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—— Abstract

The study of space-bounded computation has drawn extensively from ideas and results in the
field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucky, Loff and
Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive
that can be used non-destructively during the computation. Presently, many structural questions in
this model remain open. Towards a better understanding of catalytic space, we define a model of
catalytic communication complerity and prove new upper and lower bounds.

In our model, Alice and Bob share a blackboard with a tiny number of free bits, and a larger
section with an arbitrary initial configuration. They must jointly compute a function of their
inputs, communicating only via the blackboard, and must always reset the blackboard to its initial
configuration. We prove several upper and lower bounds:

1. We characterize the simplest nontrivial model, that of one bit of free space and three rounds, in
terms of F2 rank. In particular, we give natural problems that are solvable with a minimal-sized
blackboard that require near-maximal (randomized) communication complexity, and vice versa.

2. We show that allowing constantly many free bits, as opposed to one, allows an exponential
improvement on the size of the blackboard for natural problems. To do so, we connect the
problem to existence questions in extremal graph theory.

3. We give tight connections between our model and standard notions of non-uniform catalytic
computation. Using this connection, we show that with an arbitrary constant number of rounds
and bits of free space, one can compute all functions in TC°.

We view this model as a step toward understanding the value of filled space in computation.
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1 Introduction

Communication complexity has proven an essential tool in analyzing the power of space in
computation. For the well-studied problem of derandomizing space-bounded computation,
i.e. proving BPL = L, the frontier pseudorandom generators of [36, 31] are analyzed by
considering the space-bounded algorithm as a communication protocol. There has been
extensive work analyzing restricted classes of space-bounded algorithms, again relying on this
connection [9, 40, 16]. Other works have tightly characterized the space required to solve
fundamental problems such as estimating the bias of a coin [10, 7, 8], using sophisticated
measures of information complexity.
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Concurrently, a new model of bounded-space computation known as catalytic computation
was introduced by Buhrman, Cleve, Koucky, Loff and Speelman [13], and used to solve
fundamental computational problems more efficiently. In the Catalytic Logspace (CL) model,
an algorithm receives an n-bit input, O(logn) bits of standard working space, and an auxiliary
poly(n) bit catalytic tape 7. This tape has an arbitrary initial configuration, and must be
reset to that starting configuration at the end of the computation. Despite a possible intuition
that such a tape would not be useful, they showed that CL is likely to be strictly stronger
than L — in particular, it contains logspace-uniform TC', and thus nondeterministic logspace
(NL). Recently, Cook and Mertz used catalytic algorithms to show that the tree-evaluation
problem, a candidate problem for separating L and P, can in fact be solved by an algorithm
running in space O(lognloglogn), contradicting long-standing prior beliefs [18, 19, 21]. Due
to the striking power of this model, there have been many followup papers studying its
structure [22, 15, 28, 39]. In the other direction, [17] used tools from the space-bounded
literature (in particular, communication bottlenecks) to unconditionally derandomize CL.
However, many basic questions remain open — it is consistent with current knowledge that
P C CL, or that CL € NC?, and there is no conditional evidence in either direction.

We aim to understand the power of access to a full memory by developing and studying
the phenomenon in the setting of communication complezity — to what extent can such
un-erasable extra memory be useful in exchanging information between two (computationally
unbounded) parties?

1.1 Our Contribution: Catalytic Communication Complexity

We develop a natural model of catalytic communication complexity and prove several results,
including maximal separations from the standard model of (randomized) communication
complexity, a characterization of efficient protocols for the equality function in terms of
extremal graph theory, and a strong equivalence between certain settings of the model and
(nonuniform) catalytic computation itself.

Our model is defined as follows. There are two parties, Alice and Bob (perhaps graduate
students coming to work on alternating days), sharing a single blackboard. Each party is
computationally unbounded, but has no persistent memory between days, except what is
written on the blackboard. Unfortunately, all but a tiny corner of the blackboard is currently
full of someone else’s important research, with instructions not to erase. Are Alice and
Bob limited to sharing information through the tiny blank space, or can they do better by
temporarily modifying the “Do Not Erase” section in such a way that still allows them to
restore it when they’re done? If they want to compute some function together, how big does
the blackboard need to be, and how many days will they need? Such a model naturally
captures the flow of information in a catalytic algorithm. The formal definition is as follows:

» Definition 1 (Catalytic Communication Protocol). Fiz a function f:{0,1}" x {0,1}" —
{0,1}.1 A catalytic protocol computing f with r rounds, s bits of clean space, and
c bits of catalytic space consists of r many transition functions and one output function,

A1 {0,117 x {0,1}¢ x {0,1}* — {0,1}¢ x {0,1}*
By 0,1} x {0,1}° x {0,1}* — {0,1}° x {0,1}*

1 We will typically be concerned with the case nqg = ny = n, but will also consider functions with
asymmetric input lengths



E. Pyne, N.S. Sheffield, and W. Wang

Ay {0,137 x {0,1}¢ x {0,1}° — {0,1}¢ x {0,1}*
Bout : {0,1}™ x {0,1}¢ x {0,1}* — {0,1}.

(If v is even, we will instead have B, : {0,1}™ x {0,1}¢ x {0,1}* — {0,1}¢ x {0,1}* and
Aot : {0,137 x {0,1}¢ x {0,1}* — {%O, 1}.) For the protocol to be valid, for any T € {0,1}¢,
x € {0,1}", y € {0,1}", letting Aiw) = A;(z, - ) and Bi(y) = Bi(y, - ), these functions
must satisfy

Agfﬁ) 0--:0 Béy) o Ag‘r) (1,0%) = (1,w)
for some w with

BEy(r.w) = f(a,y).

In words, Alice and Bob’s blackboard consists of ¢ bits of arbitrarily-initialized catalytic
space and s bits of initially-empty clean space. In a given round, the active party modifies
the blackboard according to some arbitrary function of its current contents, the input visible
to the active party, and the current timestep, then passes the blackboard to the other party.
At the end of the protocol, the catalytic part of the blackboard must have been reset to
its starting configuration, and the party with the blackboard must be able to announce
the answer. Readers familiar with catalytic computing may observe that such a protocol
could be described as an amortized bipartite branching program; this interpretation is
the motivation for the particulars of our definition, and will be discussed in more detail in
Section 6.

This model induces a corresponding measure of communication complexity:

» Definition 2 (Catalytic Communication Complexity). The r-round s-clean catalytic
communication complexity of a function f : {0,1}" x{0,1}™ — {0,1}, denoted CC, s(f),
s the minimum value of ¢ such that f has an r-round catalytic protocol with s bits of clean
space and c bits of catalytic space.

The following three propositions represent simple observations about catalytic communic-
ation, demonstrating that this complexity measure is both well-defined and interesting. We
give only the statements here; the associated proofs can be found in Section A. First note
that with fewer than 3 rounds, the catalytic space is provably useless — in particular, this
means that CCy s(f) and CCy s(f) are not well-defined for every f, since there may be no
amount of catalytic space that suffices:

» Proposition 3. Any function computable by a catalytic protocol with 1 or 2 rounds is
computable by such a protocol with no catalytic space (i.e. there exists a memoryless protocol
with the same amount of clean space, so without loss of generality only the clean space is
used).

For r > 3, s > 1, however, with enough catalytic space it is possible to compute any
function, so CC, s(f) is always well-defined:

» Proposition 4. Every function f : {0,1}™ x {0,1}™ — {0,1} has a 3-round catalytic
protocol with 1 bit of clean space and 2™ (") bits of catalytic space.

79:3
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Proposition 4 represents an upper bound on catalytic communication complexity in
general, but it is far from tight for some functions. Recall the inner product function (over
Fs) IP,, : {0,1}™ x {0,1}™ — {0,1}, defined as IP,(z,y) = (z,y). We show that IP can be
computed with one bit of clean space and n bits of catalytic space:

» Proposition 5. We have CC31(IP,,) < n, i.e. the inner product function has a 3-round
catalytic protocol with 1 bit of clean space and n bits of catalytic space.

Note that this protocol is roughly as efficient as a catalytic protocol can possibly be: as
long as f is left-injective (i.e. no two values of  result in the same function f(z,-)), it is clear
for information theoretic reasons that the catalytic space cannot be made much less than n
bits, and certainly the clean space required for any non-constant f must be at least 1 bit —
so inner product is essentially the easiest possible function for this model. This is in contrast
to standard notions of communication complexity: inner product has, up to constant factors,
maximal deterministic and randomized communication complexity [41]. Such a separation
even for a single bit of clean space indicates that the “picture” of catalytic communication
can diverge widely from that of standard models.

Furthermore, unlike deterministic and randomized communication complexity, there does
not appear to be a direct counting argument showing that a random function requires any
amount of catalytic space larger than the trivial bound of n. Despite this barrier, we give a
tight characterization of protocols with one bit of clean space and three rounds. As our first
main result, we show that CCs ; is characterized up to a constant factor by Fy rank:

» Theorem 6. For any f: {0,1}"= x {0,1}™ — {0,1},

% —o(1) < CCs1(f) < 1k(f),

where tk(f) denotes the rank of the communication matriz over Fa.

The proof of the upper bound of Theorem 6 is an explicit protocol, while the lower bound
involves an application of Harper’s vertex-isoperimetric theorem on an appropriate subspace
of the Boolean hypercube. We remark that several standard communication complexity
measures are suspected to be closely controlled by appropriate notions of the rank of the
communication matrix, but this case is unusual in that it is the rank over Fs, as opposed to
R, that is relevant.

This establishes catalytic communication complexity as a very different measure from
standard ones. In particular, if one compares catalytic communication complexity against
standard randomized communication complexity?, there are maximal separations for nat-
ural functions in both directions. Inner product has a maximally efficient 3-round 1-clean
catalytic communication protocol but no standard randomized communication protocol with
communication less than the trivial Q(n). On the other hand, the equality function EQ,, has
CC31(EQ,) = ©(2™) but randomized communication complexity O(1) [41].

The lower bound approach we use for CC3 ; does not extend to CCs o, i.e. protocols with a
single extra bit of clean space. This is not simply a consequence of technical limitations — we
show that for equality, allowing a single additional bit of clean space enables an exponentially
more efficient protocol:

2 Comparing against deterministic standard communication complexity, we would instead find that
catalytic communication is strictly stronger, in the sense that log(CCs 1(f)) is always at most the
deterministic communication complexity of f.
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» Theorem 7. We have that CC32(EQ,) < O(nlogn).

Our protocol for equality follows from a connection to a new variant we propose of the
well-known Ruzsa—Szemerédi problem in extremal graph theory. We demonstrate that efficient
3-round catalytic protocols for equality can be obtained generically from constructions of
“full Ruzsa—Szemerédi graphs”, a special case of Ruzsa—Szemerédi graphs. We show that
the current frontier Ruzsa—Szemerédi construction can be modified to satisfy our stronger
condition, and hence obtain an efficient protocol. We also show a reverse implication — that
is, that efficient protocols imply dense Ruzsa—Szemerédi constructions — enabling us to obtain
nontrivial lower bounds for the complexity of equality:

» Theorem 8. For any constant s, we have CCs (EQ,,) > n + Q(log*(n)).

In addition to this unconditional lower bound, the connection to Ruzsa—Szemerédi graphs
also gives a barrier result: improving our upper bound to CCs o(1)(EQ,) = O(n) would yield
(among other things) a polynomial query lower bound for testing monotonicity of Boolean
functions over general posets.

Towards obtaining lower bounds stronger than n + Q(log* n), we propose considering

protocols for the indexing problem IND,, : ([2"] x {0,1}?") — {0, 1}, IND,,(z,y) = ylz].

Here, Alice’s input is a length-n bitstring representing an index, and Bob’s input is a length-2"
bitstring, with the output of the function being the bit of Bob’s input corresponding to
Alice’s index. Another description of this problem is that Alice is given some n-bit input,
and Bob is given the truth table of some arbitrary boolean function on n-bit inputs, and
they must compute the evaluation of Bob’s function on Alice’s input. It is clear from this
phrasing that proving a complexity lower bound on any function in terms of Alice’s input
length would require proving at least as strong a lower bound on IND,,, as any other function
is a special case. We find a graph theoretic characterization of protocols for this problem,
which allows us to show a non-trivial lower bound via the K&vari-Sés-Turdn theorem.

» Theorem 9. We have CC3 (IND,,) > (1 + €)n, for some constant € depending on s.

While we suspect Theorem 9 is far from tight, it remains open to show super-linear lower
bounds even for 2 clean bits.

Finally, we study protocols with more rounds. We note that our measure of catalytic
communication complexity corresponds directly to the minimum amount of amortization
required in an amortized bipartite branching program of bounded length. Since an ordinary
branching program is in particular a bipartite branching program, this immediately lets us
translate known results from nonuniform catalytic computing to show statements such as
CCholy(n),0(1)(f) < O(n) for all f. By a more specialized analysis of Buhrman, Cleve, Koucky,
Loff and Speelman’s algebraic proof of TC' C CL, we are also able to show the following:

» Theorem 10. Let f: {0,1}"« x {0,1}™ — {0,1} be any function computable by a size S,
depth d majority circuit with arbitrary input preprocessing — that is, there exists a depth-
d circuit C composed of S many majority gates, and arbitrary functions g, h, such that

f(z,y) = Cg(x), h(y)). Then, CCqay(f) < poly(S,24).

This implies in particular that any TCY function family has constant-round, 1-clean
catalytic protocols with poly(n) catalytic space.

We view these results as indicating that catalytic communication complexity is both
an interesting model in its own right, and one that can shed light on reusing space more
generally. We remark that our model addresses a question raised in prior work on variants of
communication complexity, which we now discuss.

79:5

ITCS 2025



79:6

Catalytic Communication

1.2 Related Work

Identifying an interesting communication analogue of catalytic computing was posed as an
open problem by Arunachalam and Podder in a paper on space-bounded communication [2].
Space-bounded communication complexity was first studied by Brody, Chen, Papakon-
stantinou, Song and Sun, who proposed a model in which the two parties in a standard
communication protocol are in addition required to compress each of their states into a
small number of bits after each message is sent [11]. Subsequent work by Papakonstantinou,
Scheder, and Song considered a one-way model, in which Alice (a party with unbounded
memory) sends messages of length s to Bob (a party with zero, or only constant, memory) —
they showed that when Bob is memoryless, this model can be characterized in terms of a
combinatorial notion of rectangle overlays, and when Bob has only 5 available memory states
and s = polylog(n) this model computes exactly PSPACE®® [37]. Arunachalam and Podder
suggested instead letting both Alice and Bob be memoryless, and measuring complexity
in terms of the size of a block of memory they pass back and forth [2]. They noted that
this model aligns closely with bipartite branching program complexity, and that variants
could capture the aforementioned models of Brody, Chen, Papakonstantinou, Song and
Sun [11] and Papakonstantinou, Scheder and Song [37], as well as the “garden hose” model
of Buhrman, Fehr, Schaffner and Speelman [14]. Our model can be thought of as a version
of Arunachalam and Podder’s memoryless framework where the size of the block of memory
passed back and forth is amortized, in a sense analogous to the way workspace usage is
amortized across inputs in a catalytic algorithm.

2 Preliminaries

We will by convention denote a setting of the catalytic portion of the blackboard by 7 (for
“transparent registers”), a setting of the initially-clean portion by w (for “work registers”),
and a setting of the entire blackboard by ~ (for no particular reason). We will let z € {0,1}"«
be the input given to Alice, and y € {0,1}™ be the input given to Bob. We now define a
few terms and notations which appear in the statements and proofs.

» Definition 11. For any n, we denote by IP,, the inner product function over Fy. That is,
P, :{0,1}" x {0,1}" — {0, 1},

IP(z,y) = Z z;y; mod 2.
i€[n]

» Definition 12. For any n, we denote by EQ,, the equality function on n-bit inputs. That is,

EQ, : {0,1}" x {0,1}" — {0, 1},

lifr=
coe - {1 772

» Definition 13. For any n, we denote by IND,, the function taking an n-bit index and a
2™-bit bitstring to the value of that bitstring at that index. That is,

IND,, : [2"] x {0,1}*" — {0,1},

IND,, (z,y) = y[x].
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» Definition 14. For a function f : {0,1}" — {0,1}™ — {0,1}, let the communication
matriz of f be the 2" x 2™ matriz M where M, , = f(x,y), and let vk(f) be the rank of M
over [Fs.

For a function on two inputs f: X, Y — Z, we will use f(z,-) to denote the application
flx,): Y = Z. We say a function f: XY — Z is left-injective if there do not exist
x # 2’ € X such that f(z,-) and f(a’,-) are identical functions. For integers n, we will write
[n] to denote {1,...,n}. To denote to a multiset with elements a1, ...,a,, we will use the
“bag” notation lai,...,anS.

3 Characterizing 3-Round 1-Clean Complexity

In this section, we prove Theorem 6.
» Theorem 6. For any f: {0,1}" x {0,1}™ — {0,1},

% —o(1) < CC31(f) <1k(f),

where tk(f) denotes the rank of the communication matriz over Fa.

We first give the upper bound, showing that any function with small rank has an efficient
catalytic protocol.

» Lemma 15. For any f: {0,1}"= x {0,1}™ — {0,1}, we have CC31(f) < rk(f).

Proof. By definition of rank, the rows of f’s communication matrix span a rk(f)-dimensional
subspace of 5. Both parties fix ahead of time a basis v1,... vk ¢ for this subspace, and
define a protocol as follows:

1. On the first round, Alice finds 7" C [rk f] such that €, v is the xth row of the
communication matrix (i.e., is equal to the truth table of the function y — f(z,y)), and
sets the catalytic portion of the blackboard to 7 & 1;¢7.

2. Bob computes ;¢ s Tivi, and writes the yth entry of the result to the clean portion.

3. Alice XORs out the same string she XORed in, resetting the catalytic portion.

4. Bob finds the new yth entry of €D, ¢ 4 7ivi, and outputs its XOR with the clean bit.

The correctness of this protocol is straightforward. After the second round of the protocol,

Bob sets the clean bit to

by = EB (1: ® Lier)vi |

i€rk f] y

and so his final output will be

b1 & @ TV | = (@%) = f(z,y),

i€(rk f] i€T
as desired. The resource consumption is immediate from the protocol definition. <

We would like to show that it is impossible to do substantially better than the above
protocol. Note that the protocol described in Lemma 15 follows a simple pattern: Alice
modifies only the catalytic portion of the blackboard, performing some bijective map on all
possible settings, Bob uses only the clean portion of the blackboard to “remember” one bit
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about the result, and then Alice undoes her bijection and Bob makes his output decision
based on his remembered bit in addition to that initial catalytic configuration. For the
purposes of showing lower bounds, it would be helpful first to claim that without loss of
generality all 3-round protocol must be of that form. However, this is not quite true. For
one, Alice could use the clean portion of the blackboard to send Bob an additional bit of
information about her input on the first round, which is provably helpful sometimes. Another
rather more substantial concern is that there’s room for “amortization” in the amount of
information that Bob remembers: it could, for instance, be possible that, on some particular
settings of Alice’s input = and the initial catalytic setting C', Alice can on her first round
encode all of the catalytic information in a small prefix of the tape — in such cases, Bob
could use the rest to send Alice a large amount of information about his input, which would
then inform her in choosing a single bit send him back in the clean space of the final setting.
However, we expect that this latter sort of behaviour should only happen rarely, since most
initial catalytic settings can’t be compressed. In the full version, we address these concerns
formally, guaranteeing that any 3-round 1-clean catalytic protocol can be converted into a
protocol that almost follows the simple pattern we noted. Specifically, we show the following;:

» Lemma 16. Every left-injective function f : {0,1}" x {0,1}™ — {0,1} with CC31(f) =¢

has a protocol of the following form, which we’ll call a mostly-one-way-catalytic protocol:

1. For every x € {0,1}", Alice has an injective function o'®) : {0,1}¢ — {0,1}¢ x {0,1}3.

2. For every y € {0,1}™, Bob has two functions, B, {0,1}¢ x {0,1}3 — {0,1} and
B {0,13¢ x {0,1} — {0,1}.

3. Call a pair (x,7) € {0,1}" x {0,1}¢ bad if, for some y € {0,1}", we have

Bonn(r, B (1) (1)) # f(2,y).
Then, at most 2°T1 many pairs are bad.

Additionally, we may assume that, for every 7,y, we have [3 () (1,0) # ﬂ(y) (1,1).

out out

This observation will allow us to associate a communication protocol with a structured
. . ng . . . .
collection of vectors in F3 ", whose size we can bound using standard combinatorial facts.

Proof of Theorem 6. The upper bound was shown in Lemma 15; it remains to show the
lower bound. Note that removing duplicate rows from the communication matrix of a
function can change neither its rank, nor the catalytic communication complexity (since
a protocol for the function on the larger domain could simply treat several of its inputs
identically). So, it suffices to show the claim for left-injective functions. Also, note that,
given the o(1) term in the statement, it suffices to only consider the case where rk(f) > 1000.
We fix an arbitrary left-injective f: {0,1}" x {0,1}"™ with rk(f) > 1000, and assume for
contradiction that CCz 1(f) < rk(f)/6.

By Lemma 16, we have a mostly-one-way-catalytic protocol for f with ¢ < rk(f)/6. We will
use this protocol to define three multi-subsets U V W C {0,1}". For every v € {0,1}¢+3,
let u, € {0,1}" be the truth table of y Brem( ), and let U = Zuﬂ, 'y € {0,1}3f.
For every 7 € {0,1}¢, let v, € {0,1}"™ be the truth table of y — ﬂout( 0), and let

= lvr.: 7 € {0,1}¢f. Finally, for every bad (z,7) € {0,1}" x {0,1}°, let w(, ) be the
truth table of y — f(x,y) & Boﬂ)t (7,0), and let W = lw, ,y: (z,7) is badf.

Note that |U| = 2¢t3, |[V]| = 2¢, and |W| < 2¢T1. The idea of the proof will be to show
that U U W contains the neighbours in an appropriate Boolean hypercube of every element
of V' (with appropriate multiplicity) — since small subsets of the hypercube have large vertex
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boundary compared to their volume, but we know that |U| 4+ |W] is only a constant factor
larger than |V, this will allow us to give a lower bound on ¢. This approach is formalized as
follows.

Imagine placing red and blue pebbles on F5*, such that each element of F5* gets a number
of red pebbles equal to the number of times it appears in U U W, and a number of blue
pebbles equal to the number of times it appears in V. We claim that the following must hold:

> Claim 17. For any such pebbling constructed from a valid protocol, for any k € N, if
v € F5* has at least k blue pebbles and r € F5* is a row of f’s communication matrix (i.e. r
is the truth table of y — f(x,y) for some x), then v @ r has at least k red pebbles.

Proof of Claim 17. Because v has at least k blue pebbles, there are at least k distinct initial
catalytic configurations 7i,...,7; € {0,1}° such that v,;, = v. Let « be the input such that
7 is the truth table of y — f(z,y). For every bad 7;, we have w(, .,y =7 ®v,, = v @7, 50
each of these will contribute a red pebble to v @ r. Then, since a'*) is injective, each of
@ (1), ..., a®) (1) must be distinct. So, to obtain the remainder of the red pebbles, we’ll
show that whenever (z,7;) is not bad, Uy () =v® 7.

Note that r is the truth table of y — f(z,y) ® v, that v = v,, is the truth table of

y — BY)(7;,0), and that Ug () (7;) 18 the truth table of y — B (@ (7;)). So, to conclude that

T = VD Uy) (r,), We need to show that, for all y, we have f(z,y) = B (73,0 )@653&(04(3”) (1:))-

out

Since (z,7;) is not bad, we have f(z,y) = BY) (7, B (@ (). If BY. (@) (7)) = 0,

out

this gives f(z,y) = Béﬁl(T 0) = B(()ﬂ)t(r 0) @ 0, so the claim holds. If, on the other hand,

m)n( @) (1)) = 1, we have f(x y) = Bc(fé)t(r 1). But then, since we always have Boﬁ)t(r 0) #
B(y) (7,1), we know that ﬂout( 1) = ﬁc()u)t(r 0)® 1. <

out

This will be sufficient to prove that there must be many blue pebbles, contradicting the
assumption that ¢ is small. Consider the graph on F5* where an edge (u,v) exists whenever
u® v is a row of f’s communication matrix. This graph consists of 2% /2°%(/) many identical
connected components. If we fix some subset X C {0,1}"« such that the corresponding
rows of the communication matrix form a basis for the row-space, and consider only the
edges generated by those rows, each of these connected components will be isomorphic to
the rk(f)-dimensional hypercube. At least one of these connected components must contain
a blue pebble; we will restrict our attention to one such connected component.

Claim 17 ensures that each vertex of this hypercube has at least as many red pebbles as
the maximum number of blue pebbles among its neighbours. Consider the set S of vertices
with at least one blue pebble. All vertices adjacent to a vertex of S must have at least one
red pebble; we claim that there are many such vertices.

> Claim 18. For any subset S C IF;k(f) with |S| < 2°())/6 we have [N (S)| > 10 - |S|, where
N(S) denotes the set of all Hamming neighbours of elements of S.

Proof of Claim 18. Take S to be a set of the smallest possible size such that [N(S)| <10-|S].
Harper’s theorem states that, among all subsets of the Boolean hypercube of a given size, the
vertex boundary is minimized by a Hamming ball. That is, for any ¢, if |S| = Zf:o (rk(.f )),

K2

then |[N(S)\ S| > (ré;’;)) [29, 6]. Let ¢ be the radius of the smallest Hamming sphere

larger than our fixed set S; i.e., the smallest integer such that |S| < Zf:o (rkgf)). Since
[V ()]

ming. |g)=s ( 5] ) is monotonically nonincreasing in s for small s, the surface-area-to-

volume ratio of this Hamming sphere lower bounds that of S:

3 As long as s is small enough that a Hamming ball of that size can’t have vertex boundary less than
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NS ()
ST~ i ()

By minimality of S, we know that Zf/:o (rkgf)) < (rzfifl)) for all ¢/ < ¢, since otherwise

the Hamming ball of radius ¢ would be a smaller example. So, Zf:o (rkgf)) < (“‘y)) +
Sico (M) < 2(™D). Thus,

)

rk rk(f)!

NG| () wmsp=em _ 0k() = 0
= k(Y 21k(/)! - '

151 2(") ak(f)—0)! 20+1)

Since we assumed that % < 10, this gives £ > W. Now, we have

’

5] > § (rkgf)> > <2k£f1)> > k(- (87 1k(5)) =10 (1) 5, orieCr)-# (1/20-1/ (1)) —tog (1k(1)
0

where H: p — —plog(p) — (1 — p)log(1 — p) is the binary entropy function. For all values of
rk(f) > 1000, we have rk(f)H (1/20 — 1/rk(f)) — log (rk(f)) > %, so this implies that
15| > 2(rk(/6). <

We can’t immediately a derive contradiction from Claim 17 and Claim 18, because V is
a multiset (i.e. some vertices may have more than one red pebble). However, this is not a
serious obstacle.

> Claim 19. Suppose a pebbling satisfies the conditions of Claim 17 — i.e., that v @ r always
has at least as many blue pebbles as v has red pebbles for any row r of the communication
matrix. Then, if we remove one blue pebble from every vertex with at least one blue pebble,
and one red pebble from any vertex with at least one red pebble, that condition still holds.

Proof. Consider any v and any r. Before removal, v & r had at least as many blue pebbles
as v had red pebbles. If v had 0 blue pebbles, then after removal this will remain the case,
so v @ r will still be at least as pebbled. Otherwise, we will remove the same number of blue
pebbles from v as we remove red pebbles from v & r. <

If we remove a single blue pebble from every vertex with at least one blue pebble, and a
single red pebble from every vertex with at least one red pebble, Claim 18 ensures that we
will remove strictly more than ten times as many red pebbles as blue pebbles. After removing
those pebbles, there are still at most 2¢ vertices with blue pebbles, and we’ve just shown
that Claim 17 still holds — so, we can repeatedly perform such removals until all pebbles are
gone, always removing strictly more than ten times as many red pebbles as blue pebbles.
This means that the graph overall has strictly more than ten times as many red pebbles as
blue pebbles, contradicting the fact that |U| + [W| =273 4271 =10.2¢=10-|V]. <«

One interesting consequence of Theorem 6 is that the equality function, which has
constant randomized communication complexity, requires the maximal £(2") blackboard
size in this catalytic model. On the other hand, as noted, the inner product function can

twice the volume (which, as we show, is true here), one can observe that adding a new point at the
boundary will always increase the surface-area-to-volume ratio.
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be communicated with only n bits of catalytic space, despite requiring (up to constant
factors) maximal standard communication complexity even with randomness [41]. Catalytic
communication complexity seems to be quantifying a very different notion from standard
communication complexity measures.

A natural question at this stage is whether our choice to restrict to only a single bit of
clean space was roughly without loss of generality, or whether protocols with more clean
space can look substantially different. Having more free space is definitely at least moderately
helpful: for instance, equality can be computed with 2 bits of free space and 2 - 2"/ bits
of catalytic space, by simply running two copies of the 1-bit protocol on the two halves of
the inputs simultaneously, and having Bob output the AND of the answers. But one might
suspect that, with only a little more clean space, there is not too much more that can be
done — perhaps for any constant s it’s possible to show that CCs ((EQ,,) > 202(n) - As we will
show in the next section, this intuition turns out to be false — even with two just bits of
clean space, it’s possible to communicate equality very efficiently.

4 The 3-Round Complexity of Equality

In this section, we prove the following upper bound on 3-round 2-clean catalytic complexity
of equality.

» Theorem 7. We have that CC32(EQ,,) < O(nlogn).

The key to the proof of Theorem 7 comes from a long line of research on graphs
representable as the union of many large induced matchings, known as Ruzsa—Szemerédi
graphs. We will provide background on the Ruzsa—Szemerédi problem in Section 4.1, where
we will also introduce a variant important for our application. In Section 4.2, we will
demonstrate how any such construction can be generically converted into a catalytic protocol
for equality, which will in particular prove Theorem 7.

In Section 4.3 we will demonstrate a reverse implication — that is, that efficient 3-round
equality protocols give dense Ruzsa—Szemerédi protocols — which will allow us to state
catalytic communication complexity lower bounds. We will show unconditionally that there
exists no 3-round O(1)-clean protocol for equality using n + O(1) bits of catalytic space, and
show that finding any stronger upper bound than O(nlogn) would require improved graph
theoretic constructions that would in turn prove new lower bounds in areas such as property
testing and streaming algorithms.

4.1 Background on the Ruzsa—Szemerédi Problem
We give the following definition:

» Definition 20. A graph G is an (r,t)-Ruzsa—Szemerédi graph if there exists a partition
of its edges into t sets of size r, such that each set constitutes an induced matching in G.

In 1976, motivated by a problem of Brown, Erdés and Sés on 3-uniform hypergraphs
containing no 6 vertices sharing 3 edges [12], Ruzsa and Szemerédi proposed studying such
graphs, with the goal of finding examples where both r and ¢ are large compared to number
of vertices of G. They showed that Behrend’s construction of sets without 3-term arithmetic
progression [4] gives (Wﬁ’ %)—Ruzsaszemerédi graphs, and used regularity methods
to show that r and ¢ cannot both be made (n) [43]. The best known upper bounds still go
through graph regularity: Fox’s improved bounds for triangle removal imply that if » = O(n),
then t < comogeey [24]-

79:11

ITCS 2025



79:12

Catalytic Communication

Ruzsa—Szemerédi graphs have since seen several applications in computational and
communication complexity [30, 5, 35]. In particular, constructions where r = O(n) and t
is large have been used to obtain a number of lower bounds in streaming algorithms and
property testing [23, 27, 33, 32, 3]. The best known lower bound on t when r = ©(n) is
due to Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld and Samorodnitsky, giving a

1
construction where r = n/3 and ¢t > nQ(log 1%*(")) — eliminating the gap between this bound
and the t < Sgroi=ry upper bound is a major open problem in combinatorics [23].
For our application, we also give the following more restrictive definition:

» Definition 21. A graph G is a (k,t)-full Ruzsa—Szemerédi graph if there exists a
partition of its edges into t perfect matchings, and a partition of each of those matchings
into k partial matchings, such that each partial matching is induced in G.

Note that a (k, t)-full Ruzsa—Szemerédi graph is in particular a (n/2k, kt)-Ruzsa—Szemerédi
graph, but that here we are imposing an additional constraint by requiring that the induced
matchings can be grouped together to form perfect matchings in G. The construction
presented by Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld and Samorodnitsky is
not a full Ruzsa—Szemerédi graph, but we show in the full version that it can easily be made
S0:

» Lemma 22. As long as n = 20° for some integer {, there exists a (3,nQ(log1{>gn))—full

Ruzsa—Szemerédi graph.

4.2 Equality Protocols from Full Ruzsa—Szemerédi Graphs

We now show that full Ruzsa—Szemerédi graphs can be generically converted to catalytic
protocols.

» Lemma 23. If there exists a (k,t)-full Ruzsa—Szemerédi graph on 2¢ vertices, then there
exists a 3-round, [log(k)]-clean catalytic protocol for equality on |log(t)]-bit inputs with c
bits of catalytic space®.

We first note that this will immediately give us our desired upper bounds on CCs3 2(EQ,,).

Proof of Theorem 7 given Lemma 23. For some constant 0 < 6 < 1, by Lemma 22,
there exists a (3, NV ﬁ)—full Ruzsa—Szemerédi graph on N vertices. Plugging this in
to Lemma 23, we obtain a [log(3)] = 2-clean catalytic protocol for equality on [log(t)| =
[01og(N)/loglog(N)| bit inputs, requiring log(N) bits of catalytic space. Defining n =
|log(t) ], this is a 3-round 2-clean protocol with O(nlogn) bits of catalytic space®. <

Proof of Lemma 23. Let G be such a graph, with vertices V(G) = vy, ..., vac, composed of
perfect matchings M; U --- U M; = E(G). The full-Ruzsa—Szemerédi property gives, for each
i € [t], a vertex partition Mi(l) -y Mi(k) = V(G) such that the edges of M; are the union

Observe though, if one cares about such things, that unless that Ruzsa—Szemerédi graph can be
constructed explicitly, the resulting protocol may not be computationally efficient. In order to get a
computationally effective protocol from our construction, one would have to plug in an explicit code as
opposed to just citing Gilbert-Varshanov.

Note that this construction is only defined when both N is a power of two, and N = 2 - £¢ for some
integer £. However, if we let £ be the smallest power of two such that 2 4> N,and let N' =2. Eé, then
note that log(N') < 4 -log(N). So, for other values of n, Alice and Bob can simply pad their inputs
with zeroes and run the equality protocol for a value of n where this is defined, losing only a constant
factor in the amount of catalytic space required.
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over j of the edges induced by Mi(j). Fix an arbitrary bijection m: {0,1}¢ — {v1,...,un},
and arbitrary injections o: {0, 13180 — Lar . M}, pe [k] — {0,1}1°8%1. The protocol
is as follows.
1. Ay(z,7,w) = (7~ (v),w), where v is the neighbour of 7(7) in the matching o(x).

2. By(y,7,w) = (7, u(w)), where w is the unique value such that 7 (7) € o(y)®).

3. Az(z,7,w) = (77 1(v),w), where v is the neighbour of m(7) in the matching o(x).

4. Bout(y, 7,w) accepts if and only if w = p(w), where w is the unique value such that

7(71) € o(y)™.

Correctness of this protocol follows from the definition of a full Ruzsa—Szemerédi graph.
If z = y, then the matchings o(x) and o(y) are the same. Since every edge of o(z) is induced
by some part of the partition o(z)), ..., o(x)®), this means that both endpoints of that
edge belong to the same U(y)(“’), and so Bob will accept. If, on the other hand, x # y, then
the two endpoints of an edge in o(x) cannot belong to the same o(y)*), because o(y)*)
induces only the edges belonging to o(y). <

4.3 Lower Bounds on Equality Protocols

In this section, we will show that, as long as we are content with a not-necessarily-full
Ruzsa—Szemerédi graph, the conversion in Lemma 23 can be done in reverse. That is, the
existence of dense Ruzsa—Szemerédi graphs is necessary for efficient equality protocols. This
will allow us to deduce both conditional and unconditional communication lower bounds.

» Lemma 24. For any s, if there exists a 3-round, s-clean catalytic protocol for equality on
n-bit inputs with c bits of catalytic space, there exists an (2(2°7°), (2" *))-Ruzsa—Szemerédi
graph on O(2°F4") vertices.

For the purposes of proving this lemma, it would simplify matters to know that Alice
only ever modifies the catalytic portion of the blackboard, and Bob only ever modifies the
clean portion®. As in Section 3, although we cannot claim such behaviour without loss of
generality, we can at least claim that, a substantial fraction of the time, Bob only remembers
s bits.

» Lemma 25. For any s > 0, any function f :{0,1}" x {0,1}™ — {0,1} with CC3 4(f) = ¢

has a protocol of the following form, which we’ll call a sometimes-one-way-catalytic

protocol:

1. For every x € {0,1}", Alice has an injective function a® : {0,1}° — {0,1}¢ x
{O, 1}5‘(25—&-1).

2. For every y € {0,1}™, Bob has two functions, B, . {0,1}° x {0,1}=2+1D) — {0, 1}*
and B, : {0,1}¢ x {0,1}* — {0,1}.

3. Call a pair (z,7) € {0,1}™ x {0,1}° bad if, for some y € {0,1}™, we have
ﬁf,i?t(r, ,8%)11((1@)(7))) # f(x,y). Then, at most a 2°/(2° + 1) fraction of all pairs are bad.

6 In fact, in this case we note that an analysis similar to the one we present here would give a full-
Ruzsa—Szemerédi graph, as opposed to just a Ruzsa—Szemerédi graph, demonstrating (up to some
quantitative loss) an equivalence between full Ruzsa—Szemerédi graphs and this kind of “well-behaved”
3-round catalytic protocol for equality. We suspect that such an equivalence should also exist without
the well-behavedness condition — perhaps even that full Ruzsa—Szemerédi graphs can be generically
constructed from Ruzsa—Szemerédi graphs — however we do not know a proof.
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Proof of Lemma 24. By Lemma 25, we have a sometimes-one-way catalytic protocol for
f with ¢ bits of catalytic space. From this protocol, we will construct a bipartite graph G
whose 2¢ many left vertices are identified with {0,1}¢, and whose 2¢F5(2°+1) many right
vertices are identifed with {0,1}¢ x {0,1}*("+1)_ The edge set will consist of, for every
non-bad (z,7) € {0,1}" x {0,1}°, an edge from 7 on the left to a!*)(7) on the right.

Now, for every z € {0,1}", w € {0,1}*, we’ll define a vertex subset M C V(G). A
left vertex 7 € {0,1}¢ will be included in M) if and only if both (z,7) is non-bad, and
Bﬁé&(d”(r)) = w. A right vertex v € {0,1}¢ x {0,1}*Z+1 will be included in M) if and
only if BEh(Y) = w.

We claim that every edge of G is induced by one of these subsets, and that each subset
induces a matching. The first part of this is immediate: both endpoints of the edge generated
by a pair (z,7) must belong to M(ﬁre“‘( (z)(T))). To see the second part, consider some
edge (1,7) € E(G), generated by a non-bad (z,7), and suppose it belongs to some MY
with z # z. (Note that, by definition of M,Ew)7 this edge it cannot belong to M;w) for
any w # Brem(a(w (1)).) But now, suppose the protocol is run with Alice given input z,
Bob given input z, and the catalytic tape initialized to 7. The output of the protocol will
be B (7, Be (a2 (7)) = B, BEN (1) = B (7.) = ﬁm< Bién (o) (7). However,
since both (z,7) and (z,7) are non-bad, we know Bgi)t(T 555211( *)(1))) = EQ,(x, 2) = 0 and
ﬁ(()i)t( 55&(0[(2:) (1)) = EQ,(z,2) = 1, so this is contradiction.

Now, oberve that since there are at least (2¢-2")/(2° 4+ 1) many non-bad pairs, G has
at least this many edges. Since we’ve partitioned these edges into 2" - 2° many induced
matchings, each of which has at most 2¢ many edges, we must have at least 2" /257! many
induced matchings each with at least 2¢/2°71 many edges. Letting G’ C G be the graph on
only those edges, this is a 2¢ + 2675 (21 = O(2¢)-vertex (£2(2°), 2(2"))-Ruzsa-Szemerédi
graph. <

This characterization immediately allows us to show that no 3-round ©(1)-clean catalytic
protocol for equality can use only n 4+ O(1) bits of catalytic space — although we have found
a surprisingly efficient protocol, equality is at least somewhat more difficult for this model
than, for instance, inner product.

» Corollary 26. For any constant s, we have CC3 4(EQ,,) > n + Q(log"(n)).

Proof. Tt is known by the triangle removal lemma that for any constant k, a (N/k,t)-Ruzsa—
m [24]. Since, by Lemma 24, a
3-round s-clean protocol on n-bit inputs with ¢ bits of catalytic space gives a (£2(2¢),2(2™))-
Ruzsa—Szemerédi graph on O(2¢) vertices, this means that 2™ < O (W) Rearranging
gives ¢ > n + Q(log™ n). <

Szemerédi graph on N vertices must satisfy ¢ <

Of course, this doesn’t rule out a protocol with linear catalytic space — and in fact,
the second author believes that such a protocol likely exists. However, it does provide
evidence that constructing such a protocol may be difficult: doing so would improve known
Ruzsa—Szemerédi constructions, yielding improvements to state-of-the-art bounds in property
testing, streaming algorithms, and information theory. We mention a few such implications;
the reader is referred to the cited works for definitions of terms.

» Corollary 27. If, for some constant s, CC3 s(EQ,) < O(n), then
1. Any non-adaptive tester for monotonicity over general N-element posets requires query
complezity Q(N€) for some ¢ > 0.
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2. Any randomized semi-streaming algorithm for (1 — €)-approximate mazximum bipartite
matching requires Q(log(1/e)) passes over the stream.

3. There exist constant-rate centralized coding caching schemes, in which each file is divided
into a number of pieces polynomial in the number of participants.

Proof. By Lemma 24, if CC3 4(EQ,,) < O(n), then for some ¢ > 0 there exist (O(N), N¢)-
Ruzsa—Szemerédi graphs on N vertices. The property testing lower bounds of Fischer,
Lehman, Newman, Raskhodnikova, Rubinfeld and Samorodnitsky [23], the streaming lower
bounds of Assadi and Sundaresan [3], and the centralized coding caching scheme construction
of Shangguan, Zhang and Ge [44] all rely on constructions of Ruzsa—Szemerédi graphs
where the partial matchings are of linear size. Plugging in a construction with ¢ = N€¢ to
those arguments would immediately yield the strengthened bounds in the statement of the
corollary. |

A more optimistic interpretation of Corollary 27 is that designing catalytic protocols for
equality could provide an approach towards improved Ruzsa-Semerédi constructions. There
is some evidence that the language of communication complexity can be useful in this area:
Linial, Pitassi, and Shraibman have shown a close relationship between Ruzsa—Szemerédi
graphs and protocols for high-dimensional permutations in the Number On the Forehead
model, which Alon and Shraibman used to give simple communication theoretic descriptions
of a couple of known Ruzsa—Szemerédi constructions [35, 1]. 3-round catalytic protocols for
equality offer another distinct communication-theoretic interpretation of the problem that
may prove useful.

5 The 3-Round Complexity of Indexing

The fact that CC3 2(EQ,,) is exponentially smaller than CCs; raises the question of whether
perhaps every function has an efficient 3-round s-clean protocol for some constant s. One
might suspect that most functions should require exponential complexity, but there is no
clear counting argument to this effect. In fact, even for functions of unbalanced input lengths
—i.e. when np > n, — there’s no obvious way to rule out a protocol with catalytic space close
to ng 7. We propose considering the following function:

» Definition 13. For any n, we denote by IND,, the function taking an n-bit index and a
2™-bit bitstring to the value of that bitstring at that index. That is,

IND,, : [2"] x {0,1}*" — {0,1},

INDn(x’y) = y[x}

This indexing function is often considered in one-way communication complexity contexts,
where the party holding the index cannot send messages, so all information must be sent by
the party with the longer input. Note that in our case, however, we consider the reverse:
we're giving Alice the index, and by Lemma 25 our protocol can be largely thought of as
one-way from Alice to Bob. The reason we’re particularly interested in this setting is that a
protocol for IND,, can be thought of as a protocol for all functions simultaneously: Bob has
to be able to determine any Boolean function on Alice’s input. So, for fixed value of Alice’s
input length n, = n, IND,, is the hardest possible function, in the sense that a protocol for

IND,, gives a protocol with the same parameters for every other function with the same n,.

7 The other direction of asymmetry — that is, when nq > ny — is less interesting for 3-round protocols,
since Bob can without loss of generality communicate very little information to Alice, and so there are
easily functions requiring at least n, bits of catalytic space for information theoretic reasons.
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By Proposition 4, we know CCs ,(IND,,) < 2™. We suspect that this is close to the
correct answer for any constant s, but the results we’ve shown thus far haven’t ruled out the
possibility that CCs 2(IND,,) = n 4+ O(log™(n)). In this section, we will prove a somewhat
stronger lower bound — still far away from the upper bound, but enough to suggest for
instance that it’s unlikely that some sort of Ruzsa—Szemerédi construction as in Section 4
will work directly. We show the following:

» Theorem 9. We have CC3 4(IND,,) > (1 + ¢€)n, for some constant € depending on s.

As in our lower bounds for equality, our proof comes from a graph theoretic interpretation.
We will show that a protocol for IND,, corresponds to a graph composed of a union of
matchings, with the property that any subset of the matchings are separable from the rest of
the graph. We will then show that such a graph cannot have too high density, bounding the
efficiency of the catalytic protocol. We make the following definitions:

» Definition 28. Let Ey and Ey be disjoint edge sets on a common set of vertices, and let
k € N. We say Fy and E5 are k-separable if there exists a k-edge colouring of Fy U Eo
such that

each colour appears in only one of Fh or Es, and

for every 3-edge path, if the first and last edges share the same colour, so does the middle

edge.

» Definition 29. We call an n-vertex graph k-divisive if its edges can be partitioned into
matchings M, ..., My, such that for all S C [m], the edge sets ;e g Mi and |J;q5 M; are
k-separable.

» Lemma 30. For any constant s, there is a family {Gy }nen, with |V (Gy)| < O(2°) and
|E(G,)| > Q(2¢T™) for ¢ = CC3 4(IND,,), and where each G,, is 2% +5-divisive.

Proof. As in Section 4.3, we begin by invoking Lemma 25 to obtain a sometimes-one-
way-catalytic protocol. In fact, we’ll define the same graph: let G consist of 2¢ many
left vertices identified with {0,1}¢, 2¢t5"(2"+1) many right vertices identified with {0,1}¢ x
{0,1}*@ D "and an edge (7, a®) (1)) for each = whenever (z,7) is non-bad. This graph has
2¢ 4 265 (2+1) < O(2¢) many vertices, and 277¢/(2° + 1) > Q(2°t") many edges.

For any = € [2"], let M, C FE(G,), M, = {(1,a®)(7)): (z,7) is not bad}. Note that
each M, is a matching, since o(*) is injective. We claim that, for any S C [2"], the edge sets
Uies and U;gs M; are (2% +#)-separable. Fix any S C [2], and let 15 € {0,1}*" denote the
indicator vector of S. Now, to separate | J;. 4 and Uigs M;, we will “colour” each edge (7,7)

with the pair (ﬁ(ls)(T, 9, (Ls) ('y)) ({0,1}* — {0,1}) x {0,1}5. If (7,7) and (7/,7’) have

out

the same colour, it means that ﬂéif )( -) and Bout (7',-) are the same function, and Blag) ()
and Bles) (') are the same bitstring — so, (7,7') and ( ' ~) will also share this colour.

We now just need to show that no edge (7,7) € J;cg M; can share a colour with an edge
(7",7") € Ujgs M;. Fix any z, 2" € [2"], and any edges (7,7) € M, and (7',7') € M, with
the same colour. In order for these edges to be present, both (z,7) and (z/,7’) must be good.
So,

Flo,15) = B35 (7, 883) (@) (7))
=5, ﬁmm ()
= B0 (7. B w'))
= Ao (7, B () (7))

:f(ai,ls),

meaning that either both = and z’ belong to S, or neither do. <
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We now demonstrate that any such graph cannot contain a large complete bipartite
subgraph, which will allow us to bound its density by the KST theorem.

» Lemma 31. For any k € N, if a graph G is k-divisive, then G does not contain the
complete bipartite graph Ksi2 352 as a subgraph.

Proof. We proceed by contradiction: suppose we’ve found a copy H of K3i2 352 in G. Let
M; U---U M, = E(G) be the partition into matchings guaranteed by the divisiveness
condition. We claim that we can find some set of M; and some smaller complete bipartite
subgraph of H whose intersection with the union of those M; is a perfect matching.

> Claim 32. There exists a set S C [m], and a subgraph H' C H C G, such that H' is
isomorphic to Ky1,k41, and | J;cg(H N M;) is a matching with & + 1 edges.

Proof of Claim 32. First, suppose some single M; contains at least k + 1 edges of H. Then,
the claim follows immediately by taking S = {i}, and letting H' be the subgraph induced by
the edges of H N M;. So, we will assume each M; contains at most k edges of H.

We construct S greedily, starting with S = () and adding indices one-at-a-time. Suppose
Uies(H N M;) currently consists of a matching with £ < k& + 1 many edges. The number of
edges of H that contain any endpoint of an edge in (J,.g(H N M;) is therefore no more than
2- (- (3k?). Since no M; contains more than k edges of H, and H has (3k%)? edges, there
must be at least (Sk;)Q = 9k3 > 2. (- (3k?) distinct M; with at least one edge in H. Thus,
we can find some i* such that M;« N H contains at least one edge, but contains no edge
sharing an endpoint with an edge of |J;cs(H N M;) — this implies that ;¢ guqi-y) (H N M;)
is a matching with at least £ 4+ 1 many edges. The claim follows by repeating this procedure
until |{J;cg(H N M;)| > k4 1, and then taking H' to be the subgraph induced by those
edges. <

Now, we use H' and S to contradict the k-separability assumption. By assumption on G,
the edge sets ;g M; and Uies M; are k-separable — fix an edge colouring that k-separates
them. Since | J;cg(H N M;) contains k + 1 edges, by pigeonhole principle it must contain two
edges (u1,us) and (v1,v9) that are given the same colour. Since H' is a complete bipartite
graph, the edge (u1, ve) must also be present, and since | J;c g(H N M;) is a matching it cannot
belong to any M;, i € S. Since (u1,us) and (v1,v2) have the same colour, the definition of a
k-separation requires (u1,v2) to share that colour — but (u1,v2) does not belong to (J;c g Mi,
so that colour cannot be used on (u1,wvz). This is contradiction. |

Theorem 9 now follows directly from Lemma 30 and Lemma 31.

Proof of Theorem 9. Lemma 30 gives a family {G,, }nen of 22" F5-divisive graphs, where
each G, has N = O(2¢Cs.(INDn)y many vertices and (263 (INDn)+n) — Q(N1+7/CCs,5(INDw))
many edges. Then, Lemma 31 ensures that no G,, in this family can contain a copy of
Ky, for t = 3 (22'§+5)2. The Ko6vari-Sés—Turdn theorem guarantees that an N-vertex
graph without K, as a subgraph must have at most O(N 2=1/t) many edges [34, 45, so we
must have n/CCs s(IND,) < 1 — 1/t for sufficiently large n. Rearranging, this gives that

CCs3 4(INDy,) > n + (%) n for all sufficiently large n. <

This is not an especially strong lower bound — it seems plausible that CCs 4(IND,,) is
exponential in n for any constant s, but do not even know that CCs 4(IND,,) > 2n. However,
the proof does at least give some evidence that the sort of direct application of Ruzsa—
Szemerédi constructions we saw in Section 4 is unlikely to work here — Ruzsa—Szemerédi
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graphs can contain complete bipartite graphs of any constant size, and we expect that bounds
of the form t < n'=%M for r = ©(n) on (r,t)-Ruzsa-Szemerédi graphs, if true, will be
difficult to prove [25]. We note also that the graph theoretic property of k-divisiveness, in
which any subset of matchings must be k-separable from the rest of the graph, is a strictly
stronger property than that of being a Ruzsa—Szemerédi graph, and may be interesting to
study in its own right.

6 More Rounds and Connections to Catalytic Computing

We've restricted attention thus far to protocols of only 3 rounds, as the design and analysis
of such protocols has proven to already be quite theoretically rich. In this section, we
consider what can be said for protocols with more rounds. We observe a close relationship
between standard models of nonuniform catalytic computation and our model of catalytic
communication, and show that by a communication analogue of Buhrman, Cleve, Koucky,
Loff and Speelman’s results on CL [13], there exist constant-round constant-clean protocols
with polynomial catalytic space for all of TCP.

6.1 Amortized Bipartite Branching Programs

The notion of catalytic space introduced by Buhrman, Cleve, Koucky, Loff and Speelman is a
uniform model of computation: it consists of a space-bounded algorithm, with an additional
resource of catalytic space that must be reset at the end of computation [13]. One can also
define a natural nonuniform catalytic model:

» Definition 33. An amortized branching program® of amortized width w and length £
computing m copies of a function f is a directed acyclic multigraph consisting of £ layers,
where
The first layer has m vertices, the last layer has 2 vertices, and all other layers have mw
vertices.
Each layer except the last is labeled with an index i € [n].
Each vertex except in the last layer has ezxactly two outgoing edges, labeled 0 and 1
respectively.
The two vertices in the last layer are labeled “accept” and “reject”, and the vertices in the
second-to-last layer are labeled with the names of vertices in the first layer, such that each
name appears exactly w times.
To compute the function on an input x, the program starts at an arbitrary vertexr in the first
layer, and then for each layer reads the associated index of © and follows the edge labeled
with the resulting value. Correctness of the program entails that, for every input and every
starting vertez, the program ends in the vertex with the correct acceptance behaviour, and the
second-to-last vertex visited has the same label as the starting vertex.

Amortized branching programs were introduced by Girard, Koucky and McKenzie, who
showed examples where direct sum theorems succeeded and failed for the model [26]. Since
then, there has been interest in determining the minimum amount of amortization needed
to compute a function with small amortized width and length. Potechin showed that every

8 We remark that our definition is slightly nonstandard, as the last layer is usually defined to have width
2m with labels (v,b), where v € [m] and b € {0,1}. However, the definitions are easily seen to be
equivalent (up to a unit change in length).
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function has an amortized branching program of length O(n) and amortized width O(1)
computing 22" copies [38]. Robere and Zuiddam showed that this amount of amortization
could be reduced for bounded-degree functions over Fy [42]. Cook and Mertz showed a
trade-off in both of these results between length and amortization, allowing them to show
in the former case that any function has an amortized branching program of length O(n)
and amortized width O(1) computing 22" copies, where the constant in the program length
depends on ¢ [20]. In a recent breakthrough work on the tree evaluation problem, Cook and
Mertz showed that the ideas of this tradeoff could be strengthened to give length poly(n),
amortized width O(1) branching programs computing 20" copies of any function [21].

In their work on memoryless communication complexity, Arunachalam and Podder
observed that the model was closely related to a notion of bipartite branching programs [2].
We define a similar notion in the amortized sense, which we note exactly describes our model
of catalytic communication, and can be seen as an alternate definition.

» Definition 34. A bipartite amortized branching program of amortized width w and
length £ computing m copies of a function f is a directed acyclic multigraph consisting of £
layers, where
The first layer has m vertices, the last layer has 2 vertices, and all other layers have mw
vertices.
Each layer except the last is labeled either x or y.
Each vertex except in the last layer has exactly 2™ outgoing edges, labeled with the values
of {0,1}™.
The two vertices in the last layer are labeled “accept” and “reject”, and the vertices in the
second-to-last layer are labeled with the names of vertices in the first layer, such that each
name appears exactly w times.
To compute the function on an input (x,y), the program starts at an arbitrary vertex in the
first layer, and then for each layer follows the edge labeled with the value of the associated
input. Correctness of the program entails that, for every input and every starting vertez,
the program ends in the vertexr with the correct acceptance behaviour, and the second-to-last
vertex visited has the same label as the starting vertex.

The equivalence between such programs and catalytic communication protocols is imme-
diate.

» Proposition 35. CC, (f) < c if and only if there exists a bipartite amortized branching
program of amortized width 2° and length r 4+ 2 computing 2¢ copies of f.

Proof. Given such a branching program, we define a catalytic protocol by thinking of the
initial catalytic setting as giving the index of a starting vertex of the program, and then on
subsequent steps having the blackboard store the index of the current node within its layer.
The fact that vertices in the second-to-last layer are labeled by vertices in the first layer
means that, with an appropriate ordering of the indexing, the condition of second-to-last
vertex having the same label as the starting vertex corresponds exactly to the catalytic
portion of the blackboard being reset after r» rounds. The final layer corresponds to the
output function.

Given a r-round s-clean catalytic protocol with catalytic space ¢, we can perform the
reverse transformation. Each layer except the first and last contains one vertex for each
blackboard state, and the transition functions between pairs of layers are determined by how
the active player would update the blackboard (with the transition function to the last layer
determined by the output function). <
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Note that any amortized branching program is also a bipartite amortized branching
program, so a consequence of this equivalence is that any result known for amortized
branching programs trivially extends to catalytic communication. For instance, the results
of [20] and [21] give the following, respectively:

» Corollary 36. CCo(n),001)(f) <2°" for all f: {0,1}" x {0,1}" — {0,1}, € > 0.
» Corollary 37. CCpoy(n),0(1)(f) < O(n) for all f: {0,1}" x {0,1}" — {0, 1}.

However, there are cases where bipartite amortized branching programs can be much more
efficient than amortized branching programs. Note that an amortized branching program
of length less than n is uninteresting (it is effectively solving a problem on a smaller input
length), whereas we’ve seen that bipartite amortized branching programs of length 5 can
be quite powerful. In the full version, we give a result making use of this power: Buhrman,
Cleve, Koucky, Loff and Speelman’s CL algorithm for threshold circuit evaluation gives an
amortized branching program of length poly(n) even when the circuit has constant depth,
but we note that by appropriate rearranging it can be converted to a bipartite amortized
branching program of only constant length, yielding the following;:

» Theorem 10. Let f: {0,1}"= x {0,1}™ — {0,1} be any function computable by a size S,
depth d majority circuit with arbitrary input preprocessing — that is, there exists a depth-
d circuit C' composed of S many majority gates, and arbitrary functions g,h, such that

f(z,y) = Clg(x), h(y)). Then, CCqa,(f) < poly(S,2).
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A  Proof of Results In Introduction

First, catalytic protocols with two or fewer rounds cannot meaningfully make use of the
catalytic space.

Proof of Proposition 3. In a one-round protocol, the blackboard is only modified once, so
if the catalytic portion is ever changed it will end up in a different state from how it started.
Since the catalytic state is an arbitrary string that can’t be changed, Alice and Bob could
just as well do without it.

In a two-round protocol, Alice and Bob each only get to modify the blackboard once.
So, Bob must have a function (independent of x) that lets him recover the original state
of the catalytic portion for every message Alice can send. There are 2°7¢ many possible
messages for Alice to send, each of which Bob returns to a single fixed catalytic state — so,
by pigeonhole principle, the protocol has some catalytic state that’s associated with at most
2% many Alice messages. This gives a new protocol with no catalytic space: the two parties
pretend the catalytic portion started in that state, Alice gives Bob the index of which of
the 2° associated messages she would have wanted to send in the original protocol, and Bob
determines what bits he would have sent back in the clean space. <

Next, we show that every function has a three-round protocol:

Proof of Proposition 4. First, suppose n, < np. In this case, the protocol is as follows:

1. Alice flips the xth bit of the catalytic portion.

2. Based on his own input, Bob computes the truth table of 2 — f(x,y), which he thinks of
as a 2™e-entry bitvector. He takes the inner product of this truth table and the current
catalytic space, and writes the result to the clean space.

3. Alice flips the xth bit of the catalytic portion again, resetting it.

4. Bob once again takes the inner product of his truth table and the catalytic space, and
outputs the XOR of the result and the clean bit.

If, on the other hand, n, > ny, the roles are reversed: Alice XORs in the truth table of

y +— f(x,y), and Bob reads off the yth bit. In either case, this can be seen as an application

of the inner product protocol of Proposition 5 to compute the inner product of a truth table

and the indicator vector of the index on which it’s being evaluated. |

Finally, we present our protocol for inner product.

Proof of Proposition 5. We will describe a protocol. Let x be Alice’s input, y be Bob’s

input, and 7 be the initial state of the catalytic space.

1. For the first round of the protocol, Alice replaces the catalytic portion of the blackboard
with 7 @ z, where & denotes bitwise XOR.

2. For the second round, Bob computes the inner product of the catalytic portion and his
input, writing the resulting bit (7 @ x,y) to the clean space.
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3. For the third round, Alice once again bitwise XORs her input into the catalytic portion,
resetting it to (@ z) dx =T.

4. To output the answer, Bob computes the inner product of the new catalytic portion and
his input, and adds this to the bit stored in the clean space, resulting in (7, y) ® (T Dz, y) =

(,9). <
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