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Abstract

There are many studies of approximations using deep
neural networks. In this paper, the authors provide yet an-
other proof that deep neural networks are universal approxi-
mators. In their earlier work, the authors showed that an
arbitrary binary target function can be effectively rewritten
in terms of a set of strings, or a set of subsets, and that a
single hidden neuron can identify and only identify a single
string or a single subset. Therefore, an arbitrary binary tar-
get function can be effectively rewritten in the form of a
neural network with one hidden layer. In this study, the au-
thors imposed locality on the deep neural network, and will
show here that an arbitrary binary target function can be
effectively rewritten in the form of a locally connected deep
neural network that can have many hidden layers. Although
it will increase the neural network size, as a neural network
is localized, it will generally increase the speed of training
for large networks.

Key words: Al, Universal Approximator, Completeness,
Deep Neural Network, Machine Learning, Supervised
Learning, Unsupervised Learning, Locally Connected.

Introduction

Neural networks provide good solutions to many super-
vised learning problems. Neural networks have a long histo-
ry, but there have been two main developments in recent
years, deep learning and transforming (Amari, Kurata &
Nagaoka, 1992; Byrne, 1992; Kubat, 2015). In 2006,
authors in several other studies introduced the idea of
“deep” neural networks (Hinton, Osindero & Teh, 2006;
LeCun, Bengio & Hinton, 2015; Bengio, 2009; Coursera,
2017; Bengio, Courville & Vincent, 2013; Schmidhuber,
2015; Ciresan, Meier & Schmidhuber, 2012). Examples of
software include TensorFlow (TensorFlow, 2017), Torch
(Torch 2017), and Theano (Theano, 2017). Layers in deep
neural networks (DNN5s) serve as the building blocks of the
architecture, enabling the model to learn from the data. Each
layer has a specific function in transforming the input into
an output, progressively extracting higher-level features.
For example, early layers might detect edges or simple
patterns (e.g., in images), while middle layers may capture
more complex patterns (e.g., shapes or textures), and deeper
layers identify task-specific, high-level features (e.g., faces
or objects). The transformer model, introduced by Vaswani
et al. (2017), represents a significant advancement in deep
learning architectures, particularly in natural language
processing. Each layer in the DNN is replaced by a trans-
former (Vaswani et al., 2017).

The transformer leverages a fully self-attentive mecha-
nism to model complex dependencies between elements of a
sequence. This architecture enables the transformer to be
trained more efficiently and with greater parallelism, lead-
ing to faster training times and improved scalability. As a
result, the transformer has become the backbone of numer-
ous state-of-the-art models, including Chat GPT (OpenAl,
2023) and Claude (Anthropic, 2023), profoundly influencing
the development of modern deep learning systems. Studies
of the neural network as universal approximators have a
long history. Hornik, Stinchcombe, and White (1989) estab-
lished models showing that multi-layer feed-forward
networks with hidden layers using arbitrary squashing func-
tions are capable of approximating any measurable function
from one finite dimensional space to another to any desired
degree of accuracy, provided that a sufficient number of
hidden units are available. In this sense, multi-layer feed-
forward networks are a class of universal approximators.

Hinton, Osindero, and Teh (2006) introduced the idea that
deep belief networks (DBN) are generative neural network
models with many layers of hidden explanatory factors,
along with a greedy layer-wise unsupervised learning algo-
rithm. The building block of a DBN is a probabilistic model
called a restricted Boltzmann machine (RBM), which is
used to represent one layer of the model. Restricted Boltz-
mann machines are interesting, because they have been suc-
cessfully used as building blocks for training deeper models.
Le Roux and Bengio (2008) proved that adding hidden units
yields a strictly improved modeling power, and that RBMs
are universal approximators of discrete distributions.

Liu and Wang (Liu, 1993; Liu, 1995; Liu, 1997; Liu,
2002; Liu & Wang, 2018; Liu, 2018a/b) proved that DNNs
implement an expansion and the expansion is complete; a
complete expansion can be used to expand any target func-
tions. Cheng, Li, and Lu (2019) introduced a type of convo-
lutional neural network (CNN) that can implement the
Fourier and local Fourier transformations for approximation
in a large class of problems. Cybenko (1989) showed that a
finite sum of any continuous sigmoid function can be used
to approximate any univariate function using functional
analysis. Liu and Yousuf (2020) showed that DNNs are
effective universal approximators. An arbitrary binary target
function can be effectively rewritten in the form of a DNN;
thus, proving that DNNs can implement any target
mappings. An example of a locally connected network is the
convolutional neural network (CNN) (LeCun, Bottou,
Bengio & Haffner, 1998; Krizhevsky, Sutskever & Hinton,
2012), which is a specialized type of deep learning model
particularly well-suited for processing images.
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It utilizes convolutional layers that apply filters across the
input data to capture spatial hierarchies of patterns. This
architecture allows the network to automatically learn and
detect features such as edges, textures, and objects within
images, making them highly effective for tasks such as
image classification, object detection, and segmentation.
Several approaches can be applied for reducing computation
times of neural networks, including model optimization,
hardware utilization, and algorithmic refinement. 1) Model
optimization techniques, such as pruning, quantization, and
knowledge distillation, reduce model size while maintaining
performance (Han, Pool, Tran & Dally, 2015). Weight shar-
ing and sparse representations are also effective in minimiz-
ing redundancy in parameters. 2) Efficient architectures, for
example MobileNet (Howard et al., 2017) and EfficientNet
(Tan & Le, 2019) were explicitly designed to reduce
computational overhead through depth-wise separable
convolutions and scaling strategies. 3) Hardware-specific
optimizations are accelerators—such as GPUs, TPUs, and
custom ASICs—that exploit parallelism and optimized
memory access patterns to enhance speed (Jouppi et al.,
2017). 4) Training techniques, such as mixed precision
training (Micikevicius et al., 2018), reduce floating-point
precision for faster computation, while learning rate
schedulers and gradient accumulation ensure efficient
convergence.

In this paper, the authors will show that an arbitrary
binary target function can be effectively rewritten in the
form of a locally connected DNN. The result opens a
discussion for exploring an approach of locally connected
neural networks as an alternative to globally connected
models. Additionally, the authors will build on their earlier
work (Liu & Yousuf, 2020); in particular, locality, will be
imposed on the neural network. As a comparison, the earlier
work had a single globally connected network with one
hidden layer, while the work presented here represents
many hidden layers with locally connected neural networks.
The author will show that an arbitrary binary target function
can be effectively rewritten in the form of a locally connect-
ed DNN. To prove this result: 1) the earlier work by the
authors will be briefly reviewed foundational to this current
study; 2) the result is proof for a special case—a binary
locally connected network; and, 3) the result will be proven
by removing the binary condition. For a given target func-
tion, there are many effective ways to construct a locally
connected DNN.

The results, then, open a discussion for exploring an
approach of locally connected neural networks as an alter-
native to globally connected models. The von Neumann
bottleneck refers to the limitation in computing systems that
stems from the separation of the central processing unit
(CPU) and memory in the von Neumann architecture.
Increasingly, both computation times and electric powers
are spent on moving data from one place to another. For
example, electric power consumption has been increasing
rapidly for the transformer models. (Wall Street Journal,

2024). One of the main reasons that transformer models use
far more power than biological neurons is that the biological
systems are locally connected networks. In this paper, the
authors show that, as the models transit from globally
connected networks to locally connected networks, the
computing power will not be decreased, but the amount of
data transfer can be reduced.

Review: Effectively Rewriting a Mapping
with One Hidden Layer

An arbitrary binary target function can be effectively
rewritten in terms of a set of strings, or a set of subsets.
A single string or a single subset can be identified by a single
hidden neuron, and this neuron will only identify the string or
the subset; therefore, an arbitrary binary target function can be
effectively rewritten in the form of a neural network with one
hidden layer (Liu, Yousuf, 2020). A binary-neuron input
instance is 00 ... 0, 0r, 0 ... 01, ... (Amari et al., 1992; Byrne,
1992; Kubat, 2015) and an instance space (Kubat, 2015) is a
set of all instances given by Equation 1:

X:{0...00,0...01,0...10,0...11,...} )
Given an arbitrary binary target function, it can be effec-

tively rewritten in terms of a set of strings, or a set of
subsets given by Equations 2 and 3:

hz{so,sl,sz,...} 2)
s,g{0,1,2,...d—1} 3)

Example. Given a function in Table 1, the mapping can
be rewritten using Equations 4 and 5:

Table 1. A sample binary function with three inputs.

Xo Xy X2 y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0
»={001,011,100} @)

y={{2}.{1.2}.{0}} ()

where, y is overloaded with a table, a mapping, a set of
strings, and a set of subsets, and s; in Equation 3 is over-
loaded with a string and a subset.
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Without loss of generality, it can be assumed that there is
only one output variable for now. For the case of multiple
output variables, it can be treated as multiple mappings. The
neural network used in this review section will have one input
layer, one output layer, and one hidden layer. The neuron val-
ues are given by Equation 6 (Amari, Kurata & Nagaoka,
1992; Byrne, 1992; Kubat, 2015):

y,.:f(ZWUxJ.+bl.),1':1,2,3,... (6)
where, fis a sigmoid function given define by Equation 7:

£x)=— ™

l+e™

To compute the connection weights, a constant L is intro-
duced; without a loss of generality, set L = 10. For an
arbitrary target function, it can be rewritten in the form of
Equations 2 and 3. The rules for construction of a DNN are:

1. The DNN will have one input layer, one output layer,

and one hidden layer. The input layer has d neurons.

2. Each neuron in the hidden layer identifies one string in a
target function, h = {s¢, s, ..., }, so the number of
neurons in the hidden layer is |h|, which is the
number of strings or the number of subsets.

3. The output layer has one neuron; the neuron value is
1, if any one of the hidden layer neurons is 1.

4. Assume that s is a subset in a mapping, /; and
assume a hidden neuron will identify s; the subset,
then, is given by Equations 8 and 9:

S={j0,j1,j2,~--} (®)
s<{0,1,2,...d ~1} ©)

The hidden neuron has weights and biases as follows:
set weight = L, for input neurons {jo, ji, j2, ---}
set weight = — L, for all other input neurons
setbias = -(Js|-1)-L

It has been proven that this simple ANN will implement a

target function (Liu & Yousuf, 2020). To summarize:

1. An arbitrary binary target function can be effectively
rewritten in terms of a set of strings, or a set of
subsets, given by Equations 2 and 3:

2. A single hidden neuron can identify and only identify
a single string or a single subset. The weights and
biases are directly determined from a given target
function by the rules in this section.

3. An arbitrary binary target function can be effectively
rewritten in the form of a neural network with one
hidden layer.

Binary Locality or Bilocality

In a locally connected neural net, let the maximum number
of connections of a hidden neuron be N. To simplify the
discussion, let the locality be extreme: N = 2; from Figure 1,

this is called binary locality or simply bilocality. Once N is
restricted, the size of connection matrices is restricted, at the
cost of increasing the number of matrices. This reduction of
one large matrix into many smaller matrices has its implica-
tions in computation efficiency, especially when the matrix is
very large.

Figure 1. A hidden neuron has two input neurons.

The following naming convention will be adopted:
e  The hidden layer closest to the input is the first hidden
layer.
e The hidden layer closest to the output is the last hidden
layer.

Assumption 1:
The DNN (deep neural network) is bilocally connected, where

each hidden neuron can have only two or fewer connections.

Assumption 2:
The number of neurons in the input layer is a power of 2

(eg.2,4,8,16,...).

These two assumptions will be removed later. Furthermore,
Assumption 1 only applies to the hidden neurons; the connec-
tions of the single output neuron are determined by the number
of strings in a target function in Equation 2, |h|. Without loss of
generality, it can be assumed that there is only one output
variable for now. For the case of multiple output variables,
it can be treated as multiple mappings. In a binary locally
connected network (bilocal network), it is only natural to
group the connection weights of a neuron with the neuron
rather than group them into connection matrices. A binary
locally connected neural net is a set of neurons; a neuron
has a neuron value, two connection weights, and a bias
(called neuron-based computation): NN1 = {Neuron},
Neuron = {value, w0, w1, b}. This is in contrast to the view
that a neural net is a set of neurons (where each neuron has
a single value), a set of connection matrices, and a set of
bias  vectors (called matrix-based = computation):
NN2 = {Neurons, Matrix, Bias}. To compute the connec-
tion weights, a constant L will be introduced; without a loss
of generality, set L = 10. A binary function is then rewritten
in terms of a set of strings of 0’s and 1’s. A string in the set
is directly imposed to the input neurons. For a bilocal net-
work, two input neurons are grouped together and its two-
bit pattern is passed to a hidden neuron in the first hidden
layer.
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Let a sample string be xXX,X3, Where the pattern x¢X; can be
identified by a hidden neuron, h;, in the next layer, and the
pattern x,x; can be identified by a hidden neuron, h,. The iden-
tification of x¢X; is propagated to the next layer via h;, and the
identification of X,x3; to h,. To identify the entire pattern
XoX1X2X3, hy and h; are further propagated to a hidden neuron in
the next layer, say hs, which only needs to identify the pattern
“11” (i.e., both h; and h, have identified their required patterns).
This is the basic idea of the newly proposed algorithm. The
new rules for the network construction are:

1. The input layer has d = 2* neurons. The DNN has one
input layer, one output layer, and O (log d) hidden
layers.

2. Each neuron in the last hidden layer identifies one string
in a target function, h = {sy, si, ..., }, so the number of
neurons in the last hidden layer is |h|, which is the
number of strings in Equation 2 or the number of
subsets.

3. The output layer has one neuron; the neuron value is
1, if any one of the last hidden layer neurons is 1.

Rule 1 states that there are d input neurons. The condition,
d = 2%, is for the sake of easy discussion and will be removed
later. Rule 2, together with several other rules, describes the
overall hidden neuron structures; each layer has a specific func-
tion in transforming the input into an output, progressively
identifying bigger bit patterns for strings in a target function.
In particular, Rule 2 specifies the last hidden layer, and its role
is: a) the number of hidden neurons in the last hidden layer is
the same as the number of strings in a given target function,
and b) each hidden neuron in the last hidden layer will identify
and only identify one string in the target function. Rule 3
describes the output layer. For the sake of this discussion,
assume that there is only one output variable, per our earlier
assumption, so there is only one output neuron. If an input
string is one of the strings in a target function, one of the
hidden neuron values in the last hidden layer is 1, which will
cause the output neuron to be 1. If an input string is not in the
target function, all of the hidden neurons in the last hidden
layer will be 0, which will cause the output neuron to be 0.

Single String Identification

To identify a single string or a single subset, let the input
layer have d neurons; let the first hidden layer have d/2 hidden
neurons; let the second hidden layer have d/4 hidden neurons;
and, let the last hidden layer have one hidden neuron. The input
layer and all hidden layers together then form a binary tree,
called a hidden tree. A hidden tree will identify one string in a
target function later. In a complete binary tree, there exist
relationships between the height, the number of edges, and the
number of nodes in each layer from which a complete binary
tree has:

e  dinput neurons

e log(d) hidden layers
e 2d-—2 weights

e d-— 1 hidden neurons

By way of example, Figure 2 shows a hidden tree that has:
d =4 input neurons

log(d) = 2 hidden layers

2d -2 = 6 weights

d—1 =3 hidden neurons

Figure 2. An example of a hidden tree with 4 input neurons.

In a complete binary tree, there exist relationships between
the height, the number of edges, and the number of nodes in
each layer. The four input neurons are drawn in column 1; thus,
d = 4. Shown in Figure 2, the number of hidden layers is log
(d) = 2: column 2 and column 3. Also shown in Figure 2 as
edges is the number of weights: 2d — 2 = 6. The number of
hidden neurons is d — 1 = 3: the 3 nodes in columns 2 and 3.
This is the tradeoff between a globally connected network and
a locally connected network. There are two costs of locality:
1) from using a single hidden neuron to identify a single
string in a fully connected network to d — 1 neurons; 2) from
using d weights to identify a single string in a fully connected
network to 2d — 2 weights.

The first hidden layer identifies the input patterns. Each
neuron in the first hidden layer identifies two input bits
(bilocal). The number of neurons in the first hidden layer has
d/2 neurons. After all of the 2-bit patterns are identified, the
results propagate up, eventually to one single neuron in the last
hidden layer. The role of the first hidden layer is to identify a
single string or a single subset, and the roles of the rest of
the hidden layers are to pass the results of the first hidden
layer to a single root of a hidden tree in the last hidden
layer.

Target Function Identification

Each neuron in the last hidden layer identifies one string in a
target function, h = {sy, sy, ..., }, so the number of neurons in
the last hidden layer is |h|, which is the number of strings or
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the number of subsets. Figure 3 shows how each of the
neurons in the last hidden layer grows a binary tree all the
way to the input neurons.

Figure 3. An example of two hidden trees for two strings.

In this example, the input layer has d = 4 input neurons and
the target function has two strings to be recognized. There are
two neurons in the last hidden layer; each is responsible for
identifying one string. Each of the two neurons in the last
hidden layer forms a binary tree. Within each tree, there are
d — 1 hidden neurons in log(d) hidden layers and d input
neurons. The rules for the hidden trees are:

4. Each of the neurons in the last hidden layer grows a
binary tree all the way to the input layer neurons. There
are log(d) hidden layers, where d is the number of input
neurons. There are (d — 1) hidden neurons in each hid-
den binary tree.

5. The first hidden layer identifies the input patterns. Each
neuron in the first hidden layer identifies two input bits
(bilocal).

Let s be a single subset that is given in Equations 2 and 3,
such that the rule for neurons in the first hidden layer is:
6. Assume that s is a subset in a mapping, /; further
assume that a hidden neuron identifies s. In this case,
the subset is given by Equations 8 and 9:

The hidden neuron has weights and biases as follows:

set weight = L, for input neurons {jo, j1, j2, .- }
set weight = — L, for all other input neurons
setbias = -(|s|-1) L

After all of the 2-bit patterns are identified in the first hidden
layer, based on the rules above, the results will propagate up,
eventually to one single neuron in the last hidden layer for one
string/subset in Equations 2 and 3. The rule for neurons in the
rest of the hidden layers is:

7. For the rest of the hidden layers (other than the first),
all connection weights are L and all biases are
-(s| - 1) - L, which is -L for bilocal hidden neurons.

This is an effective construction of a bilocal DNN from a
given target function, which will be justified in the next
section.

Effectively Rewriting a Mapping in Terms
of a Bilocal Deep Neural Network

In the earlier review section, it was noted that a 2-bit pat-
tern can be identified correctly by a hidden neuron. In this
paper, the authors first identify a 2-bit pattern by one neuron
in the first hidden layer, which has been proven to be cor-
rect. Second, the above step is repeated for all 2-bit patterns in
the input layer. For d-input neurons, there are d/2 neurons in
the first hidden layer. This step is already different from the
authors’ previous study in which they used one neuron instead
of d/2 neurons. Third, the results of the first hidden layer simp-
ly propagate up. Let h;andh, be two neurons in the first hidden
layer, the weights and the biases of a bilocal neuron, h;, in the
next hidden layer are simply (L, L), and -L, respectively,
which identify the pattern “11” (i.e., both h;andh, have identi-
fied their required patterns). Each neuron in the second hidden
layer identifies a 4-bit pattern. Fourth, each neuron in the third
hidden layer identifies an 8-bit pattern, ..., eventually, each
neuron (root of a hidden tree) in the last hidden layer identifies
one string or one subset. Finally, the output layer has one neu-
ron; the neuron value is 1, if any one of the last hidden layer
neurons is 1.

Since bilocal neurons are so simple, details can be worked
out from the beginning in just a few lines. One bilocal hidden
neuron is given in Equation 10:

m= f(ayx,+ax +b) (10)

where, f'is given in Equation 7.
Each hidden neuron in the first hidden layer has two weights
and there are d/2 neurons. Since there are only four possible
patterns to be identified, Table 2 lists the parameters in

Equation 10 required for each case.

Table 2. Bilocal hidden neuron parameters for all 2-bit identifications.

Pattern to be identified a a, b
00 -L -L L
01 L -L 0
10 -L L 0
11 L L -L

Take, for example, one instance in detail. Assume that a
neuron, m, can identify a pattern, “10”; from Table 2, Equation
10 is changed to Equation 11. All possible inputs and outputs
for Equation 11 are listed in Table 3.

DEEP NEURAL NETWORKS AND UNIVERSAL APPROXIMATORS I
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m= f(—Lx,+Lx;) (11)

Table 3. Inputs and outputs for Equation 11.

Here, my and m; are hidden neurons in the first hidden
layer and m, is the one in the last hidden layer. Figure 4
shows that there is one tree for each string/subset.

Table 5. The weights and biases of the hidden neurons for two

Input —Lxo + Lx; m int (m)
00 0 12 0
01 -L 0 0
10 1 1
11 0 12 0

strings.
String my m m,
0011 (-L-LL) (L,L-L) (LL-L)
1001 (-L,L,0) (L,-L,0) (L,L-L)

Column 1 shows all possible inputs for 2-bit patterns.
Column 2 is the intermediate step. Column 3 shows the neuron
values. Column 4 takes the integer part of Column 3. In Table
3, int(m) is the integer function in C# language. The hidden
neuron identifies the correct string, “10”, by Equation 12:

1
l+e*

m=.f(—LxO+Lx1)= ~1 (12)

If there is a single bit difference (“00”, “11”), the hidden
neuron has a value given by Equation 13:

. 1
1+¢

If there is a 2-bit difference (“01”), the hidden neuron has a
value given by Equation 14:

~0.5 (13)

1
1+e*

~0 (14)

In general, if an input string differs from the string, s, by 0
bits, 1 bit, 2 bits, 3 bits, etc., the hidden neuron identifies the
string with values given in Equation 15:

m=10.5,0,0,... (15)
This hidden neuron can clearly identify, and only identify,
one string or one subset, s. Consider this next example. Let a

given target function hold the four inputs given in Table 4.

Table 4. A sample binary function with four inputs.

X0 X1 X2 X3 Yy
0 0 1 1 1
1 0 0 1 1

The rest of the rows in Table 4 all have y(x) = 0.
The strings are y = {0011, 1001}, and the set of subsets is
y = {{2,3}, {0,3}}. Table 5 gives the weights and biases of
the hidden neurons (ay, a;, b in Equation 10) in two hidden
trees. Each row specifies all parameters in a hidden tree.
Column 1 is the input string. Column 2 (my) and Column 3
(m;) are hidden neurons in the first hidden layer. Column 4
(my) is the hidden neuron in the last hidden layer.

Figure 4. An example of two hidden trees for two strings: 0011 and
1001.

A target function is written in terms of a set of strings. For
each string in the target function, there is one hidden tree that
can identify it and only it. In this example, there are four
inputs: X, X;, Xz, and x3 and the strings in a target function
arc y = {0011, 1001}. Here, my and m, are hidden neurons
in the first hidden layer and m; is in the last hidden layer.
The output layer is omitted in this figure. The connection
weight is written next to the edges and the bias is written on
top of the hidden neurons. In neuron-based computing,
connection weights are members of neurons rather than
members of the connection matrix; so, whenever possible,
the weights are drawn closer to its owners. A target function
is written in terms of a set of subsets. For each subset in the
target function, there is one hidden tree that can identify it and
only it. The last hidden layer has one neuron for each subset, so
the neural network can implement any target function.

Why locally Connected? A Time and
Space Complexity Analysis

Time complexity measures how the running time of an algo-
rithm grows as the size of its input increases. Space complexity
measures the amount of memory or storage required by an
algorithm relative to the size of its input. The implicit assump-
tion here is that the comparison between a fully connected
network and locally connected network is based on the fact that
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the same target function can be identified by both. Let d be the
number of input neurons; let h = {sy, sy, ..., } be a target
function; and, let |h| be the number of strings in set 4. In the
fully connected network, there are d neurons from the input
layer, |h| neurons from the hidden layer, and one neuron
from the output layer for a total of d + |h| + 1 neurons. The
hidden layer has d*|h| connections and the output layer has
|h| connections. For one pass of training, the time and space
complexities are T = O (d*|h|) and S = O (d*|h|).

For bilocal networks, there are d neurons from the input
layer, |h| * (d-1) neurons from the |h| hidden trees, and one
neuron from the output layer for a total of d + |h| *(d-1) + 1
neurons. The number of hidden neurons is significantly
higher, which is increased by a factor of O(d), from |h| to
|h| * (d-1). There are also |h| binary trees, where each tree
has 2 * d — 2 connections. The hidden layer has
(2 *d-2) * |h| connections, and the output layer has |h|
connections. The number of connection weights is roughly
doubled. This trade-off has the potential of improving time
complexity at a minor cost of more neurons and connection
weights. The space complexity is primarily determined by
connection weights, not by the number of neurons, so the
space complexity does not increase when the number of
neurons is increased by a factor of O(d). Doubling the
weights will also not change the space complexity, which
measures the order of magnitude, and a constant of 2 will
not change the space complexity. For one pass of training,
both the time and space complexities are T” = O (d*|h|) and
S’ =0 (d*|h)).

From the time and space complexity analyses, there are
no advantages for the locally connected network; however,
this is not true for the following reasons. First, the DNN
itself attempts to localize the network by dividing the network
into many layers; the deeper the network, the more locally con-
nected the network will become. Second, the von Neumann
bottleneck, which refers to the limit of computing systems that
stems from the separation of the central processing unit (CPU)
and RAM, is another problem. Training of large networks
demands substantial hardware because:

1) Parameters: the scale of these models is immense and the
memory requirements to store and process these parame-
ters are significant, prompting the transition from CPU to
GPUs and from GPU to IPU, TPU, and NPU (Brown et
al., 2020). The computational complexity is primarily driv-
en by the extensive matrix multiplications and gradient
descent calculations involved in backpropagation, which
require multiple passes through the entire network
(Goodfellow, Bengio, & Courville, 2016).

2) Training data: training on vast datasets requires not only
significant storage but also powerful computational
resources to handle the iterative processes involved in
training (Devlin, Chang, Lee & Toutanova, 2018).

3) Training: high throughput for data processing necessitates
advanced storage systems and network infrastructure to
efficiently feed data to the model. The distributed nature of

training across multiple GPUs/TPUs adds further
complexity (Rajbhandari, Rasley, Ruwase & He, 2020).

4) Power: high energy consumption can also be a problem
(Jouppi et al., 2017). Simply speaking, it is impossible for
the cache memory to hold so much data, so most of the
time and power are consumed by moving data. It can be
significantly helpful if the computations are basically
local. This reduction of thrashing will not reduce the accu-
racy of the computation.

It is essential to emphasize the significance of incorporat-
ing locality in neural networks and its implications for
computation efficiency. Using the earlier example in this
section, in a fully connected network, there are d neurons
from the input layer and |h| neurons from the hidden layer;
the hidden layer has d*|h| connections. For one pass of train-
ing, the time and space complexities are T = O (d*|h|) and
S = O (d*/h|). When both d and |h| are very large, the
connection matrix (d x |h| dimension) is very large, and only
a small portion of this matrix can be held in RAM. To
complete a matrix multiplication, a portion of a large matrix
is loaded into RAM, then removed from RAM to make
room, only to find that it will need to be reloaded again.
Increasingly, computation times are spent on moving data
from one place to another. Assuming the same matrix will
need to be reloaded R times on average, the mathematical
time complexity of T = O (d*h|), which assumes unlimited
RAM, is actually T = O (d*|h|*R), where R is the average
number of reloads for a large matrix. R is 1 only if the
memory is as large as d*|h|, which is simply not the case for
large matrices.

For bilocal networks, the number of hidden neurons is
significantly higher, which is increased by a factor of O(d);
however, the number of connection weights is roughly the
same order of magnitude. It is the connection weights that
determine the time and space complexities. The number of
connection weights is roughly doubled, but there is no large
matrix here so the data does not need to be loaded and
unloaded over and over again. Why is there no connection
matrix in a neuron-based computation? The connection
weights are members of neurons. There are two computa-
tions: forward computations of neuron values and backward
computations of weight updates.

1) When neuron values in the first hidden layer are calcu-
lated, they can be calculated one neuron at a time; this
is because all weights of a neuron are properties of this
neuron. To update a neuron value, the members of this
neuron alone are enough to complete the neuron value
calculation. When all of the neurons are updated in the
first hidden layer, the process can be repeated for the
second hidden layer, again one neuron at a time. Note
that there is no matrix.

2) Similarly, when new weights are calculated, they can
be calculated in such a way that only one neuron is
used at a time; this is because the weight update train-
ing related to one neuron is based on all of the weights
connected to this neuron in a backward direction. When
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all of the neurons in the output layer are processed, one
can repeat the process for the last hidden layer, again
one neuron at a time, gradually moving backward. Note
that there is again no matrix. For example, one can
compute the responsibility of a neuron based on all the
weights connected to this neuron in a backward direc-
tion. In both cases, only one-dimensional arrays are
used because only one neuron is processed at a time
and these arrays will be loaded into RAM only once.
For one pass of training, the time complexity is
T> = O (d*|h|), which can be significantly faster than
T = O (d*|h|*R), in the case of fully connected neural
networks, where R is the average number of reloads for
a large matrix.

Incorporating locality in neural networks can increase
computation efficiency by a factor of R. It is this factor of R
that opens a discussion for exploring an approach of locally
connected neural networks as an alternative to globally
connected models. OpenAl’s GPT-3, the architecture under-
lying ChatGPT-3, is one of the largest and most sophisticat-
ed language models developed with known size (Brown
et al., 2020). The largest GPT-3 model, often referred to as
GPT-3 175B, has 96 layers (transformer blocks) and
175 billion parameters. Each layer has an Attention block
and a Feedforward Network.

The attention block has four 12,288 x 12,288 matrices,
where three of the matrices will multiply (Vaswani et al.,
2017). The Feedforward Network (FFN) has two
12,288 x 49,152 matrices. Together, these matrices give the
majority of the 175 billion parameters. The number of
parameters in GPT-4 is not officially disclosed by OpenAl,
but it is expected that the cost of training ChatGPT-4 is an
order of magnitude higher than ChatGPT-3 and the cost of
training ChatGPT-5 will be an order of magnitude higher
than ChatGPT-4 (Wall Street Journal, 2024). Therefore, it is
important to increase computation efficiency.

In a locally connected network, the basic computation unit is
a neuron rather than a connection matrix. In the extreme case
of a bilocal network, a neuron value, a few weights, and a bias
form the foundation of computation, irrespective of how large
the network is. This is in contrast to the connection-matrix-
based computation unit that grows with the network size.
As a reference, biological neural networks are locally
connected, where data movement is minimum and the number
of neurons is large. The biggest difference between fully
connected networks and bilocal networks is that one uses
matrix-based computation and the other uses neuron-based
computation; one uses matrices as a computation unit and the
other uses neurons as computation units. As a reference, the
neuroscience textbook by Kandel, Schwartz, and Jessell (2013)
states that individual neurons in the human brain typically form
between 1000 and 10,000 synaptic connections. The biological
neural net has two features: it has a large number of neurons
and is locally connected.

Discussion

Earlier, the authors made two assumptions for easy discus-
sion: bilocal and 2* input neurons. Now these assumptions will
be removed.

Arbitrary number of input neurons:

To move from 2" to an arbitrary number, the process is stand-
ard and well-known, such as binary search and merge sort. For
example, let the input layer have 11 neurons:

[0,1,2,3,4,5,6,7,8,9,10]

Following the binary search or merge sort process, the
division for an integer interval [a, b] is [a, m] and [m+1, b],
where m = (a + b)/2 is an integer division. The division process
then is:

[0,1,2,3,4,5,6,7,8,9,10]
[0,1,2,3,4,5],(6,7,8,9,10]

[0,1,2], [3,4,5], [6,7,81], [9,10]

[0,1], [2], [3,4], [5], [6,7], [8], [9,10]

Now there are some singleton neurons left in the input layer.
A single neuron can be identified by a hidden neuron using the
same rule noted previously.

N-ary tree:

N-ary tree is a tree in which a node can have at most
N children. Binary trees are specific cases where N = 2. The
binary connections are merely for easy discussion. By using an
N-ary tree, all the restrictions that were imposed, for the sake of
easy discussions, are removed. The rules allow one hidden
neuron to identify arbitrary numbers of bits; therefore, all of the
rules apply to the N-ary trees, which is: let s be a subset given
by Equations 8 and 9, and assume that a hidden tree will
identify s; the neurons in the first hidden layer then have
weights and biases as follows:

set weight = L, for input neurons {jo, j1, j2, ---}
set weight — L, for all other input neurons
set bias -(s|]-1)-L

Neurons in the rest of hidden layers have weights and biases
determined by the above rule for identification of patterns:
“11...17.

Universal Approximator with Two and
Three Hidden Layers

For a given input number, d, and a given number of layers,
there are numerous constructions, where the number of neurons
in the hidden layers depends on the construction. Figure 5
gives an example of a single hidden tree for d = 8§, two
hidden layers, and the maximum localization construction (the
number of edges is maximum). The figure shows the input
layer, the first hidden layer, and the last hidden layer. The
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output layer is omitted. Figure 6 gives an example of a single
hidden tree for d = 8, two hidden layers, and the minimum
localization construction (the number of edges is minimum).
Again, the figure shows the input layer, the first hidden layer,
and the last hidden layer. The output layer is omitted.

Figure 5. An example of maximum localization construction.

As d grows larger, the diagram gets harder to read, so a new
notation will be introduced:

e Let the input neurons be labeled by “Input Layer: 0, 1,
2,...,157;

e Let the neurons in the first hidden layer be labeled by
“First Hidden Layer: 0, 1, 2, ....”;

e Let the neurons in the second hidden layer be labeled by
“Second Hidden Layer: 0, 1,2, ...”;

e Let the neurons in the last hidden layer be labeled by
“Last Hidden Layer: 0, 1, 2, ...”; and,

o Let “[..]" be used to group necurons together to be
identified by a neuron in the next layer.

For example, Input layer: [0,1] [2,3] means input neurons 0
and 1 will be identified by neuron 0 in the first hidden layer and
input neurons 2 and 3 will be identified by neuron | in the first
hidden layer. Under this notation, Figure 5 can be rewritten as:

Input layer: [0,1] [2,3] [4,5] [6,7]
First hidden layer: [0,1,2,3]
Last hidden layer: [0]

Figure 6. An example of minimum localization construction.
Figure 6 can be rewritten as:

Input layer: [0,1,2,3][4,5,6,7]
First hidden layer: [0,1]
Last hidden layer: [0]

The following example will be more interesting, which is
d = 16 and two hidden layers. In this example, let d = 16 and let
a network have two hidden layers. The maximum localization
construction looks like this:

Input layer: [0,1] [2,3] [4,5] [6,7][8,9][10,11][12,13][14,15]
First hidden layer: [0,1,2,3,4,5,6,7]
Last hidden layer: [0]

where,
e input neurons [0,1] are identified by neuron 0 of the first
hidden layer,
e input neurons [2,3] are identified by neuron 1 of the first
hidden layer,
e .. and

o first-hidden-layer neurons, [0, ..., 7], are identified by
neuron 0 of the last hidden layer.

The minimum localization looks like this:
Input layer: [0,1,2,3,4,5,6,7] [8,9,10,11,12,13,14,15]

First hidden layer: [0,1]
Last hidden layer: [0]
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The intermediate localization looks like this:

Input layer: [0,1,2,3] [4,5,6,7] [8,9,10,11] [12,13,14,15]
First hidden layer: [0,1,2,3]
Last hidden layer: [0]

Clearly, there are many other constructions. As a compari-
son, with two hidden layers and minimum localization, it
basically divides the original fully connected network into two
networks, which reduces the weight connection matrix. With
two hidden layers and maximum localization, it basically
reduces the size of the original fully connected network by half
by taking the average of two inputs and combining it into one
input, which again reduces the connection matrix. In either
case, it is a small deviation from the original network. As more
and more layers are added, the difference between fully
connected networks and locally connected networks will get
bigger and bigger; eventually, it will transit from a matrix-
based computation to a neuron-based computation. Universal
approximators with three hidden layers can be constructed in a
similar way.

Conclusions

In earlier work by the authors, they showed that an
arbitrary binary target function can be effectively rewritten
in terms of a set of strings, or a set of subsets, and that a
single hidden neuron can identify and only identify a single
string or a single subset; therefore, an arbitrary binary target
function can be effectively rewritten in the form of a neural
network with one hidden layer, thus proving that deep
neural networks can effectively implement any target
mappings. In this paper, the authors imposed locality on the
neural network and showed that an arbitrary binary target func-
tion can be effectively rewritten in the form of a locally
connected DNN, which can have many hidden layers. When
locality is imposed on the network, the basic computation unit
can be shifted to neurons rather than connection matrices.
Continuous loading of batches of data from storage into
memory to processing units can be significantly reduced. By
imposing locality, the computation power of the DNN is not
decreased, but it can reduce thrashing, thus significantly
increasing computation speed.
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