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Abstract—This paper revisits the study of two classical
technical tools in theoretical computer science: Yao’s trans-
formation of distinguishers to next-bit predictors (FOCS
1982), and the “reconstruction paradigm” in pseudoran-
domness (e.g., as in Nisan and Wigderson, JCSS 1994).
Recent works of Pyne, Raz, and Zhan (FOCS 2023) and
Doron, Pyne, and Tell (STOC 2024) showed that both of
these tools can be derandomized in the specific context of
read-once branching programs (ROBPs), but left open the
question of derandomizing them in more general settings.

Our main contributions give appealing evidence that
derandomization of the two tools is possible in general
settings, show surprisingly strong consequences of such
derandomization, and reveal several new settings where
such derandomization is unconditionally possible for algo-
rithms stronger than ROBPs (with useful consequences).
Specifically:

• We show that derandomizing these tools is equivalent
to general derandomization. Specifically, we show that
derandomizing distinguish-to-predict transformations
is equivalent to prBPP=prP, and that derandomized
reconstruction procedures (in a more general sense
that we introduce) is equivalent to prBPP=prZPP.
These statements hold even when scaled down to weak
circuit classes and to algorithms that run in super-
polynomial time.

• Our main technical contributions are unconditional
constructions of derandomized versions of Yao’s
transformation (or reductions of this task to other
problems) for classes and for algorithms beyond
ROBPs. Consequently, we deduce new results: A
significant relaxation of the hypotheses required to
derandomize the isolation lemma for logspace algo-
rithms and deduce that NL=UL; and proofs that de-
randomization necessitates targeted PRGs in catalytic
logspace (unconditionally) and in logspace (condition-
ally).

In addition, we introduce a natural subclass of prZPP
that has been implicitly studied in recent works (Korten
FOCS 2021, CCC 2022): The class of problems reducible to
a problem called “Lossy Code”. We provide a structural
characterization for this class in terms of derandomized
reconstruction procedures, and show that this characteri-
zation is robust to several natural variations.

Lastly, we present alternative proofs for classical results
in the theory of pseudorandomness (such as two-sided
derandomization reducing to one-sided), relying on the
notion of deterministically transforming distinguishers to
predictors as the main technical tool.

Index Terms—pseudorandomness, complexity

I. INTRODUCTION

This paper revisits the study of two classical technical
tools in theoretical computer science: Yao’s transforma-
tion of distinguishers to next-bit predictors [Yao82], and
the “reconstruction paradigm”, both of which will be
explained next.

More than four decades ago, Yao introduced a very
simple probabilistic transformation of any distinguisher
for a distribution into a next-bit predictor for the same
distribution; that is:

Definition I.1 (distinguisher). We say that
C : {0, 1}n → {0, 1} is an ε-distinguisher for a distri-
bution D over {0, 1}n if

∣∣∣E[C(Un)] − E[C(D)]
∣∣∣ ≥ ε,

where Un is the uniform distribution.

Definition I.2 (next-bit predictor). For i ∈ [n], we say
that P : {0, 1}i−1 → {0, 1} is a δ-next-bit-predictor for
a distribution D over {0, 1}n if Prx←D [P (x<i) = xi] ≥
1
2 + δ.

Lemma I.3 (Yao’s next-bit-predictor). For any
C : {0, 1}n → {0, 1} and distribution D over {0, 1}n,
if C is an ε-distinguisher for D, then there exists
i ∈ [n] and σ1, σ2 ∈ {0, 1} such that with noticeable
probability over z ∈ {0, 1}n−i+1 it holds that
P (x<i) = C(x<i ◦ σ1 ◦ z)⊕ σ2 is a (1/O(n))-next-bit-
predictor for D.

The simplicity and generality of this transformation
have made it an invaluable tool, most prominently
in cryptography and in pseudorandomness (expositions
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appear in standard textbooks, e.g. [Gol08], [AB09],
[Gol01]). The canonical example for its use is in analyses
of pseudorandom generator constructions: Assuming that
the output distribution D of a generator does not “fool”
C (i.e., C is a distinguisher for D), one obtains a next-
bit-predictor for D, and the argument uses the latter
to contradict the results or assumptions on which the
generator is based.

Another ubiquitous technical tool is the “reconstruc-
tion paradigm”, which appeared explicitly in the works
of Nisan and Wigderson [Nis91], [NW94] and can be
traced back to prior works (e.g., to [Sip88]). Loosely
speaking, this is a general way of constructing algorithms
from “hard strings” (e.g., truth-tables of hard functions,
or incompressible strings). One designs an algorithm
that transforms an input string f into the desired object
Of , and this algorithm is coupled with a reconstruction
procedure, which supports the following claim: For any
string f , if Of does not have the desired properties, then
f is “not hard”. Indeed, the reconstruction procedure
outputs an “easy” representation of f , such as an efficient
algorithm or a small circuit.

Our main focus in this context is trying to construct a
distribution Of that is pseudorandom for a class of effi-
cient procedures. The canonical example is the “hardness
versus randomness” paradigm, introduced in [Nis91],
[NW94]: In this context, the string f represents the
truth-table of a hard function, the algorithm transforms
f into a (hopefully pseudorandom) multiset Of , and
the reconstruction procedure shows that if Of is not
pseudorandom, then the function represented by f can be
computed efficiently (e.g., by a small circuit).1 Closely
related examples exist in numerous areas, such as ex-
tractor theory [Tre01], expanders [TSUZ07], and error-
correcting codes [STV01].2

A. Recent Progress: Derandomizing Yao’s Transfor-
mation and Reconstruction Arguments for Read-Once
Branching Programs

The computational complexity of these two technical
tools is crucial. This is because the tools are used in
analyses that contradict an initial assumption or result,
and the higher the complexity of the tools, the stronger
the assumption or result that we need. As an illustrative
example, suppose that we want to use Yao’s transfor-
mation to show that a distribution D is pseudorandom

1More recent versions of the “hardness vs randomness” paradigm,
following [Gol11a], [CT21], work in an instance-wise fashion: Given
input x, they compute f = g(x) for some function g, and the
reconstruction procedure shows that if Of is not pseudorandom, then
g is easy to compute on the specific input x. See, e.g., [CT23] for
more details.

2Many standard reconstruction procedures (e.g., [NW94], [TSZS06],
[SU05], [Uma03]) use Yao’s next-bit-predictor lemma as a key step.
This can be viewed as reducing reconstruction to constructing a next-
bit-predictor. We further explain this point in Section I-D.

for a class C. In the analysis, we assume towards a
contradiction that D is not pseudorandom for some
C ∈ C, and use Lemma I.3 to obtain a predictor P ;
the rest of the argument, which proceeds to contradict
an initial assumption or result, will carry on the overhead
of transforming C to P .

In essentially all classical applications we are aware
of, both tools are modeled as probabilistic procedures,
or worse, as non-uniform procedures (which are stronger
than probabilistic algorithms). However, very recent
works showed that in the specific context of read-once
branching programs, we can do better. To be more
concrete, let us recall a definition of Doron, Pyne, and
Tell [DPT24]:

Definition I.4 (D2P, simplified). An algorithm A is
a distinguish to predict (D2P) transformation for a
class C if A gets as input a description of a circuit
C : {0, 1}n → {0, 1} from C, and prints a list of
circuits P1, ..., Pm : {0, 1}∗ → {0, 1} such that for every
distribution D over {0, 1}n the following holds. If C is
an ε-distinguisher for D, then there is an i ∈ [m] such
that Pi is an (ε/O(n))-predictor for D.

Some choices in Definition I.4 may seem arbitrary at
this point (e.g., we could also define a non-black-box
transformation that takes the distribution D as part of
its input, or require the transformation to work only for
certain classes of distributions, or consider more general
parameter regimes). Nevertheless, these choices will be
justified by showing algorithms that satisfy Definition I.4
as well as matching lower bounds.

Indeed, Yao’s transformation (i.e., Lemma I.3) can be
thought of as a probabilistic D2P transformation for gen-
eral circuits. The works of Pyne, Raz, and Zhan [PRZ23]
and [DPT24], building on [Nis94], [CH22], [GRZ23],
showed that there is a deterministic logspace D2P al-
gorithm for the class of read-once branching programs
(ROBPs). While it is not surprising that their algorithm
runs in logarithmic space (since Lemma I.3 already
yields a probabilistic logspace D2P for ROBPs), the cru-
cial novel point is that the D2P transformation algorithm
can be made deterministic.

As a consequence of their D2P algorithm, they
deduced the existence of a derandomized recon-
struction procedure for the classical Nisan-Wigderson
PRG [NW94] when the distinguisher is an ROBP.3 This
resulted in what they called “certified derandomiza-
tion”: A deterministic logspace algorithm that gets as

3The notion of “derandomized” here means that the procedure uses
only O(log(|f |)) random coins, where f is the truth-table of the
function on which the generator is based. Indeed, the reconstruction
procedure is deterministic, but its complexity may be higher than that
of computing f to begin with (where the point is that it outputs a small
circuit for f ).
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input a truth-table f and an ROBP C, and either con-
firms that the PRG instantiated with f is pseudorandom
for C, or prints a small circuit whose truth-table is f .

Beyond the ROBP setting, however, the notions of
deterministic D2P transformation and certified deran-
domization have not been studied in detail. For general
circuits, it is not a-priori clear whether to expect impos-
sibility results (on the one hand) or easy constructions
(on the other hand). In fact, it is not even a-priori clear
that non-explicit deterministic D2P transformations exist
for general circuits, since the algorithm in Definition I.4
is required to work for all distributions D.

B. Our contributions: A bird’s eye

In this work we give appealing evidence that deran-
domization of the two tools is possible, show surpris-
ingly strong consequences of such derandomization, and
reveal several new settings where such derandomization
is unconditionally possible for algorithms stronger than
ROBPs (and has useful consequences). Specifically:

• We show that derandomizing these tools is equiv-
alent to general derandomization. In particular,
we show that derandomized D2P is equivalent to
prBPP = prP and that certified derandomization
(in a more general sense that we introduce) is
equivalent to prBPP = prZPP. These results
appear in Sections I-C and I-D.

• Our main technical contributions are unconditional
constructions of derandomized D2P transformations
(or reductions of this task to other problems) for
classes and for algorithms beyond ROBPs. Con-
sequently, we deduce new results: A significant
relaxation of the hypotheses required to derandom-
ize the isolation lemma for logspace algorithms
and deduce that NL = UL; and proofs that de-
randomization necessitates targeted PRGs in
catalytic logspace (unconditionally) and in logspace
(conditionally). These contributions appear in Sec-
tions I-C1 and I-C2.

In addition, we introduce a natural subclass of prZPP
that has been implicitly studied in recent works on the
range avoidance problem [Kor21], [Kor22], [ILW23]:
The class of problems reducible to a problem called
LossyCode (see Problem I.16). We provide a structural
characterization for this class using the notion of certified
derandomization, and show that this characterization is
robust to several natural variations (see Section I-D).

As a last contribution, we present alternative proofs
of two classical results in the theory of pseudorandom-
ness: The reduction of derandomization of prBPP to
derandomization of prRP [Sip83], [Lau83], [ACR98],
[ACRT99], [GVW11], [GZ11], [CH22], and the fact that
MA ⊆ S2P [RS98]. Our proofs are technically simple

and appealing, and rely on D2P transformations as a
main ingredient.

C. Derandomized D2P Transformations and Their Con-
sequences

Should we expect D2P transformations to exist, and
should we expect to explicitly construct them any time
soon? A recent result of Korten [Kor22, Corollary 41]
implies the following statement: If there is a determinis-
tic D2P transformation for general circuits, then BPP ⊆
NP. Moreover, it was implicitly proved by Goldre-
ich [Gol11a, Appendix A] (following ideas in [GW00])
that D2P transformation exists with respect to a fixed
universal distribution, assuming prBPP = prP. Both
works, however, do not settle the existence of this
transformation, even in the non-explicit setting.

The first result, which motivates the result of our work,
asserts that a derandomized D2P algorithm for general
circuits follows from general derandomization (i.e., from
prBPP = prP), and is in fact equivalent to it.

Theorem I.5 (D2P ⇐⇒ derandomization). The fol-
lowing are equivalent:

1) prBPP = prP.
2) There exists a deterministic polynomial-time D2P

algorithm for general circuits.
Moreover, there unconditionally exists a polynomial-
sized family of non-uniform circuits for D2P of general
circuits.

The surprisingly simple proof of Theorem I.5 com-
bines an idea of Goldreich and Wigderson [GW00] with
the recent “instance-wise” approach to derandomization
(following [Gol11a], [CT21]).

The equivalence in Theorem I.5 has a positive aspect
and a discouraging one: The result means that D2P exists
under the widely believed conjecture prBPP = prP, but
it also means that constructing a D2P algorithm requires
proving this conjecture. We focus on the positive aspect.

a) A natural challenge: Derandomizing D2P be-
yond ROBPs.: Motivated by Theorem I.5, we consider
the following challenge:

Open Problem I.6. Unconditionally construct determin-
istic D2P transformations (or deterministic reductions of
D2P to other tasks) for algorithms beyond the ROBP set-
ting, and leverage these constructions to make progress
on long-standing questions.

Our main technical contributions are two solutions to
Open Problem I.6: We construct new D2P transforma-
tions, going beyond the ROBP setting, and leverage them
to make progress on the following two long-standing
questions: making nondeterministic logspace unambigu-
ous (Section I-C1), and reducing targeted PRGs to
derandomization (Section I-C2). We view these positive
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results as suggesting that more positive answers to Open
Problem I.6 may be found.

1) The Isolation Lemma And Unambiguous Logspace:
The isolation lemma of Mulmuley, Valiant, and Vazi-
rani [VV86], [MVV87] (see also [CRS95]) gives a
randomized procedure to reduce a search problem with
many solutions to one with a single valid solution. This
procedure has found many uses in algorithms and com-
plexity; among the well-known examples are [Tod91],
[BDCGL92]. We focus on its application in reducing
nondeterminism to unambiguous nondeterminism, where
each “yes” instance has exactly one valid witness (as
in [Val77]).

In the general case, there is evidence that derandom-
izing the isolation lemma for this purpose is impossible
(since it was shown in [DKvMW13] to be equivalent
to NP ⊆ P/ poly), and even derandomizing restricted
versions of it implies circuit lower bounds [AM08]. Part
of the difficulty is that it is not clear how to identify a
good candidate (i.e., an instance that has exactly one
satisfying solution) in an unambiguous way, so even
strong PRGs are not known to imply NP = UP.

In the bounded-space setting, however, there is evi-
dence that we can make nondeterminism unambiguous.
In contrast to recognizing circuits with a unique sat-
isfying assignment, recognizing if a graph has unique
shortest paths can be done in UL [RA00], [GW96].
Leveraging this fact, Reinhardt and Allender [RA00]
showed that to prove NL = UL, it suffices to construct
weight functions that induce unique shortest paths in
UL:

Problem I.7 (path isolation). Construct in UL a set of
weight functions {w1, . . . , wnc} with wi : E → [n10]
such that for every graph G = (V,E) on n vertices,
there is some i such that the weighted graph (G,wi)
has unique shortest paths (USPs).

Allender et al. [ARZ99] showed that such a construc-
tion is possible assuming strong circuit lower bounds:
in particular, hardness of SPACE[n] for general circuits
of size 2εn. Subsequently, there has been extensive
work designing space-efficient unambiguous verifiers for
various problems. In particular, placing connectivity for
restricted families of directed graphs in UL [BTV09],
[KV10], [GST19], reducing the complexity of connec-
tivity for general graphs [vMP19], [KT16], [Hoz19].

The reason prior conditional results of [GW96],
[ARZ99] required strong circuit lower bounds is pre-
cisely because they apply the generic probabilistic D2P
transformation of Yao to the distinguisher TG(w) that
checks if (G,w) has unique shortest paths.

a) Our results.: Motivated by this observation, we
unconditionally construct a deterministic logspace D2P
transformation for this particular distinguisher TG:

Theorem I.8 (Informal). There is a logspace-
computable D2P transformation for the class of dis-
tinguishers {TG}G, where G is a directed graph and
TG(w) = I [w induces USPs in G].

We leverage this transformation to significantly
weaken the assumptions needed in previous
work [ARZ99] to deduce that non-deterministic
bounded-space computation can be made unambiguous.
Specifically, instead of strong circuit lower bounds, we
show that lower bounds for uniform and deterministic
(or near-deterministic) algorithms suffice.

We show two results, one for a “scaled-up” parameter
setting, and one for the logspace setting. For context,
recall that [ARZ99] deduced that NL = UL from
hardness of SPACE[n] for general non-uniform circuits
of size 2εn (for some ε > 0).

Our first result deduces a scaled-up version of their
conclusion from a lower bound for uniform and deter-
ministic procedures; specifically, from a lower bound for
circuits that are printable by a nondeterministic logspace
algorithm, that moreover prints a circuit on only one
guess sequence.4 Specifically:

Theorem I.9 (Informal). Suppose there exists ε > 0
such that SPACE[n] is hard for UL-uniform circuits of
size 2εn. Then NSPACE[O(n)] = USPACE[O(n)].

We stress that the hypotheses in Theorem I.9
(and Assumption I.10) are considerably weaker than
hypotheses that are typically required for hardness-vs-
randomness results. In particular, the latter rely on
lower bounds either for non-uniform circuits (as in,
say, [NW94], [IW97]) or for probabilistic algorithms (as
in, say, [CT21], [CTW23]).5

In fact, our technical result is stronger, and shows that
the conclusion of Theorem I.9 follows from a weaker hy-
pothesis; namely, from hardness of USPACE[n] against
(deterministic, uniform) TC0 circuits with low-space
oracles.

For our second result, to deduce that NL = UL (i.e., a
scaled-down conclusion as in [ARZ99]), we will assume
hardness of functions in NC1 for uniform algorithms that
use only polylog(n) random coins. Specifically:

Assumption I.10 (hardness in NC1 for uniform near-de-
terministic algorithms). For every c ∈ N, there exists

4The uniformity requirement is significantly weaker than the stan-
dard requirement that the circuit is printable in polynomial time (i.e.,
P-uniformity), let alone from models such as NTIME-uniformity (e.g.,
as in [SW13], [CRTY20]).

5One recent exception is the work of Doron, Pyne, and Tell [DPT24]
on derandomizing BPL, and another exception is the study of pseu-
dorandomness for deterministic observers by Goldreich and Wigder-
son [GW00]. We build on both works, and in particular we extend
the results of [DPT24] the specific setting of ROBPs to more general
settings. See Section II for further details.
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C ∈ N and a family of functions {f : {0, 1}n →
{0, 1}n}n∈N computable by logspace-uniform NC1-
circuits of size nC , such that there is no time nc

algorithm using polylog(n) many coins that on infinitely
many x prints f(x) with probability at least 2/3.

Theorem I.11. Suppose that Assumption I.10 holds.
Then NL = UL.

The technical contribution underlying the forego-
ing results is two-fold: Constructing the D2P transfor-
mation stated in Theorem I.8, and leveraging it via
new “hardness-vs-randomness” tradeoffs to obtain The-
orems I.9 and I.11. The latter contribution further de-
velops very recent work on targeted pseudorandom gen-
erators with randomness-efficient reconstruction proce-
dures [PRZ23], [DPT24]. In particular, in the proof
of Theorem I.9 we show that such reconstruction proce-
dures can be made to satisfy UL∩coUL uniformity, and
in the proof Theorem I.11, we construct a version of the
Chen-Tell targeted HSG [CT21] that works with a hard
function in NC1, is computable in logspace, and has a
derandomized reconstruction. See Section II for details.

2) Derandomization Requires Targeted Generators in
CL and in L: Assuming that we can solve CAPP
for a class C of circuits,6 can we also output a a
distribution D that fools a given C ∈ C? In particular,
do BPP-search problems (a-la [Gol11a]) reduce to the
decision problem CAPP? This question was first posed
by Goldreich [Gol11a], [Gol11b], who phrased it as the
question of whether derandomization requires targeted
PRGs.

Goldreich [Gol11b], [Gol11a] proved such a result for
prBPP (i.e., when the CAPP algorithm is a general
probabilistic algorithm), and posed the open question
of obtaining analogous results for classes such as AM
and L. For recent progress see, e.g., [HU22], [vMS23a],
[vMS23b], [PR23].

We resolve this question for the catalytic logspace
(CL) model of Buhrman et al. [BCK+14], and weaken
the assumptions required to resolve this question for L.

a) Derandomization in CL requires targeted
PRGs.: In the catalytic logspace model, we are given
O(log n) bits of standard workspace, and a catalytic
tape w of length nc, which functions as follows. The
tape w is initialized to an arbitrary value, and we may
edit it during the computation, but must exactly reset
the tape to the original configuration at the end. The
work of [BCK+14] proved that logspace-uniform TC1

is contained in CL, so in particular NL ⊆ CL. Since
this intriguing result there has been extensive work on

6Recall that CAPP is the promise problem whose “yes” instances
are circuits C such that Prr[C(r) = 1] ≥ 2/3 and whose “no”
instances are circuits C such that Prr[C(r) = 1] ≤ 1/3. Also recall
that CAPP is complete for prBPP.

the model [BKLS18], [GJST19], [DGJ+12], [CM20],
[CM23], [DPT24], [Pyn24], [CLM+24] (see the survey
of Mertz [Mer23] for an excellent exposition).

Despite extensive recent interest, many basic structural
questions remain open. In particular, prior to this work it
was not known whether solving BPP-search problems
reduces to CAPP in CL. As mentioned above, we resolve
this question in the affirmative:

Theorem I.12 (informal). Suppose that there is a CL-
computable CAPP algorithm for a CL-evaluable class
of circuits C. Then:

1) There is a CL-computable D2P transformation for
C circuits.

2) There is a CL algorithm that, given C ∈ C, outputs
a distribution D that (1/3)-fools C.

Our proof proceeds in two steps: We first reduce the
task of producing D to D2P in CL, and then reduce D2P
to CAPP in CL. The first and main step combines the
“compress or random” approach in catalytic computation
(which tries to use the catalytic tape as a hard truth-table;
see, e.g., [DPT24] and [Mer23, Section 3.2.1]) with ideas
from the proof of Theorem I.5. The second step shows
that the reduction of D2P to CAPP from Theorem I.5 can
be implemented in CL. Crucially, our proof relies on the
fact that our reductions of D2P to CAPP are “instance-
wise”, in the sense that a CAPP algorithm for a fixed
circuit C yields a deterministic D2P transformation for
C specifically. Details appear in Section II-C.

In addition, combining the ideas in the proofs of The-
orems I.8 and I.12 with the main result of [BCK+14],
we show that we can derandomize the path isolation
lemma in CL. Note that this is the first CL algorithm for
a natural problem that combines both main algorithmic
techniques for CL, namely the algebraic computation ap-
proach [BCK+14], [CM23] and the compress-or-random
approach [Pyn24], [DPT24].

b) Derandomization in L requires targeted PRGs,
under weak assumptions.: Finally, we show that deran-
domization in logspace indeed implies targeted logspace
PRGs, assuming lower bounds against uniform algo-
rithms that use only polylog(n) random coins:

Theorem I.13 (informal). Suppose that Assumption I.10
holds. Let C be an arbitrary circuit class that is evaluable
in L, and suppose there is a logspace CAPP algorithm
for C. Then, there is a logspace algorithm that, given
C ∈ C, outputs a distribution D that (1/3)-fools C.

The conditional statement in Theorem I.13 is the first
result indicating that the answer to the open problem
is affirmative (i.e., that logspace derandomization ne-
cessitates logspace targeted PRGs) without relying on
assumptions that are sufficiently strong to immediately
yield (by themselves) logspace targeted PRGs.
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D. Certified Derandomization and the Class LOSSY

We now turn our attention to a notion of derandom-
ized reconstruction procedures. Specifically, we focus
on what was coined by Pyne, Raz, and Zhan [PRZ23]
as certified derandomization: Given a circuit C :
{0, 1}n → {0, 1} and a truth-table f ∈ {0, 1}poly(n),
either estimate the acceptance probability of C to an
additive error of 1/6 (i.e. solve CAPP for C), or
construct a small circuit for f . (Indeed, we think of
such an algorithm as executing a derandomized version
of the classical reconstruction procedure a-la [NW94]:
When the algorithm is unable to use f to obtain a
pseudorandom distribution for C, it deterministically
finds a small circuit for f .)

a) Context: Certified derandomization, derandom-
ized D2P, and reconstruction procedures.: Certified de-
randomization is a natural notion in and of itself, which
was constructed for ROBPs in [PRZ23] and which can
be constructed for more general classes (see next).

An additional motivation for studying certified de-
randomization arises from understanding reconstruction
procedures in the “hardness vs randomness” paradigm.
Classical reconstruction procedures (e.g., in [NW94],
[TSZS06], [SU05], [Uma03]) use D2P as a key technical
step. However, it is not clear if this approach (i.e., de-
signing reconstruction procedures that go through D2P)
is necessary, or if there are approaches that avoid D2P
altogether.7

To be more concrete, we know that certified de-
randomization deterministically reduces to constructing
a D2P transformation: Either using the derandomized
reconstruction procedure for the Nisan-Widgerson PRG
of [PRZ23], or using our equivalence between deran-
domizing D2P and prBPP = prP (the latter trivially
implies certified derandomization, as we can simply
ignore the truth-table f provided and solve CAPP).
Nevertheless, the characterization of certified derandom-
ization stated below implies that reducing certified de-
randomization to D2P may be an overkill, as the latter is
equivalent to prBPP = prP (by Theorem I.5) whereas
the former is only equivalent to prBPP = prZPP
(see Theorem I.15).

b) A general notion of certified derandomization,
and prZPP = prBPP.: The certified derandomization
algorithm of [PRZ23] uses strings f that are truth-tables
with high circuit complexity (i.e., if f has high circuit
complexity, then the algorithm estimates the acceptance
probability the given circuit). One can think of the
set of truth-tables with high circuit complexity as a
dense property of strings (i.e., inspired by Razborov
and Rudich [RR97]), where this property is in coNP.

7A closely related question, focusing on the hybrid argument, was
studied by Fefferman et al. [FSUV13] motivated by avoiding the 1/n
advantage loss.

It is not, however, clear why we should use this specific
property for the purpose of certified derandomization,
rather than any other property in coNP.

Accordingly, we define a general notion of certified
derandomization using an arbitrary dense property P ∈
coNP: The certified derandomization algorithm is given
C and a string τ , and is required to either solve CAPP
for C (which it should be able to do whenever τ ∈ P),
or provide a witness w that τ /∈ P .

We prove that certified derandomization in this more
general sense is equivalent to prBPP = prZPP; that
is, prBPP = prZPP if and only if there exists a dense
property P ∈ coNP and a certified derandomization al-
gorithm using P . As explained above, this result yields a
conceptual separation between certified derandomization
and D2P.

Definition I.14 (certified derandomization). For ℓ =
ℓ(n) = 2o(n), let P = {Pn ⊆ {0, 1}ℓ}n∈N ∈ coNP
such that P ∩ {0, 1}n ̸= ∅ for every n ∈ N. Let
V be a coNP verifier of P . An algorithm A is a
certified derandomization algorithm using P (with
respect to the verifier V ) if for every linear-size circuit
C : {0, 1}n → {0, 1} and every τ ∈ {0, 1}ℓ,

• If τ ∈ P then A(C, τ) solves CAPP on C.
• If τ /∈ P then either A(C, τ) solves CAPP on C,

or A(C, τ) prints w such that V (τ, w) = 0.

Theorem I.15 (certified derandomization ⇐⇒
prBPP = prZPP). The following statements are equiv-
alent.

• prBPP = prZPP.
• There is a deterministic polynomial-time certified

derandomization algorithm using a dense property
P = {Pn ⊆ {0, 1}ℓ}n∈N ∈ coNP, where ℓ =
ℓ(n) = poly(n).

The proof of Theorem I.15 is elementary, and appears
in the full version.

c) The class LOSSY.: It turns out, however, that
the more restricted notion of certified derandomization
with hard truth-tables (as in [PRZ23]) is interesting
in and of itself. A recent work of Korten [Kor22]
introduced a search problem called LossyCode, which
admits a randomized polynomial-time zero-error algo-
rithm, and asked what is the set of problems reducible
to LossyCode.

Problem I.16 (LossyCode). Given a pair of circuits C :
{0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n, where m <
n, find a string x ∈ {0, 1}n such that D(C(x)) ̸= x.

We define the subclass LOSSY ⊆ ZPP as the class
of languages reducible to LossyCode in deterministic
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polynomial time.8 This is an interesting class, with
one motivation coming from proof complexity: Loosely
speaking, if a statement of the form “∀x ∃y φ(x, y)”
(where φ is a quantifier-free formula) can be proved in
the bounded theory APC1 (see [Jeř04], [Jeř07] for the
definition and related discussion), then the corresponding
search problem can be solved in FLOSSY (i.e., in the
functional version of LOSSY).

We provide additional motivation for studying
LOSSY, by showing that this class has an interesting
structural characterization, which relies on the notion of
certified derandomization with hard truth tables. Specif-
ically, we prove the following:

Theorem I.17 (informal). The following statements are
equivalent.
(1) prBPP = prLOSSY.
(2) There is a deterministic polynomial-time certified

derandomization algorithm using hard truth tables.

In fact, we further extend Theorem I.17, by showing
that the two statements are also equivalent to the exis-
tence of a deterministic polynomial-time certified deran-
domization algorithm using any property defined by an
efficient Range Avoidance problem.9 These equivalences
significantly strengthen results from [Kor22]; see the full
version for further details.

II. OVERVIEW OF PROOFS

In Section II-A we describe the equivalence between
D2P and derandomization (i.e., the proof of Theo-
rem I.5). Our main technical contributions are described
in Sections II-B and II-C:
• In Section II-B we explain our construction of a

deterministic logspace D2P algorithm for unique
shortest paths (i.e., Theorem I.8) and how it al-
lows deducing NL = UL and NSPACE[n] =
USPACE[n] from weaker assumptions (i.e., The-
orems I.9 and I.11).

• In Section II-C we explain our reduction of targeted
PRGs to CAPP in catalytic logspace (i.e., Theo-
rem I.12) and the analogous conditional reduction
in L (i.e., Theorem I.13).

Finally, in Section II-D we describe the equivalences
between certified derandomization and zero-error deran-
domization.

8It turns out that the definition of LOSSY is robust with respect
to the type of the reduction. Specifically, we prove that any language
that is Cook-type reducible to LossyCode (i.e. the reduction could
call the LossyCode oracle multiple times adaptively) is also Karp-
type reducible to LossyCode (i.e. the reduction calls the LossyCode
oracle only once).

9That is, any property of strings that are outside the range of an
efficiently computable function g : {0, 1}n → {0, 1}m such that
m > n (i.e. a string y ∈ {0, 1}m such that g−1(y) = ∅). For more
details about the range avoidance problem, see [Kor21], [RSW22],
[GLW22], [GGNS23], [CHLR23], [ILW23], [CHR24], [Li24], [CL24].

A. D2P is Equivalent to Derandomization

Our goal is to show that deterministic D2P implies
prBPP = prP, and vice versa. At a high level, we build
on ideas from a sequence of works by Goldreich and
Wigderson [GW00], [Gol11b], [Gol11a], who examined
what they called “deterministic observers”. We prove the
equivalence by combining their ideas with the “instance-
wise” approach to derandomization (i.e., derandomiza-
tion that uses targeted PRGs instead of classical PRGs),
following Goldreich [Gol11a] and Chen and Tell [CT21].

1) D2P implies derandomization: Goldreich and
Wigderson [GW00] constructed a distribution ensemble
D = {Dn}n∈N that is unpredictable by uniform de-
terministic Turing machines. In a gist, on input length
n they consider the first (say) n machines, and using
a diagonalization-style approach, they build Dn bit-by-
bit. In each iteration the distribution D

(i)
n consists of

i-bit strings, and they search a pseudorandom sample
space to find an extension of the strings in D

(i)
n such that

none of the n machines can predict the new distribution
D

(i+1)
n .10

At a high level, if deterministic D2P is possible,
then any efficient distinguisher yields a deterministic
predictor for Dn. Since Dn is unpredictable by such
machines (by its construction), we intuitively expect to
deduce that Dn is also pseudorandom.

The only issue is that (in contrast to [GW00]) we
are trying to obtain worst-case derandomization. That
is, in our setting the machine M that tries to distin-
guish Dn from uniform also has access to a (worst-
case) input x ∈ {0, 1}n. Hence, instead of trying to
construct a distribution that is unpredictable by such
procedures, we simply adapt the approach to yield
non-black-box derandomization. Specifically, given input
x ∈ {0, 1}n, we build Dx that is unpredictable by
any efficient machine that also gets access to x (using
the same diagonalization-style approach). Assuming that
deterministic D2P is possible, Dx is indistinguishable
from uniform by efficient machines that get access to x,
and in particular by M(x, ·). Indeed, this construction
is a targeted PRG, mapping x to a multiset Dx that is
pseudorandom for distinguishers of the form M(x, ·).11

This simple argument is versatile, and yields several
interesting corollaries, for instance an equivalence be-
tween D2P and superfast derandomization under OWFs.

10They show that even a pairwise-independent distribution suffices
for this purpose, while we apply stronger tools to obtain a stronger
equivalence.

11The “missing observations” in [GW00] seems to be two-fold:
First, clearly defining the notion of D2P and asking about its impli-
cations; and secondly, considering non-black-box derandomization by
targeted PRGs, which is a notion that was introduced in a follow-
up work [Gol11a] and extensively studied only recently (follow-
ing [CT21]).
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We present the technical details as well as extensions
and corollaries in the full version.

2) Derandomization implies D2P: To discuss the
other direction, recall that by Yao’s Lemma, for every
circuit C : {0, 1}n → {0, 1} and distribution Dn that
C distinguishes from uniform, there is an index i ∈ [n]
and σ ∈ {0, 1}2 such that

E
z

[
Pr

x←Dn

[xi = C(x<i ◦ σ1 ◦ z)⊕ σ2]

]
≥ 1

2
+

1

poly(n)
.

(II.1)

A natural strategy is to try and find z that approx-
imately achieves this expectation. For example, this is
indeed the strategy undertaken in all uses of Yao’s trans-
formation in the “hardness vs randomness” paradigm
(see, e.g., [NW94], [STV01], [CT21], [DPT24], for a
collection of arguments that all rely on finding such a
z). Unfortunately, we show that explicitly constructing
a good family of these strings is equivalent to the
explicit construction of hitting sets (and thus circuit
lower bounds), and hence we are unlikely to deduce such
a result from prBPP = prP.

Intuitively, the key difficulty is that testing whether
z maintains the advantage in Eq. (II.1) for every distri-
bution Dn over {0, 1}n for which C is a distinguisher
seems to require doubly exponential time (since there
can be doubly exponentially many such distributions).
Thus, it is unclear how to apply a CAPP algorithm to a
polynomial-sized circuit to find such a z.

Our key observation is as follows. Instead of trying
to use the CAPP algorithm to find a good z that will
be hard-wired into a predictor Pz , we will construct a
predictor that uses the CAPP algorithm to predict the
next bit. This way, instead of considering all possible
distributions over inputs x<i to the predictor, we fix an
input x<i that is explicitly given to the CAPP algorithm,
and the CAPP algorithm only needs to consider the
uniform distribution over suffixes z to approximate the
LHS of Eq. (II.1) on this given prefix. (This approach is
technically reminiscent of a proof in [Gol11a, Appendix
A], although the settings and notions are different.)

In more detail, fixing i ∈ [n] and σ ∈ {0, 1}, let
us first construct a “non-Boolean predictor” P̃i,σ . For
simplicity of presentation, let us assume that σ = 00,
and denote P̃i = P̃i,σ . Given input x<i, the predictor
estimates the value Ez[C(x<i ◦z)], up to a polynomially
small error.12 By Eq. (II.1) and linearity of expectation,

12That is, the predictor constructs the circuit D(z) = C(x<i ◦ z),
and outputs the real value obtained by applying the CAPP algorithm
to D (with sufficiently small error 1/ poly(n)).

for some i, σ (again, assume σ = 0) we have

1/2 + 1/ poly(n)

≤ E
x

[
1[xi = 1] · Pr

z
[C(x<i ◦ z) = 1]

+ 1[xi = 0] · Pr
z
[C(x<i ◦ z) = 0]

]
≈1/ poly(n) E

x

[
1[xi = 1] · P̃i(x<i)

+ 1[xi = 0] · (1− P̃i(x<i))
]

; (II.2)

in other words, P̃ computes a real value whose correla-
tion with the event “xi = 1” is non-trivial.

This almost finishes the construction, since now we
just need to convert P̃ into a Boolean predictor. This
can be done in a generic way: An elementary argu-
ment shows that for any real-valued function P̃i with
correlation as in Eq. (II.2) there is a threshold τ ∈
{i · ε}i=1,...,1/ε (where ε = 1/ poly(n)) such that the
Boolean function Pi,τ (x<i) = 1[P̃i(x<i) ≤ τ ] has
correlation 1/2 + 1/ poly(n) with the event “xi = 1′′

(i.e., Prx<i [Pi,τ (x<i) = xi] ≥ 1/2 + 1/ poly(n)).13

Thus, our D2P algorithm outputs the collection
{Pi,σ,τ}. This collection is indeed of polynomial size,
and for every distribution Dn for which Eq. (II.1) holds
(in particular, for every distribution for which C is a
distinguisher), the collection has a predictor for Dn.

Remark II.1. Indeed, this direction is a-priori far less
obvious than the first one. Note that the argument is
“instance-wise”: Solving CAPP for (prefixes of) a cer-
tain circuit C yields a deterministic D2P transformation
for C specifically. We will crucially use this property
in Section II-C.

B. D2P for Unique Shortest Paths, and Derandomizing
the Path Isolation Lemma

We now explain how to construct a specific deter-
ministic D2P transformation and use it to deduce that
NL = UL (or NSPACE[n] = USPACE[n]) from weak
hardness assumptions (i.e., for deterministic uniform
algorithms).

Our argument has two parts. We first construct a de-
terministic logspace-computable D2P for a distinguisher
T = TG that decides whether a weight assignment
induces unique shortest paths in the graph G. The reason
for focusing on this specific T is that finding such a
weight assignment suffices to deduce that UL = NL
(see [RA00], [GW96]). The second part of our argument
“lifts” this D2P to a proof that UL = NL, under weak
assumptions.

13More generally, for any two random variables x ∈ [0, 1] and
y ∈ [−1, 1] such that E[x · y] ≥ δ, there is τ ∈ [1/ε] such that
E[1x≤ε·τ · y] ≥ δ − ε.
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a) A deterministic logspace D2P for unique short-
est paths.: Consider the function TG that takes in a
weight assignment w : E → [n10] and accepts if the
weighted graph (G,w) has unique shortest paths.14 Note
that TG does not seem to be computable by an ROBP
(since checking unique shortest paths between every
pair of vertices seemingly requires reading edge weights
many times over), and thus the previously known D2P
transformation for ROBPs does not suffice.

In order to obtain our D2P transformation, we first
make the distinguisher stricter. We place a fixed ordering
e1, . . . , em on the edges of G = (V,E), define Gi =
(V,Ei = {e1, . . . , ei}), and let wi be the restriction of
w : E → [n10] to Ei. Then we define:

TG(w) =
∧

i∈[m]

I [wi induces USPs in Gi] ,

i.e. every prefix of the weight function w likewise
induces unique shortest paths. A random weight as-
signment still satisfies this stricter condition with high
probability.

Recall that in Section II-A2 we showed a construc-
tion of D2P that uses a CAPP algorithm; this can be
viewed as a reduction of D2P to CAPP. As mentioned
in Remark II.1, this reduction is instance-wise, in the
sense that solving CAPP for a specific circuit yields
D2P for that circuit. We now use the same instance-
wise reduction of D2P to CAPP, while performing the
hybrid argument of Yao (that yields Eq. (II.1)) in the
same order as TG reads the edge weights. We deduce
that constructing a D2P transform for TG reduces to
solving the following problem: Given an arbitrary partial
assignment wi : Ei → [n10], estimate Ez[TG(wi ◦ z)].

The key point is that with the stricter distinguisher
and the choice of hybrid order, we obtain a polarization
effect. In particular, one of the following holds:
• The partial assignment has already failed to induce

USPs in a subgraph Gj for j ≤ i. In this case,
TG(wi ◦ z) = 0 for every z.

• The partial assignment has not already failed to
induce USPs in a subgraph. In this case, we show
that almost all suffixes z will successfully induce
USPs, no matter the current prefix.

Due to this polarizing effect, we can estimate ρ =
Ez[T (wi ◦ z)] by determining if wi has already failed
to induce USPs (in which case ρ = 0) or not (in which
case ρ ≈ 1). Allender and Reinhardt [RA00] constructed
a UL ∩ coUL algorithm for this task (i.e., testing if
a fixed assignment induces USPs), and thus we obtain
a deterministic logspace D2P transformation where the
predictors it outputs are UL ∩ coUL algorithms.

14A simple argument shows that for every graph G, E[TG(U)] ≥
1− n−8.

b) From D2P to disambiguation of
non-deterministic logspace.: Using the D2P
above, we now deduce that NL = UL (and
NSPACE[n] = USPACE[n]) from hardness for
uniform algorithms that are either deterministic or use
only polylog(n) coins. The idea, following Pyne, Raz,
and Zhan [PRZ23], is to use a (targeted) pseudorandom
generator with a near-deterministic reconstruction
procedure conditioned on a deterministic D2P for the
relevant distinguisher.

In our case, we let the distinguisher be the test TG that
accepts if the weight set induces unique shortest paths.
Given our deterministic D2P for this distinguisher, such
a generator transforms hardness for near-deterministic
procedures into a set of pseudorandom strings for the
distinguisher (which, in our setting, will include a weight
assignment that induces unique shortest paths on the
input graph). The original generator of [PRZ23] was
based on circuit lower bounds, and later on Doron, Pyne,
and Tell [DPT24] (building on the framework of [CT21])
constructed a targeted PRG based on lower bounds for
deterministic uniform procedures.

Using these works as our starting point, we will
need to construct yet another version of the targeted
PRG of Chen and Tell [CT21] (following [CRT22],
[CTW23], [CLO+23], [DPT24]).15 We build a logspace-
computable targeted PRG that is based on a hard function
in logspace-uniform NC1, where the hardness is for uni-
form algorithms that use only polylogarithmically many
random coins (and that have access to a deterministic
D2P for the relevant distinguisher). Since the technical
details are quite involved (and are not the conceptual
focus of the current paper), let us focus mostly on two
key differences, postponing the details to the full version.

• As in all previous works, our targeted PRG en-
codes the computation of the hard function as a
sequence of polynomials. Previous works did so
relying either on a hard function in TC0; or on
a preprocessing step that incurs a polylog(n) depth
blowup (using an idea from [Gol18]), which would
prohibit evaluating the generator in logspace. To
resolve this, we preprocess the circuit in a more
careful way, which still incurs a polylog(n) depth
blowup but nevertheless allows us to evaluate the
resulting polynomials in logspace.

15Each previous version has shortcomings making it unsuitable
for the current purpose. Specifically, the targeted PRGs of [CT21],
[CLO+23] are not evaluable in logspace (even if the hard function is
computable in constant depth), and their reconstruction is probabilistic.
The targeted PRG in [CTW23] is logspace-computable, but it is based
on hardness in TC0, and its reconstruction is still probabilistic. The
targeted PRG in [DPT24] is also based on hardness in TC0 rather
than in NC1, and does not yield worst-case derandomization (as we
explain below).
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• The conclusion in [DPT24] was average-case de-
randomization, whereas we are interested in worst-
case derandomization. The reason for their weaker
conclusion is that their reconstruction algorithm was
a logspace-uniform circuit, where the logspace ma-
chine constructing the circuit had higher space com-
plexity than that of the hard function; this prohibits
making the assumptions necessary to conclude
worst-case derandomization.16 To resolve this, we
replace parts of their argument as follows. Instead of
modeling the reconstruction as a logspace-uniform
circuit, we model it as a probabilistic machine; and
then, following [PRZ23], we show how to signif-
icantly reduce the randomness complexity of this
machine, relying on a combination of derandomized
D2P transformation with standard sampler-based
techniques.

C. Derandomization Requires Targeted PRGs in Cat-
alytic Logspace and in Logspace

Next, we focus on the question of whether solving
BPP-search problems in a certain class (specifically, in
CL or in L) reduces to solving the decision problem
CAPP in that class. Equivalently, we ask whether de-
randomization in the class requires targeted PRGs. A
straightforward search-to-decision reduction in [Gol11a]
establishes this for P, but it is highly space-inefficient,
and thus unsuitable for CL and for L, where its existence
is an open problem [PR23] (the reduction from [Gol11a]
also fails for AM, due to other reasons; see [Gol11a],
[vMS23a], [vMS23b]).

For concreteness, throughout this section let us assume
that all circuits are in some fixed circuit class C that can
be evaluated in logspace (e.g., C = NC1).

a) Catalytic logspace.: Recall the setting: We are
given a circuit C, we can solve CAPP for C, and we
want to construct a distribution D that is pseudorandom
for C.17

Our result combines (a modification of) the result
of [DPT24] reducing producing a targeted PRG for
C to constructing a D2P transformation for C, with
our instance-wise reduction from constructing a D2P
transformation to solving CAPP. In more detail, we
first modify the reduction of [DPT24], which uses the
“compress or random” paradigm. They think of the

16Specifically, to deduce worst-case derandomization in their frame-
work (following [CT21]), we need to assume hardness on almost all
inputs. If the hard function f is computable in space c·log(n), and the
machine in the reconstruction uses C · log(n) space for some C > c,
then the machine can hard-wire values of f (e.g., f(1n)) into the
circuit that it prints.

17A mistaken intuition is that since BPL ⊆ CL, we do not need a
derandomization hypothesis. However, crucially, the derandomization
hypothesis only applies to decision problems. Moreover, BPL ⊆ CL
only means that CAPP for ROBPs is in CL, and here we are
concerned with richer circuit classes.

catalytic tape w as a hard truth table, and instantiate
a version of the Nisan-Wigderson generator with this
truth table. Letting the generator be NWw (and note
that it has seed length O(log n)), either the generator
is pseudorandom for C (in which case we can let D be
its output set, and halt without modifying the tape), or
the D2P transformation can be used to compress the tape
w, freeing up polynomially many bits on the tape. This
enables us to use our (space inefficient) reduction from
D2P to producing a targeted PRG (whereas their result
used a time-efficient brute force derandomization).

The only missing piece is a D2P transformation in CL
(assuming a CAPP algorithm in CL). Indeed, to obtain
such an algorithm, we show that our reduction from D2P
to CAPP can be implemented in catalytic logspace.

Remark II.2. By combining this search-to-decision re-
duction with the D2P transformation for the path iso-
lation lemma (and the main result of [BCK+14], which
implies that the algorithm of [RA00] can be implemented
in CL), we unconditionally obtain a CL algorithm that,
given a graph G, outputs a weight assignment w such
that (G,w) has unique shortest paths. This constitutes
the first result for CL that is proved by combining the
algebraic computation perspective (to evaluate the D2P
transformation) with the compress-or-random perspec-
tive (to reduce search to D2P).

b) Logspace machines.: Finally, let us briefly ex-
plain how to obtain our conditional result that deran-
domization of a class C in L necessitates targeted PRGs
for C in L (again, we suggest thinking of C = NC1 for
concreteness). The main technical tool is the new version
of the targeted PRG of [CT21], which was described
in Section II-B.

Recall that our hardness assumption is a function
f : {0, 1}n → {0, 1}n computable by nC size NC1

circuits, that is hard for nc time algorithms that use only
polylog(n) many random coins, for c < C. Assuming
that we have a CAPP algorithm for C-circuits in L, we
use the reduction of D2P to CAPP (from Section II-A)
to obtain a deterministic D2P for C-circuits in L. The
key observation is that this reduction is computable in
logspace, and thus the D2P for C is a deterministic
logspace algorithm (and hence is computable time nc for
some c).18 Using this D2P, we instantiate our targeted
PRG with this hard function. Supposing the generator
is not pseudorandom for C, we can obtain a predictor
for the generator using our deterministic logspace D2P
transformation, and then compute the function quickly
using only polylog(n) random coins and nc time, con-
tradicting the assumption.

18Similarly to [DPT24], our targeted PRG construction uses D2P
both when computing the generator and when computing the recon-
struction.
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D. Certified Derandomization Using Hard Truth-Tables,
and the Class LOSSY

Recall that certified derandomization using a prop-
erty P refers to a deterministic algorithm that gets a
linear-size circuit C : {0, 1}n → {0, 1} and a string
τ ∈ {0, 1}ℓ(n), and either estimates the acceptance
probability of C or provides a witness that τ /∈ P . We
prove that such certified derandomization is equivalent
to prBPP = prZPP.

We now focus on Theorem I.17 that shows an equiv-
alence between a restricted type of certified derandom-
ization – namely, when P is the property of truth-tables
that do not have small circuits (e.g., truth-tables of length
2ℓ without circuits of size 2.01·ℓ) – and a simulation of
prBPP in the class LOSSY of problems reducible to
LossyCode. Recall that in LossyCode (see Problem I.16),
we are given a pair of circuits C : {0, 1}n → {0, 1}m
(“compression”) and D : {0, 1}m → {0, 1}n (“decom-
pression”), where m < n, and we want to find a string
x ∈ {0, 1}n such that D(C(x)) ̸= x.

We first explain the direction (⇒), which is easier.
If there is a certified derandomization algorithm A
using hard truth tables, one can reduce an instance
C : {0, 1}n → {0, 1} of CAPP to the following
instance of LossyCode: The compression circuit C ′ takes
a candidate hard truth table τ , simulates the certified
derandomization algorithm A(C, τ), and outputs a small
circuit for τ if A(C, τ) fails to estimate E[C(Un)];
the decompression circuit D′ takes the description of
a circuit and outputs its truth table. By definition, any
solution τ to the LossyCode instance (C ′, D′) is a truth-
table such that A correctly estimates E[C(Un)].19

The other direction relies on an idea from [Kor21],
which was implicit in earlier results in bounded
arithmetic [Tha02], [Jeř04], [Jeř07] and cryptography
[GGM86]. Korten [Kor21] proved that LossyCode can be
efficiently reduced to the problem of finding truth tables
of functions that are not computable by small circuits
(for an explanation, see [ILW23, Appendix C]). The key
observation leading to our results is that the reduction of
LossyCode to finding hard truth-table can be thought of
as a certified reduction: It either solves the LossyCode
instances, or produces a certificate that the truth-table is
not hard (in the form of a small circuit).20

Assume that prBPP = prLOSSY. Then, there
is a polynomial-time algorithm M for CAPP with a
LossyCode oracle. Our certified derandomization algo-
rithm works as follows: Given a circuit C and a sup-
posedly hard truth table τ , it simulates the algorithm

19Indeed, this implication does not require that that A will use hard
truth-tables, and a more general notion of a “range avoidance” property
suffices.

20This was also observed (although phrased in a different context)
in the literature of bounded arithmetic, see, e.g., [Tha02, Lemma 3.7].

M(x), and attempts to answer the LossyCode oracle
calls using the truth table τ and the certified reduc-
tion from LossyCode to finding hard truth tables. The
certified reduction either solves the LossyCode oracle
calls, in which case we can keep simulating M(x), or
prints a small circuit for the truth table τ . Therefore,
our algorithm either prints a small circuit for τ , or
successfully simulates M(x); in the latter case, it will
solve CAPP(C) by the correctness of M(x).
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