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Abstract—The goal of the trace reconstruction problem
is to recover a string x ∈ {0, 1}n given many independent
traces of x, where a trace is a subsequence obtained
from deleting bits of x independently with some given
probability.

In this paper we consider two kinds of algorithms for
the trace reconstruction problem.

We first observe that the state-of-the-art result of Chase
(STOC 2021), which is based on statistics of arbitrary
length-k subsequences, can also be obtained by considering
the “k-mer statistics”, i.e., statistics regarding occurrences
of contiguous k-bit strings (a.k.a, k-mers) in the initial
string x, for k = 2n1/5. Mazooji and Shomorony (ISIT
2023) show that such statistics (called k-mer density map)
can be estimated within ε accuracy from poly(n, 2k, 1/ε)
traces. We call an algorithm to be k-mer-based if it
reconstructs x given estimates of the k-mer density map.
Such algorithms essentially capture all the analyses in the
worst-case and smoothed-complexity models of the trace
reconstruction problem we know of so far.

Our first, and technically more involved, result shows
that any k-mer-based algorithm for trace reconstruction
must use exp(Ω(n1/5√log n)) traces, under the assump-
tion that the estimator requires poly(2k, 1/ε) traces, thus
establishing the optimality of this number of traces. Our
analysis also shows that the analysis technique used by
Chase is essentially tight, and hence new techniques are
needed in order to improve the worst-case upper bound.

Our second, simple, result considers the performance
of the Maximum Likelihood Estimator (MLE), which
specifically picks the source string that has the maximum
likelihood to generate the samples (traces). We show that
the MLE algorithm uses a nearly optimal number of traces,
i.e., up to a factor of n in the number of samples needed
for an optimal algorithm, and show that this factor of n
loss may be necessary under general “model estimation”
settings.

I. INTRODUCTION

The trace reconstruction problem is an infamous ques-
tion introduced by Batu, Kannan, Khanna and McGregor
[1] in the context of computational biology. It asks to
design algorithms that recover a string x ∈ {0, 1}n given
access to traces x̃ of x, obtained by deleting each bit
independently with some given probability p ∈ [0, 1).
The best current upper and lower bounds are exponen-
tially apart, namely exp(Õ(n1/5)) traces are sufficient
for reconstruction [2] (improving upon the exp(O(n1/3))
of [3], [4]) and Ω̃(n3/2) [5], [6] are necessary.

The problem has been recently studied in several
variants so far [1]–[5], [7]–[24] and it continues to elicit
interest due to its deceptively simple formulation, as well
as its motivating applications to DNA computing [25].

In this paper, we focus on the worst-case formulation
of the problem, which is equivalent from an information-
theoretic point of view to the distinguishing variant.
In this variant, the goal is to distinguish whether the
received traces come from string x ∈ {0, 1}n or from
y ∈ {0, 1}n, for some known x ̸= y.

a) Algorithms based on k-bit statistics : A very
natural kind of algorithms [3], [4], [9] operates using
the mean of the received traces at each location i ∈ [n]
(one may assume that traces of smaller length than n are
padded with 0’s at the end). Indeed, let Dx be the distri-
bution of the traces induced by the deletion channel on
input x. A mean/1-bit-statistics -based algorithm first es-
timates from the received traces the mean vector E(x) =(
E0(x), · · · , En−1(x)

)
∈ [0, 1]n, where the j-th coordi-

nate is defined as Ej(x) = E
x̃∼Dx

[
x̃j

]
. It then may per-

form further post-processing without further inspection
of the traces. Solving the distinguishing problem then
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Abstract-The goal of the trace reconstruction problem 
is to recover a string x E {O, 1 }n given many independent 
traces of x , where a trace is a subsequence obtained 
from deleting bits of x independently with some given 
probability. 

In this paper we consider two kinds of algorithms for 
the trace reconstruction problem. 

We first observe that the state-of-the-art result of Chase 
(STOC 2021), which is based on statistics of arbitrary 
length-k subsequences, can also be obtained by considering 
the "k-mer statistics", i.e., statistics regarding occurrences 
of contiguous k-bit strings (a.k.a, k-mers) in the initial 
string x, for k = 2n115• Mazooji and Shomorony (ISIT 
2023) show that such statistics (called k-mer density map) 
can be estimated within E accuracy from poly ( n , 2k , 1 / E) 
traces. We call an algorithm to be k-mer-based if it 
reconstructs x given estimates of the k-mer density map. 
Such algorithms essentially capture all the analyses in the 
worst-case and smoothed-complexity models of the trace 
reconstruction problem we know of so far. 

Our first, and technically more involved, result shows 
that any k-mer-based algorithm for trace reconstruction 
must use traces, under the assump-
tion that the estimator requires poly(2\ 1/s) traces, thus 
establishing the optimality of this number of traces. Our 
analysis also shows that the analysis technique used by 
Chase is essentially tight, and hence new techniques are 
needed in order to improve the worst-case upper bound. 

Our second, simple, result considers the performance 
of the Maximum Likelihood Estimator (MLE), which 
specifically picks the source string that has the maximum 
likelihood to generate the samples (traces). We show that 
the MLE algorithm uses a nearly optimal number of traces, 
i.e., up to a factor of n in the number of samples needed 
for an optimal algorithm, and show that this factor of n 
loss may be necessary under general "model estimation" 
settings. 

I. INTRODUCTION 

The trace reconstruction problem is an infamous ques-
tion introduced by Batu, Kannan, Khanna and McGregor 
[ l ] in the context of computational biology. It asks to 
design algorithms that recover a string x E {0, l}n given 
access to traces x of x, obtained by deleting each bit 
independently with some given probability p E [0, 1). 
The best current upper and lower bounds are exponen-
tially apart, namely exp(O(n115)) traces are sufficient 
for reconstruction [2] (improving upon the exp( 0( n 113)) 
of [3], [4]) and S1(n312 ) [5], [6] are necessary. 

The problem has been recently studied in several 
variants so far [ l ]-[5], [7]-[24] and it continues to elicit 
interest due to its deceptively simple formulation, as well 
as its motivating applications to DNA computing [25]. 

In this paper, we focus on the worst-case formulation 
of the problem, which is equivalent from an information-
theoretic point of view to the distinguishing variant. 
In this variant, the goal is to distinguish whether the 
received traces come from string x E { 0, 1} n or from 
y E {0, l}n, for some known x -/- y. 

a) Algorithms based on k-bit statistics : A very 
natural kind of algorithms [3], [ 4], [9] operates using 
the mean of the received traces at each location i E [n] 
(one may assume that traces of smaller length than n are 
padded with O's at the end). Indeed, let 'Dx be the distri-
bution of the traces induced by the deletion channel on 
input x. A mean/I-bit-statistics -based algorithm first es-
timates from the received traces the mean vector E(x) = 
(Eo(x), · · · , En_1 (x)) E [0, I t , where the j-th coordi-
nate is defined as Ej(x) =_IE [xj] . It then may per-

x ""'Dx 
form further post-processing without further inspection 
of the traces. Solving the distinguishing problem then 
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reduces by standard arguments to understanding the ℓ1-
norm between the mean traces of x and y, namely the
number T of traces satisfies Ω

(
1/
∥∥E(x)−E(y)

∥∥
ℓ1

)
=

T = O
(
1/
∥∥E(x)−E(y)

∥∥2
ℓ1

)
. Further, [3], [4] re-

lated the ℓ1-norm above with the supremum of a cer-
tain real univariate polynomial over the complex plane.
Using techniques from complex analysis they proved
that mean-based algorithms using exp(O(n1/3)) traces
and outputting the string s ∈ {x,y} whose E(s) is
closer in ℓ1-distance to the estimate is a successful
reconstruction algorithm. Furthermore, any mean-based
algorithm needs exp(Ω(n1/3)) traces to succeed with
high probability [3], [4].

A general class of algorithms may operate by using k-
bit statistics [2], for k ≥ 1. Specifically, for w ∈ {0, 1}k,
the algorithm estimates from the given traces, for tuples
0 ≤ i0 < i1 < · · · < ik−1 ≤ n − 1, the quan-
tity E

x̃∼Dx

[∏
0≤j<k 1

{
x̃ij = wj

}]
. After the estima-

tion step, whose accuracy can be argued via standard
Chernoff bounds, the algorithm does not need the traces
anymore and may perform further post-processing in
order to output the correct string. The result of Chase
follows from showing that for k = 2n1/5 there is a
string w ∈ {0, 1}k for which the ℓ1-distance between
the corresponding k-bit statistics between x and y is
large.

b) Algorithms based on k-mer statistics: Another
variant proposed by Mazooji and Shomorony [26] con-
siders algorithms which operate using estimates of statis-
tics regarding occurrences of contiguous k-bit strings
(a.k.a, k-mers) in the initial string x. We denote by
1
{
x[j : j + k − 1] = w

}
the indicator bit of whether

w ∈ {0, 1}k occurs as a subword in x from position j.
The following definition which is central to our paper.

Definition 1 ( [26]). Given x ∈ { 0, 1 }n and a k-mer
w ∈ { 0, 1 }k, for i = 0, 1, . . . , n− 1 denote Kw,x[i] :=∑n−k

j=0

(
j
i

)
pj−i(1− p)i · 1

{
x[j : j + k − 1] = w

}
. The

vector Kx :=
(
Kw,x[i] : w ∈ { 0, 1 }k , i ∈ [n]

)
is called

the k-mer density map of x.

Note that the mean vector E(x) is, up to a fac-
tor of 1 − p, equivalent to the 1-mer density map.
Indeed, for k = 1 and w = 1 we have Ei(x) =
E

x̃∼Dx

[x̃i] =
∑n−1

j=0 Pr
[
x̃i comes from xj

]
· xj =∑n−1

j=0

(
j
i

)
pj−i(1−p)i+1·xj = (1−p)·

∑n−1
j=0

(
j
i

)
pj−i(1−

p)i · 1
{
x[j : j] = 1

}
= (1− p)K1,x[i].

As noted in [26], the techniques of [19] in the
smoothed complexity model of trace reconstruction can

also be viewed as based on k-mer density maps. Indeed,
for a fixed w ∈ {0, 1}k, the number of its occurrences as
a subword in x is

∑n−1
j=0 1

{
x[j : j + k − 1] = w

}
=∑n−1

i=0 Kw,x[i]. They show that for k = O(log n), the
subword vector (indexed by w ∈ {0, 1}k) uniquely
determines the source string, with high probability [19,
Lemma 1.1].

The main result of [26] is that given access to
T = ε−2 · 2O(k)poly(n) traces of x, one can recover
an estimation K̂x of the k-mer density map Kx which
is entry-wise ε-accurate, i.e.,

∥∥∥K̂x −Kx

∥∥∥
ℓ∞

≤ ε. We

remark that by replacing ε with ε/(2kn), one gets an
estimate which is ε-accurate in ℓ1-norm, while using
asymptotically the same number of traces.

We make the following definition generalizing mean-
based algorithms ( [3], [4]).

Definition 2. (Algorithms based on k-mer statistics) A
trace reconstruction algorithm based on k-mer statistics
works in two steps as follows:

1) Once the unknown source string x ∈ {0, 1}n is
picked, it chooses an accuracy parameter ε ∈
(0, 1]. It then receives an ϵ-accurate estimate (in
ℓ1-norm) of the k-mer density map Kx based on
the traces. From here on the algorithm has no more
access to the traces themselves. We define the cost
of this part to be 2k/ε.

2) The algorithm may perform further post-
processing and finish by outputting the source
string.

Since there is an algorithm to ε-estimate the k-mer
density map with ε−2 · 2O(k)poly(n) many traces [26],
it follows that an algorithm defined as in Definition 2
with cost T can be turned into a trace reconstruction
algorithm with poly(T ) samples.

We note that the k-mer density map estimators of [26]
only use k-bit statistics of the traces, in fact statistics
about contiguous k bits in the traces, and hence k-mer-
based algorithms are a subclass of algorithms based on
k-bit statistics.

In this work, we first observe that the upper bounds
of Chase [2] can be in fact obtained via k-mer-based
algorithms (see the formal statement in Theorem 1), and
hence by only using statistics of contiguous subwords
of the traces. Our main result says that k-mer-based
algorithms require exp(Ω(n1/5)

√
n) many traces (see

Theorem 2). In addition, the analysis of this result im-
plies that the proof technique in Chase [2] cannot lead to
a better analysis of the sample complexity (up to log4.5 n
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factors in the exponent), and hence new techniques are
needed to significantly improve the current upper bound.

c) The Maximum Likelihood Estimator: In model
estimation settings, a common tool for picking a “model”
that best explains the observed data is the Maximum
Likelihood Estimator (MLE). In the setting of trace re-
construction, it is natural to ask: What is the most likely
trace distribution Dx (and hence x) to have produced the
given sample/trace(s)? We formalize MLE next.

Definition 3 (Maximum Likelihood Estimation). Let
D = {D1, D2, . . . , Dm } be a finite set of proba-
bility distributions over a common domain Ω. Given
a sample x ∈ Ω, the output of the Maximum
Likelihood Estimation is (ties are broken arbitrarily)
MLE(x;D) := argmaxi∈[m] Di(x). For independently
and identically distributed samples x1, x2, . . . , xk ∈ Ω
the output of the Maximum Likelihood Estimation is (ties
are broken arbitrarily) is MLE(x1, x2, . . . xk;D) :=
argmaxi∈[m]

∏
j∈[k] Di(xj).

We present a simple proof that this algorithm (which
takes exponential time, as it searches through all x ∈
{0, 1}n) is in fact optimal in the number of traces used,
up to an O(n) factor blowup.

We also observe that in the average-case setting, where
the source string is a uniformly random string from
{0, 1}n, MLE is indeed optimal – without the O(n)
factor blowup (see Remark 1.)

A. Our Contributions

a) The power of k-mer-based algorithms: Our first
result shows that algorithms based on k-mer statistics
can reconstruct a source string using exp(Õ(n1/5)) many
traces. This follows from the following theorem.

Theorem 1 (Implied by [2]). Let x,y ∈ { 0, 1 }n be two
arbitrary distinct strings, and let Kx,Ky be their k-mer
density maps, respectively. Assuming k = 2n1/5, it holds
that

∥∥Kx −Ky

∥∥
ℓ1

≥ exp
(
−O(n1/5 log5 n)

)
.

Based on Theorem 1, the algorithm estimates K̂
within an accuracy of ε = exp(−O(n1/5 log5 n)) and
outputs the x that minimizes

∥∥∥K̂ −Kx

∥∥∥
ℓ1
. The cost of

this k-mer-based algorithm is exp(O(n1/5 log5 n)).
Our main result regarding k-mer-based algorithms is

the following theorem which shows the tightness of the
bound in Theorem 1.

Theorem 2. Fix any k ≤ n1/5. Suppose Kx stands
for the k-mer density map of x. There exist distinct

strings x,y ∈ { 0, 1 }n such that
∥∥Kx −Ky

∥∥
ℓ1

≤
exp

(
−Ω(n1/5

√
log n)

)
.

Hence, Theorem 2 implies that the cost of any k-
mer-based algorithm for worst-case trace reconstruction
is exp(Ω(n1/5

√
log n)).We remark that the proof of

Theorem 2 further implies that the analysis technique of
[2] is essentially tight, in the sense that no better upper
bound (up to log4.5 n factors in the exponent) can be
obtained via his analysis.

b) Maximum Likelihood Estimator: an optimal al-
gorithm: We next turn to analyzing the performance of
the MLE algorithm in the setting of trace reconstruction.
Our main result essentially shows that if there is an
algorithm for trace reconstruction that uses T traces
and succeeds with probability 3/4 then the MLE al-
gorithm using O(nT ) traces succeeds with probability
3/4. Hence, given that the current upper bounds for the
worst-case reconstruction problem are exponential in n,
we may view the MLE as an optimal algorithm for trace
reconstruction.

Theorem 3. Suppose D = {D0, D1, . . . , Dm } is such
that dTV (D0, Di) ≥ 1− ε for any 1 ≤ i ≤ m. Then we
have Prx∼D0

[
MLE(x;D) = 0

]
≥ 1−mε.

We remark that the loss of a factor of m in The-
orem 3 is generally inevitable. Here is a simple ex-
ample: let D0 be the uniform distribution over [m],
and for i = 1, 2, . . . ,m, let Di be the point distri-
bution supported on { i }. We have dTV (D0, Di) =
((m − 1)/m + (1 − 1/m))/2 = 1 − 1/m. However,
Prx∼D0

[
MLE(x;D) = 0

]
= 0.

For a string x ∈ { 0, 1 }n, let Dx denote the trace
distribution of x. Theorem 3 implies the following corol-
lary, which implies that in some sense the Maximum
Likelihood Estimation is a universal algorithm for trace
reconstruction.

Corollary I.1. Suppose T traces are sufficient for worst-
case trace reconstruction with a success rate 3/4. Then
for any ε > 0, Maximum Likelihood Estimation with
8 ln(1/ε) ·nT traces solves worst-case trace reconstruc-
tion with success rate 1− ε.

Corollary I.1 incurs a factor of O(n) to the sample
complexity. While we currently do not know whether
this blowup is necessary for trace reconstruction, the next
result shows that it is inevitable for the more general
“model estimation” problem.

Theorem 4. For any integer n ≥ 1, there is a set
of distributions D = {D0, D1, D2, . . . , Dm } over a
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argmaxiE[m] TijE[k] Di(Xj)-

We present a simple proof that this algorithm (which 
takes exponential time, as it searches through all x E 
{0, 1 }n) is in fact optimal in the number of traces used, 
up to an O(n) factor blowup. 

We also observe that in the average-case setting, where 
the source string is a uniformly random string from 
{0, l}n, MLE is indeed optimal - without the O(n) 
factor blowup (see Remark 1.) 

A. Our Contributions 

a) The power of k-mer-based algorithms: Our first 
result shows that algorithms based on k-mer statistics 
can reconstruct a source string using exp( 0( n 1/ 5 )) many 
traces. This follows from the following theorem. 

Theorem 1 (Implied by [2]). Let x, y E { 0, 1 } n be two 
arbitrary distinct strings, and let Kx, Ky be their k-mer 
density maps, respectively. Assuming k = 2n115, it holds 
that II Kx - Ky lie, 2". exp ( - O(n115 log5 n)) . 

Based on Theorem 1, the algorithm estimates k 
within an accuracy of c: = exp( - O(n115 Jog5 n)) and 
outputs the x that minimizes Il k - Kx lle,. The cost of 
this k-mer-based algorithm is exp(O(n115 Iog5 n)). 

Our main result regarding k-mer-based algorithms is 
the following theorem which shows the tightness of the 
bound in Theorem 1. 

Theorem 2. Fix any k :c; n 115. Suppose Kx stands 
for the k-mer density map of x. There exist distinct 

strings x , y E {0,l}n such that II Kx - Ky lle, < 
exp 

Hence, Theorem 2 implies that the cost of any k-
mer-based algorithm for worst-case trace reconstruction 
is remark that the proof of 
Theorem 2 further implies that the analysis technique of 
[2] is essentially tight, in the sense that no better upper 
bound (up to log4•5 n factors in the exponent) can be 
obtained via his analysis. 

b) Maximum Likelihood Estimator: an optimal al-
gorithm: We next turn to analyzing the performance of 
the MLE algorithm in the setting of trace reconstruction. 
Our main result essentially shows that if there is an 
algorithm for trace reconstruction that uses T traces 
and succeeds with probability 3 / 4 then the MLE al-
gorithm using 0( nT) traces succeeds with probability 
3 / 4. Hence, given that the current upper bounds for the 
worst-case reconstruction problem are exponential in n, 
we may view the MLE as an optimal algorithm for trace 
reconstruction. 

Theorem 3. Suppose D = { D0 , D1, ... , Dm} is such 
that dTv (Do, Di) 2". 1 - E for any l :c; i :c; m. Then we 
have Prx~Do [MLE(x; D) = 0] 2c: 1 - m e: . 

We remark that the loss of a factor of m in The-
orem 3 is generally inevitable. Here is a simple ex-
ample: let D0 be the uniform distribution over [m], 
and for i = 1, 2, ... , m, let Di be the point distri-
bution supported on { i }. We have dTv (Do, Di) = 
((m - 1)/m + (1 - 1/ m))/2 = 1 - 1/ m. However, 
Prx~Do [MLE(x; D) = 0] = 0. 

For a string x E { 0, 1 } n, let Dx denote the trace 
distribution of x. Theorem 3 implies the following corol-
lary, which implies that in some sense the Maximum 
Likelihood Estimation is a universal algorithm for trace 
reconstruction. 

Corollary 1.1. Suppose T traces are sufficient for worst-
case trace reconstruction with a success rate 3 / 4. Then 
for any E > 0, Maximum Likelihood Estimation with 
8 ln( 1 / E) • nT traces solves worst-case trace reconstruc-
tion with success rate l - E . 

Corollary 1.1 incurs a factor of O(n) to the sample 
complexity. While we currently do not know whether 
this blowup is necessary for trace reconstruction, the next 
result shows that it is inevitable for the more general 
"model estimation" problem. 

Theorem 4. For any integer n 2". 1, there is a set 
of distributions D = { Do , D1, D2 , ... , Dm} over a 
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common domain Ω of size |Ω| = m + n, where m =(
n

⌊n/4⌋
)
= 2Θ(n), satisfying the following conditions.

1) There is a distinguisher A which given one sample
x ∼ Aj for an unknown j ∈ { 0, 1, . . . ,m },
recovers j with probability at least 2/3. In other
words, for all j = 0, 1, . . . ,m,

Pr
x∼Dj

[A(x) = j] ≥ 2/3.

2) MLE fails to distinguish D0 from other distri-
butions with probability 1, even with T = n/4
samples. In other words,

Pr
x1,...,xT∼D0

[MLE(x1, . . . , xT ;D) = 0] = 0.

Remark 1. Finally, we remark that in the average-
case setting MLE is indeed optimal (with no factor
of O(n) factor blowup in the number of traces). This
is because maximizing the likelihood is equivalent to
maximizing the posterior probability under the uniform
prior distribution (which is optimal), as can be seen via
the Bayes rule Dx(x̃1, . . . , x̃T ) = p(x | x̃1, . . . , x̃T ) ·∑

x′∈{ 0,1 }n p(x′)·Dx′ (x̃1,...,x̃T )

p(x) = p(x | x̃1, . . . , x̃T ) ·∑
x′∈{ 0,1 }n Dx′(x̃1, . . . , x̃T ) = p(x | x̃1, . . . , x̃T ) ·

f(x̃1, . . . , x̃T ). Therefore maximizing both sides with
respect to x yields the same result.

B. Overview of the techniques

a) Lower bounds for k-mer-based algorithms: In
recent development of the trace reconstruction problem,
the connection to various real and complex polynomials
has been a recurring and intriguing theme [2]–[4], [9],
[11], [13], [19], [22]–[24], [27]. The starting point of
these techniques is to design a set of statistics that can
be easily estimated from the traces (e.g., mean traces),
with the property that for different source strings the
corresponding statistics are somewhat “far apart”. To
establish this property, one key idea is to associate each
source string x with a generating polynomial Px where
the coefficients are exactly the statistics of x.

Definition 4 (k-mer generating polynomial). Let x ∈
{ 0, 1 }n and w ∈ { 0, 1 }k. The k-mer generating
polynomial Pw,x for string x and k-mer w is the
following degree-(n − 1) polynomial in z: Pw,x(z) :=∑n−1

ℓ=0 Kw,x[ℓ] · zℓ.

Due to the structure of the deletion channel, in
many cases, this generating polynomial (under a
change of variables) is identical to another poly-
nomial Qx that is much easier to get a handle
on. Formally, it can be shown that Pw,x(z) =

∑n−1
ℓ=0 Kw,x[ℓ] · zℓ =

∑n−k
j=0 1

{
x[j : j + k − 1] = w

}
·(

p+ (1− p)z
)j

, which, under change of variable z0 =
p+(1− p)z gives exactly the polynomial Qx studied in
[2].

For example, the coefficients of Qx are usually
0/1, and they are easily determined from x. To show
that the statistics corresponding to x and y are far
apart (say, in ℓ1-distance), it is sufficient to show that∣∣Qx(w)−Qy(w)

∣∣ is large for an appropriate choice of
w. This is the point where all sorts of analytical tools
are ready to shine. For instance, the main technical result
in [2] is a complex analytical result that says that a
certain family of polynomials cannot be uniformly small
over a sub-arc of the complex unit circle, which has
applications beyond the trace reconstruction problem.

This analytical view of trace reconstruction can lead to
a tight analysis of certain algorithms/statistics. The best
example would be mean-based algorithms, for which
a tight bound of exp(Θ(n1/3)) traces is known to be
sufficient and necessary for worst-case trace reconstruc-
tion [3], [4]. The tightness of the sample complexity is
exactly due to the tightness of a complex analytical result
by Borwein and Erdélyi [28]. Our lower bound for k-
mer-based algorithms is obtained in a similar fashion, via
establishing a complex analytical result complementary
to that of [2] (See Lemma II.1).

On the other hand, our argument takes a different
approach than that of [28]. At a high level, both results
use a Pigeonhole argument to show the existence of two
univariate polynomials which are uniformly close over
a sub-arc Γ of the complex unit circle. The difference
lies in the objects playing the role of “pigeons”. [28]’s
argument can be viewed as two steps: (1) apply the
Pigeonhole Principle to obtain two polynomials that have
close evaluations over a discrete set of points in Γ, and
(2) use a continuity argument to extend the closeness to
the entire sub-arc. Here the roles of pigeons and holes are
played by evaluation vectors, and Cartesian products of
small intervals. Our approach considers the coordinates
of a related polynomial in the Chebyshev basis, which
play the roles of pigeons in place of the evaluation vector.
The properties of Chebyshev polynomials allow us to get
rid of the continuity argument. Instead, we complete the
proof by leveraging rather standard tools from complex
analysis (e.g., bounds on the Chebyshev coefficients
and Hadamard Three Circle Theorem) We believe this
approach has the advantage of being generalizable to
multivariate polynomials over the product of sub-arcs
Γ = Γ1 × · · · × Γm via multivariate Chebyshev series
(see, e.g., [29], [30]), whereas the same generalization
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common domain n of size 1n 1 = m + n, where m = 
( l n/ 4J) = 29 (n), satisfying the following conditions. 

1) There is a distinguisher A which given one sample 
x ~ Aj for an unknown j E { 0, 1, ... , m }, 
recovers j with probability at least 2/3. In other 
words, for all j = 0, 1, ... , m, 

Pr [A(x) = j ] 2': 2/3. 
x~D .1 

2) MLE fails to distinguish D0 from other distri-
butions with probability 1, even with T = n / 4 
samples. In other words, 

Pr [MLE(x1, ... , x r; V) = 0] = 0. 
X I , ··· ,x Trv D o 

Remark 1. Finally, we remark that in the average-
case setting MLE is indeed optimal (with no factor 
of O(n) factor blowup in the number of traces). This 
is because maximizing the likelihood is equivalent to 
maximizing the posterior probability under the uniform 
prior distribution (which is optimal), as can be seen via 
the Bayes rule Vx( X1, ... ,xr) = p(x I X1, ... ,xr) · 
I::x' E{O, l Jn p(x')·'Dx,(X1,••· ,XT ) _ ( - _ ) 

p(x) - P X I X1, ••• , Xy • 

Lx' E{O,l}" Vx,(X1,,,.,xy ) = p(x I X1,,,.,x y ) • 
f(x 1 , ... ,xr ). Therefore maximizing both sides with 
respect to x yields the same result. 

B. Overview of the techniques 
a) Lower bounds for k-mer-based algorithms: In 

recent development of the trace reconstruction problem, 
the connection to various real and complex polynomials 
has been a recurring and intriguing theme [2]-[4], [9], 
[11], [13], [19], [22]-[24], [27]. The starting point of 
these techniques is to design a set of statistics that can 
be easily estimated from the traces (e.g., mean traces), 
with the property that for different source strings the 
corresponding statistics are somewhat "far apart". To 
establish this property, one key idea is to associate each 
source string x with a generating polynomial Px where 
the coefficients are exactly the statistics of x. 

Definition 4 (k-mer generating polynomial). Let x E 
{ 0, l} n and w E { 0, 1} k_ The k-mer generating 
polynomial Pw ,x for string x and k-mer w is the 
following degree-(n - 1) polynomial in z: Pw ,x(z ) 
I:I::ol K w,x[£] . Zc . 

Due to the structure of the deletion channel, in 
many cases, this generating polynomial (under a 
change of variables) is identical to another poly-
nomial Qx that is much easier to get a handle 
on. Formally, it can be shown that Pw,x(z) 

I:I::t Kw,x [£] • zC = I:7;:; 1 { x[j: j + k - 1] = W} · 
(p + (1 - p )z )1, which, under change of variable z 0 = 
p + (1 - p )z gives exactly the polynomial Qx studied in 
[2]. 

For example, the coefficients of Qx are usually 
0/1, and they are easily determined from x. To show 
that the statistics corresponding to x and y are far 
apart (say, in £ 1 -distance), it is sufficient to show that 
I Qx ( w) - Qy ( w) I is large for an appropriate choice of 
w. This is the point where all sorts of analytical tools 
are ready to shine. For instance, the main technical result 
in [2] is a complex analytical result that says that a 
certain family of polynomials cannot be uniformly small 
over a sub-arc of the complex unit circle, which has 
applications beyond the trace reconstruction problem. 

This analytical view of trace reconstruction can lead to 
a tight analysis of certain algorithms/statistics. The best 
example would be mean-based algorithms, for which 
a tight bound of exp(8(n113)) traces is known to be 
sufficient and necessary for worst-case trace reconstruc-
tion [3], [4]. The tightness of the sample complexity is 
exactly due to the tightness of a complex analytical result 
by Borwein and Erdelyi [28]. Our lower bound for k-
mer-based algorithms is obtained in a similar fashion, via 
establishing a complex analytical result complementary 
to that of [2] (See Lemma 11.1). 

On the other hand, our argument takes a different 
approach than that of [28]. At a high level, both results 
use a Pigeonhole argument to show the existence of two 
univariate polynomials which are uniformly close over 
a sub-arc r of the complex unit circle. The difference 
lies in the objects playing the role of "pigeons". [28]'s 
argument can be viewed as two steps: (1) apply the 
Pigeonhole Principle to obtain two polynomials that have 
close evaluations over a discrete set of points in r, and 
(2) use a continuity argument to extend the closeness to 
the entire sub-arc. Here the roles of pigeons and holes are 
played by evaluation vectors, and Cartesian products of 
small intervals. Our approach considers the coordinates 
of a related polynomial in the Chebyshev basis, which 
play the roles of pigeons in place of the evaluation vector. 
The properties of Chebyshev polynomials allow us to get 
rid of the continuity argument. Instead, we complete the 
proof by leveraging rather standard tools from complex 
analysis ( e.g., bounds on the Chebyshev coefficients 
and Hadamard Three Circle Theorem) We believe this 
approach has the advantage of being generalizable to 
multivariate polynomials over the product of sub-arcs 
f = f 1 X • • •  X f m via multivariate Chebyshev series 
(see, e.g., [29], [30]), whereas the same generalization 
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seems to be tricky for the continuity argument.
Finally, the counting argument considers a special set

of strings for which effectively only one k-mer contains
meaningful information about the initial string. Since
previous arguments did not exploit structural properties
of the strings, this is another technical novelty of our
proof.

b) Maximum Likelihood Estimation: Most of our
results regarding Maximum Likelihood Estimation hold
under the more general “model estimation” setting,
where one is given a sample x drawn from an unknown
distribution D ∈ D and tries to recover D. Our main
observation is that if such a distinguisher works in worst-
case, then the distributions in D have large pairwise
statistical distances. The maximization characterization
of statistical distance, in conjunction with a union bound,
implies that for a sample x ∼ D its likelihood is
maximized by D except with a small probability. The
O(n) factor loss in the sample complexity is essentially
due to the union bound, and we show that this loss is
tight in general by constructing a set of distributions
which attains equality in the union bound.

C. Organization
In Section II we prove our main result Theorem 2. The

missing proofs and further related work appear in the full
version of the paper https://arxiv.org/abs/2308.14993.

II. A LOWER BOUND FOR k-MER BASED
ALGORITHMS: PROOF OF THEOREM 2

The proof of Theorem 2 relies on the next lemma.

Lemma II.1. There exists x,y { 0, 1 }n such that for any
k-mer w, it holds that supz : |z|=1

∣∣Pw,x(z)− Pw,y(z)
∣∣ ≤

2−cn1/5√logn.

Proof of Theorem 2 using Lemma II.1. We can extract
Kw,x[ℓ] − Kw,y[ℓ] by the contour integral (cf.
[31, §4, Theorem 2.1]) Kw,x[ℓ] − Kw,y[ℓ] =
1

2πi

∫
|z|=1

(
Pw,x(z)− Pw,y(z)

)
· z−ℓ−1 dz. Therefore∣∣Kw,x[ℓ]−Kw,y[ℓ]

∣∣ ≤ 1
2π

∫
|z|=1

∣∣Pw,x(z)− Pw,y(z)
∣∣ ·

|z|−ℓ−1 · |dz| ≤ 2−cn1/5√logn. We stress that the
bound holds for any ℓ ∈ [n] and k-mer w. Note
that for any fixed ℓ, there are at most n − k +
1 different k-mers w for which Kw,x[ℓ] > 0.
Namely, if w /∈ {x[j : j + k − 1] : 0 ≤ j ≤ n− k }
then Kw,x[ℓ] = 0. It follows that

∥∥Kx −Ky

∥∥
ℓ1

=∑n−1
ℓ=0

∑
w

∣∣Kw,x[ℓ]−Kw,y[ℓ]
∣∣ ≤ n · 2(n − k + 1) ·

2−cn1/5 log2/5 n ≤ 2−c′n1/5√logn.

Next, we prove Lemma II.1 assuming the following
result, which is our main technical lemma.

Lemma II.2. Fix any k ≤ L1/3. There exist distinct
x,y ∈ { 0, 1 }L both starting with a run of 0s of
length L1/3 − 1, such that for any k-mer w, it holds
that supθ : |θ|≤L−2/3 log1/4 L

∣∣Pw,x(e
iθ)− Pw,y(e

iθ)
∣∣ ≤

2−L1/3√logL/20.

Proof of Lemma II.1 using Lemma II.2. Let β ≥ 3/5
be a parameter to be decided later. Denote L := nβ .
We have k ≤ n1/5 = L1/(5β) ≤ L1/3, so that the
premise of Lemma II.2 is satisfied. Therefore, there exist
distinct x′,y′ ∈ { 0, 1 }L both starting with a run of 0s
of length L1/3 − 1, such that for any k-mer w, it holds
that supθ : |θ|≤L−2/3 log1/4 L

∣∣Pw,x′(eiθ)− Pw,y′(eiθ)
∣∣ ≤

2−L1/3√logL/20.
Let x = 0n−Lx′ and y = 0n−Ly′. Since k ≤ L1/3,

by construction we have x[j : j+k−1] = y[j : j+k−1]
for all 0 ≤ j ≤ n − L. Therefore, for any k-mer w we
have

Pw,x(e
iθ) − Pw,y(e

iθ) =∑n−k
j=0

(
1
{
x[j : j − k + 1] = w

}
− 1

{
y[j : j − k + 1] = w

})
·

(p+ qeiθ)j =
(
p+ qeiθ

)n−L ·
·
∑n−k

j=n−L

(
1
{
x[j : j − k + 1] = w

}
− 1

{
y[j : j − k + 1] = w

})
·

(p + qeiθ)j−(n−L) =
(
p+ qeiθ

)n−L ·∑L−k
j=0

(
1
{
x′[j : j − k + 1] = w

}
− 1

{
y′[j : j − k + 1] = w

})
·

(p+qeiθ)j =
(
p+ qeiθ

)n−L (
Pw,x′(eiθ)− Pw,y′(eiθ)

)
.

Here q = 1 − p. When |θ| is large,
we can upper bound the supremum as
supθ : |θ|>L−2/3 log1/4 L

∣∣Pw,x(e
iθ)− Pw,y(e

iθ)
∣∣ =

supθ : |θ|>L−2/3 log1/4 L

∣∣p+ qeiθ
∣∣n−L∣∣Pw,x′(eiθ)− Pw,y′(eiθ)

∣∣
≤

(
1− c1L

−4/3 log1/2 L
)n−L

·
· supθ : |θ|>L−2/3 log1/4 L

∣∣Pw,x′(eiθ)− Pw,y′(eiθ)
∣∣

≤ exp
(
−c1(n− L)L−4/3 log1/2 L

)
· (L− k + 1)

≤ exp2

(
−c2n

1−4β/3 log1/2 n
)
. Here the first

inequality is due to
∣∣p+ qeiθ

∣∣ ≤ 1 − c1a
2

for some constant c1 (depending on p)
when |θ| ≥ a. When |θ| is small, as above
supθ : |θ|≤L−2/3 log1/4 L

∣∣Pw,x(e
iθ)− Pw,y(e

iθ)
∣∣ ≤

supθ : |θ|≤L−2/3 log1/4 L

∣∣Pw,x′(eiθ)− Pw,y′(eiθ)
∣∣ ≤

exp2

(
−L1/3

√
logL/20

)
≤ exp2

(
−c3n

β/3 log1/2 n
)
.

Finally, the value of β is determined by balancing the
two cases. Namely, we let 1−4β/3 = β/3, or β = 3/5,
which gives the bound 2−cn1/5√logn for both cases.
Here c = min { c2, c3 }.
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seems to be tricky for the continuity argument. 
Finally, the counting argument considers a special set 

of strings for which effectively only one k-mer contains 
meaningful information about the initial string. Since 
previous arguments did not exploit structural properties 
of the strings, this is another technical novelty of our 
proof. 

b) Maximum Likelihood Estimation: Most of our 
results regarding Maximum Likelihood Estimation hold 
under the more general "model estimation" setting, 
where one is given a sample x drawn from an unknown 
distribution D E V and tries to recover D. Our main 
observation is that if such a distinguisher works in worst-
case, then the distributions in V have large pairwise 
statistical distances. The maximization characterization 
of statistical distance, in conjunction with a union bound, 
implies that for a sample x ~ D its likelihood is 
maximized by D except with a small probability. The 
0 ( n) factor loss in the sample complexity is essentially 
due to the union bound, and we show that this loss is 
tight in general by constructing a set of distributions 
which attains equality in the union bound. 

C. Organization 
In Section II we prove our main result Theorem 2. The 

missing proofs and further related work appear in the full 
version of the paper https://arxiv.org/abs/2308.14993. 

II. A LOWER BOUND FOR k-MER BASED 
ALGORITHMS: PROOF OF THEOREM 2 

The proof of Theorem 2 relies on the next lemma. 

Lemma 11.1. There exists x, y { 0, 1 } n such that for any 
k-mer w, it holds that sup 2 , lzl=l lPw, x( z ) - Pw, y( z ) I :c; 
2 -cn115 v logn_ 

Proof of Theorem 2 using Lemma II.I . We can extract 
K w, x [Ji] - K w, y [Ji] by the contour integral (cf. 
[31 , §4, Theorem 2.1]) K w, x [Ji] - K w, y [Ji] 
2!-i J zl=l (Pw,x (z ) - Pw ,y( z )) • z-R-l d z . Therefore 
IK w,x [Ji] - K w,y [Ji]I :c; 2~ J zl=llPw, x(z) - P w, y(z) I • 
I I-C- 1 Id I 1 /5 ,y:c= z . z :c; 2 -cn v ,og n. We stress that the 
bound holds for any Ji E [n] and k-mer w. Note 
that for any fixed Ji, there are at most n - k + 
1 different k-mers w for which Kw ,x[Ji] > 0. 
Namely, if w ef. { x[j : j + k - 1] : 0 :c; j :c; n - k} 
then K w, x [Ji] = 0. It follows that II Kx - Ky llc, = 

L ;~lLw lKw ,x[Ji]- Kw ,y [Ji]I :c; n • 2(n - k + l) • 
2-cn1 15 Iog21 5 n :c; 2 -c'n115 v'logn. D 

Next, we prove Lemma 11.1 assuming the following 
result, which is our main technical lemma. 

Lemma 11.2. Fix any k :c; L 113 . There exist distinct 
x , y E { 0, 1 } L both starting with a run of Os of 
length L 113 - l, such that for any k-mer w, it holds 

I i0 i0 I that sup0 ,1 0 1::;£ - 2/3 Jog'/4£ Pw ,x(e ) - Pw ,y(e ) < 
2 - L' / 3 y'log L / 20. 

Proof of Lemma II.I using Lemma //.2. Let (3 2". 3/5 
be a parameter to be decided later. Denote L := nf3. 
We have k :c; n 1/ 5 = L 1!(5 f3) :c; L 113 , so that the 
premise of Lemma 11.2 is satisfied. Therefore, there exist 
distinct x', y' E { 0, 1 } L both starting with a run of Os 
of length L 113 - 1, such that for any k-mer w, it holds 

I i0 i0 I that sup0 : 10 1::;£ - 2/3 log'/4 L Pw,x' ( e ) - Pw ,y' ( e ) :c; 
2-L' / 3 y'log L / 20. 

Let X = on - Lx' and y = on - Ly'. Since k :c; L 113 , 

by construction we have x [j  : j +k- 1] = y [j : j + k - 1] 
for all O :c; j :c; n - L. Therefore, for any k-mer w we 
have 

p (ei0 ) p (ei0 ) w ,x w,y 

I:J~; ( 1 { x [j : j - k + 1] = w} - 1 { y [j: j - k + 1] = w} )-

(p + qe i0)j = (p + qei0) n-L . 

·I:J~!-L ( 1 { x [j: j - k + 1] = w} - 1 { y [j: j - k + 1] = w}) · 

(p + qe i0 )j-(n- L) (p + qei0 ) n-L 

I:f~ok ( 1 { x' [j: j - k + 1] = w} - 1 { y' [j: j - k + 1] = w} )-

(p + qei0 )j = (p + qei0 r - L ( Pw ,x' ( ei0 ) - P w, y' ( ei0 )) . 
Here q l - p. When 101 is large, 

we can upper bound the supremum as 
I i0 i0 I SUP0: 101>£-2/3 Jog' /4 L Pw,x(e ) - Pw ,y(e ) 

SUP0: 101> £ - 2/3 log' /4 L IP + qei01n- L IP w, x' ( ei0 ) - Pw ,y' (ei0 ) I 
:c; ( 1 - c1L - 4 / 3 log112 L) n-L · 

I i0 i0 I • SUP0: 101> £ - 2/3 Jog l /4 L Pw ,x' ( e ) - Pw, y' ( e ) 

:c; exp ( -c1(n - L)L- 413 log1/ 2 L) · (L - k + l) 

:c; exp2 ( -c2n1- 4 f3/3 log112 n). Here the first 
inequality is due to IP + qei0 I < 1 - c1a 2 
for some constant c1 (depending on p) 
when 101 > a. When 101 is small, as above 

I i0 i0 I SUP0: 101::; £- 2/3 Jog' /4 L Pw,x(e ) - Pw ,y(e ) < 
I i0 i0 I SUP0: 10 1 ::;£- 2/3 log'/4 L Pw ,x' ( e ) - Pw,y' ( e ) < 

exp2 ( - £ 1/ 3 vlog L / 20) :c; exp2 ( -c3nf31 3 log1l 2 n) . 
Finally, the value of (3 is determined by balancing the 
two cases. Namely, we let 1 - 4(3 /3 = (3 /3, or (3 = 3/5, 
which gives the bound 2 -cn'15 v' logn for both cases. 
Here c = min { c2, c3 } . D 
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