared to 2017.

0.06 —
LT ™ T

0.05 1 Zd N

|
AN
A
N
T

(=]
(=1
B

;
~

Probability
o
e
[

0.02 4

0.014

0.00

0 5 10 15 20
Power Outage Occur Time of a Day

0.10 4 — ]

| —~
0.08 ] /\;:_ 74/ X _

\

/
)

Probability

o

[=]

B
L

0.02 4

0.00 T T T T T
2 4 6 8 10 12

Power Outage Occur Month of a Year

Figure 5 Distribution of power outage happening time

Figure 5 shows the distribution of the timing of power
outages. Most outages occur in the afternoon, around
14:00 to 16:00, coinciding with the peak hour for most
cities. And most power outages happen in the summer
(June to August) and winter (December to February)
months. This pattern is largely because extreme weather
events, such as heatwaves and winter storms, are more
prevalent during these periods.

3. EnergyPlus Simulation

Figure 6 compares the monthly cooling and heating
energy consumption. Due to increasing outdoor
temperatures, the projected cooling demand will increase
by 95% by mid-century and by 159% by the end-century
under normal weather conditions. In contrast, heating
demand is expected to decrease by 64% and 76%,
respectively. Additionally, annual HVAC energy
consumption is going to decrease by 41.5% by mid-
century and 42.5% by the end-century. We also
compared the energy consumption differences between
the mid-term and long-term projections. The long-term
cooling demand could increase by 32.7% compared to
the mid-term, alongside a 32.6% reduction in heating
demand. In terms of extreme weather uncertainty, an
extreme hot year could double the cooling energy
consumption and decrease heating energy consumption
by up to 85%. Additionally, both an extreme cold year
and an extreme warm year could result in a cooling
energy difference ranging from -31.3% to 61% and a
heating energy difference from -42.9% to 64.8%. These
findings indicate that climate change is likely to have a
significant impact on building energy performance.
Extreme weather conditions, in particular, introduce
considerable uncertainty into building performance
simulations, highlighting the need for further studies in
this area.

According to Table 3, we randomly sampled a power
outage event start time on the cooling design day (July
21%), with the outage beginning at 6:00 AM. It is worth
to note that this process can be enhanced statistically for
example, through Monte Carlo sampling to get a more
robust result. Then the power duration time was
determined based on the percentile from 0%, 50" and
90™, which is (1) no power outage, (2) 335 minutes (5
hours and 35 minutes) of power outage and (3) 4491
(around 3 days) of power outage. Future studies might
select durations according to specific areas.
Additionally, it is crucial to consider that the future
patterns of power outages may differ significantly due to
upgrades in power grid infrastructure, the
implementation of onsite energy generation units and the
impacts of future climate changes. Therefore, a more
detailed power outage event model should be developed
in the future studies.



Figure 7 illustrates the distributions of space air
temperature with and without power outages. In case one
without a power outage, the space effectively maintains
the cooling setpoint, and no overheating issues are
observed. But it is important to consider the actual
system performances and capacities in future studies. For
case two with a 5.5-hour power outage, the space
temperature gradually increases until 11:35AM, at which
point the cooling system begins its recovery process.
And it took approximately 1 hour and 35 minutes for the
space to cool down to the desired temperature.
Additionally, due to climate change, the open-loop space
temperature in an extreme warm year is 2.17°C higher
than the current TMY.
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Figure 8 Distribution of heat index and humidity index
of an example day

For case three, the space temperature continuously rises
until sunset, reaching a peak indoor temperature of
32.6°C, with an unmet cooling setpoint duration of 18.3
hours. In this scenario, the open-loop space temperature
in an extreme warm year is 5.27°C higher than the
current TMY, indicating the urgent need for resilience-
based building design.

Figure 8 presents an example of thermal resilience
assessment for a building under end-century conditions,
during an EWY, with a power outage at the 90"
percentile. We use heat index and humidity index
calculated by equation (1) and (2) to evaluate the
overheating level in this case building. At the onset of
power outage, the space temperature begins to rise
slowly. By around 1:00 PM, the building starts to
encounter overheating issues, reaching “Extreme
Caution” levels at 17:00 and again at 20:00. From

humidex point of view, occupants are likely to
experience discomfort throughout the afternoon without
cooling.

Conclusion

In this study, we developed a 'click-and-run' tool to
generate power outage event data and typical weather
files, facilitating future research related to building
resilience. We provided a detailed introduction to the
processed dataset and demonstrated its application
through an EnergyPlus case study. We found that the
weather-related factors are the predominant cause for
power outages, with an increasing number of events
occurring in recent years, particularly during afternoon
peak hours. Seasonally, power outages are more
common in winter and summer. Furthermore, as outdoor
air temperatures rise, there is a significant increase in
cooling demand, accompanied by a noticeable decrease
in heating energy consumption in the future. Extreme
weather conditions could result in up to a 60% variance
in energy operations, underscoring the critical
importance of incorporating resilience considerations in
building design and energy system planning.
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Figure 4 Power outage duration, loss and affected people by year and factors
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Figure 6 Building heating & cooling energy consumptions under different weather conditions
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Figure 7 Space air temperature distribution under different weather conditions and power outage events



