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Abstract

Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial

optimization. We develop a set of techniques for partitioning and grouping jobs based on their

starting and ending times, that enable us to view an instance of interval scheduling on many jobs

as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating

these techniques in dynamic and local settings of computation leads to several new results.

For (1 + ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully

dynamic algorithm with O(log n/ε) update and O(log n) query worst-case time. Further, we design

a local computation algorithm that uses only O(log N/ε) queries when all jobs are length at least

1 and have starting/ending times within [0, N ]. Our techniques are also applicable in a setting

where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm

whose worst-case update and query time are poly(log n, 1

ε
). Equivalently, this is the first algorithm

that maintains a (1 + ε)-approximation of the maximum independent set of a collection of weighted

intervals in poly(log n, 1

ε
) time updates/queries. This is an exponential improvement in 1/ε over the

running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while

also removing all dependence on the values of the jobs’ starting/ending times and rewards, as well

as removing the need for any randomness.

We also extend our approaches for interval scheduling on a single machine to examine the setting

with M machines.

1 Introduction

Job scheduling is a fundamental task in optimization, with applications ranging from resource

management in computing [22, 23] to operating transportation systems [15]. Given a

collection of machines and a set of jobs (or tasks) to be processed, the goal of job scheduling

is to assign those jobs to the machines while respecting certain constraints. Constraints set

on jobs may significantly vary. In some cases a job has to be scheduled, but the starting time

of its processing is not pre-specified. In other scenarios a job can only be scheduled at a given

time, but there is a flexibility on whether to process the job or not. Frequent objectives for

this task can include either maximizing the number of scheduled jobs or minimizing needed

time to process all the given jobs.

An important variant of job scheduling is the task of interval scheduling: here each job

has a specified starting time and its length, but a job is not required to be scheduled. Given

M machines, the goal is to schedule as many jobs as possible. More generally, each job is also

assigned a reward or weight, which can be thought of as a payment received for processing

the given job. If a job is not processed, the payment is zero, i.e., there is no penalty. We

refer to this variant as weighted interval scheduling. This problem in a natural way captures

real-life scenarios. For instance, consider an assignment of crew members to flights, where
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our goal is to assign (the minimum possible) crews to the specified flights. In the context of

interval scheduling, flights can be seen as jobs and the crew members as machines [15, 18].

Interval scheduling also has applications in geometrical tasks – it can be see as a task of

finding a collection of non-overlapping geometric objects. In this context, its prominent

applications are in VLSI design [14] and map labeling [1, 26].

The aforementioned scenarios are executed in different computational settings. For

instance, some use-cases are dynamic in nature, e.g., a flight gets cancelled. Then, in

certain cases we have to make online decisions, e.g., a customer must know immediately

whether we are able to accept its request or not. While in some applications there might

be so many requests that we would like to design extremely fast ways of deciding whether a

given request/job can be scheduled or not, e.g., providing an immediate response to a user

submitting a job for execution in a cloud. In this work, our aim is to develop methods for

interval scheduling that can be turned into efficient algorithms across many computational

settings:

Can we design unified techniques for approximating interval scheduling very fast?

In this paper we develop fast algorithms for the dynamic and local settings of computation.

We also give a randomized black-box approach that reduces the task of interval scheduling

on multiple machines to that of interval scheduling on a single machine by paying only

2−1/M in the approximation factor for unweighted jobs, where M is the number of machines,

and e in approximation factor for weighted jobs. A common theme in our algorithms is

partitioning jobs over dimensions (time and machines). It is well studied in the dynamic

setting how to partition the time dimension to enable fast updates. It is also studied how

to partition over the machines to enable strong approximation ratios for multiple-machine

scheduling problems. We design new partitioning methods for the time dimension (starting

and ending times of jobs), introduce a partitioning method over machines, and examine the

relationship of partitioning over the time dimension and machines simultaneously in order to

solve scheduling problems. We hope that, in addition to improving the best-known results,

our work provides a new level of simplicity and cohesiveness for this style of approach.

1.1 Computation Models

In our work, we focus on the following two models of computation.

Dynamic setting. Our algorithms for the fully dynamic setting design data structures that

maintain an approximately optimal solution to an instance of the interval scheduling problem

while supporting insertions and deletions of jobs/intervals. The data structures also support

queries of the maintained solution’s total weight and whether or not a particular interval is

used in the maintained solution.

Local computation algorithms (LCA). The LCA model was introduced by Rubinfeld et

al. [21] and Alon et al. [2]. In this setting, for a given job J we would like to output whether

J is scheduled or not, but we do not have a direct access to the entire list of input jobs.

Rather, the LCA is given access to an oracle that returns answers to questions of the form:

“What is the input job with the earliest ending time among those jobs that start after time x?”

The goal of the LCA in this setting is to provide (yes/no) answers to user queries that ask

“Is job i scheduled?" (and, if applicable, “On which machine?”), in such a manner that all

answers should be consistent with the same valid solution, while using as few oracle-probes

as possible.
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1.2 Our Results

Our first result, given in Section 4, focuses on designing an efficient dynamic algorithm for

unweighted interval scheduling on a single machine. Prior to our work, the state-of-the-art

result for this problem was due to [5], who design an algorithm with O(log n/ε2) update and

query time. We provide an improvement in the dependence on ε.

◮ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any ε > 0,

there exists a fully dynamic algorithm for (1+ε)-approximate unweighted interval scheduling

for J on a single machine performing updates in O
(

log(n)
ε

)

and queries in O(log(n)) worst-

case time.

Theorem 1 can be seen as a warm-up for our most challenging and technically involved

result, which is an algorithm for the dynamic weighted interval scheduling problem on a

single machine. We present our approach in detail in Section 5. As a function of 1/ε, our

result constitutes an exponential improvement compared to the running times obtained in

[13]. We also remove all use of randomness, remove all dependence on the job starting/ending

times (previous work crucially used assumptions on the coordinates to bound the ratio of

jobs’ lengths by a parameter N), and remove all dependence on the value of the job rewards.

◮ Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For

any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate weighted interval

scheduling for J on a single machine performing updates and queries in worst-case time

T ∈ poly(log n, 1
ε ). The exact complexity of T is given by

O

(

log12(n)

ε7
+

log13(n)

ε6

)

.

1.2.1 Implications in Other Settings

Local Computation Algorithms. We show that the ideas we developed to obtain Theorem 1

can also be efficiently implemented in the local setting, as we explain in detail in Section 6

and prove the following claim. This is the first non-trivial local computation algorithm for

the interval scheduling problem.

◮ Theorem 3 (Unweighted LCA, single machine). Let J be a set of n jobs with length at least

1 and ending times upper-bounded by N . For any ε > 0, there exists a local computation

algorithm for (1 + ε)-approximate unweighted interval scheduling for J on a single machine

using O
(

log N
ε

)

probes.

Multiple machines. By building on techniques we introduced to prove Theorems 1 and 3,

we show similar results in Section 7 in the case of interval scheduling on multiple machines

at the expense of slower updates. To the best of our knowledge, these results initiate a

study of dynamic and local interval scheduling in the general setting, i.e., in the setting of

maximizing the total reward of jobs scheduled on multiple machines.

1.3 Related Work

The closest prior work to ours is that of Henzinger et al. [13] and of Bhore et al. [5]. [13]

studies (1+ε)-approximate dynamic interval scheduling for one machine in both the weighted
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and unweighted setting. Unlike our main result in Theorem 2, they assume jobs have rewards

within [1, W ], assume jobs have length at least 1, and assume all jobs start/end within times

[0, N ]. They obtain randomized algorithms with O(exp(1/ε) log2 n · log2 N) update time

for the unweighted and O(exp(1/ε) log2 n · log5 N · log W ) update time for the weighted

case. They cast interval scheduling as the problem of finding a maximum independent set

among a set of intervals lying on the x-axis. The authors extend this setting to multiple

dimensions and design algorithms for approximating maximum independent set among a set

of d-dimensional hypercubes, achieving a (1 + ε)2d-approximation in the unweighted and a

(4 + ε)2d-approximation in the weighted regime.

The authors of [5] primarily focus on the unweighted case of approximating maximum

independent set of a set of cubes. For the 1-dimensional case, which equals interval scheduling

on one machine, they obtain O(log n/ε2) update time, which is slower by a factor of 1/ε than

our approach. They also show that their approach generalizes to the d-dimensional case,

requiring poly log n amortized update time and providing O(4d) approximation.

[12] approach the problem of dynamically maintaining an exact solution to interval

scheduling on one or multiple machines. They attain a guarantee of Õ(n1/3) update time

for unweighted interval scheduling on M = 1 machine, and Õ(n1−1/M ) for M ≥ 2. Moreover,

they show an almost-linear time conditional hardness lower bound for dynamically maintaining

an exact solution to the weighted interval scheduling problem on even just M = 1 machine.

This further motivates work such as ours that dynamically maintains approximate solutions

for weighted interval scheduling.

[10] consider dynamic interval scheduling on multiple machines in the setting in which all

the jobs must be scheduled. The worst-case update time of their algorithm is O(log(n) + d),

where d refers to the depth of what they call idle intervals (depth meaning the maximal

number of intervals that contain a common point); they define an idle interval to be the

period of time in a schedule between two consecutive jobs in a given machine. The same

set of authors, in [11], study dynamic algorithms for the monotone case as well, in which

no interval completely contains another one. For this setup they obtain an algorithm with

O(log(n)) update and query time.

In the standard model of computing (i.e. one processor, static), there exists an O(n+m)

running time algorithm for (exactly) solving the unweighted interval scheduling problem on

a single machine with n jobs and integer coordinates bounded by m [9]. An algorithm with

running time independent of m is described in [25], where it is shown how to solve this

problem on M machines in O(n log(n)) time. An algorithm is designed in [3] for weighted

interval scheduling on M machines that runs in O(n2 log(n)) time.

We refer a reader to [15] and references therein for additional applications of the interval

scheduling problem.

Other related work. There has also been a significant interest in job scheduling problems

in which our goal is to schedule all the given jobs across multiple machines, with the

objective to minimize the total scheduling time. Several variants have been studied, including

setups which allow preemptions, or setting where jobs have precedence constraints. We

refer a reader to [16, 8, 20, 24, 6, 19, 17] and references therein for more details on these

and additional variants of job scheduling. Beyond dynamic algorithms for approximating

maximum independent sets of intervals or hypercubes, [7] show results for geometric objects

such as disks, fat polygons, and higher-dimensional analogs. After we had published a

preprint of this work, [7] proved a result that captures Theorem 1 with a more general class

of fat objects.
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2 Overview of Our Techniques

Our primary goal is to present unified techniques for approximating scheduling problems

that can be turned into efficient algorithms for many settings. In this section, we discuss

key insights of our techniques.

In the problems our work tackles, partitioning the problem instance into mostly-independent,

manageable chunks is crucial. Doing so enables an LCA to determine information about a

job of interest without computing an entire schedule, or enables a dynamic data structure

to maintain a solution without restarting from scratch.

2.1 Unweighted Interval Scheduling – Partitioning Over Time
(Section 4)

For simplicity of presentation, we begin by examining our method for partitioning over

time for just the unweighted interval scheduling problem on one machine (i.e., M = 1). In

particular, we first focus on doing so for the dynamic setting.

Recall that in this setting the primary motivation for partitioning over time, is to divide

the problem into independent, manageable chunks that can be utilized by a data structure

to quickly modify a solution while processing an update. In our work, we partition the time

dimension by maintaining a set of borders that divide time into some number of contiguous

regions. By doing so, we divide the problem into many independent regions, and we ignore

jobs that intersect multiple regions; equivalently, we ignore jobs that contain a border. Our

goal is then to dynamically maintain borders in a way such that we can quickly recompute the

optimal solution completely within some region, and that the suboptimality introduced by

these borders does not affect our solution much. In Section 4, we show that by maintaining

borders where the optimal solution inside each region, i.e., a time-range between two borders,

is of size Θ(1
ε ), we can maintain a (1 + ε)-approximation of an optimal solution as long as

we optimally compute the solution within each region.

Here, the underlying intuition is that because each region has a solution of size Ω(1
ε ), we

can charge any suboptimality caused by a border against the selected jobs in an adjacent

region. Likewise, because each region’s solution has size O(1
ε ), we are able to recompute

the optimal solution within some region quickly using a balanced binary search tree. We

dynamically maintain borders satisfying our desired properties by adding a new border when

a region becomes too large, or merging with an adjacent region when a region becomes

too small. As only O(1) regions will require any modification when processing an update,

this method of partitioning time, while simple, enables us to improve the fastest known

update/query time to O(log(n)/ε). 1 In Section 2.2 we build on these ideas to design an

algorithm for the weighted interval scheduling problem.

2.2 Weighted Interval Scheduling (Section 5)

In our most technically involved result, we design the first deterministic (1+ε) approximation

algorithm for weighted interval scheduling that runs in poly(log n, 1
ε ) time. In this section

1 The main advantage of this techniques is that it leads to worst-case O(log (n)/ε) update time, as
opposed to only an amortized one. We point out that it is not difficult to obtain such amortized
guarantee in the following way: after each ε · OPT many updates, recompute the optimum solution
from scratch. Given access to the balanced binary tree structure described above, this re-computation
can be done in O(OPT · log n) time.
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we give an outline of our techniques and discuss key insights. For full details we refer a

reader to Section 5.

2.2.1 Job data structure (Section 5.2.1)

Let E be the set of all the endpoints of given jobs, i.e., E contains si and fi for each job

[si, fi]. We build a hierarchical data structure over E as follows. This structure is organized

as a binary search tree T . Each node Q of T contains value key(Q) ∈ E , with “1-1” mapping

between E and the nodes of T . Each node Q is responsible for a time range. The root of T ,

that we denote by Qroot, is responsible for the entire time range (−∞, ∞). Each node Q has

at most two children, that we denote by QL and QR. If Q is responsible for the time range

[X, Y ], then QL is responsible for [X, key(Q)], while QR is responsible for [key(Q), Y ].

Jobs are then assigned to nodes, where a job J is assigned to every node Q such that J

is contained within the Q’s responsible time range.

−∞ ∞

−∞ ∞

−∞ ∞

2 5

7

72 10

7

10

20

2

1 5

4

Figure 1 Visual example for hierarchical decomposition. Consider we are given jobs with the

following ranges of (1, 5), (2, 10), (7, 20), (4, 5). On the left is T , a balanced binary search tree over

the set of all si and fi. On the right is the hierarchical decomposition that corresponds to T . That

is, in each row, the intervals on the right correspond to the [lQ, rQ] for the nodes on the left. For

instance, in the third row, (−∞, 2] corresponds to the node Q with KEY (Q) = 1.

2.2.2 Organizing computation (Section 5.2)

We now outline how the structure T is used in computation. As a reminder, our main goal

is to compute a (1 + ε)-approximate weighted interval scheduling. This task is performed by

requesting Qroot to solve the problem for the range (−∞, ∞). However, instead of computing

the answer for the entire range (−∞, ∞) directly, Qroot partitions the range (−∞, ∞) into:

a number of ranges over which it is relatively easy to compute approximate solutions,

such ones are called sparse, and

the remaining ranges over which it is relatively hard to compute approximate solutions

at the level of Qroot.

These hard-to-approximate ranges are deferred to the children of Qroot, and are hard to

approximate because any near-optimal solution for the range contains many jobs. On the

other hand, solutions in sparse ranges are of size O(1/ε). As we discuss later, approximate

optimal solutions within sparse ranges can be computed very efficiently; for details, see the

paragraph Approximate dynamic programming below.
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In general, a child QC of Qroot might receive multiple ranges from Qroot for which it is

asked to find an approximately optimal solution. QC performs computation in the same

manner as Qroot did – the cell QC partitions each range it receives into “easy” and “hard”

to compute subranges. The first type of subranges is computed by QC , while the second

type if deferred to the children of QC . Here, “hard” ranges are akin to nodes having large

solutions in our description of Algorithm 2 in Section 2.3. The same as in Section 2.3, these

“hard” ranges have large weight and allow for drawing a boundary and hence dividing a range

into two or more independent ranges. We now discuss how the partitioning into ranges is

undertaken.

2.2.3 Auxiliary data structure (Section 5.2.2)

To divide a range into “easy” and “hard” ranges at the level of a node Q, we design an

auxiliary data structure, which relates to a rough approximation of the problem. This

structure, called Z(Q), maintains a set of points (we call these points grid endpoints) that

partition Q into slices of time. We use slice to refer to a time range between two consecutive

points of Z(Q). Recall how for unweighted interval scheduling, we maintained a set of

borders and ignored a job that crossed any border. In the weighted version, we will instead

use Z(Q) as a set of partitions from which we will use some subset to divide time. Our

method of designing Z(Q) reduces the task of finding a partitioning over time Z(Q) within

a cell for the (1 + ε)-approximate weighted interval scheduling problem to finding multiple

partitionings for the (1 + ε)-approximate unweighted problem.

It is instructive to think of Z(Q) in the following way. First, we view weighted interval

scheduling as O(log n) independent instances of unweighted interval scheduling – instance

i contains the jobs having weights in the interval (wmax(Q)/2i+1, wmax(Q)/2i]. Then, for

each unweighted instance we compute borders as described in Section 2.1. Z(Q) constitutes

a subset of the union of those borders across all unweighted instances. We point out that

the actual definition of Z(Q) contains some additional points that are needed for technical

reasons, but in this section we will adopt this simplified view. In particular, as we will see,

Z(Q) is designed such that the optimal solution within each slice has small total reward

compared to the optimal solution over the entirety of Q. This enables us to partition the

main problem into subproblems such that the suboptimality of discretizing the time towards

slices, that we call snapping, is negligible.

However, a priori, it is not even clear that such structure Z(Q) exists. So, one of the

primary goals in our analysis is to show that there exists a near-optimal solution of a desirable

structure that can be captured by Z(Q). The main challenge here is to detect/localize

sparse and dense ranges efficiently and in a way that yields a fast dynamic algorithm. As

an oversimplification, we define a solution as having nearly-optimal sparse structure if it can

be generated with roughly the following process:

Each cell Q receives a set of disjoint time ranges for which it is supposed to compute

an approximately optimal solution using jobs assigned to Q or its descendants. Each

received time range must have starting and ending time in Z(Q).

For each time range R that Q receives, the algorithm partitions R into disjoint time

ranges of three types: sparse time ranges, time ranges to be sent to QL for processing,

and time ranges to be sent to QR for processing. In particular, this means that subranges

of R are deferred to the children of Q for processing.

For every sparse time range, Q computes an optimal solution using at most 1/ε jobs.
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The union of the reward/solution of all sparse time ranges on all levels must be a (1 + ε)-

approximation of the globally optimal solution without any structural requirements.

Moreover, and crucial for obtaining small running time per update, we develop a charging

method that enable us to partition each cell with only |Z(Q)| = poly(1/ε, log(n)) points and

still have the property that it contains a (1 + ε)-approximately optimal solution with nearly-

optimal sparse structure. Then, we design an approximate dynamic programming approach

to efficiently compute near-optimal solutions for sparse ranges. Combined, this enables a

very efficient algorithm for weighted interval scheduling. On a high-level, Z(Q) enables us

to eventually decompose an entire solution into sparse regions.

2.2.4 The charging method (Section 5.2.3)

We now outline insights of our charging arguments that enable us to convert an optimal

solution OP T into a near-optimal solution OP T ′ with nearly-optimal sparse structure while

relaxing our partitioning to only need |Z(Q)| = poly(1/ε, log(N)) points. For a visual aid,

see Fig. 2.

Q

received range R

sparse rangechild subproblem child subproblem

G G GBY Y Y Y Y Y

Figure 2 Visual example for charging argument.

As outlined in our overview of the nearly-optimal sparse structure, each cell Q receives a

set of disjoint time ranges, with each time range having endpoints in Z(Q), and must split

them into three sets: sparse time ranges, time ranges for QL, and time ranges for QR. We

will now modify OP T by deleting some jobs. This new solution will be denoted by OP T ′

and will have the following properties:

(1) OP T ′ exhibits nearly-optimal sparse structure; and

(2) OP T ′ is obtained from OP T by deleting jobs of total reward at most O(ε · w(OP T )).

We outline an example of one such time range a cell Q may receive in Fig. 2, annotated

by “received range R”. We will color jobs in Fig. 2 to illustrate aspects of our charging

argument, but note that jobs do not actually have a color property beyond this illustration.

Since our structure only allows a cell Q to use a job within its corresponding time range,

any relatively valuable job that crosses between QL and QR must be used now by Q putting

it in a sparse time range. One such valuable job in Fig. 2 is in blue marked by “B”. To have

“B” belong to a sparse range, we must divide the time range R somewhere, as otherwise our

solution in the received range will be dense. If we naively divide R at the partition of Z(Q)

to the left and right of the job “B”, we might be forced to delete some valuable jobs; such

jobs are pictured in green and marked by “G”. Instead, we expand the division outwards in

a more nuanced manner. Namely, we keep expanding outwards and looking at the job that

contains the next partition point (if any). If the job’s value exceeds a certain threshold, as
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those pictured as green and marked by “G” in Fig. 2, we continue expanding. Otherwise,

the job crossing a partition point is below a certain threshold, pictured as brown and not

marked in Fig. 2, and its deletion can be charged against the blue job. We delete such

brown jobs and the corresponding partition points, i.e., the vertical red lines crossing those

brown jobs, constitute the start and the end of the sparse range. By the end, we decided the

starting and ending time of the sparse range, and what remains inside are blue job(s), green

job(s), and yellow job(s) (also marked by “Y”). Note that yellow jobs must be completely

within a partition slice of Z(Q). Since we define Z(Q) such that the optimal total reward

within any grid slice is small, the yellow jobs have relatively small rewards compared to

the total reward of green and blue jobs that we know must be large. Accordingly, we can

delete the yellow jobs (to help make this time range’s solution sparse) and charge their cost

against a nearby green or blue job. In Fig. 2, an arrow from one job to another represents

a deleted job pointing towards the job who we charge its loss against. Finally, each sparse

range contains only green job(s) and blue job(s). If there are more than 1/ε jobs in such a

sparse range, we employ a simple sparsifying step detailed in the full proof.

It remains to handle the time ranges of the received range that were not put in sparse

ranges. These will be time ranges that are sent to QL and QR. In Fig. 2, these ranges are

outlined in yellow and annotated by “child subproblem”. However, the time ranges do not

necessarily align with Z(QL) or Z(QR) as is required by nearly-optimal sparse structure.

We need to adjust these ranges such that they align with Z(QL) or Z(QR) so we can send

the ranges to the children. See Fig. 4 for intuition on why we cannot just immediately “snap”

these child subproblems to the partition points in Z(QL) and Z(QR). (We say that a range

R is snapped inward (outward) within cell Q if R is shrunk (extended) on both sides to

the closest points in Z(Q). Inward snapping is illustrated in Fig. 4.) Instead, we employ

a similar charging argument to deal with snapping. As an analog to how we expanded

outwards from the blue job for defining sparse ranges, we employ a charging argument

where we contract inwards from the endpoints of the child subproblem. In summary, these

charging arguments enabled us to show a solution of nearly-optimal sparse structure exists

even when only partitioning each cell Q with |Z(Q)| = poly(1/ε, log(n)) points.

2.2.5 Approximate dynamic programming (Section 5.3)

Now, we outline our key advance for more efficiently calculating the solution of nearly-

optimal sparse structure. This structure allows us to partition time into ranges with sparse

solutions. More formally, we are given a time range and we want to approximate an optimal

solution within that range that uses at most 1/ε jobs. We outline an approximate dynamic

programming approach that only requires polynomial time dependence on 1/ε.

The relatively well-known dynamic programming approach for computing weighted interval

scheduling is to maintain a dynamic program where the state is a prefix range of time

and the output is the maximum total reward that can be obtained in that prefix range

of time. However, for our purposes, there are too many possibilities for prefix ranges of

time to consider. Instead, we invert the dynamic programming approach, and have a state

referencing some amount of reward, where the dynamic program returns the minimum length

prefix range of time in which one can obtain a given reward. Unfortunately, there are also

too many possible amounts of rewards. We observe that we do not actually need this exact

state, but only an approximation. In particular, we show that one can round this state

down to powers of (1 + ε2) and hence significantly reduce the state-space. In Section 5.3,

we show how one can use this type of observation to quickly compute approximate dynamic

programming for a near-optimal sparse solution inside any time range.
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2.2.6 Comparison with Prior Work

The closest to our work is the one of [13]. In terms of improvements, we achieve the

following: we remove the dependence on N and wmax in the running-time analysis; we obtain

a deterministic approach; and, we design an algorithm with poly(1/ε, log n) update/query

time, which is exponentially faster in 1/ε compared the prior work.

In this prior work, jobs are assumed to have length at least 1 and belong in the time-

interval [1, N ]. To remove the dependence on N and such assumptions, we designed a new

way of bookkeeping jobs. Instead of using a complete binary tree on [1, N ] to organize

jobs as done in the prior work, we employ binary balanced search tree on the endpoints of

jobs. A complete binary tree on [1, N ] is oblivious to the density of jobs. On the other

hand, and intuitively, our approach allows for “instance-based” bookkeeping: the jobs are

in a natural way organized with respect to their density. Resorting to this approach incurs

significant technical challenges. Namely, the structure of solution our tree maintains is

hierarchically organized. However, each tree update, which requires node-rotations, breaks

this structure which requires additional care in efficiently maintaining approximate solution

after an update, as well as requiring an entirely different approach for maintaining a partitioning

of time Z(Q) within cells. Moreover, we show how to further leverage these ideas to obtain

a deterministic approach.

In our work, we use borders to define the so-called sparse and dense ranges. This idea

is inspired by the work of [13]. We emphasize, though, that one of our main contributions

and arguably the most technically involved component is showing how to algorithmically

employ those borders in running-time only polynomially dependent on 1/ε, while [13] require

exponential dependence on 1/ε.

Our construction of auxiliary data structure Z(Q) enables us to boost an O(log(n))-

approximate solution into a decomposition enabling a (1+ε)-approximate solution is inspired

by the approach of [13]. They similarly develop Z(Q) to boost an instead O(1)-approximation

that fundamentally relies on the bounded coordinate assumptions of jobs being within [1, N ]

and having length at least 1. Our different approach towards Z(Q) enables simplification of

some arguments as well as not relying on randomness, or on length or bounded coordinate

assumptions. Further, we note that the dynamic programming approach for sparse regions

that we develop is significantly faster than the enumerative approach used in the prior work,

that eventually enables us to obtain a poly(1/ε) dependence in the running time. The way

we combine solutions over sparse regions is similar to the way it is done in the prior work.

2.3 Localizing the Time-Partitioning Method (Section 6)

We also show that this method of partitioning over time can be used to develop local

algorithms for interval scheduling. Here, we desire to answer queries about whether a

particular job is in our schedule. We hope to answer each of these queries consistently

(i.e., they all agree with some approximately optimal schedule) and in less time than it

would take to compute an entire schedule from scratch. Partitioning over time seems helpful

for this setting, because this would enable us to focus on just the region of the job being

queried. However, our previously mentioned method for maintaining borders does so in a

sequential manner that we can no longer afford to do in this model of computation. Instead,

we use a hierarchical approach to more easily compute the locations of borders that create

regions with solutions not too big or too small.

For simplicity, we again focus on the unweighted setting with only one machine. In the

standard greedy algorithm for computing unweighted interval scheduling on one machine,
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we repeatedly select the job successor(x): “What is the interval with the earliest endpoint,

of those that start after point x?” (where x is the endpoint of the previously chosen job). As

reading the entire problem instance would take longer than desired, an LCA requires some

method of probing for information about the instance. Our LCA utilizes such successor

probes to do so. For further motivation, see Section 6. We outline a three-step approach

towards designing an LCA that utilizes few probes:

Hierarchizing the greedy (Algorithm 1). Instead of just repeatedly using successor(x)

to compute the solution as the standard greedy does, we add hierarchical structure that

adds no immediate value but serves as a helpful stepping stone. Consider a binary search

tree (BST) like structure, where the root node corresponds to the entire time range [0, N ].

Each node in the structure has a left-child and a right-child corresponding to the 1st and

the 2nd half, respectively, of that node’s range. Eventually, leaf nodes have no children

and correspond to a time range of length one unit. At a high-level, we add hierarchical

structure by considering jobs contained in some node’s left-child, then considering jobs that

go between the node’s left-child and right-child, and then considering jobs contained in the

node’s right-child. This produces the same result as the standard greedy, but we do so with

a hierarchical structure that will be easier to utilize.

Approximating the hierarchical greedy (Algorithm 2). Now, we modify the hierarchical

greedy so that it is no longer exactly optimal but is instead an approximation. At first

this will seem strictly worse, but it will yield an algorithm that is easier to localize. When

processing each node, we will first check whether it is the case that both the left-child and

the right-child have optimal solutions of size > 1
ε . A key observation here is that checking

whether a time range has an optimal solution of size > 1
ε can be done by making at most 1+ 1

ε

successor probes (i.e., one does not necessarily need to compute the entire optimal solution

to check if it is larger than some relatively small threshold). If both the left-child and the

right-child would have optimal solutions of size > 1
ε , then we can afford to draw a border

at the midpoint of our current node and solve the left-child and right-child independently.

Jobs intersecting a border are ignored, and we charge the number of such ignored jobs, i.e.,

the number of drawn borders, to the size of solution in the corresponding left- and right-

child. Ultimately, we show that the addition of these borders makes our algorithm (1 + ε)-

approximate. Moreover, and importantly, these borders introduce independence between

children with large solutions.

Localizing the approximate, hierarchical greedy (Algorithm 3). Finally, we localize the

approximate, hierarchical greedy. To do so, we note that when some child of a node has

a small optimal solution, then we can get all the information we need from that child in

O(1
ε ) probes. As such, if a node has a child with a small optimal solution, we can make

the required probes from the small child and recurse to the large child. Otherwise, if both

children have large solutions, we can draw a border at the midpoint of the current node and

only need to recurse down the child which contains the job the LCA is being queried about.

With these insights, we have used our partitioning method over time for local algorithms

to produce an LCA only requiring O( log(N)
ε ) successor probes.

3 Problem Setup

In the interval scheduling problem, we are given n jobs and M machines. With each job

j are associated two numbers sj and lj > 0, referring to “start” and “length” respectively,

meaning that the job j takes lj time to be processed and its processing can only start at

time sj . While prior work such as [13] used assumptions such as sj ≥ 0, lj ≥ 1 and have an
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upper-bound N on sj + lj , we utilize such assumptions only in our LCA results of Section 6.

In addition, with each job j is associated weight/reward wj > 0, that refers to the reward

for processing the job j. The task of interval scheduling is to schedule jobs across machines

while maximizing the total reward and respecting that each of the M machines can process

at most one job at any point in time.

4 Dynamic Unweighted Interval Scheduling on a Single Machine

In this section we prove Theorem 1. As a reminder, Theorem 1 considers the case of interval

scheduling in which wj = 1 for each j and M = 1, i.e., the jobs have unit reward and there

is only a single machine at our disposal. This case can also be seen as a task of finding a

maximum independent set among intervals lying on the x-axis. The crux of our approach

is in designing an algorithm that maintains the following invariant:

⊲ Invariant 1. The algorithm maintains a set of borders such that an optimal

solution schedules between 1/ε and 2/ε intervals within each two consecutive borders.

We will maintain this invariant unless the optimal solution has fewer than 1/ε intervals,

in which case we are able to compute the solution from scratch in negligible time. We

aim for our algorithm to maintain Invariant 1 while keeping track of the optimal solution

between each pair of consecutive borders. The high level intuition for this is that if we do

not maintain too many borders, then our solution must be very good (our solution decreases

by size at most one every time we add a new border). Furthermore, if the optimal solution

within borders is small, it is likely easier for us to maintain said solutions. We prove that

this invariant enables a high-quality approximation:

◮ Lemma 4. A solution that maintains an optimal solution within consecutive pairs of a

set of borders, where the optimal solution within each pair of consecutive borders contains at

least K intervals, maintains a K+1
K -approximation.

Proof. For our analysis, suppose there are implicit borders at −∞ and +∞ so that all jobs

are within the range of borders. Consider an optimal solution OP T . We will now design a

K-approximate optimal solution OP T ′ as follows: given OP T , delete all intervals in OP T

that overlap a drawn border. Fix an interval J appearing in OP T but not in OP T ′. Assume

that J intersects the i-th border. Recall that between the (i−1)-st and the i-th border there

are at least K intervals in OP T ′. Moreover, at most one interval from OP T intersects the

i-th border. Hence, to show that OP T ′ is a K+1
K -approximation of OP T , we can charge

the removal of J to the intervals appearing between the (i − 1)-st and the i-th border in

OP T ′. ◭

Not only does Invariant 1 enable high-quality solutions, but it also assists us in quickly

maintaining such a solution. We can maintain a data structure with O( log(n)
ε ) updates and

O(log(n)) queries that moves the borders to maintain the invariant and thus maintains an

(1 + ε)-approximation as implied by Theorem 4.

◮ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any ε > 0,

there exists a fully dynamic algorithm for (1+ε)-approximate unweighted interval scheduling

for J on a single machine performing updates in O
(

log(n)
ε

)

and queries in O(log(n)) worst-

case time.

Proof. Our goal now is to design an algorithm that maintains Invariant 1, which by Theorem 4

and for K = 1/ε will result in a (1 + ε)-approximation of Maximum-IS.
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On a high-level, our algorithm will maintain a set of borders. When compiling a solution

of intervals, the algorithm will not use any interval that contains any of the borders, but

proceed by computing an optimal solution between each two consecutive borders. The

union of those between-border solutions is the final solution. Moreover, we will maintain

the invariant that the optimal solution for every contiguous region is of size within [1
ε , 2

ε ).

In the rest, we show how to implement these steps in the claimed running time.

Maintained data-structures. Our algorithm maintains a balanced binary search tree Tall

of intervals sorted by their starting points. Each node of Tall will also maintain the end-point

of the corresponding interval. It is well-known how to implement a balanced binary search

tree with O(log n) worst-case running time per insertion, deletion and search query. Using

such an implementation, the algorithm can in O(log n) time find the smallest ending-point

in a prefix/suffix on the intervals sorted by their starting-points. That is, in O(log n) time

we can find the interval that ends earliest, among those that start after a certain time.

In addition, the algorithm also maintains a balanced binary search tree Tborders of the

borders currently drawn.

Also, we will maintain one more balanced binary search tree Tsol that will store the

intervals that are in our current solution.

We will use that for any range with optimal solution of size S, we can make O(S) queries

to these data structures to obtain an optimal solution for the range in O(S · log n) time.

Update after an insertion. Upon insertion of an interval J , we add J to Tall. We make a

query to Tborders to check whether J overlaps a border. If it does, we need to do nothing; in

this case, we ignore J even if it belongs to an optimal solution. If it does not, we recompute

the optimal solution within the two borders adjacent to J . If after recomputing, the new

solution between the two borders is too large, i.e, it has at least 2
ε intervals, then draw/add

a border between the 1
ε -th and the (1 + 1

ε )-th of those intervals.

Update after a deletion. Upon deletion of an interval J , we delete J from Tall. If J was not

in our solution, we do nothing else. Otherwise, we recompute the optimal solution within

the borders adjacent to J and modify Tsol accordingly. Let those borders be the i-th and

the (i + 1)-st. If the new solution between borders i and i + 1 now has size less than 1/ε (it

would be size exactly 1/ε), we delete an arbitrary one of the two borders (thus combining

this region with an adjacent region). Then, we recompute the optimal solution within the

(now larger) region J is in. If this results in a solution of size at least 2/ε, we will need to

split the newly created region by adding a border. Before splitting, the solution will have

size upper-bounded by one more than the size of the solutions within the two regions before

combining them as an interval may have overlapped the now deleted border (one region

with size exactly 1
ε − 1 and the other upper-bounded by 2

ε − 1). Thus, the solution has size

at in range [2/ε, 3
ε ). We can add a border between interval 1/ε and 1/ε + 1 of the optimal

solution, and will have a region with exactly 1/ε intervals and another with [1/ε, 2/ε) intervals,

maintaining our invariant.

In all of these, the optimal solution for each region has size O(1/ε), so recomputing takes

O(log(n)/ε) time.

For queries, we will have maintained Tsol in our updates such that it contains exactly

the intervals in our solution. So each query we just need to do a lookup to see if the interval

is in Tsol in O(log n) time. ◭



14 Faster Approximate Interval Scheduling

This result improves the best-known time complexities [5, 13]. Unfortunately, it does

not immediately generalize well to the weighted variant. In Section 5, we show our more

technically-challenging result for the weighted variant.

5 Dynamic Weighted Interval Scheduling on a Single Machine

This section focuses on a more challenging setting in which jobs have non-uniform weights.

Non-uniform weights introduce difficulties for the approach mentioned in Section 4, as adding

a border (which entails ignoring all the jobs that cross that border) may now force us to

ignore a very valuable job. Straightforward extensions of this border-based approach require

at least a linear dependence on the ratio between job rewards (e.g., if all jobs have rewards

within [1, w], then straightforward extensions would require a linear dependence on w). This

is because an ignored job containing a border can have a reward of w (as opposed to just

1), requiring w/ε reward inside the region to charge it against (as opposed to just 1/ε).

In this work, we show how to perform this task in O(poly(log(n), 1/ε)) time, having no

such dependency on the rewards of the jobs or the starting/ending times. This improves

upon the best-known preexisting result of O(poly(log(n), log(N), log(w)) · exp(1/ε)) time

accomplished by the decomposition scheme designed in the work of Henzinger et al. [13],

which we compare with in Section 2.2.6. Both our algorithm and our analysis introduce

new ideas that enable us to design a dynamic algorithm with running time having only

polynomial dependence on 1/ε and log(n), yielding an exponential improvement in terms

of 1/ε over [13], and removing all dependence on N and w. Moreover, our algorithm is

deterministic (as opposed to randomized and a (1 + ε)-approximation in expectation) and

requires no assumption on the lengths or coordinate values of the jobs ([13] assumes all

jobs are length at least 1 and all coordinates are within [0, N ], where N affects the time

complexity).

As the first step we show that there exists a solution OP T ′, which is a (1+ε)-approximate

optimal solution, that has nearly-optimal sparse structure, similar to a structure used in [13].

We define properties of this structure in Section 5.2, although it is instructive to think of

this structure as of a set of non-overlapping time ranges such that:

(1) Within each time range there is an approximately optimal solution which contains a

small number of jobs (called sparse);

(2) The union of solutions across all the time ranges is (1 + ε)-approximate; and

(3) There is an efficient algorithm to obtain these time ranges.

Effectively, this structure partitions time such that we get an approximately optimal solution

by computing sparse solutions within partitioned time ranges and ignoring jobs that are not

fully contained within one partitioned time range. To obtain the guarantees of such a set

of time ranges that can be obtained efficiently, we utilize a new hierarchical decomposition

based on a balanced binary search tree and employ novel charging arguments. This result

is described in detail in Section 5.2.

Once equipped with this structural result, we first design a dynamic programming

approach to compute an approximately optimal solution within one time range. Let wmax

denote the maximal reward among all jobs currently in the instance. To obtain an algorithm

whose running time is proportional to the number of jobs in the solution for a time range, as

opposed to the length of that range, we “approximate” states that our dynamic programming

approach maintains, and ultimately obtain the following claim whose proof is deferred to

Section 5.3.
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◮ Lemma 5. Given any contiguous time range R and an integer K, consider an optimal

solution OP T (R, K) in R containing at most K jobs and ignoring jobs with weight less than
ε/n · wmax. Then, there is an algorithm that in R finds a (1 + ε)-approximate solution to

OP T (R, K) in O
(

K log(n) log2(K/ε)
ε2

)

time and with at most O
(

K log(K/ε)
ε

)

jobs.

Observe that running time of the algorithm given by Theorem 5 has no dependence on

the length of R. Also observe that the algorithm possibly selects slightly more than K jobs

to obtain a (1 + ε)-approximation of the best possible reward one could obtain by using at

most K jobs in R (i.e., OP T (R, K)).

Finally, in Section 5.5 we combine all these ingredients and prove the main theorem of

this section.

◮ Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For

any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate weighted interval

scheduling for J on a single machine performing updates and queries in worst-case time

T ∈ poly(log n, 1
ε ). The exact complexity of T is given by

O

(

log12(n)

ε7
+

log13(n)

ε6

)

.

5.1 Decomposition Overview

We utilize a hierarchical decomposition to organize time such that we may efficiently obtain

time ranges that satisfy the nearly-optimal sparse structure. This decomposition has two

levels of granularity. For the higher-level decomposition, we employ a decomposition similar

to that of a balanced binary search tree with O(log(n)) depth. Each cell Q in this balanced

binary search tree will correspond to a range of time. Further details on this hierarchical

decomposition are described in Section 5.2.1.

For the lower-level decomposition, we split each cell Q more finely. Formally, for a set of

grid endpoints Z(Q), we define a grid slice as follows.

◮ Definition 6 (Grid slice). Given a set of grid endpoints Z(Q) = {r1, r2, . . . , rX−1} with

ri < ri+1, we use grid slice to refer to an interval (ri, ri+1), for any 1 ≤ i < X − 1. Note

that a grid slice between ri and ri+1 does not contain ri nor ri+1.

We further discuss Z(Q) in Section 5.2.2. Importantly, Z(Q) is designed such that

the optimal solution entirely within any grid slice is upper-bounded to be relatively small

compared to the weight of the optimal solution within Q, or w(OP T (Q)). This property

makes the grid endpoints Z(Q) a helpful tool in partitioning time. At a high level, Z(Q)

is used to define a set of segments that motivate dynamic programming states of the form

DP (Q, S), where each S corresponds to a segment between two grid endpoints of Z(Q), and

DP (Q, S) computes an approximately optimal sparse solution among schedules that can

only use jobs contained within the segment of time S. The key idea is that this dynamic

programming enables the partitioning of time into dense and sparse ranges. Solutions for

sparse ranges are computed immediately, while dense ranges are solved by children with

dynamic programming (by further dividing the dense range into more sparse and dense

ranges). We recall from Section 2.2.6 that [13] were first to design a two-level hierarchical

decomposition that computes DP (Q, S) to optimize over dense and sparse ranges. However,

we emphasize that our work utilizes entirely new approaches for our high-level hierarchical

decomposition into cells Q, for our low-level decomposition of each cell into Z(Q), and for

our method of computing approximately optimal sparse solutions of DP (Q, S).
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5.2 Solution of Nearly-Optimal Sparse Structure

To remove exponential dependence on 1/ε and all dependence on N and w, we introduce a

new algorithm for approximating sparse solutions, a new hierarchical decomposition, and

novel charging arguments that (among other things) reduce the number of grid endpoints

|Z(Q)| required in each cell. With this, we will compute an approximately optimal solution

of the following very specific structure.

◮ Definition 7 (Nearly-optimal sparse structure). To have nearly-optimal sparse structure, a

solution must be able to be generated with the following specific procedure:

Each cell Q will receive a set of time ranges, denoted as RANGES(Q), with endpoints in

Z(Q). To start, Qroot will receive one time range containing all of time (i.e., RANGES(Qroot) =

{[−∞, ∞]})

RANGES(Q) is split into a collection of disjoint time ranges, with each being assigned

to one of three sets: SP ARSE(Q), RANGES(QL), RANGES(QR)

SP ARSE(Q), a set of time ranges, must have endpoints in Z(Q) ∪ Z(QL) ∪ Z(QR)

For each child Qchild (where child ∈ {L, R}) of Q, RANGES(Qchild) must have all

endpoints in Z(Qchild)

The total weight of sparse solutions (solutions with at most 1/ε jobs) within sparse time

ranges must be large (where SP ARSE_OP T (R) denotes an optimal solution having at

most 1/ε jobs within range R):

∑

Q

∑

R∈SP ARSE(Q)

w(SP ARSE_OP T (R)) ≥ (1 − O(ε))w(OP T )

Now, we prove our result for a (1 + ε)-approximation to dynamic, weighted interval

Maximum-IS algorithm with only polynomial time dependence on 1/ε and log(n). Unlike

the decomposition of Henzinger et al., we will not define our decomposition such that each

cell Q will split exactly in half to produce both its children QL and QR. Instead, we will

divide every cell Q in a manner informed by a balanced binary search tree. Desirably, this will

make the depth of our decomposition O(log(n)) instead of O(log(N)), but it will remove the

possibility of utilizing the random-offset style of idea to assign jobs to cells where they each

job’s length is approximately ε fraction of the cell’s length. This necessitates novel charging

arguments. We supplement this new hierarchical decomposition with a new alternative

for the Z(Q) data structure that enables us to determine important dynamic program

subproblems without any dependence on N . Additionally, we take a new approach for

solving the small sparse subproblems, where we use an approximate dynamic programming

idea to remove exponential dependence on 1/ε in the best known running time for these

subproblems. In our novel charging arguments, there is a particular focus on changing where

deleted intervals’ weights are charged against and introducing a snapping budget, which we

use to relax the required number of grid endpoints |Z(Q)| to depend only polynomially

on 1/ε. As a reminder, Z(Q) is a set of grid points within Q such that between any two

consecutive points we are guaranteed that the optimal solution has small weight. Our final

algorithm will consider a number of subproblems for each cell proportional to |Z(Q)|2, so

improvements in |Z(Q)| directly lead to improvements in the best-known running time.

Effectively, we make each of our smaller subproblems easier to solve while also reducing the

number of subproblems we need to solve. All improvements are exponential in ε and remove

dependence on N and w.
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5.2.1 Hierarchical decomposition

We now formally describe our hierarchical decomposition of jobs.

Consider the set of all jobs’ starting/ending times, i.e., for each job i, include si and fi.

Now, consider a balanced binary search tree T over this set of times. For the sake of

this paper, one can assume this is maintained by a red-black tree such that the tree has

depth O(log(n)) and O(log(n)) rotations are required per update. We have a cell Q in

our hierarchical decomposition corresponding to each node in T . Let KEY (Q) be the

corresponding key for the node in T .

Each Q has a left child QL or right child QR if the corresponding node in T does.

Each cell Q represents a range of time. Qroot corresponds to all time, meaning T IME(Qroot) =

[−∞, ∞]. This time range is split for the children of Q by KEY (Q). More formally, given

a cell Q where T IME(Q) = [lQ, rQ], then (if QL exists) T IME(QL) = [lQ, KEY (Q)],

and (if QR exists) T IME(QR) = [KEY (Q), rQ].

This fully describes our hierarchical decomposition of depth O(log(n)). A visual example

is provided in Fig. 1.

5.2.2 Structure Z(Q)

We use the set of grid points Z(Q) to determine segments that will be used as subproblems

for dynamic programming and in reference to the nearly-optimal sparse structure. For some

specified X , our goal is to maintain a Z(Q) such that the optimal solution within every

grid slice is at most O(w(OP T (Q))/X). The previously-utilized methods for obtaining this

require logarithmic dependence on N and w. To remove dependence on w, we relax our

requirements of Z(Q) to ignore all jobs with weight less than w(OP T (Q)) · ε/n; in total,

these jobs have negligible reward. To remove dependence on N , we consider an alternative

approach to computing Z(Q), where we take the union of multiple solutions to Z(Q) for the

analogous unweighted interval scheduling problem using ideas similar to those in Section 4.

We design a Z(Q) with the following guarantees, whose proof is deferred to Section 5.4:

◮ Lemma 8 (Dynamically maintaining Z(Q)). For any fixed positive integer X, it is possible

to return a set Z(Q) for any cell Q in the hierarchical decomposition in O(X · log3(n)) query

time. Moreover, the returned Z(Q) will satisfy the following properties:

For every Q, the optimal solution within each grid slice of Z(Q) is at most O(w(OP T (Q))/X);

as a reminder, we ignore jobs with weights less than w(OP T (Q)) · ε/n.

For every Q, |Z(Q)| = O(X · log2(n))

5.2.3 Existence of desired (1 + ε)-approximate solution

We now argue that there exists a (1 + O(ε))-approximation with nearly-optimal sparse

structure in reference to our new hierarchical decomposition for Q and our Z(Q) when using

X = log2(n)
ε2 and thus |Z(Q)| = O( log4(n)

ε2 ):

◮ Lemma 9. There exists a solution OP T ′ that has nearly-optimal sparse structure and

such that w(OP T ′) ≥ (1 − O(ε))w(OP T ). Thus, OP T ′ is a (1 + O(ε))-approximation of

OP T .

Proof. We emphasize that the goal of this lemma is not to show how to construct a solution

algorithmically, but rather to show that there exists one, that we refer to by OP T ′, that has

a specific structure and whose weight is close to OP T .
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In this paragraph, we provide a proof overview. At a high-level, we show this claim by

starting with OP T , and maintaining a solution OP T ′ that holds our desired structure and

only deletes jobs with total weight O(ε ·w(OP T )). Our process of converting OP T to OP T ′

is recursive, as we start at the root and work down. Generally, our preference for any range

R ∈ RANGES(Q) will be to defer it to a child by passing it on to a RANGE(Qchild).

This preference can often not be immediately satisfied for two reasons: (i) R may not

be completely contained within a Qchild (i.e. R crosses between QL and QR), or (ii) the

endpoints of R do not alight with the corresponding Z(Qchild). We will modify OP T to

accommodate these concerns. To handle concern (i), we will delete a job in OP T if it crosses

between QL and QR and has small went (and hence it can be ignored). Otherwise, if such

a crossing job has large weight, we will divide R into three time ranges such that one is

contained within QL, one uses the crossing job, and the last is contained within QR, using

a process detailed in the following proof. For the central third, we will sparsify this range

to produce a set SP ARSE(Q) of sparse time ranges. For time ranges completely contained

within QL and QR that are not designated as sparse time ranges, we will essentially consider

them dense time ranges, that will be delegated to children cells of Q. In order to delegate a

time range to a child Qchild, we require that the delegated time range must have endpoints

that align with Z(Qchild). Accordingly, we perform modifications to “snap” the time ranges’

endpoints to Z(Qchild) for the corresponding child Qchild of Q and include the “snapped”

time ranges in RANGES(Qchild). We show that throughout this process, we do not delete

much weight from OP T and obtain an OP T ′ that has our desired structure. Now, we

present the proof in detail:

5.2.3.1 Deleting light crossing jobs.

We now describe how to modify OP T , obtaining OP T ′, such that OP T ′ has our desired

structure and OP T ′ is a (1 + ε)-approximation of OP T . Note that we will never actually

compute OP T ′. It is only a hypothetical solution that has nice structural properties and

that we use to compare our output to.

For a cell Q, consider a time range it receives in RANGES(Q). We shall split this

time range into sparse time ranges (to be added to SP ARSE(Q)) and dense time ranges

(to be added to RANGES(QL) or RANGES(QR)). There is at most one range Rcross ∈

RANGES(Q) that crosses between QL and QR, and we call the at most one job crossing

between QL and QR the crossing job (if it exists). If the crossing job has weight ≤
ε

log(n) w(OP T (Q)), we call it light, we delete the light crossing job, and we split Rcross at the

dividing point KEY (Q). One of these two resulting ranges can inherit the snapping budget

of Rcross, while we can allocate the other a snapping budget of weight O( ε
log(n) w(OP T (Q)).

We delete/allocate at most O( ε
log(n)w(OP T (Q))) weight at every cell, O( ε

log(n)w(OP T ))

weight at every level, and O(εw(OP T )) weight in total. Also note how all ranges in

RANGES(Q) are now completely contained within either QL or QR. Otherwise, if the

crossing job has large weight, we call it heavy and must find some way to include it in our

solution instead of deleting it.

5.2.3.2 Utilizing heavy crossing jobs.

We now focus on showing how to construct our solution using a heavy crossing job. Our

goal is to split Rcross into three parts: one range completely within QL, some sparse ranges

that will be SP ARSE(Q) and include the crossing job among other jobs, and one range

completely within QR. As an overview, we will start by considering the smallest time range
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that contains the crossing job and spans the grid between two (not necessarily consecutive)

endpoints in Z(Q). This range may contain many jobs in OP T , so we perform an additional

refinement to divide it up into sparse time ranges. In this refinement, we will split up the

time range such that we do not delete too much weight and, moreover, all of the resulting

time ranges have at most 1/ε jobs. These time ranges now constitute SP ARSE(Q). A

detailed description of this process of determining SP ARSE(Q) is given in stages from

“utilizing heavy jobs” to “sparsifying regions.” For an example of this process that uses

the terminology later described in these stages, see Fig. 3. Any remaining time ranges

not selected at this stage will effectively be dense time ranges, and are delegated into

RANGES(QL), RANGES(QR) (after dealing with their alignment issues). This process

of designating time ranges to delegate is detailed in stages from “creating dense ranges” to

“resolving leafs.”

As a reminder, we have chosen Z(Q) such that the total weight inside any grid slice (a

time range between two consecutive endpoints of Z(Q)) of Q is at most ε2

log2(N)
w(P (Q)).

Recall that Z(Q) contains grid endpoints. For the heavy crossing job, consider the grid

endpoint immediately to its left and to its right. Without loss of generality, consider the

right one and call it r. How we proceed can be split into two cases:

(1) In the first case, r overlaps a job J in OP T ′ with weight at most ε
log(n) w(OP T (Q)). We

delete J and draw a boundary at r. In doing this, we will charge the weight of J against

the cell Q. There are at most two jobs we charge in this manner for that original heavy

interval, one for the grid endpoint to the right and one to the left. Meaning, each cell

will be charged in this manner at most twice for a total of O( ε
log(n) w(OP T ) weight at

each level and O(εw(OP T )) weight overall.

(2) In the other case, r overlaps a job J that has weight greater than ε
log(n) w(OP T (Q)).

We call J a highlighted job. Our algorithm proceeds by considering the grid endpoint

immediately to the right of J . We determine what to do with this grid endpoint in

a recursive manner. Meaning, we proceed in the same two cases that we did when

considering what to do with r, and continue this recursive process until we finally draw

a boundary.

After this process, we will have drawn a region (time range corresponding to where

we drew a left and right boundary for) in which OP T ′ has the one heavy crossing job, a

number of highlighted jobs (possibly zero), and potentially some remaining jobs that are

neither crossing nor highlighted (we call these useless). It is our goal to convert this region

into time ranges that we can use as sparse time ranges. Our process also guarantees this

region has borders with endpoints in Z(Q). Note that we have created a region within some

time range of RANGES(Q), but not every point in the time range is necessarily contained

within the region.

5.2.3.3 Deleting useless jobs.

In the generated region, we define useless jobs as all jobs that are neither crossing nor

highlighted. Useless jobs are completely contained within grid slices. We want to convert

the region into sparse time ranges, but there may be many useless jobs that make the region

very dense. Thus, we will delete all jobs in the region that are useless. By the process of

generating the region, any such job is fully contained within a grid slice for which there

is a heavy crossing job or highlighted job partially overlapping the grid slice. We charge

deletion of all useless jobs in a given slice by charging against a highlighted or heavy crossing

job that must partially overlap the given slice. By definition of Z(Q), useless jobs in the
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slice add up to a total weight of at most ε2

log2(n)
w(OP T (Q)). This is because we set Z(Q)

with X = log2(n)
ε2 and thus the optimal solution within any grid slice has total weight at

most ε2

log2(n)
w(OP T (Q)). Moreover, ε2

log2(N)
w(OP T (Q)) is at least a factor of ε less than

the highlighted or heavy crossing job we are charging against (and there are only two such

slices whose useless jobs are charging against any highlighted or heavy jobs).

5.2.3.4 Sparsifying the region.

Now, the region only contains heavy crossing job or highlighted jobs. We aim to split the

region into ranges for SP ARSE(Q) without deleting much weight. The region may have

more than 1
ε jobs (meaning it is not sparse). If this is the case, we desire to split the region

into time ranges that each have ≤ 1
ε jobs and start/end at grid endpoints of Z(Q). To do

so, we number the jobs in a region from left to right and consider them in groups based on

their index modulo 1
ε . Note that a group does not consist of consecutive jobs. Then, we

delete the group with lowest weight. We delete this group because we make the observation

that all remaining jobs in the region must contain a grid endpoint within it. This is because

heavy crossing jobs must contain a grid endpoint by how we defined Z(Q), and highlighted

jobs must contain a grid endpoint by their definition. Thus, we can delete the jobs belonging

to the lightest group and split the time range at the grid endpoints contained inside each

of the deleted jobs. In doing so, we lose at most a factor of ε of the total weight of all the

considered jobs. However, now each resulting time range will have at most 1
ε jobs and thus

will be a valid sparse range in SP ARSE(Q) (because for any range containing a number of

consecutive jobs greater than 1
ε , we will have split it). Note that all these sparse ranges have

endpoints in Z(Q). With all of its terminology now defined, readers may find the example

illustrated in Fig. 3 helpful for their understanding.

Q B G G

new region

Figure 3 This example illustrates how the sparse regions are created. All vertical segments

within Q, which are red in the figure, correspond to the points in Z(Q). The cell Q is divided by

Z(Q) such that the optimal solution within every grid slice is small. As a reminder, a grid slice is an

open time-interval between two consecutive points in Z(Q); see Theorem 6 for a formal definition.

We start with the heavy crossing job (the blue horizontal segment marked by “B”). From this heavy

crossing job, we expand the region outwards as necessary. In this example, we expanded to the

right, seeing two highlighted jobs (the green horizontal segments marked by “G”) until we saw a

job with low enough weight intersecting a grid endpoint (these job segments are colored in brown

and crossed). We delete such brown jobs, and use the grid endpoints they intersected to define the

region (outlined in purple and annotated by “new region”). Useless jobs (pictured in yellow) are

then deleted. Later, we sparsify the region.
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5.2.3.5 Snapping dense ranges.

Recall that not all of the time ranges that we are modifying from RANGES(Q) were part

of the region. In particular, there are the time ranges originally in RANGES(Q) other than

Rcross, as well as the time range in Rcross to the left of the region, and to the right of the

region. We call these remaining time ranges our dense ranges because they may contain many

jobs. Note how all dense range are now completely contained within QL or QR. Ideally, we

assign dense ranges to RANGES(QL) or RANGES(QR). However, the remaining dense

time ranges have one remaining potential issue, that their endpoints may not align with

Z(Qchild) even though they align with Z(Q). For an example of this issue, see Fig. 4. The

core of this problem is that these dense time ranges correspond to time ranges we would like

to delegate to children of Q (i.e., add to RANGES(QL) and RANGES(QR)). However,

there is the requirement that time ranges delegated to RANGES(QL) and RANGES(QR)

must have endpoints in Z(QL) and Z(QR), respectively. Therefore, we have to modify the

dense ranges so they align with the grid endpoints of one of Q’s children. It is tempting to

naively “snap” the endpoints of these time ranges inward to the nearest grid endpoints of

Z(Qchild), meaning to slightly contract the endpoints of the time ranges inward so they align

with Z(Qchild). Unfortunately, this might result in some jobs being ignored in the process

(as illustrated in Fig. 4); a cell does not consider jobs which are not within a given range.

If these ignored jobs have non-negligible total reward, ignoring them can result in a poor

solution. In the stage “snapping dense ranges” we detail a more involved contraction-like

snapping process that contracts inwards similar to our argument for expanding outwards

from heavy crossing jobs when we determined sparse ranges. In our contraction-like snapping

process, we convert some of the beginning and end of the dense range into sparse ranges, so

we do not need to delete some of the high-reward jobs that we would need to delete with

naive snapping. In the stages from “using essential jobs” to “resolving leafs”, we detail how

to apply modifications to fulfill the required properties and how to analyze the contraction

process with charging arguments.

Consider an arbitrary unaligned dense time range U . Ideally, we would “snap” the

endpoints of U inward to the nearest grid point of Z(Qchild) (i.e. move the left endpoint

of U to the closest grid point of Z(Qchild) to its right, and the right endpoint of U to the

closest grid endpoint of Z(Qchild) to its left). However, doing so may force us to delete

a job in OP T ′ that is too valuable (as we would have to delete jobs that overlap the

section of U that was snapped inwards). So, we will handle U differently. Without loss of

generality, suppose we want to “snap” inward the left endpoint of U to align with Z(Qchild).

Doing so may leave some jobs outside the snapped range. We define the cost of snapping

as the total weight of jobs that were previously contained within the range but are no

longer completely contained within after snapping. If immediately snapping inward the left

endpoint to the nearest grid point of Z(Qchild) would cost at most 2ε
log2(n)

w(OP T (Q)), we do

that immediately. Otherwise, this snapping step would cost more than 2ε
log2(n)

w(OP T (Q)),

implying that there is a job that overlaps with the grid endpoint of Z(Qchild) to the right of

U ’s left endpoint (all other jobs we are forced to delete are strictly inside a slice of Z(Qchild)

and thus have total weight ≤ ε2

log2(n)
w(OP T (Qchild)) ≤ ε2

log2(n)
w(OP T (Q))) and has weight

of at least 2ε
log2(n)

w(OP T (Q))− ε2

log2(n)
w(OP T (Q)) ≥ ε

log2(n)
w(OP T (Q)). We mark that job

as “essential”.

Then, we look to the right of that essential job and examine the job that overlaps the next

grid endpoint to the right in Z(Qchild). If this job has weight at most 2ε
log2(n)

w(OP T (Q)), we

delete it and draw a boundary. Otherwise, we mark it as “essential” and continue (following
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Q

QL
Y

QR

YY

dense range

snap snap

Figure 4 This example illustrates why the snapping we perform has to be done with care. The

horizontal segments in this figure represent jobs. We show an initial dense range (outlined in

purple) with endpoints in Z(Q). With dashed vertical lines, we show where these endpoints are in

QL. Importantly, they are not aligned with Z(QL), i.e., the vertical dashed lines do not belong to

Z(QL). However, our structure requires that dense ranges align with Z(Qchild), so we must address

this. If we were to naively snap the endpoints of the dense range inwards to the endpoints of Z(QL),

then we would need to delete some jobs (these deleted jobs are colored in yellow and marked by

“Y”), while some other jobs would not be affected (like the remaining jobs in this example, those

colored in blue). While this naive snapping may be fine in some cases, it will incur significant loss in

cases in which the “Y” jobs have large weight. Notice that naively snapping outward to define a new

region corresponding to the purple one is not a solution neither, as this could cause the dense time

range to overlap with a previously selected sparse time range. Having overlapping ranges can cause

us to choose intersecting jobs, and thus an invalid solution. Thus, we detail a more comprehensive

manner of dealing with snapping.
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the same process). When we are done, we have a prefix of the dense time range that contains

some number of “essential” jobs and other jobs, and then a border at a grid endpoint of

Z(Qchild). The final “snapping” where we deleted jobs to add the split point had cost

≤ 2ε
log2(n)

w(OP T (Q)). In essence, these essential jobs are the collection of jobs that were

too valuable for us to delete them when we were undergoing the snapping process.

5.2.3.6 Using essential jobs.

We will assume this dense time range had a snapping budget and charge the aforementioned

final snapping cost to that. Now, we just need to find a way to use the time range prefix

with the essential jobs. We delete all jobs that are not essential in this time range with

a similar argument as earlier, that such a job is completely contained in a grid slice with

total weight of jobs ≤ ε2

log2(N)
w(OP T (Q)) which is at most a factor of ε of an essential job

partially contained within the slice (and it is partially contained within at most two slices).

Then, we convert this time range of essential jobs (with potentially many such essential jobs)

into sparse time ranges in the same way as done previously during the “sparsifying regions”

step. We do so by grouping the jobs according their index modulo 1
ε , deleting the group

with least total weight, and drawing a border at the grid endpoint of Z(Qchild) contained

within the deleted jobs. Again, by our process we know all such essential jobs must contain

a grid endpoint. This creates sparse time ranges with endpoints in Z(Q) ∪ Z(Qchild) and

our dense time range has endpoints in Z(Qchild) so they are both valid.

5.2.3.7 Financing a snapping budget.

Finally, we need to show that we actually have a sufficient snapping budget. Consider our

dense time ranges. We may adjust their endpoints in other scenarios, but we only split dense

time ranges into more dense time ranges when they are a crossing range. As only one there

is only one crossing range at every cell Q, if we give the newly created range a snapping

budget of O( ε
log(n) w(OP T (Q))), then we do not lose more than O(εw(OP T )) in total. We

showed above that each dense range will use at most O( ε
log2(N)

w(OP T (Q))) of its snapping

budget at each level, so it will will use O( ε
log(n) w(OP T (Q))) in total and stay within its

allotted budget of O( ε
log(n) w(OP T (Q))) throughout.

5.2.3.8 Resolving leafs.

Finally, when we have a time range but it cannot be delegated to Qchild because Qchild does

not exist, note there is only possibly room for one job in the range (as by definition of the

decomposition of Q, no job starts or ends in this range). So we simply consider this range

as part of SP ARSE(Q).

This now concludes the proof by providing a way to convert OP T to a solution OP T ′

that obeys our structure and is a (1 + ε)-approximation of OP T . ◭

5.3 Efficiently Approximating Sparse Solutions

Now, we focus on designing an efficient algorithm for approximating optimal solution in a

sparse time range.

◮ Lemma 10. Given any contiguous time range R and an integer K, consider an optimal

solution OP T (R, K) in R containing at most K jobs and ignoring jobs with weight less than
ε/n · wmax. Then, there is an algorithm that in R finds a (1 + ε)-approximate solution to

OP T (R, K) in O
(

K log(n) log2(K/ε)
ε2

)

time and with at most O
(

K log(K/ε)
ε

)

jobs.
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Proof. To prove this claim, we use a dynamic programming approach where our state is

the total weight of jobs selected so far. The dynamic programming table earliest contains

for state X , earliest[X ], the earliest/leftmost point in time for which the total weight

of X is achieved. If we implement this dynamic programming directly, it would require

space proportional to the value of solution (which equals the largest possible X). Our goal

is to avoid this time/space dependence. To that end, we design an approximate dynamic

program that requires only poly-logarithmic dependence on the value of an optimal solution.

We derive the following technical tool to enable this:

⊲ Claim 11. Let S be the set of all powers of (1 + ε/K) not exceeding W , i.e., S =

{(1 + ε/K)i | 0 ≤ i ≤ ⌊log1+ε/K W ⌋}. Consider an algorithm that supports the addition

of any K values (each being at least 1) where the sum of these K values is guaranteed to

not exceed W . The values are added one by one. After each addition step, the algorithm

maintains a running-total by rounding down the sum of the new value being added and the

previous rounded running-total to the nearest value in S. Then, the final running-total of

the algorithm is a (1 + ε) approximation of the true sum of those K values.

Proof. Consider the sequence of K values and thus K additions. Let OP T denote the

exact sum of the K values. Let SOL denote the running-total we achieve at the end of

our additions. Finally, let CURi denote the running-total as we do these additions at

the beginning of stage i, which must be in S at the end of every stage. We prove that

SOL ≥ (1 − ε)OP T and thus SOL is a (1 + ε) approximation of OP T . Initially, CUR0 = 0.

Each step, we add some value vi to CURi. This new value CUR
′
i = CURi + vi. Then,

we round CUR
′
i to the nearest power of (1 + ε/K) and denote this as CUR

′′
i . We call the

amount we lose by rounding down the loss ℓi = CUR
′
i − CUR

′′
i . For the next stage, we

denote CURi+1 = CUR
′′
i . Note that

ℓi

OP T
≤

ℓi

SOL
≤

ℓi

CUR
′′
i

=
CUR

′
i − CUR

′′
i

CUR
′′
i

≤
ε

K

or, otherwise, we would have rounded to a different power of (1+ε/K). Thus, ℓi ≤ OP T ( ε
K ).

Note that SOL = CURK and CURK +
∑

i ℓi = OP T . As such,

SOL = OP T −
∑

i

ℓi ≥ OP T − K
(

OP T
( ε

K

))

= OP T − ε · OP T = (1 − ε)OP T.

◭

Inspired by Theorem 11, we now define a set of states S as follows. Our states will

represent powers of (1 + ε/K) from 1 to Kw, and hence

|S| = O

(

log(Kw)

log(1 + ε/K)

)

= O

(

K log(Kw)

ε

)

.

Using this, we create a set of states S which corresponds to powers of (1 + ε/K) from 1

to Kw (and 0). We want to maintain for each of these states, approximately the smallest

prefix with at most K jobs where we could get total weight approximately equal to s ∈ S.

To do this, we loop over the states in increasing order of value. Suppose the current state

corresponds to having approximate weight s ∈ S and earliest[s] is the shortest prefix we

have that has approximate weight s. Then we loop over all rounded weights v ∈ {(1 + ε)i}.

There are O(log(w)/ε) such v. For each v, set V to be the value of s + v rounded down to the

nearest power of (1 + ε/K). Then, if the earliest ending time of a job with rounded weight
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v that starts after earliest[s] is less than earliest[V ], we update earliest[V ] to that

ending time. We can calculate the earliest ending time of any job, with a particular rounded

weight, starting after some specified time in O(log(n)) time by maintaining a balanced binary

search tree (as done in Section 4) for each of the O(log(w)/ε) rounded weights (to powers of

(1 + ε)). This negligibly adds O(log(n)) time to each update. In total, this solution runs in

O(K log(n) log(w) log(Kw)
ε2 ) time.

As we can ignore all jobs with weight less than ε/nwmax, then we can only focus on jobs

with weights in [ εwmax

n , wmax] and effectively modify w to be n/ε by dividing all weights

by εwmax

n . This enables us to use w = O(n/ε) in the above runtime bound. As such, this

algorithm runs in O(K log(n) log(n/ε) log(Kn/ε)
ε2 ) time.

To show the algorithm’s correctness, observe that since we always round down, we will

not overestimate the cost. Moreover, we show with that any set of K additions will be

within a factor of (1 + ε) from its true value.

◭

◮ Corollary 12. For our application, we let K = 1
ε . As such, we have a (1+ε)-approximation

algorithm of the minimum solution with at most 1
ε jobs that runs in time

O

(

K log(n) log(n/ε) log(Kn/ε)

ε2

)

= O

(

log(n) log2(n/ε)

ε3

)

= O

(

log3(n)

ε3

)

.

5.4 Dynamically Maintaining Z(Q) – Proof of Theorem 8

Now, we describe how to maintain Z(Q), to intelligently subdivide the cells with guarantees

as restated below:

◮ Lemma 13 (Dynamically maintaining Z(Q)). For any fixed positive integer X, it is possible

to return a set Z(Q) for any cell Q in the hierarchical decomposition in O(X · log3(n)) query

time. Moreover, the returned Z(Q) will satisfy the following properties:

For every Q, the optimal solution within each grid slice of Z(Q) is at most O(w(OP T (Q))/X);

as a reminder, we ignore jobs with weights less than w(OP T (Q)) · ε/n.

For every Q, |Z(Q)| = O(X · log2(n))

Proof. Suppose how all jobs are rounded down to powers of 2. Note how for a cell Q, let

wmax(Q) correspond to the reward of the job with the largest reward contained completely

within Q. Clearly, OP T (Q) ≥ wmax(Q). Moreover, by discarding all jobs with weight less

than ε/n · wmax(Q), we discard jobs with total weight at most ε · wmax(Q) ≤ ε · OP T (Q).

Accordingly, we focus just on jobs with weights in range [ε/n · wmax(Q), wmax(Q)]. As these

weights have been rounded to powers of 2, there are only ⌈log( wmax(Q)
ε/nwmax(Q) )⌉ = O(log(n/ε))

distinct remaining weights. Moreover, we assume that 1/ε ≤ n, as otherwise we can

obtain a better algorithm by simply rerunning the classical static algorithm for each update.

Altogether, this implies that it suffices to consider O(log(n)) distinct weights.

In our approach, we consider each distinct weight independently, enabling us to consider

a Zi(Q) for only jobs with rounded weight 2i. That is, Zi(Q) is computed with respect to

a set of jobs all having the same weight, which enables us to treat Zi(Q) computation as

if it was performed for the unweighted variant. At the end, we let Z(Q) to be the union

over the O(log(n)) different Zi(Q), giving us a Z(Q) with our desired guarantees. This

approach is particularly desirable, as we will show how for a particular fixed weight, i.e., we

consider the unweighted variant, we can use ideas very similar to those discussed in Section 4

to obtain the Zi(Q). Expanding our scope, for each rounded weight 2i, let us maintain a
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constant-factor approximation of the unweighted problem using the border-based algorithm

of Theorem 1. In other words, we run the algorithm of Theorem 1 with ε′ = O(1) such

that it has update time O(log(n)) and maintains an O(1)-approximation of the unweighted

interval scheduling problem.

Consider SOLi to be the set of points corresponding to the border-based O(1)-approximation

when only considering jobs of rounded weight 2i. In particular, SOLi contains all start/endpoints

of the selected jobs by the approximation, as well as all borders. SOLi[L, R] contains all

points in SOLi within [L, R]. We define OP T ([L, R], i) as the optimal number of jobs

one can schedule when only considering jobs with rounded weights 2i when only considering

jobs fully contained within [L, R].

⊲ Claim 14. For all i, L, R, it holds that: OP T ([L, R], i) ≤ |SOLi[L, R]|

Proof. Recall that the border-based approximation algorithm maintains a set of borders

and finds the optimal solution within each border chunk. The optimal solution within is

calculated by using the greedy earliest-ending algorithm. In general, consider any job J .

This job J must contain an endpoint of a job in the approximately chosen solution, or it

must contain a border. If this were not the case, there are only two possibilities: (i) J is

completely contained within a job chosen by the approximate solution, or (ii) J does not

intersect any job chosen by the approximate solution. For case (i): this is impossible as the

greedy earliest-ending algorithm would not have chosen the job that completely contains

J . For case (ii): this is impossible because J could be added to the solution within the

corresponding border chunk, and this is impossible because the solution within each border

chunk is optimal. As each job J must contain a point of SOLi[L, R], it must hold that

OP T ([L, R], i) ≤ |SOLi[L, R]|. ◭

Also note a similar bound in the opposing direction:

⊲ Claim 15. For all i, L, R it holds that: |SOLi[L, R]| ≤ 3 · OP T ([L, R], i) + 3

Proof. From SOLi[L, R], ignore the at most two points corresponding to endpoints of jobs

that are only partially within [L, R], and ignore the first remaining point if it corresponds to

a border (for a total of ignoring at most 3 points). Of the remaining points in SOLi[L, R],

they all correspond to endpoints of jobs fully within [L, R], or are a border following such a

job. Note how the number of these jobs with points corresponding to them in SOLi[L, R]

must be at most OP T ([L, R], i) by definition. Accordingly, we will charge the two points

from each job (and its associated border if there is one) to a different job corresponding

from OP T ([L, R], i), for a total of at most 3 points of SOLi[L, R] being charged per job in

OP T ([L, R], i). ◭

All SOLi can be maintained with update time O(log(n)) because we only update one

unweighted O(1)-approximation per job insertion or deletion. We compute each Zi(Q) for

a cell Q corresponding to time range [L, R], by taking O(X log(n)) quantiles of SOLi[L, R].

Each of these Zi(Q) can be achieved with O(X log(n)) walks down a balanced binary search

tree, resulting in O(X log2(n)) time. We define Z(Q) as the union of the O(log(n)) different

Zi(Q). In total, Z(Q) is obtained in O(X log3(n)) time and |Z(Q)| = O(X log2(n)).

Finally, the optimal solution within any grid slice, ignoring jobs with weight less than

ε · w(OP T (Q)), is upper-bounded by the union of the independent optimal solutions for

each rounded weight. Within each grid slice of any Zi(Q), the optimal solution of jobs

using weight 2i is upper-bounded by O(
2i|SOLi[lQ,rQ]|

X log(n) ) = O(
2iOP T ([lQ,rQ],i)

X log(n) ) = O(w(OP T (Q))
X·log(n) )

following from Theorem 14, taking X log(n) quantiles of SOLi[lQ, rQ] to form Zi(Q), and
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Theorem 15. Accordingly, bounding over the O(log(n)) different Zi(Q), the optimal solution

within each grid slice is at most O(w(OP T (Q))/X).

◭

5.5 Combining All Ingredients – Proof of Theorem 2

Now, we put this all together to get a cohesive solution that efficiently calculates an approximately

optimal solution of the desired structure. When we handle an insertion/deletion, we make an

update to the corresponding balanced binary search tree T . Recall that we use a balanced

binary search tree such as a red-black tree so that T has depth O(log(n)) and there are

O(log(n)) rotations per update. For the O(log(n)) cells Q corresponding to nodes in T

affected by rotations, we will recompute aspects of Q such as Z(Q) and all DP (Q, S). For

each such cell Q, we will compute a sparse solution corresponding to each segment formed

by considering all pairs of grid endpoints Z(Q) ∪ Z(QL) ∪ Z(QR) and a dense solution for

each segment S formed by pairs of endpoints Z(Q) denoted as DP (Q, S).

To compute all sparse solutions, we use O(|Z(Q)∪Z(QL)∪Z(QR)|2) calls to our algorithm

from Theorem 5 resulting in O(|Z(Q) ∪ Z(QL) ∪ Z(QR)|2( log3(n)
ε3 ) = O( log8(n)

ε4 ( log3(n)
ε3 )) =

O( log11(n)
ε7 ) running time. To obtain this complexity, we use the upper-bound |Z(Q)| =

O(X · log2(n)) from Theorem 8 and the fact that we let X = log2 n
ε2 in the beginning of

Section 5.2.3.

To compute all DP (Q, S), we build on the proof of Theorem 9. Namely, from the proof

of Theorem 9 a (1 + ε)-approximate solution is maintained by dividing S into sparse, i.e.,

SP ARSE(Q), and dense segments of QL and QR, i.e., RANGES(QL) and RANGES(QR).

We update our data structure from bottom to top. Hence, when we update DP (QL) and

DP (QR) it enables us to learn approximate optimal values gained from a set RANGES(QL)

and RANGES(QR). Thus, to calculate DP (Q, S) we consider an interval scheduling

instance where jobs start at a grid endpoint of S and end at a grid endpoint of S. In

this instance, jobs correspond to all the sparse segments of Z(Q), Z(QL), Z(QR) and all

the dense segments of Z(QL), Z(QR). We compute this dense segment answer for all dense

segments Z(Q) in O(|Z(Q)∪Z(QL)∪Z(QR)|3) = O
(

log12(n)
ε6

)

time, with a dynamic program

where the state is the starting and ending point of a segment and the transition tries all

potential grid endpoints to split the range at (or just uses the interval from the start to the

end). For each update, we update O(log(n)) cells affected by rotations by recomputing the

optimal sparse solutions for segments and the respective DP (Q, S). Finally, at the beginning

of each update, we use O(log(n)) calls to our algorithm for computing Z(Q) from Section 5.4

with X = log2(n)
ε2 in O(X · log3(n)) time for O( log5(n)

ε2 ) time for each cell. As such, our total

update time is O
(

log(n) · ( log11(n)
ε7 + log12(n)

ε6 + log6(n)
ε2 )

)

= O
(

log12(n)
ε7 + log13(n)

ε6

)

.

6 LCA for Interval Scheduling on a Single Machine

In this section we design local algorithms for interval scheduling, using techniques developed

in Section 4. While our previous algorithm is desirable in that it gives an efficient and simple

algorithm to efficiently partition the time dimension and maintain an approximate solution,

it requires bookkeeping (our partitioning relies on the past history of requests made before

the update). We design local algorithms for interval scheduling that do not require knowledge

of such bookkeeping. We need some way to probe information about “similar” intervals: as

such, we will assume probe-access to an oracle that gives information about other intervals.
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In contrast to the dynamic setting, our oracle has no dependence on ε and thus can be used

for any ε. An LCA in this setting will answer queries of the form LCA(S, ε), where we are

given a set of intervals S and approximation parameter ε, and on query interval I ∈ S, we

must answer whether I is in our (1+ε)-approximation in such a way that is consistent with all

other answers to queries to the LCA (with the same ε). Generally, we develop a partitioning

method that does not require much bookkeeping while attempting this, such that our notion

of leveraging locality extends beyond any particular computation model. While achieving

this, we assume our LCA is given probe-access to a successor oracle that answers what we

will call successor probes or successor(x): “What is the interval with the earliest endpoint,

of those that start after point x?” This is a natural question for obtaining information about

local intervals in this setting. In particular, given that an interval is in our solution and

ends at some point x, successor(x) would be the next interval chosen by the classic greedy

algorithm (for the unit-weight setting). Such an oracle could be implemented with O(log n)

time updates and queries (in a manner similar to how Tall is used in Theorem 1). Since our

LCA outputs different solutions for different choices of ε, there is a strong sense in which an

oracle that is independent of ε (such as the oracle we utilize) is unable to maintain nontrivial

bookkeeping (meaning the oracle could not give the LCA nontrivial information about the

solution). We focus on the unit-reward interval Maximum-IS problem (M = 1). Our

emphasis in doing so is not the specific problem instance or probe-model (e.g., in Section 7

we modify our probe-model and show an algorithm that works for multiple machines), but

instead emphasizing a method of partitioning over time that utilizes locality and limited

bookkeeping.

At a high level, our novel partitioning method can be viewed as a rule-based approach

that uses few probes to identify whether any given interval is in our solution. This approach

is oblivious to query order.

To illustrate how to employ successor probes, we will first design a probe-based algorithm,

denoted by Probe-based-Opt. Then, we will describe an exact global algorithm. We will

modify this (exact) global algorithm to an approximate global one by partitioning time

into independent regions that enable a sense of locality. Finally, we will introduce an LCA

motivated by the approximate global algorithm.

As mentioned before, suppose we have access to the successor probe or successor(x):

“What is the interval with the earliest endpoint, of those that start after point x?” Note

that access to such a probe can be provided in O(log(n)) update and probe time. Due to the

limited capabilities of probing without bookkeeping, our LCA results will require assuming a

bounded coordinate system as was requited for results in the prior work of [13]. In particular,

our LCA results assume that all jobs have length at least 1 and the starting/ending times

are withing [0, N ].

◮ Lemma 16. There exists an algorithm (that we call Probe-based-Opt) that gives an

optimal unweighted solution within some range [L, R] with |OP T | + 1 successor probes.

Proof. We now describe Probe-based-Opt algorithm.

It is a classic result that an optimal solution for unweighted interval Maximum-IS is

achieved by greedily choosing the interval with earliest ending point among those that

start after the last chosen ending point. We use such probes to easily simulate a greedy

algorithm for the optimal solution within range [L, R]. We start by making a successor

probe successor(L). If this interval has an ending point at most R, we let that interval be

the first one in our optimal solution. Otherwise, the optimal solution is of size zero. Now,

we calculate the optimal solution within the range [ending_point(successor(L)), R] in the
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same way. Thus, we repeatedly make successor probes at the ending point of the last interval

we have chosen. ◭

Moving forward, we prove an LCA in the unit-reward Maximum-IS setting:

◮ Theorem 3 (Unweighted LCA, single machine). Let J be a set of n jobs with length at least

1 and ending times upper-bounded by N . For any ε > 0, there exists a local computation

algorithm for (1 + ε)-approximate unweighted interval scheduling for J on a single machine

using O
(

log N
ε

)

probes.

Proof. Hierarchically Simulating Greedy. We aim to hierarchically simulate the greedy

algorithm so that it will be easier to adapt towards an LCA. To do this, we utilize a binary

tree over the integer points in [0, N ]. For a node Q in this binary tree, its left child is

denoted by QL and right child denoted by QR. We use Qmid to denote the midpoint of

the interval corresponding to Q. The intervals corresponding to QL and QR are such that

they divide Q exactly in half at its midpoint Qmid. We say that an interval J is assigned

to the node Q in the binary tree where J starts in the range contained by QL and ends

in the range contained by QR. An equivalent characterization is that J is assigned to the

largest node Q, i.e., Q corresponding to the largest interval, where J contains Qmid. As all

intervals assigned to a node Q share a common point Qmid, at most one of them can be in

our solution. In our hierarchical simulation, we decide at the node Q which (if any) of the

intervals assigned to it will be in our solution. To accomplish this, we define f(Q, earliest)

as a function that computes the interval scheduling problem within the range covered by Q,

assuming we cannot use any interval that starts before the time earliest. Our function f

will decide which intervals are in our solution, and it will return the end of the last interval

chosen in the range covered by Q. As such, calling f(Qroot, 0) corresponds to calculating

the global solution.

6.0.0.1 Description of Algorithm 1.

We now provide an algorithm for globally computing f(Q, earliest) as Algorithm 1. This

algorithm simulates the classic greedy approach for calculating the exact unweighted interval

Maximum-IS. Intuitively, this approach proposes a new way of visualizing and computing

this greedy process that will be helpful for obtaining fast LCA. We simulate the greedy on

intervals in QL to find the last ending time it will select before Qmid, then we determine if

the greedy chooses an interval Imid that contains Qmid, and finally we simulate the greedy

on intervals within QR.

◮ Lemma 17. Algorithm 1 is a global algorithm for calculating unweighted interval Maximum-

IS.

Proof. As this algorithm simulates the classic greedy approach, its correctness follows

immediately. ◭

6.0.0.2 An easier to locally simulate, approximate global process

We now modify Algorithm 1 to more easily lend itself to local computation, while weakening

our claim from an exact solution to (1+ε) approximation. This modified global process will

serve as an approximate solution that is easier for an LCA to simulate. We first describe

the main intuition behind our modification, and then provide more details on how to design

the algorithm (see Algorithm 2).



30 Faster Approximate Interval Scheduling

Algorithm 1: Global, exact algorithm for f(Q, earliest)

Input : Q : a tree node, corresponding to a time-range

earliest : earliest starting time for future intervals

Output : Finds/prints a set of non-overlapping intervals such that (1) each interval

is contained in Q, and (2) no interval starts before earliest

Returns ending time of last interval selected so far

1 after_left_earliest ← f(QL, earliest)

2 Imid ← interval after after_left_earliest containing Qmid with earliest end time

3 if Imid 6= ∅ and no interval is contained within Imid then

4 after_mid_earliest ← end(Imid)

5 Print Imid

6 else

7 after_mid_earliest ← after_left_earliest

8 after_right_earliest ← f(QR, after_mid_earliest)

9 return after_right_earliest

Consider a node Q (defined as in Algorithm 1) and its left and right children QL and

QR, respectively. If optimal solutions within QL and QR are both large, i.e., have size at

least 1/ε, we can afford to create a boundary at Qmid and not use any interval containing

Qmid (in which case we reduce the size of an optimum solution by at most one), “charge”

the potential interval intersecting this boundary point Qmid to the size of solutions in QL

and QR, and handle QL and QR independently. Theorem 4 implies that this approach leads

to (1+ε)-approximate scheduling. Being able to handle QL and QR independently is crucial

for designing our desired LCA – it enables us to explore only one of the two nodes to answer

whether a given interval I belongs to an approximate solution or not. Notice that if we have

not discarded intervals containing Qmid and if I belongs to the range defined by QR, then

we would need to learn an approximate solution of QL first before we could decide whether

I is an approximate solution of QR.

Otherwise, at least one of optimum solutions in QL and QR contains at most 1
ε intervals.

For cells that have at most 1
ε intervals we use Probe-based-Opt to compute their optimum

with O(1/ε) successor probes. On the node (if any) that has solution larger than 1/ε we

simply recurse. As we show in Theorem 19, this recursion is efficient enough even in the

context of LCA. We now provide more details on the algorithm itself.

6.0.0.3 Description of Algorithm 2.

We now define an algorithm (Algorithm 2) for globally computing an approximation of

f(Q, earliest). As the first step of the algorithm, we invoke Probe-based-Opt to identify

whether or not simulating the greedy within QL and QR will both have large solutions with

at least 1/ε intervals. (Notice that to obtain this information we do not need to compute the

entire solution in QL or QR, but only up to 1/ε many intervals.) If both have solutions of

size at least 1/ε, the algorithms draws a border at Qmid (hence ignoring any interval that

intersects Qmid) and simulates the approximate greedy on QL and QR independently by

invoking Algorithm 2 on QL and QR.

Otherwise, at least one of QL and QR has an optimal solution of size less than 1/ε.

Algorithm 2 simulates exact greedy on nodes that have an optimal solution of size at most
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1/ε, and invokes Algorithm 2 recursively on the node (if any) that has larger solution. In

addition, Algorithm 2 determines whether the greedy chooses an interval Imid that contains

Qmid, which is used to determine parameter earliest for the processing of QR.

Algorithm 2: Global, approximate algorithm for f(Q, earliest)

Input : Q : cell

earliest : earliest valid starting time for future intervals

ε : approximation parameter

Output : Returns ending time of last interval selected so far

Prints each interval in the solution exactly once

1 if OP T (QL) > 1/ε and OP T (QR) > 1/ε then

2 Draw a border at Qmid

/* In our LCA, we will need to invoke only one of these. */

3 Invoke f(QL, earliest) and f(QR, Qmid)

4 return f(QR, Qmid)

5 if OP T (QL) ≤ 1/ε then
/* See Theorem 16 to recall Probe-based-Opt. */

6 after_left_earliest ← Probe-based-Opt(QL, earliest)

7 Print intervals in Probe-based-Opt(QL, earliest)

8 else

9 after_left_earliest ← f(QL, earliest)

10 Imid ← interval after after_left_earliest containing Qmid with earliest end time

11 if Imid 6= ∅ and no interval is contained within Imid then

12 after_mid_earliest ← end(Imid)

13 Print Imid

14 else

15 after_mid_earliest ← after_left_earliest

16 if OP T (QR) ≤ 1/ε then

17 after_right_earliest ← Probe-based-Opt(QR, after_mid_earliest)

18 Print intervals in Probe-based-Opt(QR, after_mid_earliest)

19 else

20 after_right_earliest ← f(QR, after_mid_earliest)

21 return after_right_earliest

◮ Lemma 18. Algorithm 2 is a global algorithm for calculating a (1 + ε)-approximation of

unweighted interval Maximum-IS.

Proof. Note that Algorithm 2 will compute f(Q, earliest) exactly (by simulating the classic

greedy) other than when it draws borders so that it can compute answers for QL and QR

independently. However, we only draw borders when both the region the left and right of the

border has a solution with at least 1/ε intervals. As such, we maintain the requirements for

Theorem 4 to hold and can simulate the greedy exactly within borders which immediately

shows correctness for a (1 + ε)-approximation. ◭
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6.0.0.4 Designing an LCA

We design an LCA that simulates the approximate, global process of Algorithm 2. Note

that Algorithm 2 never recurses on both QL and QR unless we drew a border between them,

in which case the recursive calls are independent. Since we are now designing an LCA that

only determines whether a particular interval is in a solution, we can ignore one of the two

independent subproblems. So, we design an LCA that only needs to recurse down one child

each time and has desirable runtime. We design an algorithm for a slightly modified function

f(Q, earliest, I), where we compute whether I is in our solution.

6.0.0.5 Description of LCA Algorithm 3.

We now define an algorithm for locally computing an approximation of f(Q, earliest, I) in

Algorithm 3. This algorithm directly builds on Algorithm 2, whose description is provided

above. The key difference between Algorithm 3 and Algorithm 2 is that when Algorithm 3

draws a border, the algorithm does not calculate both f(QL, earliest, I) and f(QR, Qmid, I),

as they are independent and it suffices to compute the output of only one of those QL and

QR. If I ∈ QL, then Algorithm 3 invokes f(QL, earliest, I) as the output is independent

of f(QR, Qmid, I). Otherwise, if I ∈ QR or I /∈ (QL ∪ QR), then the algorithm invokes

f(QR, Qmid, I) as either I has already been decided on whether it will be in the output or

the algorithm only needs the result of f(QR, Qmid, I). As we show in the next claim, this

suffices to guarantee LCA complexity of O(log n/ε). The rest of algorithm Algorithm 3 is

the same as Algorithm 2.

◮ Lemma 19. Algorithm 3 is a (1+ε)-approximation LCA for unweighted interval Maximum-

IS using O( log N
ε ) successor probes.

Proof. Correctness follows from that our algorithm simulates Algorithm 2 which is a (1+ε)-

approximation by Theorem 18. To show that our LCA is efficient, we note that at each of

the log(N) levels we only invoke one instance of f for a child. Additionally, we only use

O(1
ε ) successor probes at each of these levels. We identify when OP T (QL) and OP T (QR)

are greater than 1/ε by using 1/ε + 1 steps of Probe-based-Opt. So in total, our LCA only

uses O( log(N)
ε ) successor probes. ◭

Thus, we have our desired LCA. ◭

Such an approach can use other probe-models that enable us to effectively simulate

successor probes. For example, we could consider a probe-model where we want to know all

intervals that intersect a certain point. Regardless, our goal is to emphasize this partitioning

method that enables more local algorithms due to its lack of bookkeeping.

7 Scheduling Algorithms on Multiple Machines with Partitioning

In the previous sections we focused on the case of a single machine, i.e., M = 1. In this

section, we extend our results to the setting where there are multiple machines on which to

schedule jobs (M > 1). In particular, we obtain the following results

◮ Theorem 20 (Unweighted dynamic, multiple machines). Let J be a set of n jobs. For

any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted

interval scheduling for J on M machines performing updates in O
(

M log(n)
ε

)

and queries

in O(log(n)) worst-case time.
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Algorithm 3: Local, approximate algorithm for f(Q, earliest)

Input : Q : cell

earliest : earliest valid starting time for future intervals

ε : approximation parameter

I : interval

Output : Returns ending time of last interval selected so far

Prints “Yes” once if I is in the desired solution within Q, else prints

nothing

1 if OP T (QL) > 1/ε and OP T (QR) > 1/ε then

2 Draw a border at Qmid

3 if I ∈ QL then return f(QL, earliest, I)

4 else return f(QR, Qmid, I)

5 if OP T (QL) ≤ 1/ε then
/* See Theorem 16 to recall Probe-based-Opt. */

6 after_left_earliest ← Probe-based-Opt(QL, earliest)

7 if I ∈ Probe-based-Opt(QL, earliest) solution then Print “Yes”

8 else

9 after_left_earliest ← f(QL, earliest)

10 Imid ← interval after after_left_earliest containing Qmid with earliest end time

11 if Imid 6= ∅ and no interval is contained within Imid then

12 after_mid_earliest ← end(Imid)

13 if Imid = I then Print “Yes”

14 else

15 after_mid_earliest ← after_left_earliest

16 if OP T (QR) ≤ 1/ε then

17 after_right_earliest ← Probe-based-Opt(QR, after_mid_earliest)

18 if I ∈ Probe-based-Opt(QL, after_mid_earliest) solution then Print

“Yes”

19 else

20 after_right_earliest ← f(QR, after_mid_earliest)

21 return after_right_earliest

◮ Theorem 21 (Unweighted LCA, multiple machines). Let J be a set of n jobs with their

ending times upper-bounded by N . For any ε > 0, there exists a local computation algorithm

for (1+ε)-approximate unweighted interval scheduling for J on M machines using O
(

M log(N)
ε

)

probes.

◮ Theorem 22 (Weighted dynamic, multiple machines). Let J be a set of n jobs. For

any ε > 0, there exists a fully dynamic algorithm for
(

MM

MM −(M−1)M (1 + ε)
)

-approximate2

weighted interval scheduling for J on M machines performing updates in O
(

Mw log(w) log(n)
ε3

)

and queries in O(log(n)) worst-case time.

2 Note that this goes to e
e−1

(1 + ε) ≈ 1.58(1 + ε) from below as M tends to ∞.
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We provide general reductions that show how to reduce interval scheduling on multiple

machines to the same task on a single machine. Our reductions incur only a small constant

factor loss in the approximation and are easy to simulate in the dynamic setting.

◮ Theorem 23. Given an oracle for computing an α-approximate unweighted interval scheduling

on a single machine, there exists a randomized algorithm for the same task on M machines

that yields an (2 − 1/M)α-approximation in expectation.

◮ Theorem 24. Given an oracle for computing an α-approximate weighted interval scheduling

on a single machine, there exists a randomized algorithm for the same task on M machines

that yields an e · α approximation in expectation.

Note that the approximation guarantees we obtain in Theorems 20 and 22 are stronger

than a direct application of Theorems 23 and 24 on Theorems 1 and 2. However, our

reductions importantly give rise to significantly faster dynamic algorithms for scheduling on

multiple machines, having no dependence on M . Concretely, Theorems 23 and 24 result

in algorithms with the same time complexity as Theorems 1 and 2 and only an increase in

expected approximation factor of (2 − 1/M) and e, respectively. The same running time is

obtained because Theorems 23 and 24 assign jobs to machines in negligible time, and then

each update or query just results in an update or query on the corresponding data structure

for one machine.

7.1 Overview

Now we detail our techniques for extending interval scheduling methods for one machine,

to scheduling for many machines. A key difficulty in extending such methods is that there

is an inherent dependency in the process of scheduling. Choosing to use (or to not use) a

job on one machine directly affects the optimal schedule for the remaining machines. To

overcome this, our work examines two approaches for scheduling. With the first approach,

we maintain approximation guarantees almost the same to those for a single-machine setting

at the expense of an O(M) factor slowdown. With the second approach, we achieve the same

time complexity as was achieved for a single machine at the expense of a slight multiplicative

decrease in approximation guarantees.

Partitioning over machines and time simultaneously. First, we explore partitioning

over time and machines simultaneously. At a high level, we do so by dynamically maintaining

a partition over time and computing an approximately optimal solution for all machines

together within each time range. However, as computing a solution for machines together

is a process with dependencies, our algorithm incurs at least an O(M) factor slowdown

compared to analogous approaches for a single machine.

Unweighted jobs. For scheduling unweighted jobs on multiple machines, there is a well-

known centralized greedy approach similar in style to the greedy for scheduling unweighted

jobs on one machine. As this greedy is efficient to simulate, we can employ an algorithm

and analysis similar to how we dynamically computed unweighted interval scheduling on one

machine. The notable difference is that we might need to charge M jobs containing a border

against our solutions in adjacent regions (as opposed to just charging 1). Accordingly, we

maintain borders where the optimal solution inside each region is size Θ(M
ε ).

Weighted jobs. Using similar approaches in the setting with weighted jobs faces to

challenges we must overcome. First, the well-known approach for computing this problem

in the centralized setting uses minimum-cost flow (as opposed to a greedy) which is not

clear how to efficiently simulate dynamically. To handle this, within borders we instead
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compute the weighted maximum independent set M times which will only lose a factor

of MM

MM −(M−1)M (upper-bounded by approximately 1.58) in approximation guarantee. To

compute the weighted maximum independent set, we use a dynamic programming approach.

Finally, we note that we might need to charge M jobs of reward w containing a border (Mw

total reward) against our solutions in adjacent regions. So, we maintain borders where the

optimal solution inside each region has total reward Θ(Mw
ε ).

Partitioning over machines then time. Our second approach avoids the slowdown of

the first, at the expense of a small multiplicative decrease in the approximation guarantee. To

do so, we first partition jobs over machines and then dynamically partition time to maintain

solutions for each machine independently. In both of our results, we partition jobs among

machines by assigning each job to a machine uniformly at random. Then, for each machine

we simply maintain an approximately optimal schedule among jobs that were randomly

assigned to it. This reduction immediately yields algorithms that are asymptotically just as

fast as scheduling with only one machine. We now outline our techniques for showing this

approach still maintains a strong approximation guarantee:

Unweighted jobs. For scheduling on multiple machines, we note a symmetry among

machines. If we can calculate the expected optimal solution of jobs assigned to a particular

machine, then the expected optimal solution after all job assignments is simply this quantity

multiplied by M . To show a lower-bound for the expected optimal solution among jobs

assigned to a particular machine, we recall that unweighted interval scheduling on one

machine can be solved with a simple greedy method where we consider jobs in increasing

order of their ending time and include the job if it does not intersect any previously included

jobs. Interestingly, our method simulates this greedy on one machine by considering all jobs

in an optimal solution for M machines, where we lazily do not yet realize whether or not

each job was assigned to this particular machine. Then, as we run our greedy, we realize

whether or not a job is assigned to this particular machine only when the greedy would

choose to include this job. If we realize that this job was not assigned to this machine,

then we continue the greedy method accordingly. Otherwise, we continue the greedy as if

we included this job, and we delete the at most M − 1 jobs with later ending times that

intersect this job (we obtain this M − 1 upper-bound because we know the set of all jobs

forms a valid solution on M machines). Whether or not a particular job is assigned to this

particular machine is a Bernoulli random variable with parameter 1
M , and we thus expect

to see M jobs that our greedy would select until we can actually use one on this machine.

In total, our expected proportion of used jobs (among those in a particular optimal solution

on M machines) for this machine is at least 1
M+(M−1) , so our global solution only loses a

factor of (2 − 1/M) in expectation by randomly assigning jobs to machines.

Weighted jobs. The weighted setting presents unique challenges that the unweighted

setting does not. For example, in our greedy-simulation approach for analyzing the reduction

in the unweighted setting, one can show how long jobs that contain many other jobs are less

likely to be included in the obtained solution for any machine. This is because, when we

delete the M −1 jobs with later ending times than some particular job we chose to include in

our solution, this will often delete the longer job that contains many jobs. This is problematic

in the weighted setting, as the longer job may provide extremely large reward. To handle

this, we provide a different analysis where every job in some optimal solution among M

machines, has at least constant probability of being in our solution after randomly assigning

jobs to machines. To accomplish this, we introduce the following procedure. First, generate

a uniformly random permutation and process all jobs (from the particular optimal solution

on M machines) in this order. When we process a job J , we include it on its assigned
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machine’s schedule if (i) there are no jobs intersecting J that are currently in J ’s assigned

machine’s schedule, or (ii) all jobs intersecting J that are currently in J ’s assigned machine’s

schedule are completely contained within J . Note that if J is selected because of the latter

criteria, we delete all jobs scheduled in its assigned machine that are completely contained

within J . With a detailed analysis, we show that no matter what the original optimal

schedule over M machines is, each job has probability at least 1
e of being included in the

final schedule by using our procedure. So, our global solution only loses a factor of e in

expectation by randomly assigning jobs to machines.

7.2 Unweighted Interval Scheduling on Multiple Machines

An efficient centralized/sequential algorithm to exactly calculate unweighted interval scheduling

has structure very similar to the greedy algorithm for unweighted interval Maximum-IS. We

use that to show that modifications of our results for single-machine setting lead to results

in the multiple-machine setup.

◮ Theorem 20 (Unweighted dynamic, multiple machines). Let J be a set of n jobs. For

any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted

interval scheduling for J on M machines performing updates in O
(

M log(n)
ε

)

and queries

in O(log(n)) worst-case time.

For the setting of local unweighted interval scheduling, we show the following.

◮ Theorem 21 (Unweighted LCA, multiple machines). Let J be a set of n jobs with their

ending times upper-bounded by N . For any ε > 0, there exists a local computation algorithm

for (1+ε)-approximate unweighted interval scheduling for J on M machines using O
(

M log(N)
ε

)

probes.

These theorems are proved in Sections 7.4 and 7.5.

7.3 Weighted Interval Scheduling on Multiple Machines

For the weighted interval scheduling problem, the well-known minimum-cost flow based

algorithm requires O(n2 log(n)) time. It is not clear how to efficiently simulate this approach

in the dynamic or local setting. Instead, we consider alternative approaches for partitioning

jobs over machines. When M = 1 for scheduling, the optimal solution has a structure

similar to that of Maximum-IS. [4] study a natural greedy approach for M > 1 which

consists of M times performing the following: in the i-th step take the (weighted) Maximum-

IS of the currently non-scheduled jobs; schedule these jobs on the machine i. (To be

precise, we note that [4] study this algorithm in a more general variant of weighted interval

scheduling where start/end times are flexible.)) Theorem 3.3 of [4] implies that using

an α-approximation for Maximum-IS M times, in the way as described above, gives a
(αM)M

(αM)M −(αM−1)M -approximation (and thus a αMM

MM −(M−1)M approximation) for weighted interval

scheduling. Hence, a natural question to ask is whether this approximation can be retained

even when using approximate algorithms and in settings other than centralized. We answer

this question affirmatively by showing the following results, whose proof is deferred to

Section 7.6.

◮ Theorem 22 (Weighted dynamic, multiple machines). Let J be a set of n jobs. For
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any ε > 0, there exists a fully dynamic algorithm for
(

MM

MM −(M−1)M (1 + ε)
)

-approximate3

weighted interval scheduling for J on M machines performing updates in O
(

Mw log(w) log(n)
ε3

)

and queries in O(log(n)) worst-case time.

This theorem details the result of the “straightforward extension” of Theorem 1 for

the weighted case, if we assume bounded ratios between the job rewards. In particular,

we assume all jobs have rewards within [1, w]. The scheduling algorithm guaranteed by the

theorem above is at least a factor of M slower than its Maximum-IS counterparts. Moreover,

the update time of the same algorithm is Ω(w), while the update time for dynamic weighted

interval Maximum-IS (see Theorem 2) has no dependence on w. The main reason for

such behavior of Maximum-IS-like algorithms is that they partition time in such a way

that each region contains a sparse subproblem, e.g., containing O(M/ε) jobs, that is easy to

solve. However, such regions must have size Ω(w) in the weighted interval scheduling variant.

To see that, consider a long job of reward w, with w small non-intersecting jobs of reward 1

inside it. The optimal scheduling for M = 2 machines would include all such jobs. However,

any partitioning of time that ensures there are O(M/ε) jobs within each partitioning (akin

to the ideas we developed in earlier sections) would discard the long job (removing half the

total reward). Thus, intuitively, any algorithm giving better than 2 approximation would

not be able to partition the time-axis as performed in earlier section, and hence all sparse

subproblems would have size Ω(w).

To alleviate this shortcoming, we employ a new partitioning scheme over machines to

achieve scheduling algorithms that run in o(M) and o(w) time. Instead of a sequential

process, we uniformly randomly assign each job to a machine. Then, a job is only allowed

to be scheduled on the machine it was assigned to. With these constraints, the interval

scheduling problem is equivalent to the Maximum-IS problem for each machine given

the intervals assigned to it. On the positive side, this results to a scheduling task that

computationally can be solved as efficiently as Maximum-IS. However, it is unclear what

is the approximation loss of this scheduling scheme. Surprisingly, we show that our scheme

incurs only the multiplicative factor of e in the approximation loss.

Before we proceed to analyzing the approximation guarantee of this scheme, as a warm-

up, we show that compared to Theorems 20 and 21 this approach yields an even more

efficient method for computing unweighted interval scheduling on multiples machines. This

efficiency comes at the expense of slightly worsening the approximation guarantee.

◮ Theorem 23. Given an oracle for computing an α-approximate unweighted interval scheduling

on a single machine, there exists a randomized algorithm for the same task on M machines

that yields an (2 − 1/M)α-approximation in expectation.

Our proof of Theorem 23 is given in Section 7.7. Our main contribution is a black-box

result for weighted interval scheduling on multiple machines, stated as follows.

◮ Theorem 24. Given an oracle for computing an α-approximate weighted interval scheduling

on a single machine, there exists a randomized algorithm for the same task on M machines

that yields an e · α approximation in expectation.

Proof. The algorithm begins by immediately assigning each job to one of the machines

uniformly at random. Then, we find an optimal solution on each machine with the jobs

3 Note that this goes to e
e−1

(1 + ε) ≈ 1.58(1 + ε) from below as M tends to ∞.
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that were randomly assigned to it, where this subproblem is the Maximum-IS problem.

Accordingly, this randomized algorithm achieves the same runtime as the oracle for Maximum-

IS.

Our hope is to show that the union of the optimal solutions for each machine (once we

have randomly assigned the jobs), is a high-quality approximation of the globally optimal

solution where jobs are not randomly constrained to particular machines. Such a result

follows more simply for the proof of Theorem 23 in Section 7.7, yet for the weighted case we

use a more interesting approach. Instead of directly arguing about the optimal solutions of

each Maximum-IS problem, we develop a global strategy that respects the random machine

constraints and guarantees that each job in OP T has at least a constant probability of being

in the final schedule.

Fix uniformly at random a permutation of the jobs of OP T , and consider the jobs of

OP T in this order. When we consider a job, we also reveal the machine it is assigned to by

OP T . Throughout this process, in parallel, we are building an alternative schedule as follows.

Suppose we are currently considering job J and suppose it has been assigned to machine P

by OP T . If all the jobs we have scheduled on P so far are either completely contained by

J or do not intersect J , then we include J in our schedule (deleting all scheduled jobs in P

that are contained in J). Otherwise, we do not schedule J .

Now, we characterize when J is in our schedule at the end of this process. If all jobs

completely containing J are assigned to another machine, and all jobs intersecting J that

appear earlier in the permutation are assigned to different machines (or are completely

contained in J), then J will be in our final schedule. As such, a lower bound for the

probability J is in our schedule, is the product of

(1) the probability of all jobs containing J being assigned to different machines, and

(2) the probability of all other jobs that intersect J (ignoring jobs J completely contains)

and have earlier permutation indices being assigned to different machines.

Suppose there are C jobs that completely contain J . Then, no other jobs on those C

machines can intersect J as they form a valid schedule. For the remaining M−1−C machines,

at most 2 jobs can intersect J that neither completely contain J nor are completely contained

within J (both jobs must contain an endpoint of J). Thus, the most pessimistic scenario

is that there are C machines in OP T containing a job that completely contains J and

M − 1 − C machines in OP T containing two jobs that partially intersect J . The probability

all C jobs completely containing J are assigned to different machines is (1 − 1
M )C . For

the 2(M − 1 − C) jobs that partially overlap with J , we take a probability measure over

all random permutations. Note that, as the permutation is chosen uniformly randomly,

J is equally likely to be at each position of the permutation considering only J and the

2(M − 1 − C) jobs. Moreover, if J is at position i, then the probability J is in the final

schedule is (1 − 1
M )i. Thus, the probability, all of the intersecting jobs with J are either

assigned to different machines or have later permutation positions is

∑

2(M−1−C)

i=0
(1−1/M)i

2(M−1−C)+1 .

This gives us a lower-bound where we pessimistically classify machines in the original solution

as containing machines that have a job completely containing J , and intersecting machines

that have two jobs partially intersecting J . For simplicity, we will denote the lower-bound

that C1 containing machines do not violate J as fcontain(C1) = (1 − 1
M )C1 and the lower-

bound that C2 intersecting machines do not violate J as fintersect(C2) =

∑2C2

i=0
(1−1/M)i

2C2+1 .

Combined, our lower bound that each job is in our schedule is fcontain(C)×fintersect(M −

1 − C), where C can take integer values in range 0 to M − 1.

⊲ Claim 25. The quantity fcontain(C)×fintersect(M −1−C) is minimized when C = M −1
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(i.e., all other machines have one job completely containing this job).

Proof. To show this, we show that fcontain(C) × fintersect(M − 1 − C) ≥ fcontain(M − 1) ×

fintersect(0). By factoring out fcontain(C), this is equivalent to showing fintersect(M − 1 −

C) ≥ fcontain(M − 1 − C). For simplicity, we set C′ = M − 1 − C and show fintersect(C
′) −

fcontain(C′) ≥ 0 for all integer C′ from 0 to M − 1. Additionally, we define x = (1 − 1
M ).

As M > 1, we note that x ∈ [ 1
2 , 1). Accordingly:

fintersect(C
′) − fcontain(C′)

=

∑2C′

i=0(1 − 1/M)i

2C′ + 1
− (1 − 1/M)C′

=

∑2C′

i=0 xi

2C′ + 1
− xC′

=

∑C′−1
i=0 (xC′−i + xC′+i − 2xC′

)

2C′ + 1

=

∑C′−1
i=0 (xC′−i × (1 + x2i − 2xi))

2C′ + 1

=

∑C′−1
i=0 (xC′−i × (xi − 1)2)

2C′ + 1

≥0

The last step is obtained because each summand is non-negative. This shows that

fintersect(C
′) ≥ fcontain(C′) for all valid integer C′ and thus fcontain(C)×fintersect(M−1−C)

is minimized when C = M − 1.

◭

Thus our lower bound of a job being in the resulting solution is always at least fcontain(M−

1) = (1 − 1
M )M−1 ≥ 1

e .

With this, we show that our generative process results in a schedule on average that

has weight at least |OP T |
e . This implies a α-approximate Maximum-IS algorithm yields an

eα-approximation ◭

As such, we explore the relationship between partitioning over time and machines to

solve the interval scheduling problem. To achieve a (1 + ε)-approximations for unweighted

and ( e
e−1 +ε)-approximations for weighted scheduling, we simultaneously partition over time

and machines at the expense of slower algorithms. However, if we tolerate (2 − 1/M + ε)-

approximations for unweighted scheduling or (e+ε)-approximations for weighted scheduling,

we randomly partition over machines then time to achieve comparable efficiency to the

Maximum-IS problem.

7.4 Proof of Theorem 20

We maintain a modified version of Invariant 1, where the algorithm maintains a set of borders

such that an optimal solution for within each two consecutive borders is of size between M/ε

and 2M/ε + M jobs. Direct modification of Theorem 4 shows that this maintains a (1 + ε)-

approximation (the size of solutions between consecutive borders is a factor of M larger than

in Theorem 1 because M jobs may intersect any border).

As a starting point, we consider the classic greedy algorithm for unweighted interval

scheduling on multiple machines [25], that we recall next:
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Among jobs that start after the earliest time any machine is free, find the one with the

earliest ending time.

Then, among machines that can take the job, schedule the job to the machine that

becomes free at the latest time.

This solution can easily be simulated in O(|OP T | log(n)) time by a method similar to Probe-

based-Opt. In our dynamic version, we handle insertions and deletions analogously to as in

Theorem 1. More specifically, when a job is added inside a region, we recompute an answer

for the region in O(M log(n)
ε ) time. If the solution becomes too large, we add a border after

the M
ε -th ending point of a job in the solution (this will invalidate at most M jobs, leaving

the left half with a [M/ε, M/ε+M ] size solution and the right half with a [M/ε+1, M/ε+M +1]

size solution). If deleting a job makes the recomputed solution too small, we combine with

an adjacent region (and if the region is now too large, we add a new border to split the

region like above).

With essentially the same approach as Theorem 1, we obtain O(M log(n)
ε ) updates and

O(log(n)) queries in worst-case time.

7.5 Proof of Theorem 21

First, we modify the successor oracle for this result. Consider an instance with two machines

and two jobs corresponding to time ranges [1, 4] and [2, 3]. No successor oracle probe will

ever return the first job because a successor oracle prove will never return a job completely

contained in another job. Thus the original successor oracle is not strong enough to

determine any particular constant-factor approximation to scheduling even with infinite

probes. To remedy this, we modify the successor oracle such that it ignores a set of jobs

given with the probe (it is not a concern that this set will be very large, as any probe-efficient

algorithm will not know many jobs to specify for the set) which enables us to simulate a

subroutine analogous to Probe-based-Opt.

With this new successor oracle, our algorithm and analysis is almost identical to Algorithm 3

proven in Theorem 3. Our key difference is that we now set the thresholds for drawing

borders to when OP T (QL) and OP T (QR) are larger than M/ε instead of 1/ε. With this,

we are maintaining the modified version of Invariant 1 from Theorem 20 that is shown to

result in a (1 + ε)-approximation. More concretely, to simulate this process we define a

function f(Q, first_empties) analogous to that of f(Q, first_empty) from Algorithm 3.

The primary differences are the aforementioned factor of M increase of the threshold for

drawing a border, our simulation of Probe-based-Opt is thus a factor of M slower, we

have M possible Imid, and we keep track of and return the times for all M machines (hence

first_empties instead of first_empty).

With essentially the same approach as Theorem 3, we obtain a local computation algorithm

for (1 + ε)-approximate unweighted interval scheduling on M machines using O(M log(N)
ε ).

7.6 Proof of Theorem 22

We outline an alternative approach to a dynamic algorithm for weighted independent set of

intervals based on Section 4. While a stronger result is presented in Section 5, that approach

does not easily lend itself well to repeatedly calculating Maximum-IS. We instead build off

the simpler result from Section 4.

We maintain a modified version of Invariant 1, where the reward of the solution we

calculate within consecutive borders is in range [Mw/ε, 8Mw/ε+2Mw]. We want to repeatedly

calculate a (1 + ε)-approximation of Maximum-IS within regions and use a similar but



S. Compton, S. Mitrović, R. Rubinfeld 41

different approach to Theorem 5. In contrast to the setting of Theorem 5, our invariant

bounds the total weight within consecutive borders as opposed to the number of jobs in

the optimal solution within consecutive borders. Consider a dynamic programming problem

where our state is the total weight of jobs and the corresponding answer is the shortest prefix

that can obtain jobs of this total weight. It is simpler for us if all weights are integers and

there are not many weights. We round all weights down to powers of (1 + ε), which will

not affect our approximation by more than a factor of (1 + ε). Then, we scale all weights

by 1/ε. Each job now has weight at least 1/ε, so rounding down to the nearest integer is

at most ε fraction of the weight and the remaining optimal solutions is still an (1 + O(ε))-

approximation. Now, we optimally calculate the Maximum-IS within each region given the

rounding. Let D be the number of distinct weights. The dynamic programming problem

we mentioned can be solved in O(log(n) · |OP T | · D) time as there are at most |OP T | states

we can reach, there are D possible transitions (trying the job with some given weight that

starts after the current prefix and ends earliest), and each transition uses a O(log(n)) query

to a balanced binary search tree. Due to our invariant and scaling weights, the sum of

|OP T | as we calculate Maximum-IS M times is at most O(Mw
ε2 ). By rounding the weights

down to powers of (1 + ε), D = O( log(w)
ε ). Thus, we recompute the answer for a region in

O(Mw log(n) log(w)
ε3 ).

Now, we handle insertions and deletions similarly to Theorem 1. This maintains a

(( MM

MM −(M−1)M )(1 + ε))-approximation, which is also a 4-approximation. This means the

solution the algorithm generates for any region is at least 1
4 the optimal solution for that

region. When we insert/delete intervals in a region, we recompute the answer for the region.

If the total weight of the region becomes too small, we repeatedly combine with adjacent

regions until it is not too small. At most four combinations must occur, as then the union

of the solutions we had found is at last a factor of 4 larger than the minimum solution size

for a region, so our 4-approximation must find it. If we add a job and the region solution

becomes too large, we note that the true solution size is at most 4(8Mw
ε + 2Mw). Whenever

a region’s solution is too large, we split at the smallest prefix that contains intervals of total

weight 4Mw
ε . The left region will have a solution of size ≥ 4Mw

ε and the right region will have

a solution of size ≥ (8Mw
ε + 2Mw) − (4Mw

ε − 2Mw) = 4Mw
ε . Thus, our 4-approximation will

find a solution of size at least Mw
ε for both and we will never classify either as too small. As

we separate at least 4Mw
ε of weight with every split, only O(1) splits will occur. With this, we

achieve an algorithm with O(Mw log(n) log(w)
ε3 ) update and O(log(n)) query time worst-case.

7.7 Proof of Theorem 23

The algorithm begins by assigning each job to one of the machines uniformly at random.

Then, finding an optimal solution on each machine is the Maximum-IS problem. Our

proof technique is to simultaneously simulate the classic greedy Maximum-IS algorithm and

the realization of each job’s assignment for a single machine. We show that the expected

Maximum-IS of jobs assigned to a machine is at least |OP T |
2M−1 .

Consider the set of jobs in an optimal solution OP T , and ignore all others. In the classic

greedy Maximum-IS algorithm, we consider jobs in an increasing order of their ending time

and use the job if it does not intersect any previously selected jobs. At a high-level, we will

simulate this algorithm on a particular machine, realizing whether or not a job was assigned

to this machine only as we need to. In particular, assume we have a set of jobs OP T that

are a valid scheduling on M machines and all start after the ending points of any jobs we

have previously selected. We consider this set in increasing order of ending time. When
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we consider a job I, we realize its assignment. If I is not assigned to the current machine

(probability 1 − 1/M), we cannot use it. If I is assigned to the current machine (probability

1/M), we use the job and delete all jobs in OP T that intersect it. Note that all other jobs

in OP T have an ending time that is at least the ending time of I (because we have not yet

considered them). Thus, to intersect I, they must start before I ends. This implies that all

the jobs we delete must contain the ending point of I. Since OP T is a valid schedule for

M machines (and no schedule on M machines can have > M jobs containing a point), we

only need to delete at most M − 1 other jobs. In either situation, the invariant on OP T is

maintained afterwards.

Thus, we write the following recurrence f(X) to denote a lower bound on the expected

size of the Maximum-IS given |OP T | = X :

f(X) ≥ (1 − 1/M)f(X − 1) + 1/M(f(X − M) + 1).

For simplicity of notation, we assume that f(X) = 0 for X ≤ 0.

◮ Lemma 26. It holds that f(X) ≥ X
2M−1 .

Proof. First, we show the claim when X ≤ M . We have the following chain of inequalities:

(

1 −
1

M

)

f(X − 1) +
1

M
(f(X − M) + 1)

≥

(

1 −
1

M

)

X − 1

2M − 1
+

1

M
(0 + 1)

=
X − 1

2M − 1
−

X − 1

(2M − 1)M
+

1

M

=
M(X − 1) − (X − 1) + (2M − 1)

M(2M − 1)

=
Mx + M − x

M(2M − 1)

≥
Mx

M(2M − 1)

=
X

2M − 1
.

Next, we show the claim when X > M :
(

1 −
1

M

)

f(X − 1) +
1

M
(f(X − M) + 1)

≥

(

1 −
1

M

)

X − 1

2M − 1
+

1

M

(

X − M

2M − 1
+ 1

)

=
Mx

M(2M − 1)

=
X

2M − 1
.

◭

Thus, we have that f(|OP T |) ≥ |OP T |
2M−1 . As all machines are identical, the expected value

of the schedule is the sum of their expected Maximum-IS. Thus, the expected optimal

schedule has size M|OP T |
2M−1 . Using an α-approximation for each of these Maximum-IS

subproblems yields a (2 − 1/M)α-approximation, as advertised.
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Note that this bound is tight as n approaches infinity. Consider an instance with n

jobs, where job i starts at time i and ends at time i + M . If we simulate the classic greedy

algorithm for Maximum-IS on a machine, it will see M jobs in expectation until it sees one

that is assigned to it (expectation of a Bernoulli random variable). To use this interval, the

M −1 jobs after it cannot be used (they all intersect). Thus, for every job in the solution, in

expectation the machine needed to throw away 2M − 2 other jobs and thus as n approaches

infinity the expected schedule size approaches M
2M−1 .
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