
Fast Algorithms for Hypergraph PageRank with Applications to
Semi-Supervised Learning

Konstantinos Ameranis 1 Adela DePavia 2 Lorenzo Orecchia 1 Erasmo Tani 1

Abstract
A fundamental approach to semi-supervised learning is
to leverage the structure of the sample space to diffuse
label information from annotated examples to unla-
beled points. Traditional methods model the input data
points as a graph and rely on fast algorithms for solving
Laplacian systems of equations, such as those defining
PageRank. However, previous work has demonstrated
that graph-based models fail to capture higher-order
relations, such as group membership, which are better
modeled by hypergraphs. Unfortunately, the scalable
application of hypergraph models has been hampered
by the non-linearity of the hypergraph Laplacian. In
this paper, we present highly scalable algorithms for
hypergraph primitives, such as hypergraph PageRank
vectors and hypergraph Laplacian systems, over gen-
eral families of hypergraphs. In addition to giving
strong theoretical guarantees, we empirically showcase
the speed of our algorithms on benchmark instances of
semi-supervised learning on categorical data. We ex-
ploit their generality to improve semi-supervised mani-
fold clustering via hypergraph models. By providing
significant speed-ups on fundamental hypergraph tasks,
our algorithms enable the deployment of hypergraph
models on a massive scale.

1. Introduction
Many semi-supervised learning problems require learning
an approximately continuous function f : X ! R over a
structured set X , e.g., a network, embedded manifold or
metric space, based on observations of potentially noisy
function values f(x) + ✏ on a subset of labelled points
Y ⇢ X (van Engelen and Hoos, 2020). Examples of gen-
eral problems in this family include learning smooth func-

1Department of Computer Science, University of Chicago,
Chicago, USA 2Computational and Applied Mathematics, Uni-
versity of Chicago, Chicago, USA. Correspondence to: Lorenzo
Orecchia <orecchia@uchicago.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tions (Zhou et al., 2003; Belkin and Niyogi, 2004), learning
Lipschitz functions (Kyng et al., 2015; Bungert et al., 2023)
and clustering, i.e., learning functions with small total varia-
tion (Jung et al., 2019; Trillos and Slepčev, 2016).

If the structure of X can be encoded well by pairwise rela-
tionships, graph-based learning is the standard approach to
this problem. Examples include X as an embedded mani-
fold, which can be approximated by a properly constructed
graph over a finite sample of points (Belkin and Niyogi,
2008; Calder and García Trillos, 2022), or a finite metric
space, i.e., a length-weighted undirected graph. In this set-
ting, given a weighted graph G = (V,E,w 2 RE

+), a set
Y ⇢ V of labelled vertices and their values y 2 RV 1, the
predictor x̂ is typically obtained by minimizing the regular-
ized squared error

x̂ = arg min
x2RV

1

2
· kx� yk22 +

1

�
· R(x), (1)

where R is a regularizer appropriately penalizing discontinu-
ous predictors over G, and � > 0 is an inverse regularization
parameter. The most common choice of regularizer R is the
Dirichlet energy EG : RV ! R of G, which is the quadratic
form of the graph Laplacian operator LG:

EG(x) =
1

2

X

{i,j}2E

wij(xi � xj)
2
=

1

2
xTLGx.

This formulation appeals both because it captures a natural
notion of smoothness in terms of Fourier coefficients (Smola
and Kondor, 2003) and because the computation of x̂ re-
duces to the solution of the Laplacian system of linear equa-
tions (� · I+ LG)x̂ = �y, for which nearly-linear-time al-
gorithms exist (Spielman and Teng, 2004; Gao et al., 2023).

If the Euclidean norm in the error term of Problem 1 is re-
placed with the norm k · kD, where D is the diagonal matrix
of weighted degrees of G, we obtain the Laplacian system
(� ·D+ LG)x̂ = �y. For � = 2↵/1�↵, the solution of this
system is exactly a scaling of the personalized PageRank
vector ppr

↵
(y) with teleportation parameter ↵ 2 [0, 1] and

seed y 2 RV (Fountoulakis et al., 2019). This vector plays
an important role in data mining applications, such as edge

1We assume yi = 0 for i /2 Y.

1

Fast Algorithms for Hypergraph PageRank

prediction (Backstrom and Leskovec, 2011) and local graph
partitioning (Andersen et al., 2006).

In this work, we develop fast algorithms for the hypergraph
generalization of Laplacian systems, which allow us to de-
ploy hypergraph regularizers in Problem 1 and to compute
hypergraph personalized PageRank vectors (Takai et al.,
2020) on large-scale hypergraphs.

From Graphs to Hypergraphs Increasing complexity
in real-world data has led to the need to model higher or-
der relationships (Benson et al., 2016; Tsourakakis et al.,
2017), such as co-authorship and community membership
in social networks (Orecchia et al., 2022), categorical data
labels in learning applications (Amburg et al., 2020; Gib-
son et al., 2000) and gene expression patterns in biological
systems (Feng et al., 2021). To address this need, research
has shifted to models based on the notion of a hypergraph,
a generalization G = (V,H ✓ 2

V ,w 2 RH

+) of a graph
in which each hyperedge h ⇢ H is a subset of vertices of
arbitrary cardinality (Çatalyürek et al., 2022). Early work in
this area showed that such models are strictly more expres-
sive than those based on graphs (Agarwal et al., 2006; Ihler
et al., 1993), engendering a strong interest in generalizing
the Laplacian regularization paradigm to hypergraph mod-
els (Hein et al., 2013). In contrast to graphs, hypergraphs
admit many natural choices of Dirichlet-like energy func-
tionals, as there are many ways of measuring the variance
of a function x 2 RV over a hyperedge h ✓ 2

V .

The most common choice of hypergraph potential U1 mea-
sures the hyperedge variance by the squared `1-norm:

U1(x)
def
=

1

2

X

h2H

wh

maxi,j2h(x(i)� x(j))2

2
(2)

=
1

2

X

h2H

wh min
u2R
kxh � u~1hk21.,

where xh 2 Rh is the restriction of the vector x 2 RV to
the entries i 2 h. In the first study applying hypergraphs to
semi-supervised learning and clustering of categorical data,
Hein et al. (2013) showed that this hypergraph potential
led to superior performance over graph-based approaches.
The same potential has also been intensely studied in the
field of approximation algorithms, where it is used to derive
Cheeger-like inequalities and algorithmic results for natu-
ral hypergraph partitioning problems (Louis, 2015; Chan
et al., 2018; Lau et al., 2023b). Based on this connection
to spectral theory, Yoshida (2019) and Li and Milenkovic
(2018) have put forward a larger class of hypergraph poten-
tial functions for which it is possible to derive Cheeger-like
inequalities. These general hypergraph potentials are de-
rived from submodular hyperedge cut functions and can
be used to model directed (Lau et al., 2023b) and mutual
information clustering (Yoshida, 2019) (Section 2).

In this paper, we consider a large class of hypergraph poten-
tials of the form

U(x) def
=

1

2

X

h2E

wh min
u2R

Qh(xh � u~1h), (3)

where each hyperedge potential Qh : Rh ! R is a convex,
2-positively homogeneous function2 measuring the local
variance of x with respect to hyperedge h. This very ex-
pressive class of potentials includes potentials discussed
in previous work and allows the incorporation of a notion
of directedness to each hyperedge. We discuss the role of
directnedness and give examples later in the section on our
contributions.

The Problem: Hypergraph Laplacian Systems Prob-
lems of the form of Equation 1 are naturally generalized to
hypergraphs by substituting the graph Dirichlet energy EG
with a hypergraph potential U(x). If we use the diagonal
positive matrix M 2 RV⇥V to measure the mean squared
error, e.g., M = I or M = D, the corresponding optimality
condition takes the following form, for given inputs � � 0

and s = �y:
s 2 �Mx+ L(x), (4)

where we denote by L(x) the subdifferential @U(x) of the
hypergraph potential U at x. The problem of finding x
satisfying the inclusion is known as a hypergraph Laplacian
system (Fujii et al., 2021) and is the main focus of our paper.
By analogy with the graph case, the set-valued operator L is
known as the hypergraph Laplacian operator (Louis, 2015).
Indeed, when each hyperedge h = {i, j} has cardinality 2

and x’s variance over it is measured by a squared norm, the
operator L reduces to the linear graph Laplacian LG.

We follow the conventions used for linear systems (Vish-
noi et al., 2013) and consider the the following variational
formulation of the hypergraph Laplacian system 4:

G(x)
def
= U(x)+ �

2
kxk2

M
�hs,xi, OPT def

= min
x

G(x) (5)

As we can only solve Problem 4 approximately, we need
to introduce an appropriate error measure. To this end, we
say that a candidate solution x is an ✏-approximate solution
to Problem 4 if x yields an ✏-multiplicative approximation
to OPT, i.e., |G(x)�OPT|/|OPT|  ✏. The reason for choosing
this multiplicative notion of error, rather than additive error
in Problem 1, stems from the homogeneity of the hypergraph
Laplacian systems of Problem 4. As any scaling of s is just
reflected in an equal scaling of the optimal solution x, it
makes sense to consider error measures that do not depend
on the absolute scale of the input s.

2A function g : Rn ! Rk is p-positively homogeneous if for
all ↵ > 0 and all x 2 Rn, we have g(↵x) = ↵pg(x).

2

Fast Algorithms for Hypergraph PageRank

Previous Work The growing importance and promise of
hypergraph-based methods call for fast, practical algorithms
for Problem 4, particularly for general hypergraph potential
functions. However, development of such algorithms has so
far been limited. Early work by Hein et al. (2013) proposes
a primal-dual hybrid gradient algorithm (Chambolle and
Pock, 2011) for the U1 hypergraph potential, but does not
provide a convergence analysis. Li et al. (2020) deploys
techniques from decomposable submodular minimization
to obtain very precise approximations, i.e., with a runtime
dependence of log(1/✏), for hypergraph potentials derived
from submodular functions (see Section 2), such as U1, but
requires super-quadratic time in the size of the hypergraph,
making it impractical for large datasets. Other works obtain
even higher polynomial dependencies by relying on generic
convex solvers (Takai et al., 2020).

Our contributions In this paper, we describe and analyze
a fast algorithm for computing ✏-approximate solutions to
the hypergraph Laplacian systems of Equation 4. Despite
the non-linearity of the hypergraph Laplacian, our algorithm
takes a surprisingly similar form and shares favorable prop-
erties with the classical gradient descent algorithm used for
solving graph Laplacian linear systems, i.e., the Richardson
iteration (Spielman, 2018).

Similarly to its graph counterpart, the running time of our
algorithm depends on a notion of condition number of the
instance hypergraph G. For M = D, this condition number
is the Poincaré constant �G of G with respect to D, a direct
generalization (up to constants) of the graph spectral gap:

�G

def
= min

x?D~1

U(x)
1
2kxk

2
D

, (6)

We show in Theorem 3.1 in Section 3 that, when M = D,
our algorithm runs in linear time in the size of the hyper-
graph, with an inverse dependence on �G. The only dis-
crepancy with the graph case is the dependence on the error
parameter ✏. Whereas it is log(1/✏) for gradient descent on
graph Laplacian systems, it is O(1/✏2) for our algorithm
due to the non-smoothness of hypergraph potentials.

Like gradient descent, our algorithm can be applied in a pre-
conditioned fashion to improve results for specific classes
of hypergraph potentials. As an example, in Theorem 3.2,
we use a graph Laplacian preconditioner based on the clique
expansion of the hypergraph to obtain a faster algorithm for
the U1 hypergraph potential. The resulting running time
does not depend on �G, but requires an additional multi-
plicative factor of maxh2H |h|, the rank of the hypergraph.
For bounded-rank hypergraphs, this is the first nearly-linear-
time algorithm for hypergraph Laplacian systems, matching
the seminal result of Spielman and Teng (Spielman and
Teng, 2004) for graph Laplacian systems.

A significant advantage of our algorithm is its applicabil-
ity, without any change, to all hypergraph potentials in the
general family described in Equation 3. By comparison, the
method of Hein et al. (2013), the only viable competitor to
our algorithm on large datasets, is closely tailored to the U1
hypergraph potential. In Section 5, we exploit the flexibility
of our method to investigate the performance of different hy-
pergraph potentials in semi-supervised manifold clustering,
leading to formulations that greatly outperform graph-based
methods as the dimension of the manifold increases.

The generalization to convex 2-positively homogenous hy-
pergraph potentials formulated in Equation 3 also allows
us to compute hypergraph PageRank vectors for directed
models. A particularly simple example is that of the directed
potential over graphs

Udirected
(x) =

1

2

X

(i,j)2E

wij(xi � xj)
2
+,

which fits the requirements of our work and is also discussed
in Lau et al. (2023a). Even for this simple graph potential,
no simple PageRank algorithm was known prior to our work.
Following work of Liu et al. (2021b), our algorithm then
enables local partitioning of directed graphs under the con-
ductance objective. Other directed hypergraph potentials
of interest in the setting of partitioning are described by
Yoshida (2018).

To verify the expected performance of our algorithm, we
empirically compare it with previous methods on a bench-
mark dataset for hypergraph-based semi-supervised learning
(Section 6). The results show a tenfold speed-up over com-
petitors, with comparable accuracy.

Paper organization All references to sections with al-
phabetic indexes refer to the Supplementary Material. All
proofs of claimed statements are included in the Supplemen-
tary Material. For mathematical notation, definitions and
background, see Section A.

2. General Hypergraph Potentials
We will denote a hypergraph by a tuple G = (V,H ✓
2
V ,w 2 RH

>0), where V is a set of vertices, H a set of
hyperedges, each with a positive weight wh. The degree
deg(i)

def
=

P
h3i

wh of a vertex i 2 V is the sum of the
weights of hyperedges incident to i. We denote by D 2
RV⇥V the diagonal matrix of degrees of G.

In this section, we establish key properties of the hyper-
graph potentials in Equation 3. For the rest of this section
we assume familiarity with properties of submodular and
convex functions: for further background on these topics,
see Section A.

3

Fast Algorithms for Hypergraph PageRank

Convex, 2-Positively Homogeneous Functions The class
of 2-positively homogeneous function is very expressive.
These functions generalize squared norms while retaining
many of their favorable properties. We now state some
simple facts that will be useful in the following sections.
Their proof can be found in Appendix B.
Lemma 2.1. Let F : Rn ! R be a convex 2-positively
homogeneous function. Then:

1. (Non-negativity) F is everywhere non-negative,

2. (Non-negative Fenchel dual) The Fenchel dual F ⇤ of
F is everywhere non-negative,

3. (Generalized Euler’s Identity (Yang and Wei, 2008))
For all x 2 Rn and z 2 @F (x), it holds that

hx, zi = 2F (x),

4. (Homogeneous subdifferential) The subdifferential
@F (·) is 1-positively homogeneous.

Hypergraph Potentials from Submodular Cut Functions
Yoshida (2018) and Li and Milenkovic (2018) study a large
class of hypergraph partitioning problems , which generalize
minimum conductance problem over graphs. They are based
on submodular hyperedge cut functions �h : 2

h ! [0, 1]
that satisfy �h(;) = 0 and �h(h) = 0. Their framework
encompasses many cut functions that are prominent in ap-
plications, including cardinality-based cut functions (Veldt
et al., 2020) and the mutual information cut function (Gret-
ton et al., 2003; Xiong et al., 2005).

For any choice of submodular hyperedge cut functions �h,
it is possible to construct an associated hypergraph potential
by considering the weighted sum of their squared Lovász
extensions �h : Rh ! R. Yoshida (2019) showed that such
hypergraph potentials are of crucial importantce for hyper-
graph partitioning tasks, as they obey a hypergraph ana-
logue of Cheeger inequality. The following lemma, which is
proved in Section B.1 of the supplementary material, implies
that the class described by Equation 3 includes all potentials
arising from hyperedge submodular cut functions.
Lemma 2.2. For any choice of submodular cut functions
�h : 2

h ! [0, 1], �(;) = �(h) = 0, the hypergraph poten-
tial

U(x) = 1

2

X

h2H

wh · (�̄h(x))2

takes the form of Equation 3. In particular, it is convex and
2-positively homogeneous.

Norms bounds We make the following normalization as-
sumption. Notice that this causes no loss in generality as any
additional scaling can be incorporated into the hypergraph
weight wh.

Assumption 2.3. Qh(x)  kxk22 for every h 2 H,x 2
RV .

With this assumption, we can show the following bounds
relating U(x) with the squared degree norm. The proof
appears in Section B of the Supplementary Material.
Lemma 2.4. For every connected hypergraph G, �G > 0.
For any hypergraph and any choice of hyperedge potentials
{Qh}h2H , for all x ?D

~1 the potential energy functional
U satisfies:

�G 
U(x)
1
2kxk

2
D

 1. (7)

3. Hypergraph Laplacian Systems
Our main algorithm, Algorithm 1, is a first-order method for
optimizing problems of the form minx F (x)�hx, si, when
F is convex and 2-positively homogeneous. Its theoretical
guarantees are proved in Section 4. In this section, we
describe the application of Algorithm 1 to the solution of
hypergraph Laplacian systems, as defined in Equation 5,and
compare it to the classical application of gradient descent to
graph Laplacian systems.

For a Laplacian system (�D+ L)x = s, gradient descent
with respect to the k·kD norm, also known as the Richardson
iteration, performs the following update:

xt+1 = xt �
1

2
·D�1

(�Dxt + Lxt � s),

which is a step in the direction of steepest descent of the
objective in Equation 5 with step length 1/2. For hypergraph
Laplacian systems when M = D, we apply Algorithm 1
with F (x) = U(x) + �/2 · kxk2

D
and R = D. Because uR

is equal to 1 by Lemma 2.4, the resulting update step is:

x̂t+1 = x̂t �
✏

2
·D�1

(�Dxt + L(xt)� s),

where L(xt) denotes an arbitrary element of the subdifferen-
tial @U(xt). This is exactly the same as the gradient descent
step above, with a shorter step length of ✏.

We can now state our first result on solving hypergraph
Laplacian systems with M = D. Its proof, which appears
in Section B.2, relies on the analysis of Algorithm 1 in the
next section.
Theorem 3.1. For a connected hypergraph with potential
U(x), Algorithm 1 with prox-generating function 1/2 · k · k2

D

computes a multiplicative ✏-approximation to the optimum
of Problem 5 with M = D in O

⇣
1+�

(�G+�)✏2

⌘
iterations.

Each iteration requires linear time in the size of the hyper-
graph and a single subgradient computation.

A similar statement can be obtained for any diagonal M by
applying Theorem 4.1 and considering the Poincaré constant
of G with respect to M.

4

Fast Algorithms for Hypergraph PageRank

At this time, it is imperative to remark that, to the best of our
knowledge, no previously known first-order method can give
a guarantee comparable to that of Theorem 3.1, as standard
applications of subgradient descent algorithms (Nemirovskij
and Yudin, 1983; Nesterov, 2014) fail because the non-
differentiable quadratic objective in Equation 5 is both non-
smooth and non-Lipschitz. Indeed, our analysis requires
a careful modification of subgradient descent to control
the quadratic error terms and obtain a multiplicative error
guarantee in place of the standard additive guarantee. See
Subsection 4.1 for more details.

Compared to the graph case, our running time suffers from
a polynomial rather than a logarithmic dependence on ✏,
which is a consequence of the non-smoothness of our po-
tential U . Just as in the case of graphs, the convergence of
our algorithm is inversely proportional to �G, i.e., slowing
down when this analogue of spectral gap is small and the
hypergraph is more poorly connected.

In many applications, such as semi-supervised learning and
ranking, the value of � is typically taken to be a constant, so
that the above running time can be assumed to be indepen-
dent of �G. However, in some algorithmic settings, such as
when using PageRank for partitioning (Takai et al., 2020),
one may want to choose � ⇡ �G, causing the above running
time to grow large for small values of �G.

Hence, a natural question is whether one can obtain hyper-
graph analogues of the fast Laplacian solver of Spielman
and Teng (2004) running in nearly-linear-time in the size
of the graph with no dependence on �G or any other graph
parameters.

We answer this question positively for the hypergraph po-
tential U = U1 on bounded-rank hypergraphs, i.e., hyper-
graphs with hyperedge of bounded constant cardinality. For
these hypergraphs, we obtain a �G-independent running
time by selecting the preconditioner R for Algorithm 1 to
be the Laplacian of the clique expansion of the instance
hypergraph. This allows us to derive much sharper bounds
for the quantities uR and `R in the analysis of Algorithm 1
and yields the following theorem, which is proven in Sec-
tion B.2.

Theorem 3.2. For any connected hypergraph G =

(V,H,w) with potential U1(x), one can construct a graph
with Laplacian matrix L, such that Algorithm 1 with
prox-generating function 1/2k·k2

L
computes a multiplica-

tive ✏-approximation to the optimum of Problem 5 in
O(maxh2H |h|/✏2) iterations. Each iteration requires solv-
ing a graph Laplacian system in L.

Note that this method incurs a factor of maxh2H |h| (the
rank of G) in its running time, and hence it may not be
suited for hypergraphs with large hyperedges.

Algorithm 1 with prox-generating function 1/2 · k · k2
R

for
minF (x)� hs,xi in Theorem 4.1

1: Input: Oracle for arbitrary z 2 @F (x) on input x;
T 2 N; ✏ 2 (0, 1).

2: ⌘ = ✏/2uR . Step-size
3: x̂0 = ⌘R�1s . Initialization
4: for t = 0, ..., T � 1 do
5: x̂t+1 x̂t � ⌘R�1

(zt � s) with zt 2 @F (x̂t)

6: end for
7: x̄T =

1
T

P
T�1
t=0 x̂t

8: return xout
T

= (1� ✏/2) · x̄T

4. First-order methods for convex 2-positively
homogenous functions

In this section, we describe and analyze Algorithm 1, a first-
order method for the solution of optimization problems of
the form

OPTF,s = min
x2Rn

F (x)� hs,xi , (8)

where s 2 Rn and F : Rn ! R is a convex, 2-positively
homogeneous function. It follows from Lemma 2.1 and the
properties reviewed in Section A that OPTF,s

def
= �F ⇤

(s) is
always non-positive.

As F is potentially non-differentiable, we only assume ac-
cess to an oracle that, on input x 2 Rn returns an arbitrary
vector in the subdifferential @F (x). Algorithm 1 also re-
quires a choice of prox-generating function, i.e. a precondi-
tioner, in the form the square of a Mahalanobis norm k · kR.
The computational cost to compute a prox step with respect
to preconditioner k · kR is the time to solve a system of
linear equations in R.

Under these assumptions, we show that Algorithm 1 con-
verges to a multiplicative approximation of OPTF,s at a rate
that only depends on the Poincaré constants `R, uR, i.e the
optimal constants satisfying:

8x 2 Rn \ {0} : `R 
F (x)
1
2kxk

2
R

 uR. (9)

The following guarantee, our main optimization result, is
proved in Section B.3 in the Supplementary Material. No-
tice that the absolute value appears in the error expression,
because OPTF,s is non-positive.

Theorem 4.1. For any convex 2-positive homogeneous F
satisfying Equation 9 with respect to some `R, uR > 0,
error parameter ✏ > 0, and choice of T = O

⇣
uR
`R✏2

⌘
, the

point xout
T

produced by Algorithm 1 satisfies

F (xout
T

)�
⌦
s,xout

T

↵
�OPTF,s  ✏ · |OPTF,s|.

5

Fast Algorithms for Hypergraph PageRank

To emphasize the novelty of this result, we remark again that,
to the best of our knowledge, the condition in Equation 9
cannot be exploited by any existing first-order methods for
this problem. It is only equivalent to `R-smoothness and
uR strong convexity when F itself arises from a squared
Mahalanobis norm k · k2

A
, which is not the case in our

hypergraph applications.

4.1. Sketch of Proof of Theorem 4.1

The proof is based on a modified analysis of subgradient
descent on the following auxiliary iterates:

xt

def
= x̂t � ⌘R�1s.

In particular, notice that x0 = 0. With this definition, the
first step of the proof closely follows the standard analysis
of optimistic mirror descent (Rakhlin and Sridharan, 2013),
where the optimistic part of the step is performed, from xt

to x̂t with respect to fixed component �s of the subgradient
of the objective function. We summarize this result in the
following lemma, which is shown in Appendix B.

Lemma 4.2. For all t 2 N,

(F (x̂t)� hs, x̂ti)�OPTF,s

 1

2⌘
kxt � x⇤k2

R
� 1

2⌘
kxt+1 � x⇤k2

R
+

⌘

2
kztk2R�1 .

At this stage, rather than summing this guarantee over all
iterations, as done in the classical analysis of mirror descent,
we bound the error term ⌘/2 · kztk2R�1 directly in terms of
the suboptimality gap of x̂t. This technical step is a novel
feature of our analysis and crucially exploits the 2-positive
homogeneity of the objective function. Its proof is also
found in Appendix B.

Corollary 4.3. Under the assumptions of Theorem 4.1:

1

2
kztk2R�1  uR · F (x̂t) 

✏

2⌘
· F (x̂t)

After combining the results of Corollary 4.3 and Lemma 4.2
we can finally sum over all t 2 {0, 1, . . . , T � 1} while
telescoping terms to find:

T�1X

t=0

(1� ✏/2) · F (x̂t)� hs, x̂ti

 T ·OPTF,s +
1

2⌘
kx0 � x⇤k2

R

The rest of the proof is a short sequence of simple calcula-
tions, which are included in Section B.

5. Manifold Learning via Hypergraph
Laplacians

Manifold learning problems include identification and re-
covery of some lower-dimensional parametrization of data-
points embedded in some higher-dimensional space. Many
approaches utilize spectral methods on graphs that are
constructed from the geometric embedding of datapoints
(Belkin and Niyogi, 2001; 2003; Yan et al., 2006; Talmon
et al., 2013). These methods are theoretically justified by
results showing the asymptotic convergence of the graph
Laplacian to the Laplace-Beltrami operator of the underly-
ing manifold (Belkin and Niyogi, 2008; Trillos and Slepčev,
2016). In this section, we initiate a methodological study
of the potential advantages of using hypergraph models in
the context of manifold learning. In particular, we consider
semi-supervised community detection tasks in the presence
of manifold structure. We crucially exploit the generality of
our algorithm to explore novel hypergraph potentials stud-
ied in this work to propose a novel weighted hypergraph
potential, discussed in Section 5.1. We present a high-level
description of our experiments and findings, and refer read-
ers to Section C for full details, methodology, and further
figures.

Consider a point cloud of n data points in d dimensions. We
represent these data points with vectors {pi 2 Rd}n

i=1. We
assume that each of these points are sampled uniformly from
one of two manifolds and subject to additive Gaussian noise.
In addition, we assume we have access to labels on a small
subset of these datapoints, indicating which manifold each
datapoint was drawn from. The goal is to use these seeded
labels to estimate which manifold other (unlabeled) points
belong to. We give a formal description of this problem
setup in Section C.

In these experiments we use our algorithmic implementa-
tion of hypergraph Personalized PageRank (Problem 4 with
M = D) to propagate this partial label information to unla-
beled nodes. To form a (hyper)graph corresponding to data
points {pi 2 Rd}n

i=1, we first initialize one node vi for each
datapoint pi. We then add (hyper)edges connecting nodes
whose data points are close in Rd. In this work, we specif-
ically consider k-nearest neighbor (hyper)edges endowed
with a weighted version of the `1-hypergraph potential U1.
We motivate this weighted potential further in Section 5.1
below. A full description of these constructions is included
in Section C.

We estimate labels at each node by computing a person-
alized PageRank vector, where the seed vector s is con-
structed using the set of partial revealed labels. In Figure 1,
we compare the performance of the resultant graph- versus
hypergraph-PPR estimates on different datasets. In order
to assess the performance of the estimates as binary classi-
fiers, we report the area under the curve (AUC) value of the

6

Fast Algorithms for Hypergraph PageRank

Performance of Graph versus Hypergraph PPR for Semi-Supervised Learning in Varying Dimensions

Sample Problem Instance in 2
Dimensions

� No label
Seeded label +1
Seeded label -1

Classification Performance in 2
Dimensions 7 Dimensions 15 Dimensions

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value
Fr

eq
ue

nc
y

AUC Value

Fr
eq

ue
nc

y

Figure 1: Graph- versus hypergraph-based approaches to semi-supervised learning of manifolds. Top row: results with
concentric hyperrectangles. Bottom row: results with concentric hyperspheres. These manifolds are sampled with noise, and
partial labels are revealed. A sample instance in two dimensions of the noisily sampled point cloud and partially revealed
labels is plotted on the left. A nearest-neighbors graph and hypergraph are formed based on the sampled data. The graph and
hypergraph are endowed with weighted potentials, as described in Section 5.1. The personalized PageRank vector seeded at
the vector of partial-labels is used to estimate community membership at each sampled point. AUC values are reported over
50 independent trials. Hypergraph PPR clustering exhibits an advantage over the graph method, and this gap widens with
increasing dimension.

corresponding receiver operator curve. Values closer to 1
indicate perfect separation between the two communities,
while an AUC value of 0.5 corresponds to no-better-than-
random performance. We sample data from two manifold
learning settings: one in which the two manifolds corre-
spond to concentric hyperspheres, and one in which the
two manifolds correspond to concentric hyperrectangles.
In particular, these datasets allow us to examine how the
estimate performance varies with the ambient dimension of
the underlying manifolds.

By comparing AUC values over 50 independent trials, we
find that the estimates produced by the hypergraph PPR
out-perform estimates produced by graph PPR in high-
dimensional settings. In particular the gap between the
graph- and hypergraph-estimates is robust and increases
with ambient dimension. The separation in increasing di-
mensions is particularly interesting because well-known
results establish that semi-supervised learning with graph
Laplacians suffers from the curse of dimensionality (Nadler
et al., 2009; Cabannes et al., 2021). While modified schemes
for overcoming these issues have been proposed (Calder and
Slepčev, 2020; Cabannes et al., 2021), the comparative suc-

cess of the hypergraph Laplacian for semi-supervised learn-
ing in these high dimensional problems raises interesting
questions for future work about the convergence of graph
versus hypergraph Laplacians in high dimensional settings.
Partial theoretical justification in favor of `1-like hyper-
graph potentials can be found in classical metric embedding
results that prove that any metric can be isometrically em-
bedded into L1, while L2 metrics are the least expressive
Lp metrics (Matousek, 2013).

5.1. Gaussian-kernel Hypergraph Potentials

This work developed algorithms for an expressive class of
hypergraph potentials, as captured by Equation 3. In this
section, we leverage this generality to propose novel weight-
ing schemes for hypergraph potentials. These weighting
schemes incorporate geometric information from the sam-
pled point cloud, in analogy to well-studied graph weight-
ing schemes which enjoy known convergence to continuous
manifold operators (Belkin and Niyogi, 2008; Trillos and
Slepčev, 2016)

For similar semi-supervised tasks on graphs, a weighted

7

Fast Algorithms for Hypergraph PageRank

Laplacian is often constructed, where edge-weights wij

scale as
w(p)

ij
= exp(�kpi � pjk22/2) (10)

Here pi,pj 2 Rd denote points in the point-cloud associ-
ated with nodes i and j. This choice of weights causes the
Laplacian potential to more heavily penalize discrepancies
between points which are located close together in space.
This intuition is strengthened by known theoretical results
showing that under appropriate scaling, such choice of edge
weights causes the graph Laplacian on sampled point clouds
to converge to the manifold Laplace-Beltrami operator (Tril-
los and Slepčev, 2016; Belkin and Niyogi, 2008).

In our design of hypergraph potentials for manifold learn-
ing, we adopt the intuition above by similarly incorporating
geometric information from the point cloud. For every point
pi 2 Rd in the point cloud, we initialize a node vi in the hy-
pergraph. We then construct k-nearest neighbor hyperedges:
each hyperedge h 2 H is composed of a “central neighbor”
vih and its k-nearest neighbors, vi1 , . . . , vik ⇢ V . For each
hyperedge h 2 H we compute a hyperedge centroid, a point
p
h
2 Rd defined as

p
h
=

1

|h|
X

vi2h

pi.

For each hyperedge and every node vi 2 h we then use this
centroid to define the following node weights:

8vi 2 h,w(p)
i,h

= exp(�kpi � p
h
k22/2)

where kpi � p
h
k2 measures the distance between the em-

bedding of node vi and the centroid of hyperedge h in em-
bedding space. We then form weighted potential

U (P)
(x) =

1

2

X

h2E

min
u2R
kW(P)

h
(xh � u111)k21 (11)

where

W(P)
h

= diag(w(p)
ih,h

, w(p)
i1,h

, . . . , w(p)
ik,h

)

where vih is the central neighbor of hyperedge h and
vi1 , . . . , vik are its k-nearest neighbors in embedding space.

By using this novel weighted potential, rather than simply
assigning scalar hyperedge weights wh as in Equation 2, we
penalize hyperedges adaptively. In particular, the potential
U (P) measures not only the maximum discrepancy between
values of x taken at nodes in a hyperedge, but how close
the points maximizing this discrepancy are to the centroid
of the relevant hyperedge in the point-cloud embedding. In
Section C, we present preliminary evidence suggesting U (P)

provides an advantage over the unweighted U1 potential,
summarized in Figure 2 of the Supplementary Material.

6. Categorical Clustering Experiments
In this section, we complement the strong theoretical guar-
antees given so far with an empirical comparison of the per-
formance of our algorithm in Theorem 3.1 against those of
previous methods by Hein et al. (2013) and Li et al. (2020).
As a benchmark, we adopt the semi-supervised multi-class
classification task on a small set of UCI datasets (Kelly et al.)
which was considered in previous works on the topic (Zhou
et al., 2003; Hein et al., 2013; Li et al., 2020). This setup is
particularly suitable to hypergraph-based models because
the data contains both numerical and categorical features,
the latter of which should be better captured by hypergraphs.
The details of each dataset and instructions for recreating
them can be found in Appendix D.1.

In order to perform multi-class predictions, given a vector y
of class-labeled points, we create a one-hot label encoding
yc for each target class c, defined as

yc(i) =

(
1 yi = c

�1 o.w.

We then approximately solve Problem 1 with error measured
in the degree norm k · kD to obtain xc for each class c.
Finally, we select the predicted label to be ỹ = argmaxc xc.

We proceed to compare our implementation with the ones
provided by Li et al. (2020) on their performance in the
classification task, in their convergence to the minimizer
of Problem 1 and in their running time. A short overview
of each competing methods is provided in Appendix D.2.
Due to lack of space, we present our detailed results in
Appendix D.4. The full data used for the comparison and our
implementation can be found in the supplementary material.

Results As the number of labeled points varies, all meth-
ods except for the Subgradient QDSFM in Li et al. (2020)
consistently converge to the minimizer of Problem 1. No
method enjoys a clear advantage for the classification task,
as even suboptimal points for Problem 1 often yield good
classification due to implicit regularization by the algorithm.
Crucially, our algorithm achieves the same performance as
its competitors while only requiring one tenth of the running
time. This appears to be a consequence of the simplicity of
each iteration, as our method has the second-best average
time per iteration. The best time per iteration is achieved by
the Subgradient QDSFM of Li et al. (2020), which, how-
ever, requires many more iterations and fails to converge to
a minimizer in many instances.

7. Conclusion and Open Problems
We hope that our simple fast algorithms will enable the
deployment of hypergraph models to many semi-supervised
learning problems over networks and manifolds and the

8

Fast Algorithms for Hypergraph PageRank

exploration of richer, more expressive hypergraph potentials.
As we look forward, a number of open questions remain.

Nearly-Linear-Time Algorithms In a seminal re-
sult, Spielman and Teng (2004) constructed nearly-linear-
time algorithms for solving Laplacian systems of linear
equations. Whether the same feat is possible for a non-
trivial family of hypergraph Laplacian systems, such as
those based on the U1 potential, is an intriguing theoretical
question. Our result in Theorem 3.2 shows that the hard
case consists of hypergraphs with large hyperedges.

Acceleration The algorithms presented in this paper prov-
ably converge to the optimal solution at a rate of O(1/"2).
However, for many structured convex non-smooth problems,
it is possible to obtain a O(1/")-convergence via accelerated
algorithms (Nesterov, 2005). A natural question is whether
one can achieve this improved rate in our multiplicative
error setting without worsening the dependency on the hy-
pergraph size. A promising avenue in this sense is given
by primal-dual hybrid gradient methods (Esser et al., 2010;
Chambolle and Pock, 2011), which were already empirically
tested by Hein et al. (2013) in the context of hypergraph
Laplacian systems.

Algorithms for Massive Hypergraphs Spectral meth-
ods over graphs are a popular algorithm design framework
for massive datasets, as they are easy to implement in
distributed computational models (Andersen et al., 2006;
Das Sarma et al., 2015). We believe it is a worthy chal-
lenge to derive similar algorithms for hypergraph Laplacian
systems. The similarity of our method with existing graph
algorithms and the partial progress of Liu et al. (2021a) for
strongly local computation of directed graph models offer
some hope in this direction.

Manifold Learning Our empirical results provide pre-
liminary evidence suggesting hypergraphs better approxi-
mate manifold structure in high dimensions. As illustrated
in Figure 2, the node weighting schemes enabled by our
generalized choice of hypergraph potential in Equation (3)
are central to achieving these results. These experiments
raise the question of how recovery guarantees for hyper-
graph Laplacian methods scale with dimension on semi-
supervised learning tasks, particularly compared to known
recovery guarantees for graph Laplacian methods. In the
graph setting, it has been shown that specific weighting
schemes are necessary to achieve favorable recovery rates in
semi-supervised tasks (Calder and Slepčev, 2020; Cabannes
et al., 2021). One result of the formalism studied in this
paper is that it admits dynamic weighting schemes which
can capture geometric information about node embeddings,
as discussed in Section 5.1. It would be interesting for future
study to examine whether these novel weighting schemes,

which generalize the appropriate weightings from the graph
setting, can be used to achieve good recovery guarantees.

Closely related to the above discussion is the relationship
between discretized hypergraph Laplacians and continuous
manifold Laplacian operators. When nodes correspond to
points sampled from a manifold, well-known results estab-
lish that in the large-sample limit, graph Laplacians with
appropriate choice of weighting converge to the Laplace-
Beltrami operator (Belkin and Niyogi, 2008; Trillos and
Slepčev, 2016). It would be interesting to study whether
generalizations of such weighting schemes, such as the
weighted potential introduced in Equation (11), can yield
convergence results for hypergraph Laplacians. Similar the-
oretical questions have been raised independently by Saito
et al. (2018).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
LO is supported by NSF CAREER 1943510. AD is sup-
ported by NSF DGE 2140001.

References
Mushroom Dataset. UCI Machine Learning Repository,

1987. DOI: https://doi.org/10.24432/C5959T.

Sameer Agarwal, Kristin Branson, and Serge Belongie.
Higher order learning with graphs. In Proceedings of
the 23rd International Conference on Machine Learning,
ICML ’06, pages 17–24, New York, NY, USA, June 2006.
Association for Computing Machinery.

Ilya Amburg, Nate Veldt, and Austin R. Benson. Clustering
in graphs and hypergraphs with categorical edge labels.
In Proceedings of The Web Conference 2020, pages 706–
717, April 2020.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph
partitioning using pagerank vectors. In 2006 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 475–486. IEEE, 2006.

Francis Bach. Learning with Submodular Functions: A
Convex Optimization Perspective, October 2013.

Lars Backstrom and Jure Leskovec. Supervised random
walks: Predicting and recommending links in social net-
works. In Proceedings of the Fourth ACM International

9

Fast Algorithms for Hypergraph PageRank

Conference on Web Search and Data Mining, WSDM
’11, pages 635–644, New York, NY, USA, February 2011.
Association for Computing Machinery.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps
and spectral techniques for embedding and clustering.
Advances in neural information processing systems, 14,
2001.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Semi-supervised learn-
ing on riemannian manifolds. Machine learning, 56:
209–239, 2004.

Mikhail Belkin and Partha Niyogi. Towards a theoretical
foundation for Laplacian-based manifold methods. Jour-
nal of Computer and System Sciences, 74(8):1289–1308,
December 2008.

Austin R. Benson, David F. Gleich, and Jure Leskovec.
Higher-order organization of complex networks. Science
(New York, N.Y.), 353(6295):163–166, July 2016.

Jock Blackard. Covertype Dataset. UCI Ma-
chine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Stephen P Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

Leon Bungert, Jeff Calder, and Tim Roith. Uniform Con-
vergence Rates for Lipschitz Learning on Graphs. IMA
Journal of Numerical Analysis, 43(4):2445–2495, August
2023.

Vivien Cabannes, Loucas Pillaud-Vivien, Francis Bach, and
Alessandro Rudi. Overcoming the curse of dimensionality
with laplacian regularization in semi-supervised learning.
Advances in Neural Information Processing Systems, 34:
30439–30451, 2021.

Jeff Calder and Nicolás García Trillos. Improved spectral
convergence rates for graph Laplacians on ✏-graphs and
k-NN graphs. Applied and Computational Harmonic
Analysis, 60:123–175, September 2022.

Jeff Calder and Dejan Slepčev. Properly-weighted graph
laplacian for semi-supervised learning. Applied mathe-
matics & optimization, 82:1111–1159, 2020.

Antonin Chambolle and Thomas Pock. A First-Order
Primal-Dual Algorithm for Convex Problems with Ap-
plications to Imaging. Journal of Mathematical Imaging
and Vision, 40(1):120–145, May 2011.

T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and
Chenzi Zhang. Spectral properties of hypergraph lapla-
cian and approximation algorithms. Journal of the ACM
(JACM), 65(3):1–48, 2018.

Atish Das Sarma, Anisur Rahaman Molla, Gopal Panduran-
gan, and Eli Upfal. Fast distributed PageRank computa-
tion. Theoretical Computer Science, 561:113–121, Jan-
uary 2015.

Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A Gen-
eral Framework for a Class of First Order Primal-Dual
Algorithms for Convex Optimization in Imaging Science.
SIAM Journal on Imaging Sciences, 3(4):1015–1046, Jan-
uary 2010.

Song Feng, Emily Heath, Brett Jefferson, Cliff Joslyn,
Henry Kvinge, Hugh D. Mitchell, Brenda Praggastis,
Amie J. Eisfeld, Amy C. Sims, Larissa B. Thackray, Shu-
fang Fan, Kevin B. Walters, Peter J. Halfmann, Danielle
Westhoff-Smith, Qing Tan, Vineet D. Menachery, Tim-
othy P. Sheahan, Adam S. Cockrell, Jacob F. Kocher,
Kelly G. Stratton, Natalie C. Heller, Lisa M. Bramer,
Michael S. Diamond, Ralph S. Baric, Katrina M. Waters,
Yoshihiro Kawaoka, Jason E. McDermott, and Emilie
Purvine. Hypergraph models of biological networks to
identify genes critical to pathogenic viral response. BMC
Bioinformatics, 22(1):287, May 2021.

Richard Forsyth. Zoo Dataset. UCI Ma-
chine Learning Repository, 1990. DOI:
https://doi.org/10.24432/C5R59V.

Kimon Fountoulakis, Farbod Roosta-Khorasani, Julian
Shun, Xiang Cheng, and Michael W. Mahoney. Vari-
ational perspective on local graph clustering. Mathemati-
cal Programming, 174(1):553–573, March 2019.

Kaito Fujii, Tasuku Soma, and Yuichi Yoshida. Polynomial-
time algorithms for submodular Laplacian systems. The-
oretical Computer Science, 892:170–186, 2021.

Yuan Gao, Rasmus Kyng, and Daniel A. Spielman. Ro-
bust and Practical Solution of Laplacian Equations by
Approximate Elimination, June 2023.

David Gibson, Jon Kleinberg, and Prabhakar Raghavan.
Clustering categorical data: An approach based on dy-
namical systems. The VLDB Journal, 8(3):222–236,
February 2000.

Arthur Gretton, Ralf Herbrich, and Alexander J Smola. The
kernel mutual information. In 2003 IEEE International
Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings.(ICASSP’03)., volume 4, pages IV–
880. IEEE, 2003.

10

Fast Algorithms for Hypergraph PageRank

Matthias Hein, Simon Setzer, Leonardo Jost, and
Syama Sundar Rangapuram. The Total Variation on
Hypergraphs - Learning on Hypergraphs Revisited. In
Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.

Edmund Ihler, Dorothea Wagner, and Frank Wagner. Mod-
eling hypergraphs by graphs with the same mincut prop-
erties. Information Processing Letters, 45(4):171–175,
March 1993.

Alexander Jung, Alfred O. Hero III, Alexandru Mara, Saeed
Jahromi, Ayelet Heimowitz, and Yonina C. Eldar. Semi-
supervised Learning in Network-Structured Data via To-
tal Variation Minimization. IEEE Transactions on Signal
Processing, 67(24):6256–6269, December 2019.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham.
The uci machine learning repository. Date Retrieved:
February 1, 2024.

Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A
Spielman. Algorithms for lipschitz learning on graphs.
In Conference on Learning Theory, pages 1190–1223.
PMLR, 2015.

Lap Chi Lau, Kam Chuen Tung, and Robert Wang. Cheeger
inequalities for directed graphs and hypergraphs using
reweighted eigenvalues. In Proceedings of the 55th An-
nual ACM Symposium on Theory of Computing, pages
1834–1847, 2023a.

Lap Chi Lau, Kam Chuen Tung, and Robert Wang. Cheeger
Inequalities for Directed Graphs and Hypergraphs using
Reweighted Eigenvalues. In Proceedings of the 55th An-
nual ACM Symposium on Theory of Computing, STOC
2023, pages 1834–1847, New York, NY, USA, June
2023b. Association for Computing Machinery.

Pan Li and Olgica Milenkovic. Submodular hypergraphs:
p-laplacians, cheeger inequalities and spectral clustering.
In International Conference on Machine Learning, pages
3014–3023. PMLR, 2018.

Pan Li, Niao He, and Olgica Milenkovic. Quadratic De-
composable Submodular Function Minimization: Theory
and Practice. Journal of Machine Learning Research, 21
(106):1–49, 2020.

Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F
Gleich. Strongly local hypergraph diffusions for cluster-
ing and semi-supervised learning. In Proceedings of the
Web Conference 2021, pages 2092–2103, 2021a.

Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F.
Gleich. Strongly Local Hypergraph Diffusions for Clus-
tering and Semi-supervised Learning. In Proceedings of
the Web Conference 2021, pages 2092–2103, Ljubljana
Slovenia, April 2021b. ACM.

Anand Louis. Hypergraph markov operators, eigenvalues
and approximation algorithms. In Proceedings of the
forty-seventh annual ACM symposium on Theory of com-
puting, pages 713–722, 2015.

Jiri Matousek. Lecture Notes on Metric Embeddings. 2013.

Tom Mitchell. Twenty Newsgroups Dataset. UCI
Machine Learning Repository, 1999. DOI:
https://doi.org/10.24432/C5C323.

Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Semi-
supervised learning with the graph laplacian: The limit of
infinite unlabelled data. Advances in neural information
processing systems, 22:1330–1338, 2009.

Arkadij Semenovič Nemirovskij and David Borisovich
Yudin. Problem complexity and method efficiency in
optimization. 1983.

Yu. Nesterov. Smooth minimization of non-smooth func-
tions. Mathematical Programming, 103(1):127–152, May
2005.

Yurii Nesterov. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Springer Publishing Company,
Incorporated, 1 edition, 2014.

Lorenzo Orecchia, Konstantinos Ameranis, Charalampos
Tsourakakis, and Kunal Talwar. Practical Almost-Linear-
Time Approximation Algorithms for Hybrid and Over-
lapping Graph Clustering. In Proceedings of the 39th
International Conference on Machine Learning, pages
17071–17093. PMLR, June 2022.

Alexander Rakhlin and Karthik Sridharan. Online Learning
with Predictable Sequences. In Proceedings of the 26th
Annual Conference on Learning Theory, pages 993–1019.
PMLR, 2013.

Shota Saito, Danilo P. Mandic, and Hideyuki Suzuki. Hy-
pergraph p-Laplacian: A Differential Geometry View.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 32(1), April 2018.

Alexander J. Smola and Risi Kondor. Kernels and Regu-
larization on Graphs. In Bernhard Schölkopf and Man-
fred K. Warmuth, editors, Learning Theory and Kernel
Machines, Lecture Notes in Computer Science, pages
144–158, Berlin, Heidelberg, 2003. Springer.

Daniel A. Spielman. Iterative solvers for linear equations,
2018.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear
time algorithms for graph partitioning, graph sparsifica-
tion, and solving linear systems. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Com-
puting, STOC ’04, pages 81–90, New York, NY, USA,
June 2004. Association for Computing Machinery.

11

Fast Algorithms for Hypergraph PageRank

Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi
Yoshida. Hypergraph clustering based on pagerank. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1970–1978, 2020.

Ronen Talmon, Israel Cohen, Sharon Gannot, and Ronald R
Coifman. Diffusion maps for signal processing: A deeper
look at manifold-learning techniques based on kernels
and graphs. IEEE signal processing magazine, 30(4):
75–86, 2013.

Nicolás García Trillos and Dejan Slepčev. Continuum limit
of total variation on point clouds. Archive for Rational
Mechanics and Analysis, 220(1):193–241, April 2016.

Charalampos E. Tsourakakis, Jakub Pachocki, and Michael
Mitzenmacher. Scalable Motif-aware Graph Clustering.
In Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, pages 1451–1460. Interna-
tional World Wide Web Conferences Steering Committee,
2017.

Jesper E. van Engelen and Holger H. Hoos. A survey on
semi-supervised learning. Machine Learning, 109(2):
373–440, February 2020.

Nate Veldt, Austin R Benson, and Jon Kleinberg. Mini-
mizing localized ratio cut objectives in hypergraphs. In
Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
1708–1718, 2020.

Nisheeth K Vishnoi et al. Lx= b. Foundations and Trends®
in Theoretical Computer Science, 8(1–2):1–141, 2013.

Huilin Xiong, MNS Swamy, and M Omair Ahmad. Opti-
mizing the kernel in the empirical feature space. IEEE
transactions on neural networks, 16(2):460–474, 2005.

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang,
Qiang Yang, and Stephen Lin. Graph embedding and ex-
tensions: A general framework for dimensionality reduc-
tion. IEEE transactions on pattern analysis and machine
intelligence, 29(1):40–51, 2006.

Fuchun Yang and Zhou Wei. Generalized Euler identity for
subdifferentials of homogeneous functions and applica-
tions. Journal of Mathematical Analysis and Applications,
337(1):516–523, January 2008.

Yuichi Yoshida. Cheeger Inequalities for Submodular Trans-
formations, 2018.

Yuichi Yoshida. Cheeger inequalities for submodular trans-
formations. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2582–
2601. SIAM, 2019.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason We-
ston, and Bernhard Schölkopf. Learning with local and
global consistency. Advances in neural information pro-
cessing systems, 16, 2003.

Umit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca
Faraj, Lars Gottesbüren, Tobias Heuer, Henning Meyer-
henke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner. More Recent
Advances in (Hyper)Graph Partitioning. 2022.

12

Fast Algorithms for Hypergraph PageRank

Supplementary Material

A. Notation and mathematical preliminaries
For T 2 N, we denote by [T] the set {1, 2, . . . , T}.

Hypergraph preliminaries A weighted hypergraph G = (V,H,w) is a collection of vertices V and hyperedges H ✓ 2
V

with non-negative hyperedge weights w 2 RH

�0. The degree deg(i) def
=

P
h3i

wh of a vertex i 2 V is the sum of the weights
of hyperedges containing i. Given a set S ✓ V , its volume is the size of the degrees of its vertices: vol(S) def

=
P

i2S
deg(i).

We denote by D 2 RV⇥V the diagonal matrix of degrees of G. A hypergraph is said to be k-uniform if every hyperedge has
cardinality k. In this sense, a graph is simply a 2-uniform hypergraph. For any S ✓ V we denote by @S ✓ H the boundary
of the set S, i.e. h 2 @S if 9i, j 2 h such that i 2 S, j 2 S.

Linear algebra preliminaries We denote vectors and matrices in boldface e.g. x 2 RV and A 2 Rn⇥n. Given a vector
x 2 RV the vector xh 2 Rh is the restriction of x on h, i.e. the vector with entries x(i) for i 2 h. We use ~1 to denote the
all-one vector in Rn. Given two vectors x,y 2 Rn, we denote by hx,yi the standard inner product between x and y, and
we write x ? y to indicate hx,yi = 0. Similarly, we use hx,yi

A
and x ?A y for the same expressions with respect to the

inner product given by a positive definite operator A. We may also use 1h to denote the all-one vector in Rh. We recall that
a norm k·k : Rn ! R is any function satisfying the following properties:

Triangle inequality kx+ yk  kxk+ kyk for every x,y 2 Rn,

Absolute homogeneity k↵xk = |↵|kxk for every x 2 Rn and ↵ 2 R,

Positive definiteness kxk � 0 for all x 2 Rn and kxk = 0 () x = 0.

For any p 2 N the `p-norm is the norm given by:

kxkp
def
= p

sX

i2n

|x(i)|p

and the `1-norm is given by:
kxk1

def
= max

i2[n]
|x(i)|.

Given a norm k·k on RV , its dual norm is the norm defined as:

kyk⇤
def
= max

kxk1
hx,yi .

For any positive-definite matrix A 2 Rn⇥n the norm induced by A is kxkA
def
=

p
x>Ax. Its dual norm is the norm

kxkA�1 .

Subgradients and convexity The subdifferential of a convex function f : RV ! R at a point x is the set:

@f(x)
def
= {y 2 Rn | f(z) � f(x) + hz� x,yi , 8z 2 Rn}.

When f is a convex function, @f(x) is non-empty at every point x in the interior of the domain of f . Moreover, if f
is convex and differentiable then @f(x) = {rf(x)} for every x in the interior of the domain of f . An element of the
subdifferential of f at x is called a subgradient of f at x.

Fenchel Duality Given a convex function f : Rn ! R, its convex conjugate is the function f⇤
: Rn ! R given by:

f⇤
(z) = sup

x2Rn
{hx, zi � f(x)} .

The convex conjugate enjoys several properties relating to optimizing f . In particular for convex f ,

inf
x

f(x) = sup
z

f⇤
(z).

13

Fast Algorithms for Hypergraph PageRank

A commonly used fact is that, for any norm k·k the convex conjugate of the function 1
2k·k

2 is the function 1
2k·k

2
⇤ where k·k⇤

is the dual norm as defined above.

We refer the reader to the book of Boyd and Vandenberghe (2004) for more details.

Submodular functions Given a finite set h a function � : 2
h ! R is submodular if, for all A,B ✓ h we have:

�(A) + �(B) � �(A \B) + �(A [B).

The Base polyhedron of a submodular function � : 2
h ! R is the set:

B(�)
def
= {y 2 Rh | y(h) = �(h),y(S)  �(S) for every S ✓ h},

where, for any S ✓ h, y(S) def
=

P
i2S

y(i). The Lovász extension of � is the function �̄ : Rh ! R given by:

�̄(x)
def
= max

y2B(�)
hy,xi .

Submodular functions are a central object of study in combinatorial optimization and have found numerous applications
throughout Computer Science. We refer the reader to the monograph by Bach (Bach, 2013) for more information on
submodular functions and their applications.

B. Deferred proofs
In this section, we provide the proofs to all the technical results in the paper.

B.1. Deferred proofs from Section 2

Proof of Lemma 2.1. We begin the proof of (1) by proving that F (0) = 0. By the continuity of convex functions and the
2-positive homogeneity of f , we have:

F (0) = lim
↵#0

F (↵1) = lim
↵#0

↵2 · F (1) = 0.

Furthermore, the function F is symmetric about zero. That is, for every x 2 Rn we have:

F (x) = (�1)2F (x) = F (�x).

By convexity of F and symmetry under negation, we can show F (0)  F (x):

F (0) = F

✓
1

2
x+

1

2
(�x)

◆
 1

2
(F (x) + F (�x)) = F (x).

This, in combination with the fact that F (0) = 0, implies that F is everywhere non-negative.

The proof of (2) follows from the non-negativity of F and the fact that F (0) = 0:

F ⇤
(z) = sup

x2RV

{hx, zi � F (x)} � h0, zi � F (0) = 0.

We next prove (3). By the definition of subdifferential and the convexity of F , we have for y 2 Rn
:

F (y) � F (x) + hz,y � xi.

Letting y = ↵x for an arbitrary ↵ > 0 and applying 2-positive homogeneity, we deduce:

(↵2 � 1)F (x) � (↵� 1)hz,xi.

14

Fast Algorithms for Hypergraph PageRank

For ↵ > 1, we can divide through by (↵� 1) > 0 and consider the limit:

hz,xi  lim
↵#1

↵2 � 1

↵� 1
· F (x) = 2F (x),

where the last equality follows from L’Hôpital’s rule. Similarly, for ↵ < 1:

hz,xi � lim
↵"1

↵2 � 1

↵� 1
· F (x) = 2F (x),

thus establishing the result.

To prove (4), we use the definition of the subdifferential. For all x 2 Rn, z 2 @F (x) if and only if 8y 2 Rn,

F (y) � F (x) + hz,y � xi.

Consider any ↵ > 0. Multiplying both sides of the above equation by ↵2 and leveraging the 2-positive homogeneity of F
yields

↵2F (y) � ↵2F (x) + ↵2hz,y � xi

F (↵y) � F (↵x) + h↵z,↵y � ↵xi.

Because the above holds for every y 2 Rn, it implies by definition that ↵z 2 @F (↵x).

Proof of Lemma 2.2. By definition, for every h 2 H , �h � 0. Moreover, the Lovász extension of a set function � is convex
whenever � is submodular. Hence U(x) is a conic combination of squares of non-negative convex functions, which implies
it is convex.

Moreover, by definition of the Lovász extension, for any submodular cut function we have that for any ↵ 2 R>0

�̄(↵x) = max
y2B(�)

hy,↵xi = ↵ max
y2B(�)

hy,xi = ↵�̄(x),

and thus � is 1-positive homogeneous. In particular, the square of any 1-positive homogeneous function is 2-positive
homogeneous. I.e. for every ↵ � 0:

�h(↵x)
2
=

�
↵�h(x)

�2
= ↵2�h(x)

2.

Since �h(h) = �h(?) = 0, the function �̄h(·) is invariant under translation by the ~1 vector, and in particular:

min
u2R

�̄h(x� u~1) = �̄(x).

Proof of Lemma 2.4. The lower bound in Equation (7)follows by definition of �G. The upper bound relies on Assump-
tion 2.3:

2U(x) =
X

h2E

wh min
u2R

Qh(xh � u~1h) 
X

h2E

whQh(xh) 
X

h2E

whkxhk22

=

X

i2V

X

h:h3i

whx(i)
2
=

X

i2V

deg(i)x(i)2 = kxk2
D
.

In order to establish that �G > 0, we proceed by contradiction. Assume �G = 0. Then, there is a non-zero vector
x 2 RV ?D 1 with U(x) = 0. Consider the cut S ⇢ V consisting of i 2 V having xi > 0. Because hx,1i

D
= 0,

the cut S is non-empty. We claim that S constitutes a connected component of G and completes the proof of the lemma.
By way of contradiction, suppose a hyperedge h is cut by S, i.e. h \ S, h \ S̄ 6= ;. Then, x is not constant over h, so
that xh � u1h 6= 0 for all u. Because Qh is non-negative by Lemma 2.1, this implies that hyperedge h makes a positive
contribution to U(x).

15

Fast Algorithms for Hypergraph PageRank

B.2. Deferred Proofs from Section 3

Proof of Theorem 3.1. The only obstacle to applying Theorem 4.1 directly is the fact the lowerbound with �G > 0 in
Equation 9 only applies when x is restricted to the space RV ?D 1. To bypass this obstacle, we show how the solution to the
resolvent optimization problem in Equation 5 over RV can be reduced to that over RV ?D 1. To this end, we decompose a
solution x into its component along 1 and its component orthogonal to 1, with respect to the D-inner product.

x = x? + ⇡(x) = x? +
hx,1i

D

k1k2
D

1.

By its definition, U(x) is invariant under shifts by multiples of 1, so that we can decompose the optimization problem 5 into
two separate optimization problems:

OPT def
= min

x2RV
U(x) + �

2
kxk2

D
� hs,xi =

min
x?2RV ?D1

↵2R

U(x? + ↵1) +
�

2
· kx? + ↵1k2

D
� hs,x? + ↵1i =

min
x?2RV ?D1

U(x?) +
�

2
· kx?k2D � hs,x?i+min

↵2R
�

2
· ↵2 · k1k2

D
� ↵ · hs,1i (12)

If � = 0 and hs,1i 6= 0, then the optimization problem is unbounded, which can be easily detected by our algorithm. If
� = 0 and hs,1i = 0, we have successfully reduced the problem to the form of Theorem 4.1. Hence, we may assume that
� > 0.

The second minimization is optimized by choosing ↵ = hs,1i/�·k1k2
D, which yields:

OPT = min
x?2RV ?D1

U(x?) +
�

2
· kx?k2D � hs,x?i �

hs,1i2

� · k1k2
D

= OPT? �
hs,1i2

� · k1k2
D

,

where OPT? denotes the optimum of the minimization problem restricted to RV ?D 1. By our assumptions on U , we have
the following norm bounds:

8x 2 RV ?D 1,
(�G + �)

2
· kxk2

D
 U(x) + �

2
kxk2

D
 (1 + �)

2
· kxk2

D
.

Hence, by Theorem 4.1, after O (1+�/(�G+�)✏2) iterations, Algorithm 1 outputs x? such that

U(x?) +
�

2
· kx?k2D � hs,x?i  OPT? + ✏ · |OPT?|

Finally, the algorithm for Problem 5 will return:

xout = x? +
hs,1i

� · k1k2
D

1.

By Equation 12, we have:

U(xout) +
�

2
· kxoutk2D � hs,xouti = U(x?) +

�

2
· kx?k2D � hs,x?i �

hs,1i2

� · k1k2
D



OPT? + ✏ · |OPT?|�
hs,1i2

� · k1k2
D

= OPT + ✏ · |OPT?|  OPT + ✏ · |OPT|

This proves the approximation result and the bound on the number of iterations. Each iteration requires updating a
vector by ⌘D�1s, which requires linear time in the size of the hypergraph, and updating in the heat diffusion direction
⌘D�1L(xt).

Proof of Theorem 3.2. We now prove Theorem 3.2. The statement of the theorem is a simple consequence of the following
lemma, together with Theorem 4.1.

16

Fast Algorithms for Hypergraph PageRank

Lemma B.1. Let G = (V,H,w) be a weighted hypergraph and let U1 be the standard hypergraph potential on G. Then
there exists a graph G0

= (V,E,w0
) with Laplacian matrix L such that:

1

maxh2H |h|� 1
 U(x)

1
2kxk

2
L

 1

for all x 2 RV .

We now prove Lemma B.1.

Proof of Lemma B.1. Consider the graph G0 on the same vertex set V as G, with edge set given by:

E = {ij | 9h 2 H, {i, j} ✓ h},

and with edge weights given by:
w0

ij
=

X

h:{i,j}✓h

2 · wh

|h| .

We then have:

1

2
kxk2

L
=

1

2

X

ij2E

w0
ij
(x(i)� x(j))2 =

X

ij2E

X

h:{i,j}✓h

wh

|h| (x(i)� x(j))2 =

X

h2H

X

{i,j}✓h

wh

|h| (x(i)� x(j))2

=

X

h2H

wh

|h|
X

{i,j}✓h

(x(i)� x(j))2 =

X

h2H

wh

X

i2h

(x(i)� xh)
2,

where xh is the average value of the entries of xh. In particular, this gives:

1

2
kxk2

L
=

X

h2H

wh

X

i2h

(x(i)� xh)
2 �

X

h2H

wh

2
·max
i,j2h

(x(i)� x(j))2 = U1(x), (13)

where the inequality follows from the fact that the term
P

i2h
(x(i) � xh)

2 contains both maxi2h(x(i) � xh)
2 and

mini2h(x(i)� xh)
2, together with the inequality 2(a2 + b2) � (a+ b)2. On the other hand, we also get:

1

2
kxk2

L
=

X

h2E

wh

|h|
X

{i,j}✓h

(x(i)� x(j))2 
X

h2E

wh

|h|

✓
|h|
2

◆
max
i,j2h

(x(i)� x(j))2 (14)

=

X

h2H

|h|� 1

2
wh max

i,j2h

(x(i)� x(j))2  maxh2H |h|� 1

1
· U1(x).

The result then follows from (13) and (14).

This also concludes the proof of Theorem 3.2

B.3. Deferred Proofs from Section 4

Proof of Lemma 4.2. Recall the definition of auxiliary iterates xt:

xt

def
= x̂t � ⌘R�1s.

Thus by the definition of Algorithm 1 for any t 2 N we have:

xt+1 = x̂t � ⌘R�1s = x̂t � ⌘R�1
(zt � s)� ⌘R�1s = x̂t � ⌘R�1zt

For any t 2 N, we have:

1

2
kxt+1 � x⇤k2

R
=

1

2
kx̂t � ⌘R�1zt � x⇤k2

R

17

Fast Algorithms for Hypergraph PageRank

=
1

2
kx̂t � x⇤k2

R
� ⌘ hx̂t � x⇤, zti+

⌘2

2
kR�1ztk2R

=
1

2
kx̂t � x⇤k2

R
� ⌘ hx̂t � x⇤, zti+

⌘2

2
kztk2R�1

=
1

2
kxt + ⌘R�1s� x⇤k2

R
� ⌘ hx̂t � x⇤, zti+

⌘2

2
kztk2R�1

=
1

2
kxt � x⇤k2

R
� ⌘ hx̂t � x⇤, zt � si+ ⌘2

2

�
kztk2R�1 � ksk2R�1

�

 1

2
kxt � x⇤k2

R
+ ⌘ [OPTF,s � (F (x̂t)� hs, x̂ti)] +

⌘2

2
kztk2R�1

where the last inequality follows from the convexity of F and the positivity of ksk2
R�1 . The lemma follows from re-arranging

terms.

Proof of Corollary 4.3. Taking the Fenchel dual of k·kR�1 ,

1

2
kztk2R�1 = max

y
hzt,yi �

kyk2
R

2
 max

y
hzt,yi �

F (y)

uR

 max
x

uR · hzt,xi �
F (uR · x)

uR

= uR ·max
x
hzt,xi � F (x).

The last expression is maximized by x̂t such that zt 2 @F (x̂t). Hence, by Lemma 2.1, we have:

1

2
kztk2R�1  uR · (2F (x̂t)� F (x̂t)) = uR · F (x̂t).

The statement of the corollary follows from the definition of ⌘.

Proof of Theorem 4.1. After combining the results of Corollary 4.3 and Lemma 4.2, we proceed to sum over all iterations t
while telescoping terms. This yields:

T�1X

t=0

(1� ✏/2) · F (x̂t)� hs, x̂ti

 T ·OPTF,s +
1

2⌘
kx0 � x⇤k2

R

By convexity and homogeneity, the left-hand side can be lower bounded as:

T�1X

t=0

(1� ✏/2)F (x̂t)� hs, x̂ti �

T

1� ✏/2
·
�
F (xout

T
)�

⌦
s,xout

T

↵�

Conversely, the last term on the right-hand side can be easily bounded by the lower inequality in Equation 9 and the fact that
x0 = 0:

1

2
kx0 � x⇤k2

R
=

1

2
kx⇤k2

R
 1

`R
F (x⇤

) =
|OPTF,s|

`R

Combining our bounds for the left- and right-hand sides, multiplying by (1� ✏/2)T�1, and recalling that OPTF,s  0, we
derive the bound:

�
F (xout

T
)�

⌦
s,xout

T

↵�
 (1� ✏/2)

✓
OPTF,s +

|OPTF,s|
⌘`RT

◆

18

Fast Algorithms for Hypergraph PageRank

 OPTF,s +

✓
✏

2
+

uR

`R
· 2

✏T

◆
· |OPTF,s|

Finally, setting T � uR
`R

· 4
✏2

yields the required multiplicative bound completing the proof of Theorem 4.1.

C. Manifold Learning via Hypergraph Laplacians
Code for conducting all experiments in Appendix C and Appendix D is publically available on GitHub.3

Problem setup. Let M1,M2 denote manifolds embedded in Rd. Let µ1(·), µ2(·) denote the uniform distributions over
M1 and M2 respectively. We consider sampling n data points in Rd in the following manner: let ✓ 2 {�1,+1}n. The ith
data point is then sampled as

pi ⇠
(
µ1 ⇤ ⇢� if ✓i = �1
µ2 ⇤ ⇢� if ✓i = +1

where ⇢�(·) denotes the density of the standard multivariate normal distribution in Rd with covariance �2Id for parameter �.

We assume access to a small set of labels. We denote by S ⇢ [n] the indices of the labeled points. These partial labels are
then defined by the entries of vector s 2 Rn:

si =

(
✓i if i 2 S

0 otherwise

The goal of the manifold learning task is to propagate information from the labeled set S to all data points.

(Hyper)graph construction. To form a (hyper)graph corresponding to data points {pi 2 Rd}n
i=1, we first initialize one

node vi for each data point pi. We then add (hyper)edges connecting nodes whose data points are close in Rd. In this work,
we specifically consider k-nearest neighbor (hyper)graphs. For each vertex vi, we identify its k nearest neighbors vj1 , . . . , vjk
based on Euclidean distances between corresponding data points pi,pj . To construct the k-nearest neighbor graph, we then
initialize an edge between vi and each of its k-nearest neighbors: (vi, vj1), . . . , (i, vjk). To construct the k-nearest neighbor
hypergraph, we initialize a single hyperedge containing vi and all of its k-nearest neighbors: {vi, vj1 , . . . , vjk}.

We define the weighted hypergraph potential U (P) using the sampled point cloud data matrix P 2 Rn⇥d as described
in Section 5.1. For the graph results displayed in Figure 1, we use analogous distance-to-centroid Gaussian weights. In
particular, we note that for graph edges using distance-to-centroid simply amounts to adjusting the bandwidth parameter in
the traditional Gaussian kernel, defined in Equation 10: in the graph the centroid for each edge (i, j) is always point

p(i,j) =
1

2
(pi + pj)

so the corresponding node weights are

w(p)
i,(i,j) = exp

⇣
�kpi � p(i,j)k22

⌘
= exp

�
�kpi � pjk22/4

�
= w(p)

j,(i,j).

Label estimation. To estimate ✓, we use the personalized PageRank vector to propagate information from the partial
labels in vector s to all nodes in the (hyper)graph. We use teleportation constant ↵ = 0.5. For the hypergraph, we use
Algorithm 1 with 50 iterations to compute the PPR vector, denoted by p↵(s), which is a scaled solution to Problem 4 with
M = D. In the graph setting, we compute the PPR by solving the linear system

✓
In +

1� ↵

2↵
LD�1

◆
p↵(s) = s,

where L denotes the weighted graph Laplacian, as described above.
3Full link address: https://github.com/Orecchia-Research-Group/hypergraph_diffusions

19

https://github.com/Orecchia-Research-Group/hypergraph_diffusions
https://github.com/Orecchia-Research-Group/hypergraph_diffusions

Fast Algorithms for Hypergraph PageRank

2 DIMENSIONS 7 DIMENSIONS HIGHER DIMENSIONS

s`(1) [1 3] [1 3 1 1 1 1 1] [1 3 1 1 . . . 1 1 1]

s`(2) [2 4] [2 4 2 2 2 2 2] [2 4 2 2 . . . 2 2 2]

Table 1: Dimensions of hyperrectangles used in manifold learning experiments.

Manifold sampling. We study two manifold learning problems: one with concentric hyperspheres, and one with concentric
hyperrectangles. In the concentric hypersphere problem, the two manifolds are defined as:

M1
def
= {p 2 Rd

: kpk2  1}, M2
def
= {p 2 Rd

: kpk2 = 2}.

The standard deviation of the additive noise in this setting is � = 0.4.

A hyperrectangle in Rd centered at the origin is defined by a vector of side lengths s` 2 Rd as

R(s`)
def
= {p 2 Rd

: |pi|  s`i/2 8i 2 [d]}.

For example, a 1⇥ 2 rectangle in R2 centered at the origin is defined by side lengths s` = [1 2].

In the concentric hyperrectangles problem, the first manifold M1 is the hyperrectangle R(s`(1)). The second manifold,
M2, is defined as the surface of hyperrectangle R(s`(2)). For example, in two dimensions we use s`(1) = [1, 3] and
s`(2) = [2, 4], so M1 is the interior of the 1⇥ 3 rectangle centered at the origin, whereas M2 is the surface of the 2⇥ 4

rectangle centered at the origin. Values of s`(1), s`(2) used in varying dimensions are detailed in Table 1. The standard
deviation of the additive noise in the hyperrectangles problem is � = 0.1.

Weighted versus Unweighted Potentials. In Section 5.1, we introduce a novel weighted hypergraph potential. In Figure 1,
we report the performance of label estimates produced by calculating the personalized PageRank vector corresponding to
these weighted potentials. In Figure 2 we further present preliminary evidence suggesting that the weighted potential U (P),
defined in Equation 11, leads to better estimates compared to its unweighted counterpart U1, presented in Equation 2. The
estimates produced by the weighted potential, displayed in Figure 2, exhibit AUC values closer to 1 than those produced by
the unweighted potential. In particular, this divide becomes increasingly apparent in higher dimensions.

Confusion matrices of PPR for Semi-Supervised Learning for different (hyper)graph constructions and label
estimation strategies. As seen in Figure 3, in high dimensions, using a hypergraph always yields superior results to using
a graph. In most cases, including distribution information leads to higher accuracy results. Note that the confusion matrix
when using balanced predictions can be described by a single number, since every row and column sum up to one. In the
case of high dimensional hyperspheres, using the sign function misclassifies most of the points as belonging to the inner
sphere, which is expected as distances along the surface of the outer sphere become ever greater as dimensions increase,
while the distance to the center stays the same. Including distribution information can fix this issue. Surprisingly, the same
behavior is not observed in weighted hyperrectangles where we achieve very good results even without label distribution
information. All experiments were repeated fifty times to reduce any variance.

D. Categorical Clustering Experiments
D.1. Dataset details and construction

In the datasets we use there are three kinds of features, binary, categorical and numerical. For each binary feature we define
a hyperedge over all the nodes that possess that feature. For categorical features, a hyperedge is created over the nodes
belonging to each category. Finally, for numerical features we quantize them into 10 bins of equal size. Because only ten
(mutually exclusive) bins are used, the average rank is of the same order as the number of nodes. Statistics for all datasets
are shown in Table 2. We briefly explain each dataset’s instances and features.

Zoo (Forsyth, 1990) Each instance is a colloquially named animal (e.g. antelope) that refers to multiple species,
specifically a collection of subfamilies. The label for each instance is its taxonomical class. There are 16 binary features
indicating the presence of certain morphological characteristics.

20

https://archive.ics.uci.edu/dataset/111/zoo

Fast Algorithms for Hypergraph PageRank

Comparing Classification Performance with Unweighted and Weighted Hypergraph Potentials
Classification Performance in 2

Dimensions 15 Dimensions 30 Dimensions

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

AUC Value

Fr
eq

ue
nc

y

H
yp

er
re

ct
an

gl
es

H
yp

er
sp

he
re

s

Figure 2: Comparing performance of the novel weighted hypergraph potential U (P), defined in Equation 11, to the canonical
(unweighted) hypergraph potential U1, defined in Equation 2. On each row, we display in blue the histogram of AUC
values achieved by the PPR vector estimates for the semi-supervised learning problem using the unweighted potential, and
we display in red the histogram of AUC values achieved using the weighted potential. Results are aggregated over 50
independent trials. Top row: results for hyperrectangle manifolds. Bottom row: results for hypersphere manifolds. In these
semi-supervised manifold learning problems, the weighted hypergraph potential displays an advantage over unweihgted
potentials, with greater discrepancy emerging in higher dimensions.

Mushroom (mis, 1987) Each instance is a species of mushroom and the target is whether that species is poisonous or not.
Features are all categorical or binary morphological characteristics.

Covertype (Blackard, 1998) Each instance is a 30x30 meter cell of forest, classified by the US Forest Service (USFS) as
one of seven types (Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow, Aspen, Douglas-fir, Krummholz).
There are 10 numerical features, 4 binary columns classifying the surrounding wilderness area and 40 binary columns
describing the soil type. In truth, this is 12 features, 10 numerical and 2 categorical, but they appear as 54 instead. Instead
of working on the full 581,012 instances of all classes, instead we create two separate datasets, one from classes 4 and
5 (Cottonwood/Willow vs Aspen) and one from classes 6 and 7 (Douglas-fir vs Krummholz). We are referring to these
datasets as covertype45 and covertype67.

Newsgroups (Mitchell, 1999) Every instance represents a usenet article. Each feature represents the presence of one of
100 common words. Because only the most common words are used, only 10,267 of 16,242 data points are different. (Hein
et al., 2013) notes that the minimum error achieved by any deterministic classifier is 9.6%.

D.2. Methods

We compare a C++ implementation of our algorithm from Theorem 3.1 with the algorithms evaluated by Li et al. (2020),
which also include the earlier PDHG method from Hein et al. (2013). These are also mainly implemented in C++ with a
MATLAB wrapper.Here, we briefly review each of their four algorithms.

21

https://archive.ics.uci.edu/dataset/73/mushroom
https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/113/twenty+newsgroups

Fast Algorithms for Hypergraph PageRank

Confusion Matrix in 2
Dimensions 7 Dimensions 15 Dimensions

Confusion Matrix of Graph versus Hypergraph PPR for Semi-Supervised
Learning in Varying Dimensions for Hyperrectangles

0
Th

re
sh

ol
d

B
al

an
ce

d

Confusion Matrix in 2
Dimensions 7 Dimensions 15 Dimensions

Confusion Matrix of Graph versus Hypergraph PPR for Semi-Supervised
Learning in Varying Dimensions for Hyperspheres

0
Th

re
sh

ol
d

B
al

an
ce

d

Confusion Matrix in 2
Dimensions 15 Dimensions 30 Dimensions

Confusion Matrix of Weighted versus Unweighted PPR for Semi-Supervised
Learning in Varying Dimensions for Hyperrectangles

0
Th

re
sh

ol
d

B
al

an
ce

d

Confusion Matrix in 2
Dimensions 15 Dimensions 30 Dimensions

Confusion Matrix of Weighted versus Unweighted PPR for Semi-Supervised
Learning in Varying Dimensions for Hyperspheres

0
Th

re
sh

ol
d

B
al

an
ce

d

Figure 3: For determining predicted labels, we tried two different approaches: Using the sign function and assigning
half the points to each category. The second requires knowledge of the size of each cluster, which is stronger, but not an
unreasonable assumption. In the top rows is the comparison between graphs and hypergraphs. In the bottom rows we
compare the effect that Gaussian weights have on the predictions. The first columns have results on the different dimension
hyperrectangles, while the last columns show the same results on hyperspheres.

22

Fast Algorithms for Hypergraph PageRank

Name |F| |V| |H|
P
v2V

degv
|V|

P
h2H

|h|
|H|

Zoo (Forsyth, 1990) 16 101 36 16 44.89
Mushroom (Kelly et al.) 22 8124 112 21 1523.25
Covertype45 (Blackard, 1998) 54 12240 144 13.44 1142.51
Covertype67 (Blackard, 1998) 54 37877 144 13.02 3425.01
Newsgroups (Mitchell, 1999) 100 16242 100 4.03 654.51

Table 2: UCI Hypergraph datasets: for each hypergraph, we give name, number of features, vertices, hyperedges and average
degree and rank of hyperedge.

PDHG QDSFM Primal-Dual Hybrid Gradient descent for Quadratic Decomposable Submodular Function Minimization.
This is the primal-dual method proposed by (Hein et al., 2013). This algorithm maintains both primal and dual variables. At
each iteration, it performs a proximal step on the dual variables of each hyperedge and a global gradient step on the primal
variables.

QRCDM Quadratic Random Coordinate Descent Method. At every iteration, the algorithm randomly picks one hyperedge
to perform coordinate descent. The authors show a linear convergence (log 1

✏
) for a number of iterations that grows linearly

with the number of hyperedges and also depends on the width of the degree.

QRCDM AP Quadratic Random Coordinate Descent Method with Alternative Projection. Despite its name, this method
does not perform random coordinate descent, but instead operates over all hyperedges. It alternatively performs projections
over the product of cones and hyperplanes to attempt a best-approximation of the dual problem.

Subgradient QDSFM This method is closely related to our, but it does not enjoy our theoretical proof of convergence. In
the practical evaluation, it seems to be the only one not converging to the optimizer.

Graph PDHG QDSFM QRCDM QRCDM AP Subgradient QDSFM T=300 T=3000
zoo 0.14s 0.16s 0.14s 0.28s 0.03s 0.28s

mushroom 9.03s 19.44s 12.47s 9.55s 0.77s 7.60s
covertype45 7.98s 8.64s 8.57s 8.84s 0.75s 7.43s
covertype67 27.59s 29.27s 26.96s 25.65s 2.18s 21.75s
newsgroups 6.43s 7.93s 7.31s 11.90s 0.61s 5.98s

Table 3: Timing comparison of our method for 300 (T=300) and 3000 (T=3000) iterations with the methods provided by (Li
et al., 2020). PDHG QDSFM and QRCDM AP run for 300 iterations. QRCDM runs for 300 * |H| iterations, which can be
thought as 300 epochs. Subgradient QDSFM runs for 15000 iterations. Our implementation performs iterations ten times
faster.

Graph PDHG QDSFM QRCDM QRCDM AP Subgradient QDSFM T=300 T=3000
zoo 0.475s 0.533s 0.467s 0.019s 0.098s 0.094s

mushroom 30.086s 64.787s 41.565s 0.636s 2.563s 2.533s
covertype45 26.586s 28.791s 28.567s 0.589s 2.493s 2.476s
covertype67 91.983s 97.554s 89.868s 1.710s 7.274s 7.249s
newsgroups 21.434s 26.422s 24.351s 0.793s 2.030s 1.993s

Table 4: Comparisons of average time per 1000 iterations. As QRCDM is a randomized coordinate descent algorithm which
processes one hyperedge per iteration, we consider the average time for “epoch”, i.e., |H| iterations.

D.3. Execution

For a fixed set of labeled nodes with labels y, we encode membership in target class c 2 C by the one-hot vector

yc(i) =

(
1 Yi = c

�1 o.w.
. The algorithms are then asked to approximately solve the following personalized PageRank vector

23

https://archive.ics.uci.edu/dataset/111/zoo
https://archive.ics.uci.edu/dataset/73/mushroom
https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/113/twenty+newsgroups

Fast Algorithms for Hypergraph PageRank

problem, corresponding to � = 1 and ↵ = 1/3, for each class c:

minPy,c(x)
def
= min

x

1

2
· kx� yck2D + U1(x).

We chose this single value of � as it proved representative of the relative behavior of each method. It also ensured that
equal weight was given to both components of the objective, so that no algorithm focusing on a single component would be
unfairly advantaged. Let xy,c be the minimizers of the PageRank vector problem above. The final multiclass prediction was
is by choosing, for each point i 2 V, the class c maximizing xy,c(i).

D.4. Evaluation

Table 4 displays average per iteration times for all methods. We have compiled graphical plots of the classification error
and average function value 1/|C| ·

P
c
Py,c(xy,c) for the solution provided by each method in Figure 4. In order to reduce

variance, each reported result is the average of ten runs.

Following previous works, we started by running all methods for an approximately equal amount of time. This resulted in
300 iterations each for PDHG QDSFM, QRCDM and QRCDM AP, 15000 iterations for Subgradient QDSFM and 3000
iterations for our method. With this choice of iteration counts, all methods perform very similarly on the classification
error. In some cases, PDHG appeared to have very slight edge, possibly due to a better choice of initialization point or the
regularizing effect of the primal-dual iteration. However, subgradient QDSFM appears to diverge further from the optimum
point as the number of revealed points increases.

Note that with only 300 iterations, our method does not converge always to the minimizer, but often outperforms other
methods in the prediction task, and achieves comparable function values, while only running for one tenth of the time.This
is probably due to the very small per iteration time of our algorithm.

The method closest to our time per iteration is Subgradient QDSFM which does comparable amount of work per iteration,
but has disappointing results in convergence even after a very large number of iterations.

Another interesting trend is that in some cases, when our algorithm has not converged yet to the minimizer, the solution
provided outperforms other methods in the classification task. This trend is more pronounced in covertype45 and is probably
due to a suboptimal choice of � and implicit regularization effects by the algorithm.

The abysmal classification error of all methods in the newsgroups dataset is explained by the poor discriminatory nature of
the features used in its creation. Specifically, only the presence or absence of one hundred words is recorded, making groups
of instances indistinguishable in every way, even though they belong to different clusters.

All experiments were run on a server with a 24core Intel Xeon Silver 4116 CPU @ 2.10GHz processor and 128gb RAM.
All code is single threaded and can be found in our supplementary material together with the datasets. Additionally, the
Python script used to generate the following image is also included.

24

Fast Algorithms for Hypergraph PageRank

(a) zoo

(b) mushroom

(c) covertype45

(d) covertype67

(e) newsgroups

Figure 4: Classification error and function value results for each method. Each method was run 10 times and an average was
taken over them to reduce variance.

25

	Introduction
	General Hypergraph Potentials
	Hypergraph Laplacian Systems
	First-order methods for convex 2-positively homogenous functions
	Sketch of Proof of Theorem 4.1

	Manifold Learning via Hypergraph Laplacians
	Gaussian-kernel Hypergraph Potentials

	Categorical Clustering Experiments
	Conclusion and Open Problems
	Notation and mathematical preliminaries
	Deferred proofs
	Deferred proofs from Section 2
	Deferred Proofs from Section 3
	Deferred Proofs from Section 4

	Manifold Learning via Hypergraph Laplacians
	Categorical Clustering Experiments
	Dataset details and construction
	Methods
	Execution
	Evaluation

