2012.15002v5 [cs.DS] 23 Feb 2023

arxiv

New Partitioning Techniques and Faster
Algorithms for Approximate Interval Scheduling

Spencer Compton
Stanford University
comptons@stanford.edu

Slobodan Mitrovié
UC Davis

smitrovicQucdavis.edu

Ronitt Rubinfeld
MIT, CSAIL

ronitt@csail.mit.edu

— Abstract

Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial

optimization. We develop a set of techniques for partitioning and grouping jobs based on their
starting and ending times, that enable us to view an instance of interval scheduling on many jobs
as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating
these techniques in dynamic and local settings of computation leads to several new results.

For (1 + ¢)-approximation of job scheduling of n jobs on a single machine, we develop a fully
dynamic algorithm with O(leen/c) update and O(logn) query worst-case time. Further, we design
a local computation algorithm that uses only O(l°g N/c) queries when all jobs are length at least
1 and have starting/ending times within [0, N]. Our techniques are also applicable in a setting
where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm
whose worst-case update and query time are poly(logn, é) Equivalently, this is the first algorithm
that maintains a (14 ¢)-approximation of the maximum independent set of a collection of weighted
intervals in poly(logn, %) time updates/queries. This is an exponential improvement in 1/e over the
running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while
also removing all dependence on the values of the jobs’ starting/ending times and rewards, as well
as removing the need for any randomness.

We also extend our approaches for interval scheduling on a single machine to examine the setting

with M machines.

1 Introduction

Job scheduling is a fundamental task in optimization, with applications ranging from resource
management in computing [22, 23] to operating transportation systems [15]. Given a
collection of machines and a set of jobs (or tasks) to be processed, the goal of job scheduling
is to assign those jobs to the machines while respecting certain constraints. Constraints set
on jobs may significantly vary. In some cases a job has to be scheduled, but the starting time
of its processing is not pre-specified. In other scenarios a job can only be scheduled at a given
time, but there is a flexibility on whether to process the job or not. Frequent objectives for
this task can include either maximizing the number of scheduled jobs or minimizing needed
time to process all the given jobs.

An important variant of job scheduling is the task of interval scheduling: here each job
has a specified starting time and its length, but a job is not required to be scheduled. Given
M machines, the goal is to schedule as many jobs as possible. More generally, each job is also
assigned a reward or weight, which can be thought of as a payment received for processing
the given job. If a job is not processed, the payment is zero, i.e., there is no penalty. We
refer to this variant as weighted interval scheduling. This problem in a natural way captures
real-life scenarios. For instance, consider an assignment of crew members to flights, where

http://arxiv.org/abs/2012.15002v5
mailto:comptons@stanford.edu
mailto:smitrovic@ucdavis.edu
mailto:ronitt@csail.mit.edu

Faster Approximate Interval Scheduling

our goal is to assign (the minimum possible) crews to the specified flights. In the context of
interval scheduling, flights can be seen as jobs and the crew members as machines [15, 18].
Interval scheduling also has applications in geometrical tasks — it can be see as a task of
finding a collection of non-overlapping geometric objects. In this context, its prominent
applications are in VLSI design [14] and map labeling [1, 26].

The aforementioned scenarios are executed in different computational settings. For
instance, some use-cases are dynamic in nature, e.g., a flight gets cancelled. Then, in
certain cases we have to make online decisions, e.g., a customer must know immediately
whether we are able to accept its request or not. While in some applications there might
be so many requests that we would like to design extremely fast ways of deciding whether a
given request/job can be scheduled or not, e.g., providing an immediate response to a user
submitting a job for execution in a cloud. In this work, our aim is to develop methods for
interval scheduling that can be turned into efficient algorithms across many computational
settings:

Can we design unified techniques for approximating interval scheduling very fast?

In this paper we develop fast algorithms for the dynamic and local settings of computation.
We also give a randomized black-box approach that reduces the task of interval scheduling
on multiple machines to that of interval scheduling on a single machine by paying only
2—1/M in the approximation factor for unweighted jobs, where M is the number of machines,
and e in approximation factor for weighted jobs. A common theme in our algorithms is
partitioning jobs over dimensions (time and machines). It is well studied in the dynamic
setting how to partition the time dimension to enable fast updates. It is also studied how
to partition over the machines to enable strong approximation ratios for multiple-machine
scheduling problems. We design new partitioning methods for the time dimension (starting
and ending times of jobs), introduce a partitioning method over machines, and examine the
relationship of partitioning over the time dimension and machines simultaneously in order to
solve scheduling problems. We hope that, in addition to improving the best-known results,
our work provides a new level of simplicity and cohesiveness for this style of approach.

1.1 Computation Models

In our work, we focus on the following two models of computation.

Dynamic setting. Our algorithms for the fully dynamic setting design data structures that
maintain an approximately optimal solution to an instance of the interval scheduling problem
while supporting insertions and deletions of jobs/intervals. The data structures also support
queries of the maintained solution’s total weight and whether or not a particular interval is
used in the maintained solution.

Local computation algorithms (LCA). The LCA model was introduced by Rubinfeld et
al. [21] and Alon et al. [2]. In this setting, for a given job J we would like to output whether
J is scheduled or not, but we do not have a direct access to the entire list of input jobs.
Rather, the LCA is given access to an oracle that returns answers to questions of the form:
“What is the input job with the earliest ending time among those jobs that start after time x ?”
The goal of the LCA in this setting is to provide (yes/no) answers to user queries that ask
“Is job 4 scheduled?" (and, if applicable, “On which machine?”), in such a manner that all
answers should be consistent with the same valid solution, while using as few oracle-probes
as possible.

S. Compton, S. Mitrovi¢, R. Rubinfeld

1.2 Our Results

Our first result, given in Section 4, focuses on designing an efficient dynamic algorithm for
unweighted interval scheduling on a single machine. Prior to our work, the state-of-the-art
result for this problem was due to [5], who design an algorithm with O(lesn/e?) update and
query time. We provide an improvement in the dependence on €.

» Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For anye > 0,
there exists a fully dynamic algorithm for (1+¢)-approzimate unweighted interval scheduling
for J on a single machine performing updates in O (@) and queries in O(log(n)) worst-
case time.

Theorem 1 can be seen as a warm-up for our most challenging and technically involved
result, which is an algorithm for the dynamic weighted interval scheduling problem on a
single machine. We present our approach in detail in Section 5. As a function of 1/e, our
result constitutes an exponential improvement compared to the running times obtained in
[13]. We also remove all use of randomness, remove all dependence on the job starting/ending
times (previous work crucially used assumptions on the coordinates to bound the ratio of
jobs’ lengths by a parameter N), and remove all dependence on the value of the job rewards.

» Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For
any € > 0, there exists a fully dynamic algorithm for (1 + ¢)-approximate weighted interval
scheduling for J on a single machine performing updates and queries in worst-case time
T € poly(logn, %) The exact complexity of T is given by
loo!2 loo!3
o (e),

e’ b

1.2.1 Implications in Other Settings

Local Computation Algorithms. We show that the ideas we developed to obtain Theorem 1
can also be efficiently implemented in the local setting, as we explain in detail in Section 6
and prove the following claim. This is the first non-trivial local computation algorithm for
the interval scheduling problem.

» Theorem 3 (Unweighted LCA, single machine). Let [J be a set of n jobs with length at least
1 and ending times upper-bounded by N. For any € > 0, there exists a local computation
algorithm for (14 €)-approzimate unweighted interval scheduling for J on a single machine

using O (@) probes.

Multiple machines. By building on techniques we introduced to prove Theorems 1 and 3,
we show similar results in Section 7 in the case of interval scheduling on multiple machines
at the expense of slower updates. To the best of our knowledge, these results initiate a
study of dynamic and local interval scheduling in the general setting, i.e., in the setting of
maximizing the total reward of jobs scheduled on multiple machines.

1.3 Related Work

The closest prior work to ours is that of Henzinger et al. [13] and of Bhore et al. [5]. [13]
studies (1+¢)-approximate dynamic interval scheduling for one machine in both the weighted

Faster Approximate Interval Scheduling

and unweighted setting. Unlike our main result in Theorem 2, they assume jobs have rewards
within [1, W], assume jobs have length at least 1, and assume all jobs start/end within times
[0, N]. They obtain randomized algorithms with O(exp(1/e)log®n - log? N) update time
for the unweighted and O(exp(1/e)log®n - log® N - log W) update time for the weighted
case. They cast interval scheduling as the problem of finding a maximum independent set
among a set of intervals lying on the z-axis. The authors extend this setting to multiple
dimensions and design algorithms for approximating maximum independent set among a set
of d-dimensional hypercubes, achieving a (1 + ¢)2%-approximation in the unweighted and a
(4 + £)2%-approximation in the weighted regime.

The authors of [5] primarily focus on the unweighted case of approximating maximum
independent set of a set of cubes. For the 1-dimensional case, which equals interval scheduling
on one machine, they obtain O(logn/e2) update time, which is slower by a factor of 1/e than
our approach. They also show that their approach generalizes to the d-dimensional case,
requiring poly logn amortized update time and providing O(4%) approximation.

[12] approach the problem of dynamically maintaining an exact solution to interval
scheduling on one or multiple machines. They attain a guarantee of O(nl/ 3) update time
for unweighted interval scheduling on M = 1 machine, and O(n'~'/M) for M > 2. Moreover,
they show an almost-linear time conditional hardness lower bound for dynamically maintaining
an exact solution to the weighted interval scheduling problem on even just M = 1 machine.
This further motivates work such as ours that dynamically maintains approximate solutions
for weighted interval scheduling.

[10] consider dynamic interval scheduling on multiple machines in the setting in which all
the jobs must be scheduled. The worst-case update time of their algorithm is O(log(n) + d),
where d refers to the depth of what they call idle intervals (depth meaning the maximal
number of intervals that contain a common point); they define an idle interval to be the
period of time in a schedule between two consecutive jobs in a given machine. The same
set of authors, in [11], study dynamic algorithms for the monotone case as well, in which
no interval completely contains another one. For this setup they obtain an algorithm with
O(log(n)) update and query time.

In the standard model of computing (i.e. one processor, static), there exists an O(n+m)
running time algorithm for (exactly) solving the unweighted interval scheduling problem on
a single machine with n jobs and integer coordinates bounded by m [9]. An algorithm with
running time independent of m is described in [25], where it is shown how to solve this
problem on M machines in O(nlog(n)) time. An algorithm is designed in [3] for weighted
interval scheduling on M machines that runs in O(n?log(n)) time.

We refer a reader to [15] and references therein for additional applications of the interval
scheduling problem.

Other related work. There has also been a significant interest in job scheduling problems
in which our goal is to schedule all the given jobs across multiple machines, with the
objective to minimize the total scheduling time. Several variants have been studied, including
setups which allow preemptions, or setting where jobs have precedence constraints. We
refer a reader to [16, 8, 20, 24, 6, 19, 17] and references therein for more details on these
and additional variants of job scheduling. Beyond dynamic algorithms for approximating
maximum independent sets of intervals or hypercubes, [7] show results for geometric objects
such as disks, fat polygons, and higher-dimensional analogs. After we had published a
preprint of this work, [7] proved a result that captures Theorem 1 with a more general class
of fat objects.

S. Compton, S. Mitrovi¢, R. Rubinfeld

2 Overview of Our Techniques

Our primary goal is to present unified techniques for approximating scheduling problems
that can be turned into efficient algorithms for many settings. In this section, we discuss
key insights of our techniques.

In the problems our work tackles, partitioning the problem instance into mostly-independent,
manageable chunks is crucial. Doing so enables an LCA to determine information about a
job of interest without computing an entire schedule, or enables a dynamic data structure
to maintain a solution without restarting from scratch.

2.1 Unweighted Interval Scheduling — Partitioning Over Time
(Section 4)

For simplicity of presentation, we begin by examining our method for partitioning over
time for just the unweighted interval scheduling problem on one machine (i.e., M =1). In
particular, we first focus on doing so for the dynamic setting.

Recall that in this setting the primary motivation for partitioning over time, is to divide
the problem into independent, manageable chunks that can be utilized by a data structure
to quickly modify a solution while processing an update. In our work, we partition the time
dimension by maintaining a set of borders that divide time into some number of contiguous
regions. By doing so, we divide the problem into many independent regions, and we ignore
jobs that intersect multiple regions; equivalently, we ignore jobs that contain a border. Our
goal is then to dynamically maintain borders in a way such that we can quickly recompute the
optimal solution completely within some region, and that the suboptimality introduced by
these borders does not affect our solution much. In Section 4, we show that by maintaining
borders where the optimal solution inside each region, i.e., a time-range between two borders,
is of size ©(1), we can maintain a (1 + £)-approximation of an optimal solution as long as
we optimally compute the solution within each region.

Here, the underlying intuition is that because each region has a solution of size Q(%), we
can charge any suboptimality caused by a border against the selected jobs in an adjacent
region. Likewise, because each region’s solution has size O(é), we are able to recompute
the optimal solution within some region quickly using a balanced binary search tree. We
dynamically maintain borders satisfying our desired properties by adding a new border when
a region becomes too large, or merging with an adjacent region when a region becomes
too small. As only O(1) regions will require any modification when processing an update,
this method of partitioning time, while simple, enables us to improve the fastest known
update/query time to O(log(n)/e). 1 In Section 2.2 we build on these ideas to design an
algorithm for the weighted interval scheduling problem.

2.2 Weighted Interval Scheduling (Section 5)

In our most technically involved result, we design the first deterministic (1+¢) approximation
algorithm for weighted interval scheduling that runs in poly(logn, %) time. In this section

! The main advantage of this techniques is that it leads to worst-case O(log (n)/e) update time, as
opposed to only an amortized one. We point out that it is not difficult to obtain such amortized
guarantee in the following way: after each € - OPT many updates, recompute the optimum solution
from scratch. Given access to the balanced binary tree structure described above, this re-computation
can be done in O(OPT -logn) time.

Faster Approximate Interval Scheduling

we give an outline of our techniques and discuss key insights. For full details we refer a
reader to Section 5.

2.2.1 Job data structure (Section 5.2.1)

Let £ be the set of all the endpoints of given jobs, i.e., £ contains s; and f; for each job
[si, fi]. We build a hierarchical data structure over £ as follows. This structure is organized
as a binary search tree T'. Each node @ of T' contains value KEY(Q) € &, with “1-1” mapping
between £ and the nodes of T'. Each node @ is responsible for a time range. The root of T,
that we denote by Qo0t, is responsible for the entire time range (—o0, c0). Each node @ has
at most two children, that we denote by Q1 and Qr. If @ is responsible for the time range
[X,Y], then @, is responsible for [X,KEY(Q)], while @ is responsible for [KEY(Q),Y].

Jobs are then assigned to nodes, where a job J is assigned to every node @ such that J
is contained within the @’s responsible time range.

—00 0.¢]

Figure 1 Visual example for hierarchical decomposition. Consider we are given jobs with the
following ranges of (1,5), (2, 10), (7,20), (4,5). On the left is T', a balanced binary search tree over
the set of all s; and f;. On the right is the hierarchical decomposition that corresponds to 7T'. That
is, in each row, the intervals on the right correspond to the [lg,rq] for the nodes on the left. For
instance, in the third row, (—oo, 2] corresponds to the node Q with KEY (Q) = 1.

2.2.2 Organizing computation (Section 5.2)

We now outline how the structure 7" is used in computation. As a reminder, our main goal
is to compute a (14 ¢)-approximate weighted interval scheduling. This task is performed by
requesting @0t to solve the problem for the range (—o0, c0). However, instead of computing
the answer for the entire range (—o0, 00) directly, Q,oot partitions the range (—oo, c0) into:
a number of ranges over which it is relatively easy to compute approximate solutions,
such ones are called sparse, and
the remaining ranges over which it is relatively hard to compute approximate solutions
at the level of Qo0t-
These hard-to-approximate ranges are deferred to the children of @Q,,0:, and are hard to
approximate because any near-optimal solution for the range contains many jobs. On the
other hand, solutions in sparse ranges are of size O(1/¢). As we discuss later, approximate
optimal solutions within sparse ranges can be computed very efficiently; for details, see the
paragraph Approzimate dynamic programming below.

S. Compton, S. Mitrovi¢, R. Rubinfeld

In general, a child Q¢ of Qroor might receive multiple ranges from Q,.,o¢ for which it is
asked to find an approximately optimal solution. ()¢ performs computation in the same
manner as Qro0¢ did — the cell Q¢ partitions each range it receives into “easy” and “hard”
to compute subranges. The first type of subranges is computed by Q¢, while the second
type if deferred to the children of Q¢. Here, “hard” ranges are akin to nodes having large
solutions in our description of Algorithm 2 in Section 2.3. The same as in Section 2.3, these
“hard” ranges have large weight and allow for drawing a boundary and hence dividing a range
into two or more independent ranges. We now discuss how the partitioning into ranges is
undertaken.

2.2.3 Auxiliary data structure (Section 5.2.2)

)

and “hard” ranges at the level of a node @, we design an
auxiliary data structure, which relates to a rough approximation of the problem. This
structure, called Z(Q), maintains a set of points (we call these points grid endpoints) that
partition Q) into slices of time. We use slice to refer to a time range between two consecutive
points of Z(Q). Recall how for unweighted interval scheduling, we maintained a set of
borders and ignored a job that crossed any border. In the weighted version, we will instead
use Z(Q) as a set of partitions from which we will use some subset to divide time. Our
method of designing Z(Q) reduces the task of finding a partitioning over time Z(Q) within
a cell for the (1 + €)-approximate weighted interval scheduling problem to finding multiple
partitionings for the (1 4 ¢)-approximate unweighted problem.

To divide a range into “easy’

It is instructive to think of Z(Q) in the following way. First, we view weighted interval
scheduling as O(logn) independent instances of unweighted interval scheduling — instance
i contains the jobs having weights in the interval (Wmaz(Q)/27, Winax(Q)/2Y]. Then, for
each unweighted instance we compute borders as described in Section 2.1. Z(Q) constitutes
a subset of the union of those borders across all unweighted instances. We point out that
the actual definition of Z(Q) contains some additional points that are needed for technical
reasons, but in this section we will adopt this simplified view. In particular, as we will see,
Z(Q) is designed such that the optimal solution within each slice has small total reward
compared to the optimal solution over the entirety of (). This enables us to partition the
main problem into subproblems such that the suboptimality of discretizing the time towards
slices, that we call snapping, is negligible.

However, a priori, it is not even clear that such structure Z(Q) exists. So, one of the
primary goals in our analysis is to show that there exists a near-optimal solution of a desirable
structure that can be captured by Z(Q). The main challenge here is to detect/localize
sparse and dense ranges efficiently and in a way that yields a fast dynamic algorithm. As
an oversimplification, we define a solution as having nearly-optimal sparse structure if it can
be generated with roughly the following process:

Each cell @ receives a set of disjoint time ranges for which it is supposed to compute
an approximately optimal solution using jobs assigned to @ or its descendants. Each
received time range must have starting and ending time in Z(Q).

For each time range R that @ receives, the algorithm partitions R into disjoint time
ranges of three types: sparse time ranges, time ranges to be sent to Q)1 for processing,
and time ranges to be sent to Qg for processing. In particular, this means that subranges
of R are deferred to the children of @) for processing.

For every sparse time range, () computes an optimal solution using at most 1/ jobs.

Faster Approximate Interval Scheduling

The union of the reward/solution of all sparse time ranges on all levels must be a (1 +¢)-
approximation of the globally optimal solution without any structural requirements.

Moreover, and crucial for obtaining small running time per update, we develop a charging
method that enable us to partition each cell with only |Z(Q)| = poly(!/e,log(n)) points and
still have the property that it contains a (1 + ¢)-approximately optimal solution with nearly-
optimal sparse structure. Then, we design an approximate dynamic programming approach
to efficiently compute near-optimal solutions for sparse ranges. Combined, this enables a
very efficient algorithm for weighted interval scheduling. On a high-level, Z(Q) enables us
to eventually decompose an entire solution into sparse regions.

2.2.4 The charging method (Section 5.2.3)

We now outline insights of our charging arguments that enable us to convert an optimal
solution OPT into a near-optimal solution OPT" with nearly-optimal sparse structure while
relaxing our partitioning to only need |Z(Q)| = poly(1/c,log(NN)) points. For a visual aid,

see Fig. 2.
received range R
/——\\
0 I s DS =
Y G B YY |G| Y GY Y
child subproblem sparse range child subproblem

Figure 2 Visual example for charging argument.

As outlined in our overview of the nearly-optimal sparse structure, each cell @ receives a
set of disjoint time ranges, with each time range having endpoints in Z(Q), and must split
them into three sets: sparse time ranges, time ranges for (J1, and time ranges for Qr. We
will now modify OPT by deleting some jobs. This new solution will be denoted by OPT’
and will have the following properties:

(1) OPT’ exhibits nearly-optimal sparse structure; and

(2) OPT'’ is obtained from OPT by deleting jobs of total reward at most O(e - w(OPT)).
We outline an example of one such time range a cell) may receive in Fig. 2, annotated
by “received range R”. We will color jobs in Fig. 2 to illustrate aspects of our charging
argument, but note that jobs do not actually have a color property beyond this illustration.
Since our structure only allows a cell () to use a job within its corresponding time range,
any relatively valuable job that crosses between @, and (Qr must be used now by @ putting
it in a sparse time range. One such valuable job in Fig. 2 is in blue marked by “B”. To have
“B” belong to a sparse range, we must divide the time range R somewhere, as otherwise our
solution in the received range will be dense. If we naively divide R at the partition of Z(Q)
to the left and right of the job “B”, we might be forced to delete some valuable jobs; such
jobs are pictured in green and marked by “G”. Instead, we expand the division outwards in
a more nuanced manner. Namely, we keep expanding outwards and looking at the job that
contains the next partition point (if any). If the job’s value exceeds a certain threshold, as

S. Compton, S. Mitrovi¢, R. Rubinfeld

those pictured as green and marked by “G” in Fig. 2, we continue expanding. Otherwise,
the job crossing a partition point is below a certain threshold, pictured as brown and not
marked in Fig. 2, and its deletion can be charged against the blue job. We delete such
brown jobs and the corresponding partition points, i.e., the vertical red lines crossing those
brown jobs, constitute the start and the end of the sparse range. By the end, we decided the
starting and ending time of the sparse range, and what remains inside are blue job(s), green
job(s), and yellow job(s) (also marked by “Y”). Note that yellow jobs must be completely
within a partition slice of Z(Q). Since we define Z(Q) such that the optimal total reward
within any grid slice is small, the yellow jobs have relatively small rewards compared to
the total reward of green and blue jobs that we know must be large. Accordingly, we can
delete the yellow jobs (to help make this time range’s solution sparse) and charge their cost
against a nearby green or blue job. In Fig. 2, an arrow from one job to another represents
a deleted job pointing towards the job who we charge its loss against. Finally, each sparse
range contains only green job(s) and blue job(s). If there are more than 1/c jobs in such a
sparse range, we employ a simple sparsifying step detailed in the full proof.

It remains to handle the time ranges of the received range that were not put in sparse
ranges. These will be time ranges that are sent to @ and Qr. In Fig. 2, these ranges are
outlined in yellow and annotated by “child subproblem”. However, the time ranges do not
necessarily align with Z(Qpr) or Z(Qgr) as is required by nearly-optimal sparse structure.
We need to adjust these ranges such that they align with Z(Qpr) or Z(Qg) so we can send
the ranges to the children. See Fig. 4 for intuition on why we cannot just immediately “snap”
these child subproblems to the partition points in Z(Qp) and Z(Qg). (We say that a range
R is snapped inward (outward) within cell @ if R is shrunk (extended) on both sides to
the closest points in Z(Q). Inward snapping is illustrated in Fig. 4.) Instead, we employ
a similar charging argument to deal with snapping. As an analog to how we expanded
outwards from the blue job for defining sparse ranges, we employ a charging argument
where we contract inwards from the endpoints of the child subproblem. In summary, these
charging arguments enabled us to show a solution of nearly-optimal sparse structure exists
even when only partitioning each cell @ with |Z(Q)| = poly(Y/e,log(n)) points.

2.2.5 Approximate dynamic programming (Section 5.3)

Now, we outline our key advance for more efficiently calculating the solution of nearly-
optimal sparse structure. This structure allows us to partition time into ranges with sparse
solutions. More formally, we are given a time range and we want to approximate an optimal
solution within that range that uses at most 1/e jobs. We outline an approximate dynamic
programming approach that only requires polynomial time dependence on !/e.

The relatively well-known dynamic programming approach for computing weighted interval
scheduling is to maintain a dynamic program where the state is a prefix range of time
and the output is the maximum total reward that can be obtained in that prefix range
of time. However, for our purposes, there are too many possibilities for prefix ranges of
time to consider. Instead, we invert the dynamic programming approach, and have a state
referencing some amount of reward, where the dynamic program returns the minimum length
prefix range of time in which one can obtain a given reward. Unfortunately, there are also
too many possible amounts of rewards. We observe that we do not actually need this exact
state, but only an approximation. In particular, we show that one can round this state
down to powers of (1 + &2) and hence significantly reduce the state-space. In Section 5.3,
we show how one can use this type of observation to quickly compute approximate dynamic
programming for a near-optimal sparse solution inside any time range.

10

Faster Approximate Interval Scheduling

2.2.6 Comparison with Prior Work

The closest to our work is the one of [13]. In terms of improvements, we achieve the
following: we remove the dependence on N and wp,ax in the running-time analysis; we obtain
a deterministic approach; and, we design an algorithm with poly(1/e,logn) update/query
time, which is exponentially faster in 1/e compared the prior work.

In this prior work, jobs are assumed to have length at least 1 and belong in the time-
interval [1, N]. To remove the dependence on N and such assumptions, we designed a new
way of bookkeeping jobs. Instead of using a complete binary tree on [1, N] to organize
jobs as done in the prior work, we employ binary balanced search tree on the endpoints of
jobs. A complete binary tree on [1, N] is oblivious to the density of jobs. On the other
hand, and intuitively, our approach allows for “instance-based” bookkeeping: the jobs are
in a natural way organized with respect to their density. Resorting to this approach incurs
significant technical challenges. Namely, the structure of solution our tree maintains is
hierarchically organized. However, each tree update, which requires node-rotations, breaks
this structure which requires additional care in efficiently maintaining approximate solution
after an update, as well as requiring an entirely different approach for maintaining a partitioning
of time Z(Q) within cells. Moreover, we show how to further leverage these ideas to obtain
a deterministic approach.

In our work, we use borders to define the so-called sparse and dense ranges. This idea
is inspired by the work of [13]. We emphasize, though, that one of our main contributions
and arguably the most technically involved component is showing how to algorithmically
employ those borders in running-time only polynomially dependent on 1/¢, while [13] require
exponential dependence on 1/e.

Our construction of auxiliary data structure Z(Q) enables us to boost an O(log(n))-
approximate solution into a decomposition enabling a (14-¢)-approximate solution is inspired
by the approach of [13]. They similarly develop Z(Q) to boost an instead O(1)-approximation
that fundamentally relies on the bounded coordinate assumptions of jobs being within [1, N]
and having length at least 1. Our different approach towards Z(Q) enables simplification of
some arguments as well as not relying on randomness, or on length or bounded coordinate
assumptions. Further, we note that the dynamic programming approach for sparse regions
that we develop is significantly faster than the enumerative approach used in the prior work,
that eventually enables us to obtain a poly(1/e) dependence in the running time. The way
we combine solutions over sparse regions is similar to the way it is done in the prior work.

2.3 Localizing the Time-Partitioning Method (Section 6)

We also show that this method of partitioning over time can be used to develop local
algorithms for interval scheduling. Here, we desire to answer queries about whether a
particular job is in our schedule. We hope to answer each of these queries consistently
(i.e., they all agree with some approximately optimal schedule) and in less time than it
would take to compute an entire schedule from scratch. Partitioning over time seems helpful
for this setting, because this would enable us to focus on just the region of the job being
queried. However, our previously mentioned method for maintaining borders does so in a
sequential manner that we can no longer afford to do in this model of computation. Instead,
we use a hierarchical approach to more easily compute the locations of borders that create
regions with solutions not too big or too small.

For simplicity, we again focus on the unweighted setting with only one machine. In the
standard greedy algorithm for computing unweighted interval scheduling on one machine,

S. Compton, S. Mitrovi¢, R. Rubinfeld

we repeatedly select the job successor(x): “What is the interval with the earliest endpoint,
of those that start after point x?” (where x is the endpoint of the previously chosen job). As
reading the entire problem instance would take longer than desired, an LCA requires some
method of probing for information about the instance. Our LCA utilizes such successor
probes to do so. For further motivation, see Section 6. We outline a three-step approach
towards designing an LCA that utilizes few probes:

Hierarchizing the greedy (Algorithm 1). Instead of just repeatedly using successor(x)
to compute the solution as the standard greedy does, we add hierarchical structure that
adds no immediate value but serves as a helpful stepping stone. Consider a binary search
tree (BST) like structure, where the root node corresponds to the entire time range [0, N].
Each node in the structure has a left-child and a right-child corresponding to the 1st and
the 2nd half, respectively, of that node’s range. Eventually, leaf nodes have no children
and correspond to a time range of length one unit. At a high-level, we add hierarchical
structure by considering jobs contained in some node’s left-child, then considering jobs that
go between the node’s left-child and right-child, and then considering jobs contained in the
node’s right-child. This produces the same result as the standard greedy, but we do so with
a hierarchical structure that will be easier to utilize.

Approzimating the hierarchical greedy (Algorithm 2). Now, we modify the hierarchical
greedy so that it is no longer exactly optimal but is instead an approximation. At first
this will seem strictly worse, but it will yield an algorithm that is easier to localize. When
processing each node, we will first check whether it is the case that both the left-child and
the right-child have optimal solutions of size > % A key observation here is that checking
whether a time range has an optimal solution of size > % can be done by making at most 1+%
successor probes (i.e., one does not necessarily need to compute the entire optimal solution
to check if it is larger than some relatively small threshold). If both the left-child and the
right-child would have optimal solutions of size > %, then we can afford to draw a border
at the midpoint of our current node and solve the left-child and right-child independently.
Jobs intersecting a border are ignored, and we charge the number of such ignored jobs, i.e.,
the number of drawn borders, to the size of solution in the corresponding left- and right-
child. Ultimately, we show that the addition of these borders makes our algorithm (1 + ¢)-
approximate. Moreover, and importantly, these borders introduce independence between
children with large solutions.

Localizing the approzimate, hierarchical greedy (Algorithm 3). Finally, we localize the
approximate, hierarchical greedy. To do so, we note that when some child of a node has
a small optimal solution, then we can get all the information we need from that child in
O(é) probes. As such, if a node has a child with a small optimal solution, we can make
the required probes from the small child and recurse to the large child. Otherwise, if both
children have large solutions, we can draw a border at the midpoint of the current node and
only need to recurse down the child which contains the job the LCA is being queried about.

With these insights, we have used our partitioning method over time for local algorithms

to produce an LCA only requiring O(@) successor probes.

3 Problem Setup

In the interval scheduling problem, we are given n jobs and M machines. With each job
j are associated two numbers s; and [; > 0, referring to “start” and “length” respectively,
meaning that the job j takes [; time to be processed and its processing can only start at
time s;. While prior work such as [13] used assumptions such as s; > 0,1; > 1 and have an

11

12

Faster Approximate Interval Scheduling

upper-bound N on s; +1;, we utilize such assumptions only in our LCA results of Section 6.
In addition, with each job j is associated weight/reward w; > 0, that refers to the reward
for processing the job j. The task of interval scheduling is to schedule jobs across machines
while maximizing the total reward and respecting that each of the M machines can process
at most one job at any point in time.

4 Dynamic Unweighted Interval Scheduling on a Single Machine

In this section we prove Theorem 1. As a reminder, Theorem 1 considers the case of interval
scheduling in which w; =1 for each j and M =1, i.e., the jobs have unit reward and there
is only a single machine at our disposal. This case can also be seen as a task of finding a
maximum independent set among intervals lying on the z-axis. The crux of our approach
is in designing an algorithm that maintains the following invariant:

> Invariant 1. The algorithm maintains a set of borders such that an optimal
solution schedules between 1/ and 2/ intervals within each two consecutive borders.

We will maintain this invariant unless the optimal solution has fewer than 1/ intervals,
in which case we are able to compute the solution from scratch in negligible time. We
aim for our algorithm to maintain Invariant 1 while keeping track of the optimal solution
between each pair of consecutive borders. The high level intuition for this is that if we do
not maintain too many borders, then our solution must be very good (our solution decreases
by size at most one every time we add a new border). Furthermore, if the optimal solution
within borders is small, it is likely easier for us to maintain said solutions. We prove that
this invariant enables a high-quality approximation:

» Lemma 4. A solution that maintains an optimal solution within consecutive pairs of a
set of borders, where the optimal solution within each pair of consecutive borders contains at
K+1

least K intervals, maintains a =5 -approrimation.

Proof. For our analysis, suppose there are implicit borders at —oo and +o00 so that all jobs
are within the range of borders. Consider an optimal solution OPT. We will now design a
K-approximate optimal solution OPT" as follows: given OPT, delete all intervals in OPT
that overlap a drawn border. Fix an interval J appearing in OPT but not in OPT". Assume
that J intersects the i-th border. Recall that between the (i —1)-st and the i-th border there
are at least K intervals in OPT’. Moreover, at most one interval from OPT intersects the

i-th border. Hence, to show that OPT’ is a %-approximation of OPT, we can charge
the removal of J to the intervals appearing between the (i — 1)-st and the i-th border in
OPT'. <

Not only does Invariant 1 enable high-quality solutions, but it also assists us in quickly
maintaining such a solution. We can maintain a data structure with O(@) updates and
O(log(n)) queries that moves the borders to maintain the invariant and thus maintains an
(1 + &)-approximation as implied by Theorem 4.

» Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For anye > 0,

there exists a fully dynamic algorithm for (14 ¢€)-approzimate unweighted interval scheduling

for J on a single machine performing updates in O (@) and queries in O(log(n)) worst-

case time.

Proof. Our goal now is to design an algorithm that maintains Invariant 1, which by Theorem 4
and for K = 1/e will result in a (1 4 &)-approximation of MAXIMUM-IS.

S. Compton, S. Mitrovi¢, R. Rubinfeld

On a high-level, our algorithm will maintain a set of borders. When compiling a solution
of intervals, the algorithm will not use any interval that contains any of the borders, but
proceed by computing an optimal solution between each two consecutive borders. The
union of those between-border solutions is the final solution. Moreover, we will maintain

12

the invariant that the optimal solution for every contiguous region is of size within [, Z).

In the rest, we show how to implement these steps in the claimed running time.

Maintained data-structures. Our algorithm maintains a balanced binary search tree Ty
of intervals sorted by their starting points. Each node of T, will also maintain the end-point
of the corresponding interval. It is well-known how to implement a balanced binary search
tree with O(log n) worst-case running time per insertion, deletion and search query. Using
such an implementation, the algorithm can in O(logn) time find the smallest ending-point
in a prefix/suffix on the intervals sorted by their starting-points. That is, in O(logn) time
we can find the interval that ends earliest, among those that start after a certain time.

In addition, the algorithm also maintains a balanced binary search tree Tiorders Of the
borders currently drawn.

Also, we will maintain one more balanced binary search tree Ty, that will store the
intervals that are in our current solution.

We will use that for any range with optimal solution of size S, we can make O(S) queries
to these data structures to obtain an optimal solution for the range in O(S - logn) time.

Update after an insertion. Upon insertion of an interval J, we add J to T,;. We make a
query to Thorders t0 check whether J overlaps a border. If it does, we need to do nothing; in
this case, we ignore J even if it belongs to an optimal solution. If it does not, we recompute
the optimal solution within the two borders adjacent to J. If after recomputing, the new
solution between the two borders is too large, i.e, it has at least % intervals, then draw/add
a border between the %—th and the (1 + %)-th of those intervals.

Update after a deletion. Upon deletion of an interval J, we delete J from Tyy. If J was not
in our solution, we do nothing else. Otherwise, we recompute the optimal solution within
the borders adjacent to J and modify Ty, accordingly. Let those borders be the i-th and
the (i 4+ 1)-st. If the new solution between borders ¢ and 7 + 1 now has size less than 1/« (it
would be size exactly 1/c), we delete an arbitrary one of the two borders (thus combining
this region with an adjacent region). Then, we recompute the optimal solution within the
(now larger) region J is in. If this results in a solution of size at least 2/e, we will need to
split the newly created region by adding a border. Before splitting, the solution will have
size upper-bounded by one more than the size of the solutions within the two regions before
combining them as an interval may have overlapped the now deleted border (one region
with size exactly % — 1 and the other upper-bounded by % —1). Thus, the solution has size
at in range [2/c,2). We can add a border between interval /= and /e + 1 of the optimal
solution, and will have a region with exactly !/e intervals and another with [1/e, 2/¢) intervals,
maintaining our invariant.

In all of these, the optimal solution for each region has size O(1/¢), so recomputing takes
O(log(n)/<) time.

For queries, we will have maintained T, in our updates such that it contains exactly
the intervals in our solution. So each query we just need to do a lookup to see if the interval
is in Tyo) in O(logn) time. <

13

14

Faster Approximate Interval Scheduling

This result improves the best-known time complexities [5, 13]. Unfortunately, it does
not immediately generalize well to the weighted variant. In Section 5, we show our more
technically-challenging result for the weighted variant.

5 Dynamic Weighted Interval Scheduling on a Single Machine

This section focuses on a more challenging setting in which jobs have non-uniform weights.
Non-uniform weights introduce difficulties for the approach mentioned in Section 4, as adding
a border (which entails ignoring all the jobs that cross that border) may now force us to
ignore a very valuable job. Straightforward extensions of this border-based approach require
at least a linear dependence on the ratio between job rewards (e.g., if all jobs have rewards
within [1, w], then straightforward extensions would require a linear dependence on w). This
is because an ignored job containing a border can have a reward of w (as opposed to just
1), requiring w/e reward inside the region to charge it against (as opposed to just 1/e).
In this work, we show how to perform this task in O(poly(log(n),1/s)) time, having no
such dependency on the rewards of the jobs or the starting/ending times. This improves
upon the best-known preexisting result of O(poly(log(n),log(N),log(w)) - exp(Y/e)) time
accomplished by the decomposition scheme designed in the work of Henzinger et al. [13],
which we compare with in Section 2.2.6. Both our algorithm and our analysis introduce
new ideas that enable us to design a dynamic algorithm with running time having only
polynomial dependence on 1/ and log(n), yielding an exponential improvement in terms
of /e over [13], and removing all dependence on N and w. Moreover, our algorithm is
deterministic (as opposed to randomized and a (1 + ¢)-approximation in expectation) and
requires no assumption on the lengths or coordinate values of the jobs ([13] assumes all
jobs are length at least 1 and all coordinates are within [0, N], where N affects the time
complexity).

As the first step we show that there exists a solution OPT”, which is a (14¢)-approximate
optimal solution, that has nearly-optimal sparse structure, similar to a structure used in [13].
We define properties of this structure in Section 5.2, although it is instructive to think of
this structure as of a set of non-overlapping time ranges such that:

(1) Within each time range there is an approximately optimal solution which contains a
small number of jobs (called sparse);

(2) The union of solutions across all the time ranges is (1 + £)-approximate; and

(3) There is an efficient algorithm to obtain these time ranges.

Effectively, this structure partitions time such that we get an approximately optimal solution

by computing sparse solutions within partitioned time ranges and ignoring jobs that are not

fully contained within one partitioned time range. To obtain the guarantees of such a set

of time ranges that can be obtained efficiently, we utilize a new hierarchical decomposition

based on a balanced binary search tree and employ novel charging arguments. This result

is described in detail in Section 5.2.

Once equipped with this structural result, we first design a dynamic programming
approach to compute an approximately optimal solution within one time range. Let w,qz
denote the maximal reward among all jobs currently in the instance. To obtain an algorithm
whose running time is proportional to the number of jobs in the solution for a time range, as
opposed to the length of that range, we “approximate” states that our dynamic programming
approach maintains, and ultimately obtain the following claim whose proof is deferred to
Section 5.3.

S. Compton, S. Mitrovi¢, R. Rubinfeld

» Lemma 5. Given any contiguous time range R and an integer K, consider an optimal
solution OPT (R, K) in R containing at most K jobs and ignoring jobs with weight less than
e/n + Wmaz. Then, there is an algorithm that in R finds a (1 + €)-approxzimate solution to

OPT(R,K) in O (%W) time and with at most O (M) jobs.

€

Observe that running time of the algorithm given by Theorem 5 has no dependence on
the length of R. Also observe that the algorithm possibly selects slightly more than K jobs
to obtain a (1 + ¢)-approximation of the best possible reward one could obtain by using at
most K jobs in R (i.e., OPT (R, K)).

Finally, in Section 5.5 we combine all these ingredients and prove the main theorem of
this section.

» Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For
any € > 0, there exists a fully dynamic algorithm for (1 + ¢)-approximate weighted interval
scheduling for J on a single machine performing updates and queries in worst-case time
T € poly(logn, %) The exact complexity of T is given by

O <1og12(n) N 1og13(n)) .

e’ b

5.1 Decomposition Overview

We utilize a hierarchical decomposition to organize time such that we may efficiently obtain
time ranges that satisfy the nearly-optimal sparse structure. This decomposition has two
levels of granularity. For the higher-level decomposition, we employ a decomposition similar
to that of a balanced binary search tree with O(log(n)) depth. Each cell @ in this balanced
binary search tree will correspond to a range of time. Further details on this hierarchical
decomposition are described in Section 5.2.1.

For the lower-level decomposition, we split each cell Q more finely. Formally, for a set of
grid endpoints Z(Q), we define a grid slice as follows.

» Definition 6 (Grid slice). Given a set of grid endpoints Z(Q) = {ri,72,...,7x—1} with
r; < riy1, we use grid slice to refer to an interval (r;,7i+1), for any 1 < i < X — 1. Note
that a grid slice between r; and r;+1 does not contain r; nor ri4.

We further discuss Z(Q) in Section 5.2.2. Importantly, Z(Q) is designed such that
the optimal solution entirely within any grid slice is upper-bounded to be relatively small
compared to the weight of the optimal solution within @, or w(OPT(Q)). This property
makes the grid endpoints Z(Q) a helpful tool in partitioning time. At a high level, Z(Q)
is used to define a set of segments that motivate dynamic programming states of the form
DP(Q,S), where each S corresponds to a segment between two grid endpoints of Z(Q), and
DP(Q,S) computes an approximately optimal sparse solution among schedules that can
only use jobs contained within the segment of time S. The key idea is that this dynamic
programming enables the partitioning of time into dense and sparse ranges. Solutions for
sparse ranges are computed immediately, while dense ranges are solved by children with
dynamic programming (by further dividing the dense range into more sparse and dense
ranges). We recall from Section 2.2.6 that [13] were first to design a two-level hierarchical
decomposition that computes DP(Q, S) to optimize over dense and sparse ranges. However,
we emphasize that our work utilizes entirely new approaches for our high-level hierarchical
decomposition into cells @, for our low-level decomposition of each cell into Z(Q), and for
our method of computing approximately optimal sparse solutions of DP(Q, S).

15

16

Faster Approximate Interval Scheduling

5.2 Solution of Nearly-Optimal Sparse Structure

To remove exponential dependence on /e and all dependence on N and w, we introduce a
new algorithm for approximating sparse solutions, a new hierarchical decomposition, and
novel charging arguments that (among other things) reduce the number of grid endpoints
|Z(Q)| required in each cell. With this, we will compute an approximately optimal solution
of the following very specific structure.

» Definition 7 (Nearly-optimal sparse structure). To have nearly-optimal sparse structure, a
solution must be able to be generated with the following specific procedure:

Each cell Q will receive a set of time ranges, denoted as RANGES(Q), with endpoints in

Z(Q). To start, Qreot will receive one time range containing all of time (i.e., RANGES(Qroot) =

{[=o00,00]})

RANGES(Q) is split into a collection of disjoint time ranges, with each being assigned
to one of three sets: SPARSE(Q), RANGES(QL), RANGES(Qr)

SPARSE(Q), a set of time ranges, must have endpoints in Z(Q)U Z(Qr) U Z(Qr)
For each child Qchia (where child € {L,R}) of Q, RANGES(Qchiia) must have all
endpoints in Z(Qchiid)

The total weight of sparse solutions (solutions with at most /< jobs) within sparse time
ranges must be large (where SPARSE_OPT(R) denotes an optimal solution having at
most /e jobs within range R):

> > w(SPARSE_OPT(R)) > (1 — O(e))w(OPT)
Q RESPARSE(Q)

Now, we prove our result for a (1 + ¢)-approximation to dynamic, weighted interval
MAXIMUM-IS algorithm with only polynomial time dependence on 1/e and log(n). Unlike
the decomposition of Henzinger et al., we will not define our decomposition such that each
cell @ will split exactly in half to produce both its children (}; and Qgr. Instead, we will
divide every cell Q) in a manner informed by a balanced binary search tree. Desirably, this will
make the depth of our decomposition O(log(n)) instead of O(log(N)), but it will remove the
possibility of utilizing the random-offset style of idea to assign jobs to cells where they each
job’s length is approximately € fraction of the cell’s length. This necessitates novel charging
arguments. We supplement this new hierarchical decomposition with a new alternative
for the Z(Q) data structure that enables us to determine important dynamic program
subproblems without any dependence on N. Additionally, we take a new approach for
solving the small sparse subproblems, where we use an approximate dynamic programming
idea to remove exponential dependence on !/c in the best known running time for these
subproblems. In our novel charging arguments, there is a particular focus on changing where
deleted intervals’ weights are charged against and introducing a snapping budget, which we
use to relax the required number of grid endpoints |Z(Q)| to depend only polynomially
on 1/e. As a reminder, Z(Q) is a set of grid points within @ such that between any two
consecutive points we are guaranteed that the optimal solution has small weight. Our final
algorithm will consider a number of subproblems for each cell proportional to |Z(Q)|?, so
improvements in |Z(Q)| directly lead to improvements in the best-known running time.
Effectively, we make each of our smaller subproblems easier to solve while also reducing the
number of subproblems we need to solve. All improvements are exponential in € and remove
dependence on N and w.

S. Compton, S. Mitrovi¢, R. Rubinfeld

5.2.1 Hierarchical decomposition

We now formally describe our hierarchical decomposition of jobs.

Consider the set of all jobs’ starting/ending times, i.e., for each job 4, include s; and f;.
Now, consider a balanced binary search tree T over this set of times. For the sake of
this paper, one can assume this is maintained by a red-black tree such that the tree has
depth O(log(n)) and O(log(n)) rotations are required per update. We have a cell @ in
our hierarchical decomposition corresponding to each node in T'. Let KEY (Q) be the
corresponding key for the node in T'.

Each @ has a left child Q1 or right child @g if the corresponding node in 1" does.

Each cell @ represents a range of time. Q,.,ot corresponds to all time, meaning TIM E(Qoot) =

[—00, 00]. This time range is split for the children of @ by KEY (Q). More formally, given
a cell Q@ where TIME(Q) = [lg,rg], then (if Qr, exists) TIME(Qr) = [lo, KEY(Q)],
and (if Qg exists) TIME(Qr) = [KEY (Q), o).

This fully describes our hierarchical decomposition of depth O(log(n)). A visual example
is provided in Fig. 1.

5.2.2 Structure Z(Q)

We use the set of grid points Z(Q) to determine segments that will be used as subproblems
for dynamic programming and in reference to the nearly-optimal sparse structure. For some
specified X, our goal is to maintain a Z(Q) such that the optimal solution within every
grid slice is at most O(w(OPT(Q))/x). The previously-utilized methods for obtaining this
require logarithmic dependence on N and w. To remove dependence on w, we relax our
requirements of Z(Q) to ignore all jobs with weight less than w(OPT(Q)) - ¢/n; in total,
these jobs have negligible reward. To remove dependence on N, we consider an alternative
approach to computing Z(Q), where we take the union of multiple solutions to Z(Q) for the
analogous unweighted interval scheduling problem using ideas similar to those in Section 4.
We design a Z(Q) with the following guarantees, whose proof is deferred to Section 5.4:

» Lemma 8 (Dynamically maintaining Z(Q)). For any fized positive integer X, it is possible
to return a set Z(Q) for any cell Q in the hierarchical decomposition in O(X -log®(n)) query
time. Moreover, the returned Z(Q) will satisfy the following properties:

For every Q, the optimal solution within each grid slice of Z(Q) is at most O(w(OPT(Q))/x);

as a reminder, we ignore jobs with weights less than w(OPT(Q)) - ¢/n.

For every Q, |Z(Q)| = O(X - log®(n))

5.2.3 Existence of desired (1 + ¢)-approximate solution

We now argue that there exists a (1 + O(g))-approximation with nearly-optimal sparse

structure in reference to our new hierarchical decomposition for @ and our Z(Q) when using
2 4

X =12 and thus |2(Q)| = O(*&™):

» Lemma 9. There exists a solution OPT’ that has nearly-optimal sparse structure and
such that w(OPT") > (1 — O(e))w(OPT). Thus, OPT' is a (1 + O(g))-approzimation of
OPT.

Proof. We emphasize that the goal of this lemma is not to show how to construct a solution
algorithmically, but rather to show that there exists one, that we refer to by OPT’, that has
a specific structure and whose weight is close to OPT.

17

18

Faster Approximate Interval Scheduling

In this paragraph, we provide a proof overview. At a high-level, we show this claim by
starting with OPT, and maintaining a solution OPT” that holds our desired structure and
only deletes jobs with total weight O(e-w(OPT)). Our process of converting OPT to OPT’
is recursive, as we start at the root and work down. Generally, our preference for any range
R € RANGES(Q) will be to defer it to a child by passing it on to a RANGE(Q chiid)-
This preference can often not be immediately satisfied for two reasons: (i) R may not
be completely contained within a Q.piq (i.e. R crosses between @, and Qg), or (ii) the
endpoints of R do not alight with the corresponding Z(Qcniq). We will modify OPT to
accommodate these concerns. To handle concern (i), we will delete a job in OPT if it crosses
between @ and Qg and has small went (and hence it can be ignored). Otherwise, if such
a crossing job has large weight, we will divide R into three time ranges such that one is
contained within @, one uses the crossing job, and the last is contained within Qg, using
a process detailed in the following proof. For the central third, we will sparsify this range
to produce a set SPARSFE(Q) of sparse time ranges. For time ranges completely contained
within @, and Qi that are not designated as sparse time ranges, we will essentially consider
them dense time ranges, that will be delegated to children cells of Q. In order to delegate a
time range to a child Q:niq, we require that the delegated time range must have endpoints
that align with Z(Qcpiq). Accordingly, we perform modifications to “snap” the time ranges’
endpoints to Z(Qcniia) for the corresponding child Qcpiig of @ and include the “snapped”
time ranges in RANGES(Qchiia). We show that throughout this process, we do not delete
much weight from OPT and obtain an OPT’ that has our desired structure. Now, we
present the proof in detail:

5.2.3.1 Deleting light crossing jobs.

We now describe how to modify OPT, obtaining OPT’, such that OPT’ has our desired
structure and OPT" is a (1 + ¢)-approximation of OPT. Note that we will never actually
compute OPT’. Tt is only a hypothetical solution that has nice structural properties and
that we use to compare our output to.

For a cell @), consider a time range it receives in RANGES(Q). We shall split this
time range into sparse time ranges (to be added to SPARSE(Q)) and dense time ranges
(to be added to RANGES(Qr) or RANGES(QRr)). There is at most one range Reross €
RANGES(Q) that crosses between @1, and Qr, and we call the at most one job crossing
between @ and Qpr the crossing job (if it exists). If the crossing job has weight <
mw(OPT(Q)), we call it light, we delete the light crossing job, and we split R 055 at the
dividing point KEY (Q). One of these two resulting ranges can inherit the snapping budget
of Reross, while we can allocate the other a snapping budget of weight O(-—=—=w(OPT(Q)).

We delete/allocate at most O(%w(OFT(Q))) weight at every cell, lég((zl)g%mw(OPT))
weight at every level, and O(sw(OPT)) weight in total. Also note how all ranges in
RANGES(Q) are now completely contained within either Q1 or Qr. Otherwise, if the
crossing job has large weight, we call it heavy and must find some way to include it in our

solution instead of deleting it.

5.2.3.2 Utilizing heavy crossing jobs.

We now focus on showing how to construct our solution using a heavy crossing job. Our
goal is to split Reress into three parts: one range completely within @)z, some sparse ranges
that will be SPARSE(Q) and include the crossing job among other jobs, and one range
completely within Qr. As an overview, we will start by considering the smallest time range

S. Compton, S. Mitrovi¢, R. Rubinfeld

that contains the crossing job and spans the grid between two (not necessarily consecutive)
endpoints in Z(Q). This range may contain many jobs in OPT, so we perform an additional
refinement to divide it up into sparse time ranges. In this refinement, we will split up the
time range such that we do not delete too much weight and, moreover, all of the resulting
time ranges have at most 1/ jobs. These time ranges now constitute SPARSE(Q). A
detailed description of this process of determining SPARSE(Q) is given in stages from
“utilizing heavy jobs” to “sparsifying regions.” For an example of this process that uses
the terminology later described in these stages, see Fig. 3. Any remaining time ranges
not selected at this stage will effectively be dense time ranges, and are delegated into
RANGES(QL), RANGES(QRr) (after dealing with their alignment issues). This process
of designating time ranges to delegate is detailed in stages from “creating dense ranges” to
“resolving leafs.”

As a reminder, we have chosen Z(Q) such that the total weight inside any grid slice (a
time range between two consecutive endpoints of Z(Q)) of @ is at most ﬁw(P(Q)).
Recall that Z(Q) contains grid endpoints. For the heavy crossing job, consider the grid
endpoint immediately to its left and to its right. Without loss of generality, consider the
right one and call it . How we proceed can be split into two cases:

(1) In the first case, r overlaps a job J in OPT’ with weight at most mw(OPT(Q)). We
delete J and draw a boundary at r. In doing this, we will charge the weight of J against
the cell Q). There are at most two jobs we charge in this manner for that original heavy
interval, one for the grid endpoint to the right and one to the left. Meaning, each cell
will be charged in this manner at most twice for a total of O(@w(OPT) weight at
each level and O(ew(OPT)) weight overall.

(2) In the other case, r overlaps a job J that has weight greater than @w(OPT(Q)).
We call J a highlighted job. Our algorithm proceeds by considering the grid endpoint
immediately to the right of J. We determine what to do with this grid endpoint in
a recursive manner. Meaning, we proceed in the same two cases that we did when
considering what to do with r, and continue this recursive process until we finally draw

a boundary.

After this process, we will have drawn a region (time range corresponding to where
we drew a left and right boundary for) in which OPT" has the one heavy crossing job, a
number of highlighted jobs (possibly zero), and potentially some remaining jobs that are
neither crossing nor highlighted (we call these useless). It is our goal to convert this region
into time ranges that we can use as sparse time ranges. Our process also guarantees this
region has borders with endpoints in Z(Q). Note that we have created a region within some
time range of RANGES(Q), but not every point in the time range is necessarily contained
within the region.

5.2.3.3 Deleting useless jobs.

In the generated region, we define useless jobs as all jobs that are neither crossing nor
highlighted. Useless jobs are completely contained within grid slices. We want to convert
the region into sparse time ranges, but there may be many useless jobs that make the region
very dense. Thus, we will delete all jobs in the region that are useless. By the process of
generating the region, any such job is fully contained within a grid slice for which there
is a heavy crossing job or highlighted job partially overlapping the grid slice. We charge
deletion of all useless jobs in a given slice by charging against a highlighted or heavy crossing
job that must partially overlap the given slice. By definition of Z(Q), useless jobs in the

19

20

Faster Approximate Interval Scheduling

slice add up to a total weight of at most w(OPT(Q)). This is because we set Z(Q)

2
with X = logs# and thus the optimal solution within any grid slice has total weight at

most ﬁw(OPT(Q)). Moreover, ﬁw(OPT(Q)) is at least a factor of € less than

the highlighted or heavy crossing job we are charging against (and there are only two such

52
log?(n)

slices whose useless jobs are charging against any highlighted or heavy jobs).

5.2.3.4 Sparsifying the region.

Now, the region only contains heavy crossing job or highlighted jobs. We aim to split the
region into ranges for SPARSFE(Q) without deleting much weight. The region may have
more than % jobs (meaning it is not sparse). If this is the case, we desire to split the region
into time ranges that each have < 1 jobs and start/end at grid endpoints of Z(Q). To do
so, we number the jobs in a region from left to right and consider them in groups based on
their index modulo % Note that a group does not consist of consecutive jobs. Then, we
delete the group with lowest weight. We delete this group because we make the observation
that all remaining jobs in the region must contain a grid endpoint within it. This is because
heavy crossing jobs must contain a grid endpoint by how we defined Z(Q), and highlighted
jobs must contain a grid endpoint by their definition. Thus, we can delete the jobs belonging
to the lightest group and split the time range at the grid endpoints contained inside each
of the deleted jobs. In doing so, we lose at most a factor of € of the total weight of all the
considered jobs. However, now each resulting time range will have at most % jobs and thus
will be a valid sparse range in SPARSE(Q) (because for any range containing a number of
consecutive jobs greater than %, we will have split it). Note that all these sparse ranges have
endpoints in Z(Q). With all of its terminology now defined, readers may find the example
illustrated in Fig. 3 helpful for their understanding.

new region

Q B G G N

Figure 3 This example illustrates how the sparse regions are created. All vertical segments
within @, which are red in the figure, correspond to the points in Z(Q). The cell Q is divided by
Z(Q) such that the optimal solution within every grid slice is small. As a reminder, a grid slice is an
open time-interval between two consecutive points in Z(Q); see Theorem 6 for a formal definition.
We start with the heavy crossing job (the blue horizontal segment marked by “B”). From this heavy
crossing job, we expand the region outwards as necessary. In this example, we expanded to the
right, seeing two highlighted jobs (the green horizontal segments marked by “G”) until we saw a
job with low enough weight intersecting a grid endpoint (these job segments are colored in brown
and crossed). We delete such brown jobs, and use the grid endpoints they intersected to define the
region (outlined in purple and annotated by “new region”). Useless jobs (pictured in yellow) are
then deleted. Later, we sparsify the region.

S. Compton, S. Mitrovi¢, R. Rubinfeld

5.2.3.5 Snapping dense ranges.

Recall that not all of the time ranges that we are modifying from RANGES(Q) were part
of the region. In particular, there are the time ranges originally in RANGES(Q) other than
Reross, as well as the time range in R yoss to the left of the region, and to the right of the
region. We call these remaining time ranges our dense ranges because they may contain many
jobs. Note how all dense range are now completely contained within Qr or Qr. Ideally, we
assign dense ranges to RANGES(Qr) or RANGES(Qr). However, the remaining dense
time ranges have one remaining potential issue, that their endpoints may not align with
Z(Qchild) even though they align with Z(Q). For an example of this issue, see Fig. 4. The
core of this problem is that these dense time ranges correspond to time ranges we would like
to delegate to children of @ (i.e., add to RANGES(Qr) and RANGES(QRr)). However,
there is the requirement that time ranges delegated to RANGES(Qr) and RANGES(QR)
must have endpoints in Z(Qr) and Z(Qr), respectively. Therefore, we have to modify the
dense ranges so they align with the grid endpoints of one of @’s children. It is tempting to
naively “snap” the endpoints of these time ranges inward to the nearest grid endpoints of
Z(Qchitd), meaning to slightly contract the endpoints of the time ranges inward so they align
with Z(Qchia). Unfortunately, this might result in some jobs being ignored in the process
(as illustrated in Fig. 4); a cell does not consider jobs which are not within a given range.
If these ignored jobs have non-negligible total reward, ignoring them can result in a poor
solution. In the stage “snapping dense ranges” we detail a more involved contraction-like
snapping process that contracts inwards similar to our argument for expanding outwards
from heavy crossing jobs when we determined sparse ranges. In our contraction-like snapping
process, we convert some of the beginning and end of the dense range into sparse ranges, so
we do not need to delete some of the high-reward jobs that we would need to delete with
naive snapping. In the stages from “using essential jobs” to “resolving leafs”, we detail how
to apply modifications to fulfill the required properties and how to analyze the contraction
process with charging arguments.

Consider an arbitrary unaligned dense time range U. Ideally, we would “snap” the
endpoints of U inward to the nearest grid point of Z(Qcpiq) (i.e. move the left endpoint
of U to the closest grid point of Z(Qcpiq) to its right, and the right endpoint of U to the
closest grid endpoint of Z(Qchia) to its left). However, doing so may force us to delete
a job in OPT’ that is too valuable (as we would have to delete jobs that overlap the
section of U that was snapped inwards). So, we will handle U differently. Without loss of
generality, suppose we want to “snap” inward the left endpoint of U to align with Z(Qchird)-
Doing so may leave some jobs outside the snapped range. We define the cost of snapping
as the total weight of jobs that were previously contained within the range but are no
longer completely contained within after snapping. If immediately snapping inward the left
endpoint to the nearest grid point of Z(Qcniq) would cost at most 1Og%ﬁw(OPT(Q)), we do

that immediately. Otherwise, this snapping step would cost more than 10;Qﬁw(OPT(Q)),
implying that there is a job that overlaps with the grid endpoint of Z(Qchiq) to the right of

U’s left endpoint (all other jobs we are forced to delete are strictly inside a slice of Z(Qchitd)

and thus have total weight < %w(OPT(QCWd)) < ﬁw(OPT(Q))) and has weight
of at least log22—‘8(71)10(OPT(Q)) - ﬁw(OPT(Q)) > %w(OPT(Q)). We mark that job

as “essential”.

Then, we look to the right of that essential job and examine the job that overlaps the next
grid endpoint to the right in Z(Qchiaq)- If this job has weight at most log%ﬁw(OPT(Q)), we
delete it and draw a boundary. Otherwise, we mark it as “essential” and continue (following

21

22

Faster Approximate Interval Scheduling

dense range

: snap
—
Y Y

QL Qr

Figure 4 This example illustrates why the snapping we perform has to be done with care. The
horizontal segments in this figure represent jobs. We show an initial dense range (outlined in
purple) with endpoints in Z(Q). With dashed vertical lines, we show where these endpoints are in
Q1. Importantly, they are not aligned with Z(Qr), i.e., the vertical dashed lines do not belong to
Z(Q1). However, our structure requires that dense ranges align with Z(Qcniia), so we must address
this. If we were to naively snap the endpoints of the dense range inwards to the endpoints of Z(Qr),
then we would need to delete some jobs (these deleted jobs are colored in yellow and marked by
“Y™”), while some other jobs would not be affected (like the remaining jobs in this example, those
colored in blue). While this naive snapping may be fine in some cases, it will incur significant loss in
cases in which the “Y” jobs have large weight. Notice that naively snapping outward to define a new
region corresponding to the purple one is not a solution neither, as this could cause the dense time
range to overlap with a previously selected sparse time range. Having overlapping ranges can cause
us to choose intersecting jobs, and thus an invalid solution. Thus, we detail a more comprehensive
manner of dealing with snapping.

S. Compton, S. Mitrovi¢, R. Rubinfeld

the same process). When we are done, we have a prefix of the dense time range that contains
some number of “essential” jobs and other jobs, and then a border at a grid endpoint of
Z(Qchitd). The final “snapping” where we deleted jobs to add the split point had cost
< logiﬁw(OPT(Q)). In essence, these essential jobs are the collection of jobs that were
too valuable for us to delete them when we were undergoing the snapping process.

5.2.3.6 Using essential jobs.

We will assume this dense time range had a snapping budget and charge the aforementioned
final snapping cost to that. Now, we just need to find a way to use the time range prefix
with the essential jobs. We delete all jobs that are not essential in this time range with
a similar argument as earlier, that such a job is completely contained in a grid slice with
total weight of jobs < ﬁw(OPT(Q)) which is at most a factor of ¢ of an essential job
partially contained within the slice (and it is partially contained within at most two slices).
Then, we convert this time range of essential jobs (with potentially many such essential jobs)
into sparse time ranges in the same way as done previously during the “sparsifying regions”
step. We do so by grouping the jobs according their index modulo %, deleting the group
with least total weight, and drawing a border at the grid endpoint of Z(Q.piq) contained
within the deleted jobs. Again, by our process we know all such essential jobs must contain
a grid endpoint. This creates sparse time ranges with endpoints in Z(Q) U Z(Qcpiq) and
our dense time range has endpoints in Z(Qcpiq) so they are both valid.

5.2.3.7 Financing a snapping budget.

Finally, we need to show that we actually have a sufficient snapping budget. Consider our
dense time ranges. We may adjust their endpoints in other scenarios, but we only split dense
time ranges into more dense time ranges when they are a crossing range. As only one there
is only one crossing range at every cell @, if we give the newly created range a snapping
budget of O(—==w(OPT(Q))), then we do not lose more than O(cw(OPT)) in total. We

log(n)
13

showed above that each dense range will use at most O(ww(OPT(Q))) of its snapping

budget at each level, so it will will use O(@w(OPT(Q))) in total and stay within its

allotted budget of O(@w(OPT(Q))) throughout.

5.2.3.8 Resolving leafs.

Finally, when we have a time range but it cannot be delegated to Q.14 because Q pi1q does
not exist, note there is only possibly room for one job in the range (as by definition of the
decomposition of @), no job starts or ends in this range). So we simply consider this range
as part of SPARSE(Q).

This now concludes the proof by providing a way to convert OPT to a solution OPT’
that obeys our structure and is a (1 + €)-approximation of OPT. <

5.3 Efficiently Approximating Sparse Solutions

Now, we focus on designing an efficient algorithm for approximating optimal solution in a
sparse time range.

» Lemma 10. Given any contiguous time range R and an integer K, consider an optimal
solution OPT (R, K) in R containing at most K jobs and ignoring jobs with weight less than
e/n + Wmaz. Then, there is an algorithm that in R finds a (1 + €)-approxzimate solution to

OPT(R,K) in O (%W) time and with at most O (w) jobs.

23

24

Faster Approximate Interval Scheduling

Proof. To prove this claim, we use a dynamic programming approach where our state is
the total weight of jobs selected so far. The dynamic programming table EARLIEST contains
for state X, EARLIEST[X], the earliest/leftmost point in time for which the total weight
of X is achieved. If we implement this dynamic programming directly, it would require
space proportional to the value of solution (which equals the largest possible X). Our goal
is to avoid this time/space dependence. To that end, we design an approzimate dynamic
program that requires only poly-logarithmic dependence on the value of an optimal solution.
We derive the following technical tool to enable this:

> Claim 11. Let S be the set of all powers of (1 + ¢/K) not exceeding W, ie., S =
{Q+¢e/K)" |0 <i < [log,./x W]} Consider an algorithm that supports the addition
of any K values (each being at least 1) where the sum of these K values is guaranteed to
not exceed W. The values are added one by one. After each addition step, the algorithm
maintains a running-total by rounding down the sum of the new value being added and the
previous rounded running-total to the nearest value in S. Then, the final running-total of
the algorithm is a (1 + &) approximation of the true sum of those K values.

Proof. Consider the sequence of K values and thus K additions. Let OPT denote the
exact sum of the K values. Let SOL denote the running-total we achieve at the end of
our additions. Finally, let CUR,; denote the running-total as we do these additions at
the beginning of stage ¢, which must be in S at the end of every stage. We prove that
SOL > (1 —¢)OPT and thus SOL is a (1 +¢) approximation of OPT'. Initially, CURq = 0.
Each step, we add some value v; to CUR,;. This new value CUR, = CUR; + v;. Then,
we round CUR/ to the nearest power of (1 +&/K) and denote this as CUR!. We call the
amount we lose by rounding down the loss ¢; = CUR, — CUR/. For the next stage, we
denote CUR; 41 = CUR;’. Note that

Ei < fi fi o CUR; — CUR;/ < i
OPT — SOL — CUR! CUR/ - K

or, otherwise, we would have rounded to a different power of (1+¢/K). Thus, ¢; < OPT(3).
Note that SOL = CURk and CURk + Y, ¢; = OPT. As such,

SOL=OPT ~ 3" t; > OPT ~ K (OPT (%)) = OPT —¢-OPT = (1 - £)OPT.

<

Inspired by Theorem 11, we now define a set of states S as follows. Our states will
represent powers of (1 +¢/K) from 1 to Kw, and hence

-0 Git)-o (22222

Using this, we create a set of states S which corresponds to powers of (1 +¢/K) from 1
to Kw (and 0). We want to maintain for each of these states, approximately the smallest
prefix with at most K jobs where we could get total weight approximately equal to s € S.
To do this, we loop over the states in increasing order of value. Suppose the current state
corresponds to having approximate weight s € S and EARLIEST[s] is the shortest prefix we
have that has approximate weight s. Then we loop over all rounded weights v € {(1 + ¢)*}.
There are O(los(w)/c) such v. For each v, set V to be the value of s 4+ v rounded down to the
nearest power of (1 4+ ¢/K). Then, if the earliest ending time of a job with rounded weight

S. Compton, S. Mitrovi¢, R. Rubinfeld

v that starts after EARLIEST[s] is less than EARLIEST[V], we update EARLIEST[V] to that
ending time. We can calculate the earliest ending time of any job, with a particular rounded
weight, starting after some specified time in O(log(n)) time by maintaining a balanced binary
search tree (as done in Section 4) for each of the O(log(w)/c) rounded weights (to powers of

(14 ¢)). This negligibly adds O(log(n)) time to each update. In total, this solution runs in

O(K log(n) log(w) log(Kw))
52

As we can ignore all jobs with weight less than €/nwy, 4., then we can only focus on jobs

time.

EWmax
n

by £mez This enables us to use w = O("/e) in the above runtime bound. As such, this
K log(n) log(n2/a) log(Kn/e)
[

with weights in | , Wimaz| and effectively modify w to be /e by dividing all weights

algorithm runs in O() time.

To show the algorithm’s correctness, observe that since we always round down, we will
not overestimate the cost. Moreover, we show with that any set of K additions will be
within a factor of (1 + ¢) from its true value.

<

» Corollary 12. For our application, we let K = % As such, we have a (1+¢)-approximation
algorithm of the minimum solution with at most % jobs that runs in time

o (Klog(n) log(n/e) log(Kn/€)> —0 (M) -0 <log3(n)> .

g2 g3 g3

5.4 Dynamically Maintaining Z(()) — Proof of Theorem 8

Now, we describe how to maintain Z(Q), to intelligently subdivide the cells with guarantees
as restated below:

» Lemma 13 (Dynamically maintaining Z(Q)). For any fized positive integer X, it is possible
to return a set Z(Q) for any cell Q in the hierarchical decomposition in O(X -log®(n)) query
time. Moreover, the returned Z(Q) will satisfy the following properties:

For every Q, the optimal solution within each grid slice of Z(Q) is at most O(w(OPT(Q))/x);

as a reminder, we ignore jobs with weights less than w(OPT(Q)) - ¢/n.

For every Q, |Z(Q)| = O(X -log*(n))

Proof. Suppose how all jobs are rounded down to powers of 2. Note how for a cell @, let
Wmaz (@) correspond to the reward of the job with the largest reward contained completely
within Q. Clearly, OPT(Q) > Wmaz(Q). Moreover, by discarding all jobs with weight less
than €/n - Wma(Q), we discard jobs with total weight at most € - W (Q) < £ - OPT(Q).
Accordingly, we focus just on jobs with weights in range [¢/n - Wimaz(Q), Wmaz (Q)]. As these
weights have been rounded to powers of 2, there are only [log(%)] = O(log(n/e))
distinct remaining weights. Moreover, we assume that 1/ < n, as otherwise we can
obtain a better algorithm by simply rerunning the classical static algorithm for each update.
Altogether, this implies that it suffices to consider O(log(n)) distinct weights.

In our approach, we consider each distinct weight independently, enabling us to consider
a Z(Q) for only jobs with rounded weight 2. That is, Z*(Q) is computed with respect to
a set of jobs all having the same weight, which enables us to treat Z(Q) computation as
if it was performed for the unweighted variant. At the end, we let Z(Q) to be the union
over the O(log(n)) different Z*(Q), giving us a Z(Q) with our desired guarantees. This
approach is particularly desirable, as we will show how for a particular fixed weight, i.e., we
consider the unweighted variant, we can use ideas very similar to those discussed in Section 4
to obtain the Z*(Q). Expanding our scope, for each rounded weight 2¢, let us maintain a

25

Faster Approximate Interval Scheduling

constant-factor approximation of the unweighted problem using the border-based algorithm
of Theorem 1. In other words, we run the algorithm of Theorem 1 with ¢’ = O(1) such
that it has update time O(log(n)) and maintains an O(1)-approximation of the unweighted
interval scheduling problem.

Consider SOL! to be the set of points corresponding to the border-based O(1)-approximation
when only considering jobs of rounded weight 2¢. In particular, SOL? contains all start /endpoints
of the selected jobs by the approximation, as well as all borders. SOL’[L, R] contains all
points in SOL? within [L, R]. We define OPT([L, R],i) as the optimal number of jobs
one can schedule when only considering jobs with rounded weights 2! when only considering
jobs fully contained within [L, R].

> Claim 14. For all 4, L, R, it holds that: OPT(|L, R],i) < |[SOL'[L, R]|

Proof. Recall that the border-based approximation algorithm maintains a set of borders
and finds the optimal solution within each border chunk. The optimal solution within is
calculated by using the greedy earliest-ending algorithm. In general, consider any job J.
This job J must contain an endpoint of a job in the approximately chosen solution, or it
must contain a border. If this were not the case, there are only two possibilities: (i) J is
completely contained within a job chosen by the approximate solution, or (ii) J does not
intersect any job chosen by the approximate solution. For case (i): this is impossible as the
greedy earliest-ending algorithm would not have chosen the job that completely contains
J. For case (ii): this is impossible because J could be added to the solution within the
corresponding border chunk, and this is impossible because the solution within each border
chunk is optimal. As each job J must contain a point of SOL![L, R], it must hold that
OPT([L,R],i) < |SOL'[L, R]|. <

Also note a similar bound in the opposing direction:
> Claim 15. For all 4, L, R it holds that: |[SOL'[L, R]| < 3- OPT(|L, R],i) + 3

Proof. From SOL'[L, R], ignore the at most two points corresponding to endpoints of jobs
that are only partially within [L, R], and ignore the first remaining point if it corresponds to
a border (for a total of ignoring at most 3 points). Of the remaining points in SOL[L, R],
they all correspond to endpoints of jobs fully within [L, R], or are a border following such a
job. Note how the number of these jobs with points corresponding to them in SOL[L, R]
must be at most OPT([L, R],i) by definition. Accordingly, we will charge the two points
from each job (and its associated border if there is one) to a different job corresponding
from OPT([L, R],i), for a total of at most 3 points of SOL![L, R] being charged per job in
OPT([L, R],1). <

All SOL? can be maintained with update time O(log(n)) because we only update one
unweighted O(1)-approximation per job insertion or deletion. We compute each Z*(Q) for
a cell Q corresponding to time range [L, R], by taking O(X log(n)) quantiles of SOL[L, R].
Each of these Z*(Q) can be achieved with O(X log(n)) walks down a balanced binary search
tree, resulting in O(X log?(n)) time. We define Z(Q) as the union of the O(log(n)) different
ZH(Q). In total, Z(Q) is obtained in O(X log®(n)) time and |Z(Q)| = O(X log?(n)).
Finally, the optimal solution within any grid slice, ignoring jobs with weight less than
e - w(OPT(Q)), is upper-bounded by the union of the independent optimal solutions for
each rounded weight. Within each grid slice of any Z*(Q), the optimal solution of jobs
using weight 2¢ is upper-bounded by 0(721 ‘S)?IL(:;Z(%TQ“) = O(—QIOI;TI(O[;%’SQ]’”) = O(iwg?ig((rg)))
following from Theorem 14, taking X log(n) quantiles of SOL'[lg,7¢q] to form Z*(Q), and

S. Compton, S. Mitrovi¢, R. Rubinfeld

Theorem 15. Accordingly, bounding over the O(log(n)) different Z*(Q), the optimal solution
within each grid slice is at most O(w(OPT(Q))/x).
<

5.5 Combining All Ingredients — Proof of Theorem 2

Now, we put this all together to get a cohesive solution that efficiently calculates an approximately
optimal solution of the desired structure. When we handle an insertion/deletion, we make an
update to the corresponding balanced binary search tree T. Recall that we use a balanced
binary search tree such as a red-black tree so that T has depth O(log(n)) and there are
O(log(n)) rotations per update. For the O(log(n)) cells @ corresponding to nodes in T
affected by rotations, we will recompute aspects of @ such as Z(Q) and all DP(Q, S). For
each such cell @, we will compute a sparse solution corresponding to each segment formed

by considering all pairs of grid endpoints Z(Q) U Z(Qr) U Z(Qr) and a dense solution for
each segment S formed by pairs of endpoints Z(Q) denoted as DP(Q, S).

To compute all sparse solutions, we use O(|Z(Q)UZ(Q1)UZ(Qr)|?) calls to our algorithm
from 1Tlheorem 5 resulting in O(|Z(Q) U Z(Qr) U Z(QR)|2(1032#) = O(logj#(log;#)) =
O(k’g;s#) running time. To obtain this complexity, we use the upper-bound |Z(Q)| =
O(X -log®(n)) from Theorem 8 and the fact that we let X = lofz” in the beginning of
Section 5.2.3.

To compute all DP(Q, S), we build on the proof of Theorem 9. Namely, from the proof

of Theorem 9 a (1 + ¢)-approximate solution is maintained by dividing S into sparse, i.e.,
SPARSE(Q), and dense segments of Q1 and Qg, i.e., RANGES(Qr) and RANGES(QR).
We update our data structure from bottom to top. Hence, when we update DP(Q}) and
DP(QRr) it enables us to learn approximate optimal values gained from a set RANGES(Qp)
and RANGES(Qgr). Thus, to calculate DP(Q,S) we consider an interval scheduling
instance where jobs start at a grid endpoint of S and end at a grid endpoint of S. In
this instance, jobs correspond to all the sparse segments of Z(Q), Z(Qr), Z(Qr) and all
the dense segments of Z(Qr), Z(Qr). We compute this dense segment answer for all dense
segments Z(Q) in O(|1Z(Q)UZ(QL)UZ(Qr)?) = O (loglﬁ) time, with a dynamic program
where the state is the starting and ending point of a segment and the transition tries all
potential grid endpoints to split the range at (or just uses the interval from the start to the
end). For each update, we update O(log(n)) cells affected by rotations by recomputing the
optimal sparse solutions for segments and the respective DP(Q, S). Finally, at the beginning
of each update, we use O(log(n)) calls to our algorithm for computing Z(Q) from Section 5.4
with X = logz# in O(X -log®(n)) time for O(log;j#) time for each cell. As such, our total

update time is O (log(n) . (log;(") + l°gli(") + log;("))) =0 (logli(n) + loglz(")).

€ € €

6 LCA for Interval Scheduling on a Single Machine

In this section we design local algorithms for interval scheduling, using techniques developed
in Section 4. While our previous algorithm is desirable in that it gives an efficient and simple
algorithm to efficiently partition the time dimension and maintain an approximate solution,
it requires bookkeeping (our partitioning relies on the past history of requests made before
the update). We design local algorithms for interval scheduling that do not require knowledge
of such bookkeeping. We need some way to probe information about “similar” intervals: as
such, we will assume probe-access to an oracle that gives information about other intervals.

28

Faster Approximate Interval Scheduling

In contrast to the dynamic setting, our oracle has no dependence on € and thus can be used
for any €. An LCA in this setting will answer queries of the form LCA(S, ¢), where we are
given a set of intervals S and approximation parameter €, and on query interval I € S, we
must answer whether I is in our (14-¢)-approximation in such a way that is consistent with all
other answers to queries to the LC' A (with the same ¢). Generally, we develop a partitioning
method that does not require much bookkeeping while attempting this, such that our notion
of leveraging locality extends beyond any particular computation model. While achieving
this, we assume our LCA is given probe-access to a successor oracle that answers what we
will call successor probes or successor(x): “What is the interval with the earliest endpoint,
of those that start after point x?” This is a natural question for obtaining information about
local intervals in this setting. In particular, given that an interval is in our solution and
ends at some point x, successor(x) would be the next interval chosen by the classic greedy
algorithm (for the unit-weight setting). Such an oracle could be implemented with O(logn)
time updates and queries (in a manner similar to how Ty is used in Theorem 1). Since our
LCA outputs different solutions for different choices of €, there is a strong sense in which an
oracle that is independent of & (such as the oracle we utilize) is unable to maintain nontrivial
bookkeeping (meaning the oracle could not give the LCA nontrivial information about the
solution). We focus on the unit-reward interval MAXIMUM-IS problem (M = 1). Our
emphasis in doing so is not the specific problem instance or probe-model (e.g., in Section 7
we modify our probe-model and show an algorithm that works for multiple machines), but
instead emphasizing a method of partitioning over time that utilizes locality and limited
bookkeeping.

At a high level, our novel partitioning method can be viewed as a rule-based approach
that uses few probes to identify whether any given interval is in our solution. This approach
is oblivious to query order.

To illustrate how to employ successor probes, we will first design a probe-based algorithm,
denoted by PROBE-BASED-OPT. Then, we will describe an exact global algorithm. We will
modify this (exact) global algorithm to an approximate global one by partitioning time
into independent regions that enable a sense of locality. Finally, we will introduce an LCA
motivated by the approximate global algorithm.

As mentioned before, suppose we have access to the successor probe or successor(x):
“What is the interval with the earliest endpoint, of those that start after point z?” Note
that access to such a probe can be provided in O(log(n)) update and probe time. Due to the
limited capabilities of probing without bookkeeping, our LCA results will require assuming a
bounded coordinate system as was requited for results in the prior work of [13]. In particular,
our LCA results assume that all jobs have length at least 1 and the starting/ending times
are withing [0, N].

» Lemma 16. There exists an algorithm (that we call PROBE-BASED-OPT) that gives an
optimal unweighted solution within some range [L, R| with |OPT| + 1 successor probes.

Proof. We now describe PROBE-BASED-OPT algorithm.

It is a classic result that an optimal solution for unweighted interval MAXIMUM-IS is
achieved by greedily choosing the interval with earliest ending point among those that
start after the last chosen ending point. We use such probes to easily simulate a greedy
algorithm for the optimal solution within range [L, R]. We start by making a successor
probe successor(L). If this interval has an ending point at most R, we let that interval be
the first one in our optimal solution. Otherwise, the optimal solution is of size zero. Now,
we calculate the optimal solution within the range [ending point(successor(L)), R] in the

S. Compton, S. Mitrovi¢, R. Rubinfeld

same way. Thus, we repeatedly make successor probes at the ending point of the last interval
we have chosen. |

Moving forward, we prove an LCA in the unit-reward MAXIMUM-IS setting:

» Theorem 3 (Unweighted LCA, single machine). Let J be a set of n jobs with length at least
1 and ending times upper-bounded by N. For any € > 0, there exists a local computation
algorithm for (14 €)-approzimate unweighted interval scheduling for J on a single machine

using O (bgTN) probes.

Proof. Hierarchically Simulating Greedy. We aim to hierarchically simulate the greedy
algorithm so that it will be easier to adapt towards an LCA. To do this, we utilize a binary
tree over the integer points in [0, N]. For a node @ in this binary tree, its left child is
denoted by @ and right child denoted by Qr. We use @Q.,iq to denote the midpoint of
the interval corresponding to). The intervals corresponding to 1 and Qg are such that
they divide @ exactly in half at its midpoint @Q,,;4. We say that an interval J is assigned
to the node @ in the binary tree where J starts in the range contained by (r and ends
in the range contained by QQr. An equivalent characterization is that J is assigned to the
largest node @, i.e., @ corresponding to the largest interval, where J contains Q,;q. As all
intervals assigned to a node @ share a common point (,,;q, at most one of them can be in
our solution. In our hierarchical simulation, we decide at the node @) which (if any) of the
intervals assigned to it will be in our solution. To accomplish this, we define f(Q, earliest)
as a function that computes the interval scheduling problem within the range covered by @,
assuming we cannot use any interval that starts before the time earliest. Our function f
will decide which intervals are in our solution, and it will return the end of the last interval
chosen in the range covered by Q. As such, calling f(Qroot,0) corresponds to calculating
the global solution.

6.0.0.1 Description of Algorithm 1.

We now provide an algorithm for globally computing f(Q, earliest) as Algorithm 1. This
algorithm simulates the classic greedy approach for calculating the exact unweighted interval
MaxiMUM-IS. Intuitively, this approach proposes a new way of visualizing and computing
this greedy process that will be helpful for obtaining fast LCA. We simulate the greedy on
intervals in @, to find the last ending time it will select before Q,;4, then we determine if
the greedy chooses an interval I,,,;q that contains Q,,;4, and finally we simulate the greedy
on intervals within Qg.

» Lemma 17. Algorithm 1 is a global algorithm for calculating unweighted interval MAXIMUM-

IS.

Proof. As this algorithm simulates the classic greedy approach, its correctness follows
immediately. |

6.0.0.2 An easier to locally simulate, approximate global process

We now modify Algorithm 1 to more easily lend itself to local computation, while weakening
our claim from an exact solution to (14 ¢) approximation. This modified global process will
serve as an approximate solution that is easier for an LCA to simulate. We first describe
the main intuition behind our modification, and then provide more details on how to design
the algorithm (see Algorithm 2).

29

30 Faster Approximate Interval Scheduling

Algorithm 1: Global, exact algorithm for f(Q, earliest)
Input :Q : a tree node, corresponding to a time-range

earliest : earliest starting time for future intervals

Output : Finds/prints a set of non-overlapping intervals such that (1) each interval
is contained in @, and (2) no interval starts before earliest
Returns ending time of last interval selected so far

after_left_earliest < f(Qp,earliest)
Lniq < interval after after left earliest containing Q,,;q with earliest end time
if L0 # 0 and no interval is contained within I,,;q then
after_mid_earliest < end(Im;q)
Print 1,,,;4
else
L after_mid_earliest < after_left earliest

N O N N =

®

after_right_earliest + f(Qr,after_mid_earliest)
9 return after_ right_ earliest

Consider a node @ (defined as in Algorithm 1) and its left and right children @7 and
@R, respectively. If optimal solutions within Q7 and Qg are both large, i.e., have size at
least 1/c, we can afford to create a boundary at @,,;4 and not use any interval containing
Qmia (in which case we reduce the size of an optimum solution by at most one), “charge”
the potential interval intersecting this boundary point Q.4 to the size of solutions in Qr,
and @ g, and handle), and @ r independently. Theorem 4 implies that this approach leads
to (14 ¢)-approximate scheduling. Being able to handle @, and Qi independently is crucial
for designing our desired LCA — it enables us to explore only one of the two nodes to answer
whether a given interval I belongs to an approximate solution or not. Notice that if we have
not discarded intervals containing @Q.,;4 and if I belongs to the range defined by Q g, then
we would need to learn an approximate solution of @, first before we could decide whether
I is an approximate solution of Qg.

Otherwise, at least one of optimum solutions in @)1, and Q) g contains at most % intervals.
For cells that have at most % intervals we use PROBE-BASED-OPT to compute their optimum
with O(1/e) successor probes. On the node (if any) that has solution larger than 1/ we
simply recurse. As we show in Theorem 19, this recursion is efficient enough even in the
context of LCA. We now provide more details on the algorithm itself.

6.0.0.3 Description of Algorithm 2.

We now define an algorithm (Algorithm 2) for globally computing an approximation of
f(Q, earliest). As the first step of the algorithm, we invoke PROBE-BASED-OPT to identify
whether or not simulating the greedy within Q7 and @r will both have large solutions with
at least /e intervals. (Notice that to obtain this information we do not need to compute the
entire solution in @1, or Qg, but only up to 1/e many intervals.) If both have solutions of
size at least 1/¢, the algorithms draws a border at Q:q (hence ignoring any interval that
intersects Qmiq) and simulates the approximate greedy on @ and Qg independently by
invoking Algorithm 2 on @ and Qg.

Otherwise, at least one of @ and Qr has an optimal solution of size less than 1/e.
Algorithm 2 simulates exact greedy on nodes that have an optimal solution of size at most

S. Compton, S. Mitrovi¢, R. Rubinfeld 31

1/e, and invokes Algorithm 2 recursively on the node (if any) that has larger solution. In
addition, Algorithm 2 determines whether the greedy chooses an interval I,,,;4 that contains
@Qmid, which is used to determine parameter earliest for the processing of Qg.

Algorithm 2: Global, approximate algorithm for f(Q, earliest)

Input :Q : cell
earliest : earliest valid starting time for future intervals
€ : approximation parameter

Output : Returns ending time of last interval selected so far
Prints each interval in the solution exactly once

1 if OPT(QL) > Ve and OPT(Qg) > /- then

© ® I o

10
11
12
13
14
15
16
17
18
19
20

21

Draw a border at Q4
/* In our LCA, we will need to invoke only one of these. */
Invoke f(Qr,earliest) and f(Qr, Qmid)
| return f(Qr, Qmid)
f OPT(Qr) <1/c then
/* See Theorem 16 to recall PROBE-BASED-OPT. */
after_left_earliest + PROBE-BASED-OPT(Q L, earliest)
Print intervals in PROBE-BASED-OPT(Q, earliest)

-

else
L after_left_earliest < f(Qp,earliest)

Lniq < interval after after left earliest containing Q,,;q with earliest end time
if L0 # 0 and no interval is contained within I,,;q then
after_mid_earliest < end(ILnd)
Print 1,4
else
L after_mid_earliest < after_left earliest

if OPT(QRr) < /e then
after_right_earliest + PROBE-BASED-OPT(QR,after _mid_earliest)
Print intervals in PROBE-BASED-OPT(Qg, after__mid_earliest)

else
L after_right_earliest « f(Qr,after_mid_earliest)

return after_right_ earliest

» Lemma 18. Algorithm 2 is a global algorithm for calculating a (1 + €)-approzimation of
unweighted interval MAXIMUM-IS.

Proof. Note that Algorithm 2 will compute f(Q, earliest) exactly (by simulating the classic
greedy) other than when it draws borders so that it can compute answers for Q1 and Qg
independently. However, we only draw borders when both the region the left and right of the
border has a solution with at least 1/ intervals. As such, we maintain the requirements for
Theorem 4 to hold and can simulate the greedy exactly within borders which immediately

shows correctness for a (1 + €)-approximation. |

32

Faster Approximate Interval Scheduling

6.0.0.4 Designing an LCA

We design an LCA that simulates the approximate, global process of Algorithm 2. Note
that Algorithm 2 never recurses on both @7, and Qg unless we drew a border between them,
in which case the recursive calls are independent. Since we are now designing an LCA that
only determines whether a particular interval is in a solution, we can ignore one of the two
independent subproblems. So, we design an LCA that only needs to recurse down one child
each time and has desirable runtime. We design an algorithm for a slightly modified function
f(Q, earliest, I'), where we compute whether I is in our solution.

6.0.0.5 Description of LCA Algorithm 3.

We now define an algorithm for locally computing an approximation of f(Q, earliest, I) in
Algorithm 3. This algorithm directly builds on Algorithm 2, whose description is provided
above. The key difference between Algorithm 3 and Algorithm 2 is that when Algorithm 3
draws a border, the algorithm does not calculate both f(Qr,earliest, I) and f(Qr, Qmid,),
as they are independent and it suffices to compute the output of only one of those (1, and
Qr. I I € Qr, then Algorithm 3 invokes f(Qp,earliest,I) as the output is independent
of f(Qr,Qmid,I). Otherwise, if I € Qr or I ¢ (Qr U Qr), then the algorithm invokes
f(QRr, Qmid, I) as either I has already been decided on whether it will be in the output or
the algorithm only needs the result of f(Qr,@mid,I). As we show in the next claim, this
suffices to guarantee LCA complexity of O(logn/e). The rest of algorithm Algorithm 3 is
the same as Algorithm 2.

» Lemma 19. Algorithm 3 is a (1+¢)-approzimation LCA for unweighted interval MAXIMUM-

IS using O(logEN) successor probes.

Proof. Correctness follows from that our algorithm simulates Algorithm 2 which is a (1+4¢)-
approximation by Theorem 18. To show that our LCA is efficient, we note that at each of
the log(N) levels we only invoke one instance of f for a child. Additionally, we only use
O(L) successor probes at cach of these levels. We identify when OPT(Qy) and OPT(Qg)
are greater than 1/= by using 1/ + 1 steps of PROBE-BASED-OPT. So in total, our LCA only
uses O(@) successor probes. |

Thus, we have our desired LCA. <

Such an approach can use other probe-models that enable us to effectively simulate
successor probes. For example, we could consider a probe-model where we want to know all
intervals that intersect a certain point. Regardless, our goal is to emphasize this partitioning
method that enables more local algorithms due to its lack of bookkeeping.

7 Scheduling Algorithms on Multiple Machines with Partitioning

In the previous sections we focused on the case of a single machine, i.e., M = 1. In this
section, we extend our results to the setting where there are multiple machines on which to
schedule jobs (M > 1). In particular, we obtain the following results

» Theorem 20 (Unweighted dynamic, multiple machines). Let J be a set of n jobs. For
any € > 0, there exists a fully dynamic algorithm for (1 4 €)-approzimate unweighted

M log(n))
€

interval scheduling for J on M machines performing updates in O(and queries

in O(log(n)) worst-case time.

S. Compton, S. Mitrovi¢, R. Rubinfeld

Algorithm 3: Local, approximate algorithm for f(Q, earliest)
Input :Q : cell
earliest : earliest valid starting time for future intervals

€ : approximation parameter

I : interval
Output : Returns ending time of last interval selected so far

Prints “Yes” once if I is in the desired solution within @), else prints
nothing

if OPT(QL) > 1/8 and OPT(QR) > 1/5 then

Draw a border at Q4

if I € Q1 then return f(Qr,earliest,I)
else return f(Qr,Qmid, 1)

if OPT(Qr) <1/c then

/* See Theorem 16 to recall PROBE-BASED-OPT. */

after_left earliest <+ PROBE-BASED-OPT(Q, earliest)

if T € PROBE-BASED-OPT(Qp, earliest) solution then Print “Yes’

W N =

<)}
—

)

else
L after_left earliest < f(Qr,earliest)

© ® I o

10 I;q < interval after after left earliest containing @Q,,;q with earliest end time
11 if L9 # 0 and no interval is contained within I,,;q then

12 after_mid_earliest < end(ILnd)
13 if I,,;4 = I then Print “Yes”
14 else

15 L after_mid_earliest < after_ left earliest

16 if OPT(QRr) < /e then

17 after_right_earliest + PROBE-BASED-OPT(QR,after _mid_earliest)

18 if I € PROBE-BASED-OPT(Q 1, after_mid_earliest) solution then Print
“YeS”

19 else
20 L after_right_earliest + f(Qr,after_mid_earliest)

21 return after_right earliest

» Theorem 21 (Unweighted LCA, multiple machines). Let J be a set of n jobs with their
ending times upper-bounded by N. For any ¢ > 0, there exists a local computation algorithm

. Mlog(N)
for (14-<)-approxzimate unweighted interval scheduling for J on M machines using O (f)

probes.

» Theorem 22 (Weighted dynamic, multiple machines). Let J be a set of n jobs. For

MIVI

sy (L + 6)) -approzimate?

Mw log(w) log(n))
63

any € > 0, there exists a fully dynamic algorithm for

weighted interval scheduling for J on M machines performing updates in O (

and queries in O(log(n)) worst-case time.

2 Note that this goes to 5 (14¢) = 1.58(1 +¢) from below as M tends to oo.

33

34

Faster Approximate Interval Scheduling

We provide general reductions that show how to reduce interval scheduling on multiple
machines to the same task on a single machine. Our reductions incur only a small constant
factor loss in the approximation and are easy to simulate in the dynamic setting.

» Theorem 23. Given an oracle for computing an a-approzimate unweighted interval scheduling
on a single machine, there exists a randomized algorithm for the same task on M machines
that yields an (2 — 1/M)a-approzimation in expectation.

» Theorem 24. Given an oracle for computing an a-approximate weighted interval scheduling
on a single machine, there exists a randomized algorithm for the same task on M machines
that yields an e - a approximation in expectation.

Note that the approximation guarantees we obtain in Theorems 20 and 22 are stronger
than a direct application of Theorems 23 and 24 on Theorems 1 and 2. However, our
reductions importantly give rise to significantly faster dynamic algorithms for scheduling on
multiple machines, having no dependence on M. Concretely, Theorems 23 and 24 result
in algorithms with the same time complexity as Theorems 1 and 2 and only an increase in
expected approximation factor of (2 —1/M) and e, respectively. The same running time is
obtained because Theorems 23 and 24 assign jobs to machines in negligible time, and then
each update or query just results in an update or query on the corresponding data structure
for one machine.

7.1 Overview

Now we detail our techniques for extending interval scheduling methods for one machine,
to scheduling for many machines. A key difficulty in extending such methods is that there
is an inherent dependency in the process of scheduling. Choosing to use (or to not use) a
job on one machine directly affects the optimal schedule for the remaining machines. To
overcome this, our work examines two approaches for scheduling. With the first approach,
we maintain approximation guarantees almost the same to those for a single-machine setting
at the expense of an O(M) factor slowdown. With the second approach, we achieve the same
time complexity as was achieved for a single machine at the expense of a slight multiplicative
decrease in approximation guarantees.

Partitioning over machines and time simultaneously. First, we explore partitioning
over time and machines simultaneously. At a high level, we do so by dynamically maintaining
a partition over time and computing an approximately optimal solution for all machines
together within each time range. However, as computing a solution for machines together
is a process with dependencies, our algorithm incurs at least an O(M) factor slowdown
compared to analogous approaches for a single machine.

Unweighted jobs. For scheduling unweighted jobs on multiple machines, there is a well-
known centralized greedy approach similar in style to the greedy for scheduling unweighted
jobs on one machine. As this greedy is efficient to simulate, we can employ an algorithm
and analysis similar to how we dynamically computed unweighted interval scheduling on one
machine. The notable difference is that we might need to charge M jobs containing a border
against our solutions in adjacent regions (as opposed to just charging 1). Accordingly, we
maintain borders where the optimal solution inside each region is size @(%)

Weighted jobs. Using similar approaches in the setting with weighted jobs faces to
challenges we must overcome. First, the well-known approach for computing this problem
in the centralized setting uses minimum-cost flow (as opposed to a greedy) which is not
clear how to efficiently simulate dynamically. To handle this, within borders we instead

S. Compton, S. Mitrovi¢, R. Rubinfeld

compute the weighted maximum independent set M times which will only lose a factor

of Wﬁ—lw (upper-bounded by approximately 1.58) in approximation guarantee. To

compute the weighted maximum independent set, we use a dynamic programming approach.

Finally, we note that we might need to charge M jobs of reward w containing a border (Mw
total reward) against our solutions in adjacent regions. So, we maintain borders where the
optimal solution inside each region has total reward ©(4£2).

Partitioning over machines then time. Our second approach avoids the slowdown of
the first, at the expense of a small multiplicative decrease in the approximation guarantee. To
do so, we first partition jobs over machines and then dynamically partition time to maintain
solutions for each machine independently. In both of our results, we partition jobs among
machines by assigning each job to a machine uniformly at random. Then, for each machine
we simply maintain an approximately optimal schedule among jobs that were randomly
assigned to it. This reduction immediately yields algorithms that are asymptotically just as
fast as scheduling with only one machine. We now outline our techniques for showing this
approach still maintains a strong approximation guarantee:

Unweighted jobs. For scheduling on multiple machines, we note a symmetry among
machines. If we can calculate the expected optimal solution of jobs assigned to a particular
machine, then the expected optimal solution after all job assignments is simply this quantity
multiplied by M. To show a lower-bound for the expected optimal solution among jobs
assigned to a particular machine, we recall that unweighted interval scheduling on one
machine can be solved with a simple greedy method where we consider jobs in increasing
order of their ending time and include the job if it does not intersect any previously included
jobs. Interestingly, our method simulates this greedy on one machine by considering all jobs
in an optimal solution for M machines, where we lazily do not yet realize whether or not
each job was assigned to this particular machine. Then, as we run our greedy, we realize
whether or not a job is assigned to this particular machine only when the greedy would
choose to include this job. If we realize that this job was not assigned to this machine,
then we continue the greedy method accordingly. Otherwise, we continue the greedy as if
we included this job, and we delete the at most M — 1 jobs with later ending times that
intersect this job (we obtain this M — 1 upper-bound because we know the set of all jobs

forms a valid solution on M machines). Whether or not a particular job is assigned to this

1

particular machine is a Bernoulli random variable with parameter -,

and we thus expect

to see M jobs that our greedy would select until we can actually use one on this machine.

In total, our expected proportion of used jobs (among those in a particular optimal solution

on M machines) for this machine is at least so our global solution only loses a

T
factor of (2 — 1/M) in expectation by randomly assigning jobs to machines.

Weighted jobs. The weighted setting presents unique challenges that the unweighted
setting does not. For example, in our greedy-simulation approach for analyzing the reduction
in the unweighted setting, one can show how long jobs that contain many other jobs are less
likely to be included in the obtained solution for any machine. This is because, when we
delete the M —1 jobs with later ending times than some particular job we chose to include in
our solution, this will often delete the longer job that contains many jobs. This is problematic
in the weighted setting, as the longer job may provide extremely large reward. To handle
this, we provide a different analysis where every job in some optimal solution among M
machines, has at least constant probability of being in our solution after randomly assigning
jobs to machines. To accomplish this, we introduce the following procedure. First, generate
a uniformly random permutation and process all jobs (from the particular optimal solution
on M machines) in this order. When we process a job J, we include it on its assigned

35

36

Faster Approximate Interval Scheduling

machine’s schedule if (i) there are no jobs intersecting J that are currently in J’s assigned
machine’s schedule, or (ii) all jobs intersecting J that are currently in J’s assigned machine’s
schedule are completely contained within J. Note that if J is selected because of the latter
criteria, we delete all jobs scheduled in its assigned machine that are completely contained
within J. With a detailed analysis, we show that no matter what the original optimal
schedule over M machines is, each job has probability at least % of being included in the
final schedule by using our procedure. So, our global solution only loses a factor of e in
expectation by randomly assigning jobs to machines.

7.2 Unweighted Interval Scheduling on Multiple Machines

An efficient centralized/sequential algorithm to exactly calculate unweighted interval scheduling
has structure very similar to the greedy algorithm for unweighted interval MAXIMUM-IS. We
use that to show that modifications of our results for single-machine setting lead to results
in the multiple-machine setup.

» Theorem 20 (Unweighted dynamic, multiple machines). Let J be a set of n jobs. For
any € > 0, there exists a fully dynamic algorithm for (1 4 €)-approzimate unweighted

interval scheduling for J on M machines performing updates in O (%g(n)) and queries

in O(log(n)) worst-case time.
For the setting of local unweighted interval scheduling, we show the following.

» Theorem 21 (Unweighted LCA, multiple machines). Let J be a set of n jobs with their
ending times upper-bounded by N. For any € > 0, there exists a local computation algorithm
for (1+¢)-approzimate unweighted interval scheduling for J on M machines using O (%g(l\/))

probes.

These theorems are proved in Sections 7.4 and 7.5.

7.3 Weighted Interval Scheduling on Multiple Machines

For the weighted interval scheduling problem, the well-known minimum-cost flow based
algorithm requires O(n? log(n)) time. It is not clear how to efficiently simulate this approach
in the dynamic or local setting. Instead, we consider alternative approaches for partitioning
jobs over machines. When M = 1 for scheduling, the optimal solution has a structure
similar to that of MAXIMUM-IS. [4] study a natural greedy approach for M > 1 which
consists of M times performing the following: in the é-th step take the (weighted) MAXIMUM-
IS of the currently non-scheduled jobs; schedule these jobs on the machine i. (To be
precise, we note that [4] study this algorithm in a more general variant of weighted interval
scheduling where start/end times are flexible.)) Theorem 3.3 of [4] implies that using
an a-approximation for MAXIMUM-IS M times, in the way as described above, gives a
%-appmximaﬁon (and thus a 37 Mf‘%ﬁl) s approximation) for weighted interval
scheduling. Hence, a natural question to ask is whether this approximation can be retained
even when using approximate algorithms and in settings other than centralized. We answer
this question affirmatively by showing the following results, whose proof is deferred to
Section 7.6.

» Theorem 22 (Weighted dynamic, multiple machines). Let J be a set of n jobs. For

S. Compton, S. Mitrovi¢, R. Rubinfeld

M

any € > 0, there exists a fully dynamic algorithm for (m(l + 5))—appmximate3
(IV[wlog(w) log(n))
83

weighted interval scheduling for J on M machines performing updates in O

and queries in O(log(n)) worst-case time.

This theorem details the result of the “straightforward extension” of Theorem 1 for
the weighted case, if we assume bounded ratios between the job rewards. In particular,
we assume all jobs have rewards within [1,w]. The scheduling algorithm guaranteed by the
theorem above is at least a factor of M slower than its MAXIMUM-IS counterparts. Moreover,
the update time of the same algorithm is Q(w), while the update time for dynamic weighted
interval MAXIMUM-IS (see Theorem 2) has no dependence on w. The main reason for
such behavior of MAXIMUM-IS-like algorithms is that they partition time in such a way
that each region contains a sparse subproblem, e.g., containing O(M/¢) jobs, that is easy to
solve. However, such regions must have size 2(w) in the weighted interval scheduling variant.
To see that, consider a long job of reward w, with w small non-intersecting jobs of reward 1
inside it. The optimal scheduling for M = 2 machines would include all such jobs. However,
any partitioning of time that ensures there are O(M/e) jobs within each partitioning (akin
to the ideas we developed in earlier sections) would discard the long job (removing half the
total reward). Thus, intuitively, any algorithm giving better than 2 approximation would
not be able to partition the time-axis as performed in earlier section, and hence all sparse
subproblems would have size Q(w).

To alleviate this shortcoming, we employ a new partitioning scheme over machines to
achieve scheduling algorithms that run in o(M) and o(w) time. Instead of a sequential
process, we uniformly randomly assign each job to a machine. Then, a job is only allowed
to be scheduled on the machine it was assigned to. With these constraints, the interval
scheduling problem is equivalent to the MAXIMUM-IS problem for each machine given
the intervals assigned to it. On the positive side, this results to a scheduling task that
computationally can be solved as efficiently as MAXIMUM-IS. However, it is unclear what
is the approximation loss of this scheduling scheme. Surprisingly, we show that our scheme
incurs only the multiplicative factor of e in the approximation loss.

Before we proceed to analyzing the approximation guarantee of this scheme, as a warm-
up, we show that compared to Theorems 20 and 21 this approach yields an even more
efficient method for computing unweighted interval scheduling on multiples machines. This
efficiency comes at the expense of slightly worsening the approximation guarantee.

» Theorem 23. Given an oracle for computing an a-approzimate unweighted interval scheduling

on a single machine, there exists a randomized algorithm for the same task on M machines
that yields an (2 — 1/M)a-approzimation in expectation.

Our proof of Theorem 23 is given in Section 7.7. Our main contribution is a black-box
result for weighted interval scheduling on multiple machines, stated as follows.

» Theorem 24. Given an oracle for computing an a-approzimate weighted interval scheduling
on a single machine, there exists a randomized algorithm for the same task on M machines
that yields an e - o approximation in expectation.

Proof. The algorithm begins by immediately assigning each job to one of the machines
uniformly at random. Then, we find an optimal solution on each machine with the jobs

3 Note that this goes to 5 (14¢) = 1.58(1 +¢) from below as M tends to oo.

37

38

Faster Approximate Interval Scheduling

that were randomly assigned to it, where this subproblem is the MAXIMUM-IS problem.
Accordingly, this randomized algorithm achieves the same runtime as the oracle for MAXIMUM-
IS.

Our hope is to show that the union of the optimal solutions for each machine (once we
have randomly assigned the jobs), is a high-quality approximation of the globally optimal
solution where jobs are not randomly constrained to particular machines. Such a result
follows more simply for the proof of Theorem 23 in Section 7.7, yet for the weighted case we
use a more interesting approach. Instead of directly arguing about the optimal solutions of
each MAXIMUM-IS problem, we develop a global strategy that respects the random machine
constraints and guarantees that each job in OPT has at least a constant probability of being
in the final schedule.

Fix uniformly at random a permutation of the jobs of OPT, and consider the jobs of
OPT in this order. When we consider a job, we also reveal the machine it is assigned to by
OPT'. Throughout this process, in parallel, we are building an alternative schedule as follows.
Suppose we are currently considering job J and suppose it has been assigned to machine P
by OPT. If all the jobs we have scheduled on P so far are either completely contained by
J or do not intersect J, then we include J in our schedule (deleting all scheduled jobs in P
that are contained in J). Otherwise, we do not schedule J.

Now, we characterize when J is in our schedule at the end of this process. If all jobs
completely containing J are assigned to another machine, and all jobs intersecting J that
appear earlier in the permutation are assigned to different machines (or are completely
contained in J), then J will be in our final schedule. As such, a lower bound for the
probability J is in our schedule, is the product of
(1) the probability of all jobs containing J being assigned to different machines, and
(2) the probability of all other jobs that intersect J (ignoring jobs J completely contains)

and have earlier permutation indices being assigned to different machines.

Suppose there are C jobs that completely contain J. Then, no other jobs on those C
machines can intersect J as they form a valid schedule. For the remaining M —1—C machines,
at most 2 jobs can intersect J that neither completely contain J nor are completely contained
within J (both jobs must contain an endpoint of J). Thus, the most pessimistic scenario
is that there are C' machines in OPT containing a job that completely contains J and
M — 1 — C machines in OPT containing two jobs that partially intersect J. The probability
all C jobs completely containing J are assigned to different machines is (1 — %)C For
the 2(M — 1 — C) jobs that partially overlap with J, we take a probability measure over
all random permutations. Note that, as the permutation is chosen uniformly randomly,
J is equally likely to be at each position of the permutation considering only J and the
2(M — 1 — C) jobs. Moreover, if J is at position ¢, then the probability J is in the final
schedule is (1 — ﬁ)z Thus, the probability, all of the intersecting jobs with J are either
jizvofflfc)(l_l/M)i
2(M—1-C)+1

This gives us a lower-bound where we pessimistically classify machines in the original solution

assigned to different machines or have later permutation positions is

as containing machines that have a job completely containing J, and intersecting machines
that have two jobs partially intersecting J. For simplicity, we will denote the lower-bound
that C7 containing machines do not violate J as feontain(C1) = (1 — ﬁ)cl and the lower-

. . . . S22 (-1/M)
bound that Cs intersecting machines do not violate J as fintersect(C2) = B 7o

Combined, our lower bound that each job is in our schedule is feontain(C) X fintersect (M —
1—C), where C can take integer values in range 0 to M — 1.

> Claim 25. The quantity feontain(C) X finterseet (M —1—C) is minimized when C = M —1

S. Compton, S. Mitrovi¢, R. Rubinfeld

(i.e., all other machines have one job completely containing this job).

Proof. To show this, we show that feontain(C) X fintersect(M —1—=C) > feontain(M — 1) X
fintersect(0). By factoring out feontain(C), this is equivalent to showing fintersect(M — 1 —
C) > feontain(M —1 = C). For simplicity, we set ¢’ = M — 1 — C and show fintersect(C') —
feontain(C') > 0 for all integer C’ from 0 to M — 1. Additionally, we define x = (1 — %)
As M > 1, we note that z € [3,1). Accordingly:

fintersect (Cl) - fcontain (C/)
S — /M)

Yo - -1/m)7
foS(; z' c’
200+ 1
D e St Y
o 20" +1
XYM @O X (1 4 2% — 2))
o 20" +1

C'—1/ .C'—i i 2
fzz':o (z x (z* —1)%)
o 2C" +1

>0

The last step is obtained because each summand is non-negative. This shows that
fintersect (C/) Z fcontain(cl) for all valid integer Cl and thus fcontain(c) X fintersect (M_ 1 _C)
is minimized when C' = M — 1.

<

Thus our lower bound of a job being in the resulting solution is always at least feontain (M —

_ 1\M-1~ 1
1) =(1-3;) > <

With this, we show that our generative process results in a schedule on average that
has weight at least ‘O—le. This implies a a-approximate MAXIMUM-IS algorithm yields an
ea-approximation |

As such, we explore the relationship between partitioning over time and machines to
solve the interval scheduling problem. To achieve a (1 + &)-approximations for unweighted

and (%5 +¢)-approximations for weighted scheduling, we simultaneously partition over time
and machines at the expense of slower algorithms. However, if we tolerate (2 — 1/M + ¢)-
approximations for unweighted scheduling or (e+¢)-approximations for weighted scheduling,
we randomly partition over machines then time to achieve comparable efficiency to the

MaxiMuM-IS problem.

7.4 Proof of Theorem 20

We maintain a modified version of Invariant 1, where the algorithm maintains a set of borders
such that an optimal solution for within each two consecutive borders is of size between M/e
and 2M/c + M jobs. Direct modification of Theorem 4 shows that this maintains a (1 + ¢)-
approximation (the size of solutions between consecutive borders is a factor of M larger than
in Theorem 1 because M jobs may intersect any border).

As a starting point, we consider the classic greedy algorithm for unweighted interval
scheduling on multiple machines [25], that we recall next:

39

40

Faster Approximate Interval Scheduling

Among jobs that start after the earliest time any machine is free, find the one with the
earliest ending time.
Then, among machines that can take the job, schedule the job to the machine that
becomes free at the latest time.
This solution can easily be simulated in O(|OPT|log(n)) time by a method similar to PROBE-
BASED-OPT. In our dynamic version, we handle insertions and deletions analogously to as in
Theorem 1. More specifically, when a job is added inside a region, we recompute an answer

%g(")) time. If the solution becomes too large, we add a border after

for the region in O(
the %-th ending point of a job in the solution (this will invalidate at most M jobs, leaving
the left half with a [M/e, M/c+ M| size solution and the right half with a [M/e 41, M/c+ M +1]
size solution). If deleting a job makes the recomputed solution too small, we combine with
an adjacent region (and if the region is now too large, we add a new border to split the
region like above).

With essentially the same approach as Theorem 1, we obtain O(%g("))

O(log(n)) queries in worst-case time.

updates and

7.5 Proof of Theorem 21

First, we modify the successor oracle for this result. Consider an instance with two machines
and two jobs corresponding to time ranges [1,4] and [2,3]. No successor oracle probe will
ever return the first job because a successor oracle prove will never return a job completely
contained in another job. Thus the original successor oracle is not strong enough to
determine any particular constant-factor approximation to scheduling even with infinite
probes. To remedy this, we modify the successor oracle such that it ignores a set of jobs
given with the probe (it is not a concern that this set will be very large, as any probe-efficient
algorithm will not know many jobs to specify for the set) which enables us to simulate a
subroutine analogous to PROBE-BASED-OPT.

With this new successor oracle, our algorithm and analysis is almost identical to Algorithm 3
proven in Theorem 3. Our key difference is that we now set the thresholds for drawing
borders to when OPT(Qr) and OPT(QRr) are larger than M/e instead of 1/e. With this,
we are maintaining the modified version of Invariant 1 from Theorem 20 that is shown to
result in a (1 4 ¢)-approximation. More concretely, to simulate this process we define a
function f(Q, first_empties) analogous to that of f(Q, first_empty) from Algorithm 3.
The primary differences are the aforementioned factor of M increase of the threshold for
drawing a border, our simulation of PROBE-BASED-OPT is thus a factor of M slower, we
have M possible I,,,;4, and we keep track of and return the times for all M machines (hence
first_empties instead of first_empty).

With essentially the same approach as Theorem 3, we obtain a local computation algorithm

for (1 + ¢)-approximate unweighted interval scheduling on M machines using O(%g(N)).

7.6 Proof of Theorem 22

We outline an alternative approach to a dynamic algorithm for weighted independent set of
intervals based on Section 4. While a stronger result is presented in Section 5, that approach
does not easily lend itself well to repeatedly calculating MAXiMUM-IS. We instead build off
the simpler result from Section 4.

We maintain a modified version of Invariant 1, where the reward of the solution we
calculate within consecutive borders is in range [Mw/e, 8Mw/. 42 Mw]. We want to repeatedly
calculate a (1 4 ¢)-approximation of MAXIMUM-IS within regions and use a similar but

S. Compton, S. Mitrovi¢, R. Rubinfeld

different approach to Theorem 5. In contrast to the setting of Theorem 5, our invariant

bounds the total weight within consecutive borders as opposed to the number of jobs in
the optimal solution within consecutive borders. Consider a dynamic programming problem
where our state is the total weight of jobs and the corresponding answer is the shortest prefix
that can obtain jobs of this total weight. It is simpler for us if all weights are integers and
there are not many weights. We round all weights down to powers of (1 4 ¢), which will
not affect our approximation by more than a factor of (1 + ¢). Then, we scale all weights
by 1/e. Each job now has weight at least /e, so rounding down to the nearest integer is
at most ¢ fraction of the weight and the remaining optimal solutions is still an (1 4+ O(¢))-
approximation. Now, we optimally calculate the MAXIMUM-IS within each region given the
rounding. Let D be the number of distinct weights. The dynamic programming problem
we mentioned can be solved in O(log(n) - |OPT|- D) time as there are at most |OPT| states
we can reach, there are D possible transitions (trying the job with some given weight that
starts after the current prefix and ends earliest), and each transition uses a O(log(n)) query
to a balanced binary search tree. Due to our invariant and scaling weights, the sum of
|OPT)| as we calculate MAXIMUM-IS M times is at most O (242

52

). By rounding the weights

down to powers of (1+¢), D = O(@). Thus, we recompute the answer for a region in
0O Mw log(n) log(w)
(—=—)
Now, we handle insertions and deletions similarly to Theorem 1. This maintains a
M
(s tar=y
solution the algorithm generates for any region is at least % the optimal solution for that

)(1 + €))-approximation, which is also a 4-approximation. This means the

region. When we insert/delete intervals in a region, we recompute the answer for the region.
If the total weight of the region becomes too small, we repeatedly combine with adjacent
regions until it is not too small. At most four combinations must occur, as then the union
of the solutions we had found is at last a factor of 4 larger than the minimum solution size
for a region, so our 4-approximation must find it. If we add a job and the region solution
becomes too large, we note that the true solution size is at most 4(8MT“’ +2Mw). Whenever
a region’s solution is too large, we split at the smallest prefix that contains intervals of total
weight %. The left region will have a solution of size > 4MT“’ and the right region will have
a solution of size > (8% 4 2Mw) — (42 — 2Mw) = 4% Thus, our 4-approximation will
find a solution of size at least MTw for both and we will never classify either as too small. As
we separate at least % of weight with every split, only O(1) splits will occur. With this, we

achieve an algorithm with O(w) update and O(log(n)) query time worst-case.

7.7 Proof of Theorem 23

The algorithm begins by assigning each job to one of the machines uniformly at random.

Then, finding an optimal solution on each machine is the MAXIMUM-IS problem. Our
proof technique is to simultaneously simulate the classic greedy MAXIMUM-IS algorithm and
the realization of each job’s assignment for a single machine. We show that the expected
MAXIMUM-IS of jobs assigned to a machine is at least gfﬂ

Consider the set of jobs in an optimal solution OPT, and ignore all others. In the classic

greedy MAXIMUM-IS algorithm, we consider jobs in an increasing order of their ending time
and use the job if it does not intersect any previously selected jobs. At a high-level, we will
simulate this algorithm on a particular machine, realizing whether or not a job was assigned
to this machine only as we need to. In particular, assume we have a set of jobs OPT that
are a valid scheduling on M machines and all start after the ending points of any jobs we
have previously selected. We consider this set in increasing order of ending time. When

41

42 Faster Approximate Interval Scheduling

we consider a job I, we realize its assignment. If I is not assigned to the current machine
(probability 1 — 1/M), we cannot use it. If I is assigned to the current machine (probability
1/M), we use the job and delete all jobs in OPT that intersect it. Note that all other jobs
in OPT have an ending time that is at least the ending time of I (because we have not yet
considered them). Thus, to intersect I, they must start before I ends. This implies that all
the jobs we delete must contain the ending point of I. Since OPT is a valid schedule for
M machines (and no schedule on M machines can have > M jobs containing a point), we
only need to delete at most M — 1 other jobs. In either situation, the invariant on OPT is
maintained afterwards.

Thus, we write the following recurrence f(X) to denote a lower bound on the expected
size of the MAXIMUM-IS given |OPT| = X:

fX) = A =1/M)F(X = 1) +Yu(f(X = M)+1).
For simplicity of notation, we assume that f(X) =0 for X <0.
» Lemma 26. It holds that f(X) > 57—

Proof. First, we show the claim when X < M. We have the following chain of inequalities:

(1 57) £ - D+ U =30+)

M
><1i>ﬂ+i(0+1)
- M)2M-1 M

X-1 X -1 1

T 1 @M -—DM M
M(X—1)— (X —1)+(2M—1)

M(2M — 1)
7M:L'+M7£C
- M(2M 1)
Mz
>7
“M(2M —1)
X
TOM -1

Next, we show the claim when X > M:

(1= 57) £ - D+ U =30+)

M
(1) e ()
- M)2M -1 M \2M -1
_ Max
- M((2M —1)
X
C2M -1
<
Thus, we have that f(|OPT|) > gfﬂ . As all machines are identical, the expected value
of the schedule is the sum of their expected MAXIMUM-IS. Thus, the expected optimal
schedule has size A@SZT'. Using an a-approximation for each of these MAXIMUM-IS

subproblems yields a (2 — 1/M)a-approximation, as advertised.

S. Compton, S. Mitrovi¢, R. Rubinfeld

Note that this bound is tight as n approaches infinity. Consider an instance with n
jobs, where job ¢ starts at time ¢ and ends at time ¢ + M. If we simulate the classic greedy
algorithm for MAXIMUM-IS on a machine, it will see M jobs in expectation until it sees one
that is assigned to it (expectation of a Bernoulli random variable). To use this interval, the
M —1 jobs after it cannot be used (they all intersect). Thus, for every job in the solution, in
expectation the machine needed to throw away 2M — 2 other jobs and thus as n approaches

infinity the expected schedule size approaches 5 Aﬁ{»ﬂ T

Acknowledgements

We thank Benjamin Qi (MIT) for helpful discussions. S. Compton was supported in part

by the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.

S. Mitrovi¢ was supported by the Swiss NSF grant No. P400P2_191122/1, NSF award CCF-
1733808, and FinTech@CSAIL. R. Rubinfeld was supported by the NSF TRIPODS program
(awards CCF-1740751 and DMS-2022448), NSF award CCF-2006664, and FinTech@CSAIL.

—— References

1 Pankaj K Agarwal and Marc J Van Kreveld. Label placement by mazimum independent set
in rectangles, volume 1998. Utrecht University: Information and Computing Sciences, 1998.

2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1132-1139. Society for Industrial and Applied Mathematics, 2012.

3 Esther M Arkin and Ellen B Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18(1):1-8, 1987.

4 Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the
throughput of multiple machines in real-time scheduling. SIAM Journal on Computing,
31(2):331-352, 2001.

5 Sujoy Bhore, Jean Cardinal, John lacono, and Grigorios Koumoutsos. Dynamic geometric
independent set. arXiv preprint arXiv:2007.08643, 2020.

6 Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3-15, 2012.

7 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic
geometric independent set. In 29th Annual Furopean Symposium on Algorithms (ESA 2021),
volume 204, page 25. Schloss Dagstuhl-Leibniz-Zentrum f {\" u} r Informatik, 2021.

8 José R Correa and Andreas S Schulz. Single-machine scheduling with precedence constraints.
Mathematics of Operations Research, 30(4):1005-1021, 2005.

9 A FRANK. Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings
of the 5th British Combinatorial Conference, 1975. Utilitas Mathematica, 1975.

10 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
interval scheduling for multiple machines. In International Symposium on Algorithms and
Computation, pages 235—246. Springer, 2014.

11 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theoretical Computer Science, 562:227—
242, 2015.

12 Pawel Gawrychowski and Karol Pokorski. Sublinear dynamic interval scheduling (on one or
multiple machines). arXiv preprint arXiv:2208.14810, 2022.

13 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In 36th International
Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2020.

43

44

Faster Approximate Interval Scheduling

14

15

16

17

18

19

20

21

22

23

24

25
26

Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130-136, 1985.
Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530-543, 2007.

Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22-35, 1978.

Elaine Levey and Thomas Rothvoss. A (14 epsilon)-approximation for makespan scheduling
with precedence constraints using lp hierarchies. SIAM Journal on Computing, pages
STOC16-201, 2019.

Aristide Mingozzi, Marco A Boschetti, Salvatore Ricciardelli, and Lucio Bianco. A set
partitioning approach to the crew scheduling problem. Operations Research, 47(6):873-888,
1999.

Michael Pinedo. Scheduling, volume 29. Springer, 2012.

Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.
In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
491-500, 2008.

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
arXiv preprint arXiv:1104.1377, 2011.

Pinal Salot. A survey of various scheduling algorithm in cloud computing environment.
International Journal of Research in Engineering and Technology, 2(2):131-135, 2013.
Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, and Prachet Bhuyan. A survey
of job scheduling and resource management in grid computing. world academy of science,
engineering and technology, 64:461-466, 2010.

Martin Skutella and Marc Uetz. Stochastic machine scheduling with precedence constraints.
SIAM Journal on Computing, 34(4):788-802, 2005.

Eva Tardos and Jon Kleinberg. Algorithm design, 2005.

Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set
with applications in map labelling. In European Symposium on Algorithms, pages 426-437.
Springer, 1999.

	1 Introduction
	1.1 Computation Models
	1.2 Our Results
	1.2.1 Implications in Other Settings

	1.3 Related Work

	2 Overview of Our Techniques
	2.1 Unweighted Interval Scheduling – Partitioning Over Time (section:dynamic-unit)
	2.2 Weighted Interval Scheduling (section:dynamic-weighted)
	2.2.1 Job data structure (sec:hierarchical-decomposition)
	2.2.2 Organizing computation (sec:convenient-structure)
	2.2.3 Auxiliary data structure (sec:structure-Z(Q))
	2.2.4 The charging method (sec:existence-of-nearly-optimal-sparse-structure)
	2.2.5 Approximate dynamic programming (sec:dp-sparse)
	2.2.6 Comparison with Prior Work

	2.3 Localizing the Time-Partitioning Method (section:local)

	3 Problem Setup
	4 Dynamic Unweighted Interval Scheduling on a Single Machine
	5 Dynamic Weighted Interval Scheduling on a Single Machine
	5.1 Decomposition Overview
	5.2 Solution of Nearly-Optimal Sparse Structure
	5.2.1 Hierarchical decomposition
	5.2.2 Structure Z(Q)
	5.2.3 Existence of desired (1+)-approximate solution

	5.3 Efficiently Approximating Sparse Solutions
	5.4 Dynamically Maintaining Z(Q) – Proof of lemma:zq-maintain
	5.5 Combining All Ingredients – Proof of theorem:weighted-dynamic-M=1

	6 LCA for Interval Scheduling on a Single Machine
	7 Scheduling Algorithms on Multiple Machines with Partitioning
	7.1 Overview
	7.2 Unweighted Interval Scheduling on Multiple Machines
	7.3 Weighted Interval Scheduling on Multiple Machines
	7.4 Proof of theorem:unweighted-dynamic-scheduling-multiple
	7.5 Proof of theorem:unweighted-LCA-scheduling
	7.6 Proof of theorem:weighted-dynamic-scheduling
	7.7 Proof of theorem:random-unweighted

