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Abstract

The robust ¢-regularized Markov Decision Pro-
cess (RRMDP) framework focuses on designing
control policies that are robust against parameter
uncertainties due to mismatches between the sim-
ulator (nominal) model and real-world settings.
This work makes fwo important contributions.
First, we propose a model-free algorithm called
Robust p-regularized fitted Q-iteration for learn-
ing an e-optimal robust policy that uses only the
historical data collected by rolling out a behav-
ior policy (with robust exploratory requirement)
on the nominal model. To the best of our knowl-
edge, we provide the first unified analysis for a
class of ¢-divergences achieving robust optimal
policies in high-dimensional systems of arbitrary
large state space with general function approxi-
mation. Second, we introduce the hybrid robust
p-regularized reinforcement learning framework
to learn an optimal robust policy using both his-
torical data and online sampling. Towards this
framework, we propose a model-free algorithm
called Hybrid robust Total-variation-regularized
Q-iteration. To the best of our knowledge, we
provide the first improved out-of-data-distribution
assumption in large-scale problems of arbitrary
large state space with general function approxi-
mation under the hybrid robust ¢-regularized re-
inforcement learning framework.

1. Introduction

Online Reinforcement Learning (RL) agents learn through
online interactions and exploration in environments and
have been shown to perform well in structured domains such
as Chess and Go (Silver et al., 2018), fast chip placements
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in semiconductors (Mirhoseini et al., 2021), fast transform
computations in mathematics (Fawzi et al., 2022), and more.
However, online RL agents (Botvinick et al., 2019) are
known to suffer sample inefficiency due to complex explo-
ration strategies in sophisticated environments. To overcome
this, learning from available historical data has been studied
using offline RL protocols (Levine et al., 2020). However,
offline RL agents suffer from out-of-data-distribution (Yang
et al., 2021; Robey et al., 2020) due to the lack of online ex-
ploration. Recent work Song et al. (2023) proposes another
learning setting called hybrid RL that makes the best of
both offline and online RL worlds. In particular, hybrid RL
agents have access to both offline data (to reduce exploration
overhead) and online interaction with the environment (to
mitigate the out-of-data-distribution issue).

All three of these approaches (online, offline, and hybrid
RL) require training environments (simulators) that closely
represent real-world environments. However, time-varying
real-world environments (Maraun, 2016), sensor degrada-
tions (Chen et al., 1996), and other adversarial disturbances
in practice (Pioch et al., 2009) mean that even high-fidelity
simulators are not enough (Schmidt et al., 2015; Shah et al.,
2018). RL agents are known to fail due to these mismatches
between training and testing environments (Siinderhauf
et al., 2018; Lesort et al., 2020). As a result, robust RL
(Mankowitz et al., 2020; Panaganti & Kalathil, 2021a) has
received increasing attention due to the potential for it to
alleviate the issue of mismatches between the simulator and
real-world environments.

Robust RL agents are built using the robust Markov Deci-
sion Process (RMDP) (Iyengar, 2005; Nilim & El Ghaoui,
2005) framework. In this framework, the goal is to find
an optimal policy that is robust, i.e., performs uniformly
well across a set of models (transition probability functions).
This is formulated via a max-min problem, and the set of
models is typically constructed around a simulator model
(transition probability function) with some notion of diver-
gence or distance function. We refer to the simulator model
as any nominal model that is provided to RL agents.

The RMDP framework in RL is identical to the Distribution-
ally Robust Optimization (DRO) framework in supervised
learning (Duchi & Namkoong, 2018; Chen et al., 2020).
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Similar to RMDP, DRO is a min-max problem aiming to
minimize a loss function uniformly over the set of distribu-
tions constructed around the training distribution of the input
space. However, developing model-free algorithms for DRO
problems with general ¢-divergences (see Equation (1)) is
known to be hard (Namkoong & Duchi, 2016) due to their
inherent non-linear and multi-level optimization structure.
Additionally, developing model-free robust RL agents is
also challenging (Iyengar, 2005; Duchi & Namkoong, 2018)
for high-dimensional sequential decision-making systems
under general function approximation.

To overcome this issue, in this work, we develop robust RL
agents for the RRMDP framework, which is an equivalent
alternative form of RMDP. A natural o-divergence regular-
ization extension to the problem of RMDP gives way for this
new RRMDP framework introduced in Yang et al. (2023);
Zhang et al. (2024), under different names. It is built upon
the penalized DRO problem (Levy et al., 2020; Jin et al.,
2021b), that is, the (-divergence regularization version of
the DRO problem. In particular, we focus on developing an
offline robust RL algorithm for a class of y-divergences
under the RRMDP framework with arbitrarily large state
spaces, using only offline data with general function approx-
imation. Towards this, as the first main contribution, we
propose the Robust p-regularized fitted Q-iteration (RPQ)
model-free algorithm and provide its performance guaran-
tee for a class of (-divergences with a unified analysis. We
refer to algorithms as model-free if they do not explicitly
estimate the underlying nominal model. We address the
following important (suboptimality and sample complexity)
questions: What is the rate of suboptimality gap achieved
between the optimal robust value and the value of RPQ
policy? How many offline data samples from the nominal
model are required to learn an e-optimal robust policy? We
discuss challenges and present these results in Section 2.

In this work, we also develop and study a novel hybrid
robust RL algorithm under the RRMDP framework using
both offline data and online interactions with the nominal
model. We make this second main contribution to this work
since hybrid RL overcomes the out-of-data-distribution is-
sue in offline RL. Towards this, we propose the Hybrid
robust Total-variation-regularized Q-iteration (HyTQ: pro-
nounced height-Q) algorithm and provide its performance
guarantee under improved assumptions. Notably, the offline
data-generating distribution must only cover the distribution
that the optimal robust policy samples out on the nominal
model, whereas before we needed it to cover any distribu-
tion uniformly. This is how online interactions help mitigate
the out-of-data-distribution issue of offline RL and offline
robust RL. We now address the cumulative suboptimality
question in addition to sample complexity: What is the rate
of cumulative suboptimality gap achieved between the opti-
mal robust value and the value of HyTQ iteration policies?

We discuss challenges and present these results in Section 3.

Related Work. Among all the previous works that provide
model-free methods, here we only mention the ones closest
to ours. We discuss more related works in Appendix A.
Panaganti et al. (2022) proposed a Q-iteration offline ro-
bust RL algorithm in the RMDP framework only for the
total variation ¢-divergence. Bruns-Smith & Zhou (2023)
proposed a Q-iteration offline robust RL algorithm in the
RMDP framework to solve causal inference under unob-
served confounders. Zhou et al. (2023) proposed an actor-
critic robust RL algorithm in RMDP for integral probability
metric. Zhang et al. (2024) proposed a Q-iteration offline
robust RL algorithm in the RRMDP framework only for
the Kullback-Leibler -divergence. Blanchet et al. (2023)
proposed specialized robust RL algorithms for the total vari-
ation and Kullback-Leibler ¢-divergences offering unified
analyses for linear, kernels, and factored nominal models
under the finite state-action setting. Other line of work (Liu
et al., 2022; Liang et al., 2023; Wang et al., 2023a;b; Yang
et al., 2023) provide model-free robust RL algorithms based
on classical Q-learning methods in finite state-action spaces.
We provide more insightful comparisons in Table 1. To the
best of our knowledge, this is the first work that addresses
a wide class of robust RL problems (like the general -
divergence) with arbitrary large state space using general
function approximation under mild assumptions (like the
robust Bellman error transfer coefficient).

Notation. We use the equality sign (=) for pointwise equal-
ity in vectors and matrices. For any x € R, let (z); =
max{z, 0}. For any vector x and positive semidefinite ma-
trix A, the squared matrix norm is ||z||% = = " Az. The set
of probability distributions over X, with cardinality | X, is
denoted as A(X'), and its power set sigma algebra as 3(X).
For any function f that takes (s, a,r, s’) as input, define the

expectation w.r.t. the dataset D (or empirical expectation) as

ED[‘f(Siva%r%s;)] = %E(Si,ai,”dé)ep f(siaa‘iaTiaS{i)'

For any positive integer H, set [H] denotes {0,1,--- , H —
1}. Define > and {1 norms as [|z[,, = \/E,[2?] and
[zl ,, = Eu[lz|]. p < g denotes a probability distribution
p is absolutely continuous w.r.t a probability distribution
q. We use O(+) to ignore universal constants less than 300
and O (+) to ignore universal constants less than 300 and the
polylog terms depending on problem parameters.

2. Offline Robust ¢-Regularized
Reinforcement Learning

We start with preliminaries and the problem formulation.

Infinite-Horizon Markov Decision Process: An infinite-
horizon discounted Markov Decision Process (YMDP) is a
tuple (S, A, R, P,~,dy) where S is a countably large state-
space, A is a finite set of actions, R : § x A — [0,1] is
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Algorithm Algorithm-type | Data Coverage Dataset Type Robust Suboptimality
3

(Panaganti et al., 2022, Alg.1) FQI all-policy offline TV W

2 O;

(Zhang et al., 2024, Alg.1) FQI all-policy* offline KL %
3 og

(Yang et al., 2023, Alg.2) QL uniform-policy offline Markov ) W
3 og

RPQ (ours: Algorithm 1) FQI all-policy™ offline © W

HyTQ (ours: Algorithm 2)* FQI single-policy offline + TV ‘/‘“ax(/\*‘/']‘\‘,al’;)glog(']: gD

online non-Markov

Table 1. Comparison of model-free p-divergence robust RL algorithms. In the algorithm-type column, Fitted Q-Iteration (FQI) uses
least-squares regression and Q-Learning (QL) uses stochastic approximation updates. In the data coverage column, uniform-policy stipulates
a data-generating policy to cover the entire state-action space. all-policy is where the data-generating policy should cover the state-action
space covered by all non-stationary policies, and single-policy is where it covers the state-action space covered by the optimal robust policy,
on the nominal model. * denotes the coverage should include all the models in robust sets designed by the divergences in the robust column.
The dataset type column mentions the type of dataset collected with a data-generating policy for training corresponding algorithms where
offline indicates i.i.d. historical dataset on the nominal model, offline Markov indicates Markovian dataset induced on the nominal model,
and online non-Markov indicates a history dependent dataset as a collection of Markovian datasets induced on the nominal model by a set of
learned policies. Finally, the suboptimality column is the statistical upper bound for the difference between the optimal robust value and the
robust value achieved by the algorithm. Here Vinax is either H or (1 — ) ™! effective horizon factors. p is the robustness radius parameter
in RMDPs and X is the robustness penalization parameter in RRMDPs, which are inversely related (Yang et al., 2023, Theorem 3.1). ¢()\) is
some function on X that varies according to different @-divergences. IV is the dataset size used by algorithms. ¥ The bound of HyTQ is not
directly comparable with others in terms of Viyax since the non-stationary finite-horizon setting requires H multiplicity in dataset size. dmin
is the minimal positive value of data generating stationary distribution d, i.e. mins o d(s,a). F and G are two function representations, and
(S, A) is the state-action space.

|SI[ A is a

a known stochastic reward function, P € A(S) according to a data distribution 1 € A(S x A). For conve-

probability transition function describing an environment, ~y
is a discount factor, and dj is the starting state distribution. A
stationary (stochastic) policy  : S — A(A) specifies a dis-
tribution over actions in each state. We denote the transition
dynamic distribution at state-action (s, a) as Ps , € A(S).
For convenience, we write (s, a) = E,. g(s,q)[r] and as-
sume it is deterministic as in RL literature (Agarwal et al.,
2019) since the performance guarantee will be identical up
to a constant factor.

The value function of a policy 7 is VF,.(s) =
Ep > pog'r(se,ar) | so = s] starting at state sg = s
and a; ~ m(s),S141 ~ Ps,q, forallt > 0. Simi-
larly, we define an action-value function of a policy 7 as
Q% (5,0) = EpalY%0Vr(s0,ar) | 50 = 5,00 = al.
Each policy 7 induces a discounted occupancy density
over state-action pairs df : S x A — [0,1] defined as
dp(s,a) = (1 =) > gV Pi(sy = s,a¢ = a; ), where
P,(sy = s,a; = a;m) denotes the visitation probability of
state-action pair (s, a) at time step ¢, starting at so ~ do(+)
and following 7 on the model P. The optimal policy 7}
achieves the maximum value of any policy V7 ,..

Offline Reinforcement Learning: The goal of offline RL
on YMDP (P°,r) is to learn a good policy 7 (a policy
with a high V];ro,r) based only on the offline dataset. An
offline dataset is a historical and fixed dataset of interac-
tions Dpo = {(s;,as,])}X,, where s} ~ P? , and the

(si,a;) pairs are independently and identically generated

nience, i also denotes the offline/behavior policy that gener-
ates Dpo. One classical offline RL algorithm with general
function approximation capabilities with provable perfor-
mance guarantees is Fitted Q-Iteration (FQI) (Szepesvari
& Munos, 2005; Chen & Jiang, 2019; Liu et al., 2020). A
function class F = {f : S x A = [0,1/(1 — ¥)]} (e.g.,
neural networks, kernel functions, linear functions, etc) rep-
resents )-value functions of YMDP (P°,r). At each it-
eration, given f; € F and Dp., FQI does the following
least-square regression for the approximate squared Bell-
man error: fy 1 = argmin ez Ep . [(ys, — f)?], where
yr.(s,a,8") = r(s,a) + ymaxy fx(s',b). In this regres-
sion step, FQI aims to find the optimal action-value Q}T;ow
by approximating the non-robust squared Bellman error
(lr + W]Epovg;rﬂ) — va,r”%,,) using offline data Dpo
with function approximation J. Finally, for some starting
state sop ~ do, the performance guarantee of an algorithm
policy 7 is given by bounding the suboptimality quantity
0 < Vg:T(So) - Vlgr",r(so)‘

Infinite-Horizon Robust ¢-Regularized Markov Deci-
sion Process: Let P° be the nominal model, that is, a
probability transition function describing a training en-
vironment. An infinite-horizon discounted Robust -
Regularized Markov Decision Process (YRRMDP) tuple
(S, A,r, P°, \,7,p,do) where A > 0 is a robustness pa-
rameter and ¢ : R — R is a convex function. The ro-
bust regularized reward function is defined as (s, a) =
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7(s,a) + AyDy(Ps a, P ,) for any state-action pairs and
any P such that Ps ., P¢ ,. Here D, is the o-divergence

(Csiszar, 1967) defined as

Dy (p,q) = / ¢ (dp/dq)dgq )

for two probability distributions p and ¢ with p < g,
where ¢ is convex on R and differentiable on R satis-
fying (1) = 0 and p(t) = +oo for t < 0. Examples
of p-divergence include Total Variation (TV), Kullback-
Leibler (KL), chi-square, Conditional Value at Risk (CVaR),
and more (c.f. Proposition 3). The robust regularized value
function of a policy 7 is defined as

Vi = ﬁrég: V;;’ o 2)
where P = ®;,4Ps.q and Py = {Ps,q € A(S) : Py o <€
P?,,V(s,a) € S x A}. By definition, for any m, it fol-
lows that V' < VB, - < 1/(1 — ). The optimal robust
regularized value function is V' = max, V" (similarly we
can design ()3), and 7" is the robust regularized optimal
policy that achieves this optimal value. For convenience,
we denote V' (Q3) as V*(Q*). We note that P satisfies the
(s, a)-rectangularity condition (Iyengar, 2005) by definition.
This is a sufficient condition for the optimization problem
in (2) to be tractable. It also enables the existence of a de-
terministic policy for 7* (Yang et al., 2023). We formally
mention this in Proposition 5. For any policy 7, denote
VT = Esnd,[V™(s)] as the expected total reward with dj
as initial state distribution.

Denote the robust regularized Bellman operator 7
RSX.A N RSXA as

(TQ)(s,a) = r(s,a)+ ©)

v inf (ES’NPS,G, [H}ZE}XQ(S/7G/)] + ADW(R@,avpsa))'

Ps a€Ps,a
Since 7T is a contraction (Yang et al., 2023), the robust Q-
iteration (RQI) Qr+1 = T Qy, converges to Q*. We get the
robust optimal policy as 7*(s) = arg max, Q*(s, a).

2.1. Problem Conceptualization

In this section, we study the offline infinite-horizon robust ¢-
regularized RL (YR3L) problem, acquiring useful insights to
construct our algorithm (Algorithm 1) in next section. The
goal here is to learn a good robust policy 7 (a policy with
a high V;¥) based on the offline dataset. We start by noting
one key challenge in the estimation of the robust regularized
Bellman operator 7 (3): One may require many offline
datasets from each P € P to achieve our offline YR3L
goal. In this work, we use the penalized Distributionally
Robust Optimization (DRO) tool (Sinha et al., 2018; Levy
et al., 2020; Jin et al., 2021b) to not require such unrealistic
existence of offline datasets. In particular, as in non-robust

offline RL, we only rely on the offline dataset D po generated
on the nominal model P° by an offline policy p. This
statement is justified via the following proposition.

Proposition 1. Consider a robust p-regularized MDP. For
any Q : S x A — [0,1/(1 — 7)], the robust regularized
Bellman operator T (3) can be equivalently written as

(TQ)(s,a) =1(s,a)— )
Y inf (ABy~py, " (0 - V(s")/N] = n),

where V(s) = maxeea Q(s,a) and © C R is some
bounded real line which depends on p*.

A proof of this proposition is given in Appendix E and fol-
lows from Levy et al. (2020, Section A.1.2). We refer to (4)
as the robust regularized Bellman dual operator. Observing
the sole dependence on the nominal model P? in (4), one
can come up with estimators for data-driven approaches
that naturally depend only on the dataset Dp.. We remark
that we consider a class of (-divergences satisfying the
conditions in Proposition 3 for all the results in this paper.

We now remark on a natural first attempt at performing the
squared Bellman error least-square regression, like FQI, on
the robust regularized Bellman dual operator (4). Observe
that the true Bellman error E, o~,.[| 7T Q*(s,a) — Q* (s, a)|]
involves solving an inner convex minimization problem in
TQ*(s,a) (4) for every (s, a). Since we are in a countably
large state space regime, it is infeasible to devise approx-
imations to this true squared Bellman error. In addition,
we have to also enable general function architecture for
action-values. To alleviate this challenging task, we now
turn our attention to the inner convex minimization prob-
lem in the robust regularized Bellman dual operator (4).
Due to the (s, a)-rectangularity assumption, we note that
the 7)’s are not correlated across all (s, a). With this note,
for every (s,a), we can replace 1 in (7Q)(s,a) (4) with a
dual-variable function ¢(s,a). Thus, intuitively, multiple
point-wise minimizations can be replaced by a single dual-
variable functional minimization over the function space of
g. We formalize this intuition using variational functional
analysis (Rockafellar & Wets, 2009) for a countably large
state space regime in the following.

We denote L' (1) as the set of all absolutely integrable
functions defined on the probability (measure) space (S X
A, X(S x A), ) with u, the data generating distribution, as
the o-finite probability measure. To elucidate, L' (p) is the
set of all functions g : § x A — C C R such that [|g||; , is
finite. We set C = © considering the inner minimization in
(4). Fixing any given function f : & x A — [0,1/(1 — )],
we define the loss function Lgya1(g; f), for all g € L (p),
as

Ldual (gv f7 /’L) = ES,U«NP«:S""P;@[ (5)
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A¢"((g(s, @) — max f(s',a")) /A) = g(s, ).

We state the result for single dual-variable functional mini-
mization intuition we developed in the previous paragraph.
We also note one variant of this result appears in the distri-
butionally robust RL work (Panaganti et al., 2022).

Proposition 2. Let Lgya) be the loss function defined in (5).
Then, for any function f : S x A — [0,1/(1 —~)], we have

inf L ) = ]EG ~
geanl () dual (ga fa ,Lt) S,a~ [ (6)
inf (AB.r-opy, [" (1 — max £(s',a')) /)] = ).
neoe ’ a

We provide a proof in Appendix E, which relies on Rock-
afellar & Wets (2009, Theorem 14.60).

For any given f : Sx.A — [0,1/(1—7)] and (s,a) € SXA,
we define an operator 7, forall g € LY (u), as

(%f)(saa) ZT(S,Q)— )
YAEs~po, [¢" ((9(s,a) = V(s')/N)] = g(s,a)).

This operator is useful in view of Propositions 1
and 2. To see this, we first define ¢*(Q) €
arg minge r1(,) Lauai(g; @, p) for any action-value func-
tion (). Now, by taking an expectation w.r.t the data gen-
erating distribution z on (4), we observe 7Q = Tg-()Q
by utilizing (6). Due to this observation, in the follow-
ing subsection, we develop an algorithm by approximat-
ing both the optimal dual-variable function of optimal ro-
bust value ¢g*(Q*) and the robust squared Bellman error
(| Tg (0" @* — Q* ||§7#) using offline data Dp.. Panaganti
et al. (2022) similarly conceptualized their total variation
(p-divergence robust RL algorithm. Here, Proposition 1
enables us to conceptualize for general p-divergence.

2.2. Robust p-regularized fitted Q-iteration

In this section, we formally propose our algorithm based on
the tools developed so far. Our proposed algorithm is called
Robust ¢-regularized fitted Q-iteration (RPQ) Algorithm
and is summarized in Algorithm 1. We first discuss the
inputs to our algorithm. As mentioned above, we only
use the offline dataset Dpo = {(s;,a;, s;)}¥ ,, generated
according to a data distribution p on the nominal model
P°. We also consider two general function classes F C
(f:SxA—=[0,1/1—-7))and G C (g: Sx A —
©) representing action-value functions and dual-variable
functions, respectively. We now define useful approximation
quantities for g € G and f € F. For given f, the empirical
loss function of the true loss Lgya1 Equation (5) on Dpo is

Lauai(g; f) = Epy. | ®)
Ap"((9(si, ai) — max f(s7,a")) /A) = g(si, a1)].

For given f, g, the empirical squared robust regularized
Bellman error on Dpo is

Eme(Q; fv g) = ]EDPO [(T(Siv ai) - 7)\@*((9(517 ai)f
max f(s,a'))/A) +79(si, ai) — Q(si, ai))?]. ©

We start with an initial action-value function Qy(s,a) = 0
and execute the following two steps for K iterations. At
iteration k of the algorithm with input @)y, as a first step,
we compute a dual-variable function g;, € G through the
empirical risk minimization approach, that is, we solve
arg mingcg Laual (9; Q) (Line 4 of Algorithm I). As a sec-
ond step, given inputs Qx and g, we compute the next iter-
ate Q41 € F through the least-squares regression method,
that is, we solve arg min s » Eron(f; Qk, gx) (Line 5 of
Algorithm 1). After K iterations, we extract the greedy
policy from Q g (Line 7 of Algorithm 1).

Algorithm 1 Robust p-regularized fitted Q-iteration (RPQ)
Algorithm
1: Input: Regularization ¢, offline dataset Dpo =
(si,ai,7;,85)N |, general function classes F and G
2: Inmitialize: Qy =0 € F.
3: fork=0,--- ,K—1 do
4:  Dual variable function minimization: g, = gg, =
argmin e g Laual(9; Qr) (c.f. (8))
5. Robust ¢-regularized Q-update:
arg minge 5 Liobo(Q; Q1 g1) (c.£. (9)
6: end for
7: Output: T = argmax, Q (s, a)

Q1 =

2.3. Performance Guarantee: Suboptimality

We now discuss the performance guarantee of our RPQ
Algorithm. In particular, we characterize how close the
robust regularized value function of our RPQ Algorithm
is to the optimal robust regularized value function. We
first mention all the assumptions about the data generating
distribution p and the representation power of F and G
before we present our main results.

Assumption 1 (Concentrability). There exists a finite con-
stant C' > 0 such that for any v € {d. p | any policy © and
P € P satisfying Dy(Ps o, PY,) < 1/(AM1 = 7)) for all
s, a (both can be non-stationary)} C A(S x A), we have

lv/pll < VC.

Assumption 1 stipulates the support set of the data gener-
ating distribution p, i.e. {(s,a) € S x A : p(s,a) > 0},
to cover the union of all support sets of the distributions v,
leading to a robust exploratory behavior. This assumption is
widely used in the offline RL literature (Munos, 2003; Agar-
wal et al., 2019; Chen & Jiang, 2019; Wang et al., 2021; Xie
et al., 2021) in different forms. We adapt this assumption
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from the robust offline RL (Panaganti et al., 2022; Zhang
et al., 2024).

Assumption 2 (Approximate Robust Bellman Complete-
ness). Let € r be some small positive constant. For any
g € G, we have sup;c rinfper || f' = Tofll3,, < eF for
the data generating distribution [i.

We note that Assumption 2 holds trivially if 7, is closed
under F, that is, for any f € F and g € G, if it holds
that 7,f € F, then e = 0. This assumption has been
widely used in different forms in the non-robust offline RL
literature (Agarwal et al., 2019; Wang et al., 2021; Xie et al.,
2021) and robust offline RL literature (Panaganti et al., 2022;
Bruns-Smith & Zhou, 2023; Zhang et al., 2024).

Assumption 3 (Approximate Dual Realizability). For all
f € F, there exists a uniform constant €g such that

infyeg Laual(g; f) — infgerr () Laual(g; f) < eg.

Assumption 3 holds trivially if g*(f) € G forany f € F
(since eg = 0). This assumption has been used in earlier
robust offline RL literature (Panaganti et al., 2022; Bruns-
Smith & Zhou, 2023).

Now we state our main theoretical result on the performance
of the RPQ algorithm. In Appendix E we restate the result
including the constant factors.

Theorem 1. Let Assumptions 1 to 3 hold. Let c,(\, ) be
problem-dependent constants for p. Let T be the RPQ
algorithm policy after K iterations. Then, forany ¢ € (0,1),
with probability at least 1 — 0, we have

VO(S + 6er + reg) |
(1—9)?

O(v/Clog(|FIG1/8)/N).

| A VA e

C«p(/\a'y)
(1—7)3

Theorem 1 states that the RPQ algorithm is approximately
optimal. This theorem also gives the sample complexity
guarantee for finding an e-suboptimal policy w.r.t. the opti-
mal policy 7*. To see this, by neglecting the first term due

to inevitable function class approximation errors, for N >
co(A, 2 " T

(9((55”((171)))4 log \f|5|g\) we get VT — V™ < /(1 —1)

with probability at least 1 — ¢ for any fixed , 6 € (0,1).

Remark 1. Note that the guarantee for the TV case in Theo-
rem 1 requires making another assumption on the existence
of a fail-state (Panaganti et al., 2022, Lemma 3), Assump-
tion 8 replacing H with 1/(1 — «y). However, we specialize
Theorem 1 for the TV case by relaxing Assumption I to get
the same guarantee, which we present in Appendix E. In par-
ticular, we relax Assumption 1 to the non-robust offline RL
concentrability assumption (Foster et al., 2022), i.e. we only
need the distribution v to be in the collection of discounted
state-action occupancies on the nominal model P°.

3. Hybrid Robust ¢-Regularized
Reinforcement Learning

In this section, we provide a hybrid robust p-Regularized
RL protocol to overcome the out-of-data-distribution issue
in offline robust RL. As in Song et al. (2023), we reformulate
the problem in the finite-horizon setting to use its backward
induction feature that enables RPQ iterates to run in each
episode. We again start by discussing preliminaries and the
problem formulation.

Finite-Horizon Markov Decision Process: A finite-
horizon Markov Decision Process (hMDP) is (S, A, P =
(Pt r = (r)f=)t, H), where H is the horizon length,
forany h € [H], rp, : S x A — [0,1] is a known de-
terministic reward function and P, € A(S)ISIAl is the
transition probability function at time h. A non-stationary
(stochastic) policy m = (ﬂh)hH:_Ul where 7, : S = A(A).
We denote the transition dynamic distribution at time A
and state-action (s,a) as P, s, € A(S). Given m, we
define the state and action value functions in the usual
manner: Vﬁf(s) = B[ ri(se,a)|sn = ] start-
ing at state s, = s and a; ~ (), 141 ~ Piti.s;,a05
and Q’;;;f(s,a) = E[Zf;l ri(st,ae)lsn = s,an = al
starting at state-action s, = s,ap = a and S;41 ~
Pii1.s,.a05 @41 ~ Ter1(se41). Given m, occupancy mea-
sure over state-action pairs d}]f(s, a) = Py(sp = s,ap, =
a; ). We write 75 = (7)1, to denote an optimal deter-
ministic policy, which maximizes V5, = (VIZ D Pl

Hybrid Reinforcement Learning: The goal of hybrid RL
on hMDP (P?,r) is to learn a good policy 7 based on adap-
tive datasets consisting of both offline datasets and on-policy
datasets. Given timestep h € [H], offline dataset D}, ., =
{(siyai, 87);2q"} is generated by s; ~ Py with the
(si,a;) pairs i.i.d. sampled by , € A(S x A) offline
data distribution. For convenience, p = (/Lh)th_Ol also de-
notes the offline policy that generates D', . Given timestep
h € [H], on-policy dataset D p, = {(si,a;,s;){27 } is

generated by (s;,a;) ~ dJ and ) ~ Py . 4, forall the
previously learned policies 7 by the algorithm. Song et al.
(2023) proposes Hybrid Q-learning (HyQ) algorithm with
general function approximation capabilities and provable
guarantees for hybrid RL. The HyQ algorithm (c.f. Song
et al. (2023, Algorithm 1)) is quite straightforward: For
each iteration k € [K], do backward induction of the FQI
algorithm on timesteps h € [H| using the adaptive datasets
described above. Finally, for some starting state sy ~ do,
the performance guarantee of algorithm policies {7 }r.e[x]
is given by bounding the cumulative suboptimality quantity
0< >, K][ oy (50) — Vlg’:ﬁ (s0)]- We note the total
adaptive dataset size is N to provide comparable results
with offline RL.

Finite-Horizon Robust ¢-Regularized Markov Decision
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Process: Again, let P° be the nominal model. A finite-
horizon discounted Robust p-Regularized Markov Deci—
sion Process (hRRRMDP) tuple (S, A, P° = (P,L) he0 S
(ri)r=g, A\ H, ¢, do) where A > 0 is a robustness pa-
rameter and ¢ : R — R is as before. For h € [H],
the robust regularized reward function is r}(s,a) =
Th(s,a) + ADy(Phs,a; Py, ). For h € [H], the ro-
bust regularized value function of a policy 7 is defined
as V7, = infpep V;‘Z}, where P = ®j,5,4Ph,s,a and
Ph,s,a = {Ph,s,a S A(S) : Ph,s,a < Pﬁsya,V(s,a) S
SxAand h € [H]}. By definition, for any m, it follows that
Viry < V!;f < H. For h € [H], the optimal robust regu-
larized value function is Viy = max; Vi'y, and 7% is the
robust regularized optimal policy that achieves this optimal
value. For convenience, we denote V}:" )\(Q;‘L’ \) as Vi @Qy)
for all h € [H|. We again note that, for each h € [H]|, P
satisfies the (s, a)-rectangularity condition (Iyengar, 2005)
by definition. It enables the existence of a non-stationary
deterministic policy for m* (Zhang et al., 2024). We formal-
ize this in Proposition 6. We denote V7™ = E,q, [V (5)]
as the expected total reward.

For convenience, we let QF \ = 0 for any 7. For any

h € [H], denote the robust regularlzed Bellman operator
T : RSXA 5 RS¥A g5
(TQr+1)(s,a) = rp(s,a) + inf (10)

P}L,s,aeph,s,a

(ES’NPh,,s,a [H}IE}X Qthl(S/a a/)] + )‘Dgo(Ph,s,av P}(L),s,a))~

As Q3 = 0, doing backward iteration of T, i.e., the robust
dynamic programming Q; = TQj |, we get @, for all
h € [H]. For each timestep h € [H], we also get the robust
optimal policy as 7} (s) = argmax, Q7 (s, a).

3.1. Problem Conceptualization

In this section, we study the hybrid finite-horizon robust TV-
regularized RL problem, acquiring the necessary insights to
construct our algorithm (Algorithm 2) in the next section.
We conceptualize for general (p-divergence, but only pro-
pose our algorithm for total variation y-divergence. The
goal here is to learn a good robust policy 7 based on adap-
tive datasets consisting of both offline datasets and on-policy
datasets. We start by noting a direct consequence of Propo-
sition 1 due to similar inner minimization problems in both
infinite horizon (3) and finite horizon (10) operators.
Corollary 1. For any Q, : S x A — [0,H] and h €
[H], the robust regularized Bellman operator T (10) can be
equivalently written as

(T@nt1)(s,a) = rn(s, a)—

(1D
v inf (ABywpp " (0= Vg1 (s) /)] = ).
neoe ,

where Vi, 11(s) = maxgec 4 Qni1(s,a) and © C R is some
bounded real line that depends on ©*.

As in Section 2, this dual reformulation enables us to use
the datasets from only the nominal model P? for estimating
the robust regularized operator in its primal form (10).

We start by recalling the philosophy of the HyQ algorithm

(Song et al., 2023) to use the FQI algorithm for adaptive

datasets. We do the same for our hybrid finite-horizon robust

-regularized RL problem here. For each i € [H], we need

to estimate the true Bellman error E o, [|7 Q5 41 (s,a) —
s,arvd;t

Qi (5, a) )+ X020 Egaape,, [T Qi (5,0) — Qi (s, )]
using offline dataset from 5, and the on-policy dataset from
de po by the learned policies from the algorithm. We remark
that the out-of-data-distribution issue appears when we only
have access to the offline dataset to estimate the summation
term above, which depends on dZ‘ Po-

As discussed in Section 2, the true Bellman error it-
self involves solving an inner convex minimization prob-
lem in TQj,,(s,a) (11) for every (s,a) and h that is
challenging for countably large state setting. To alle-
viate this challenging task, we again utilize the func-
tional minimization Proposition 2 developed in Sec-
tion 2. For any h, we denote the set of admissible
distributions of nominal model P° as D), = {up} U
{dj; po | for any policy (including non-stationary) 7 }. Now
we redefine dual loss for any fr11 € Fri1,Vn € Dy, as
Ldual(g; fh+17 Vh,) = Es,awyh,s/wPﬁ,S‘a[ (12)
A" ((g(s, @) —max foia(s',a)/A) = g(s, a)].

We state a direct consequence of Proposition 2 here.

Corollary 2. Let Lyyal be the loss function defined in (12).
Fix h € [H]| and consider any policy w. Then, for any
Sunction fr1 : S x A — [0, H| and any vy, € Dy, we have

inf Ldual(g; fh+1a l/h) = Es,awuh (13)
gELl(Vh)
inf (VEwry, [0 ((n = max fusa (5", ) /)] = ).

For any given f), : S x A — [0, H] and h, we redefine
operator 7, for all g € Gy, as

(Tofs1)(s,@) = ra(s,0)— (14)
NEywrg " (9(s,0) = max fuia(s',0)) /)] + (s, 0)

We have all the necessary tools now. In the following sub-
section, we develop an algorithm that naturally extends our
RPQ algorithm using adaptive datasets.

3.2. Hybrid Robust regularized Q-iteration

In this section, we propose our algorithm based on the tools
developed so far. Our proposed algorithm is called Hy-
brid robust Total-variation-regularized Q-iteration (HyTQ:
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Algorithm 2 HyTQ Algorithm

1: Input: Offline dataset D) ~ p, of size mog = T for
h € [H], general function classes F and G.
2: Initialize: QY = 0 € F,.
3: fork=0,--- , K—1 do
4:  Compute 7, as Ty »(s) = arg max, Q¥ (s, a)
Vh, collect mon=1 online dataset Df; ~ dj"p,
Initialize: Q%™ =0 € Fy
forh=H —1,---,0do
Aggregate adaptive dataset Df = Dy + Z]::o D},
Dual variable fungtion minimization: (c.f. (15))
gl}j—i_l = arg mingegh Ldual(g; QZi%? D}Ii)
10: Robust o-regularized Q-update: (c.f. (16))
1 arg minge r, Luovo(Q5 Q5L g, D)
11:  end for
12: end for

PR x;L

pronounced height-Q) Algorithm, summarized in Algo-
rithm 2. The total variation Drv (-divergence (1) is de-
fined with (t) = |t — 1|/2. The inputs to this algorithm
are the offline dataset, and two general function classes
F = Oneim)FnG = @nemGn. For any h € [H],
FnC(f:SxA—[0,H])andG), C (g: SxA—[0,A])
represent action-value functions and dual-variable functions
at h, respectively. We redefine, using (17), the empirical
dual loss and the robust empirical squared robust regularized
Bellman error for dataset D as

Laual(g; £, D) = Ep| (15)
(9(si, ai) — max f(si,a"))4 — g(si,a;)] and
Eron(Q§ f,9,D) = Ep[(rn(si,a;) — (9(si,a;)—
max f(s,a'))4 + g(si, ai) = Q(si,04))’]. (16)

3.3. Cumulative Suboptimality Guarantee

We now discuss the performance guarantee in terms of the
cumulative suboptimality of our HyTQ Algorithm. We
first mention all the assumptions before we present our
main result and add a brief discussion. We provide detailed
discussion in Section 4.

Assumption 4 (Robust Bellman Error Transfer Coefficient).
Let up, € A(S x A) be the offline data generating distribu-
tion. For any f € F, there exists a small positive constant
C(7*) for the optimal policy * that satisfies

hHZ_Ol Es,arvdé;’g'* [Tfh+1(8, (1) - fh (37 a)]

B B gy (1T frga (5,0) — fu(s, a)]]

< O(r).

We develop this assumption from non-robust offline RL
work (Song et al., 2023).

Assumption 5 (Approximate Value Realizability and Ro-
bust Bellman Completeness). Let € 7 >0 be small constant.

Forany h € [H] and gy, € Gy, we have infscr, sup,, ||f—
Eh,thH%’Vh < e, forall v, € Dy,. Furthermore, for
any fny1 € Fnt1, we have Ty, frny1 € Fh.

Assumption 6 (Approximate Dual Realizability). Let eg
be some small positive constant. For any h € [H]
and fp+1 € Fpy1, we have inf yeg, Lavai(g; frt1,Vn) —
infgeLl(Uh) Lauwa(g; fra1,vn) < eg, forall vy, € Dy,

We adapt these two enhanced realizability assumptions from
the non-robust offline RL literature (Xie et al., 2021; Fos-
ter et al., 2022; Song et al., 2023) to our problem. The
assumptions in Section 2 are not directly comparable, but
for the sake of exposition, let Fj, G, be the same across h.
First, note that Assumption 3 with all-policy concentrability
(Assumption 1) is equivalent to Assumption 6. Second, As-
sumption 2 implies inf s 7 || f — T fI|3,,, < €. Now again,
with all-policy concentrability (Assumption 1), it is the ap-
proximate value realizability (Assumption 5). We know
non-robust offline RL is hard (Foster et al., 2022) with just
realizability and all-policy concentrability. As robust RL is
at least as hard as its non-robust counterpart (Panaganti &
Kalathil, 2022), we also assume Bellman completeness in
Assumption 5.

Assumption 7 (Bilinear Models). Consider any f €
F,g € Gand h € [H|. Let ©' be greedy pol-
icy w.r.it f. There exists an unknown feature mapping
X, F = R? and two unknown weight mappings
WELWe o Fx G — RY with maxy | Xp(f)]2 <
Bx and maxp,max{|[W(f,q)2, Wi (f.9)l2} <
By such that both Ed;;f (fn(s,a) — Ty, fas1)+] =

|<Xh(f)a W}?(f? g)>| and Ed;{f [(Tgh,fh+l _ Tfh+1)+] _
|[(Xn(f), Wi, 9))]| holds.

We adapt this problem architecture assumption on P° with
F and G for our setting from a series of non-robust online
RL works (Jin et al., 2021a; Du et al., 2021).

Assumption 8 (Fail-state). There is a fail state sgp
for all h € [H|, such that ry(sf,a) = 0 and
Phs;a(spn) = 1, foralla € Aand P € P satisfying
Drv(Prr,stars P o o) < max{1, H/A} forall ', s',d’.

This assumption enables us to ground the value of such P’s
at sy to zero, which helps us to get a tight duality (c.f.
(17)) without having to know the minimum value across
large S. There are approximations to this in the literature
(Wang & Zou, 2022). But we adopt this less restrictive
assumption from Panaganti et al. (2022) for convenience.

Now we state our main theoretical result on the perfor-
mance of the HyTQ algorithm. The proof is presented in
Appendix F.

Theorem 2. Let Assumptions 4 to 8 hold. Fix any
6 € (0,1). Then, HyTQ algorithm policies {7y} e[k

satisfy Srl(V™ - V™) < O(FFx + eg) +
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(5(maX{C(7r*), 1WdAH?K (A + H)log(|F||G|/6)) with
probability at least 1 — §.

Remark 2. We specialize this result for bilinear model ex-
amples, linear occupancy complexity model (Du et al., 2021,
Definition 4.7) and low-rank feature selection model (Du
et al., 2021, Definition A.1), in Appendix F.2. We also spe-
cialize this result using standard online-to-batch conversion
(Shalev-Shwartz & Ben-David, 2014) for uniform policy
over HyTQ policies {}, } [k to provide sample complexity

O(max{(C(r*))2, 1}dH? (A + H)?(log(|F|g]/5))?) /<>
in the Appendix F.2.

4. Theoretical Discussions and Final Remarks

In this section, we compare our results with the most rele-
vant ones from the robust RL literature for the total variation
(p-divergence setting. Our Table 1 should be used as a refer-
ence. We provide more detailed discussions in Appendix B
on the proof ideas of our results, comparison of results for
other ¢-divergence specializations, and the bilinear model
architecture used in the hybrid robust RL setting.

As mentioned in Remark 1, we have a specialized result
in Appendix E.2 for the total variation ¢-divergence. We
get the suboptimality result (Theorem 4) for the RPQ
algorithm as O <)\ (c::isgs(\l/]%\gn
presented the higher-order terms. Panaganti et al. (2022,
Theorem 1) mentioned in Table 1 also exhibits same
suboptimality guarantee replacing A with p~1. As we noted
before, p (the robustness radius parameter in RMDPs) and
A (the robustness penalization parameter in RRMDPs)
are inversely related (Yang et al., 2023), and for the
TV p-divergence we observe a straightforward relation

between the two as A = p~!. Now for a tabular setting

bound, our result further reduces to 0] (%) Now

>, where we only have

comparing this to the minimax lower bound (Shi et al.,
2023, Theorem 2), our suboptimality bound is worse off by
the factors /|S||.A| and 1/(1 — ). Nevertheless, we push
the boundaries by providing novel suboptimality guarantee
studying the robust RL problem in the hybrid RL setting.
Furthermore, as mentioned earlier in Remark 2, we provide
the offline+online robust RL suboptimality guarantee
O (max{C(x*), 1WdH(\ + H) log(1F1/G1/3)/VN )

in the Appendix F. We also remark that the HyTQ algorithm
can be proposed under the RMDP setting with a similar
suboptimality guarantee due to the similarity of the dual
Bellman equations under the TV (-divergence for RMDPs
and RRMDPs (c.f. Equation (33) and Xu* et al. (2023,
Lemma 8)). For the sake of consistency and novelty,
we present our results solely for the RRMDP setting.
As mentioned earlier, the concentrability assumption
improvement is two-fold (Lemma 8): all-policy concentra-
bility (Assumption 9) to single concentrability to transfer

coefficient. This is the first of its kind result that does not
yet have any existing lower bounds to compare in the robust
RL setting. Under similar transfer coefficient, Bellman
completeness, and bilinear model assumptions, the HyTQ
algorithm sample complexity (Corollary 5) is comparable
to that of a non-robust RL algorithm (Song et al., 2023), i.e.,
O(max{(C(7*))?, 1}dH® log(H|F|/§)/e%). We leave it
to future work for developing minimax rates and getting
optimal algorithm guarantees.

We also offer computational tractability in our RPQ and
HyTQ algorithms due to the usage of empirical risk min-
imization (Steps 4 & 9 resp.), over the general function
class G, and least-squares (Steps 5 & 10 resp.), over the
general function class F, computationally tractable estima-
tors. This two-step estimator update avoids the complexity
of solving the inner problem for each state-action pair (lead-
ing to scaling issues for high-dimensional problems) in the
original robust Bellman operators (Equations (3) and (10)).
We conclude this section with an exciting future research
direction that remains unsolved in this paper. To solve the
hybrid robust RL problem for general (-divergence. In this
work, we noticed while building hybrid learning for robust
RL that one would require online samples from the worse-
case model (c.f. the model that solves the inner problem
in robust Bellman operator Equation (10)) for general (-
divergences due to the current analyses dependent on the
bilinear models. We use the dual reformulation for the total
variation (-divergence and provide current results support-
ing the HyTQ algorithm. We remark that using the same
approach for other general ¢-divergences, we get exponen-
tial dependence on the horizon factor. This warrants more
sophisticated algorithm designs for the hybrid robust RL
problem under general ¢-divergences.

5. Conclusion

In this work, we presented two robust RL algorithms. We
proposed Robust p-divergence-fitted Q-iteration algorithm
for general ¢-divergence in the offline RL setting. We pro-
vided performance guarantees with unified analysis for all
p-divergences with arbitrarily large state space using func-
tion approximation. To mitigate the out-of-data-distribution
issue by improving the assumptions on data generation,
we proposed a novel framework called hybrid robust RL
that uses both offline and online interactions. We proposed
the Total-variation-divergence Q-iteration algorithm in this
framework with an accompanying guarantee. We have pro-
vided our theoretical guarantees in terms of suboptimality
and sample complexity for both offline and offline+online ro-
bust RL settings. We also rigorously specialized our results
to different (-divergences and different bilinear modeling
assumptions. We have provided detailed comparisons with
relevant prior works while also discussing interesting future
directions in the field of robust reinforcement learning.
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A. Related Works -

Offline RL: Offline RL tackles the problem of learning optimal policy using minimal amount of offline/historical data
collected according to a behavior policy (Lange et al., 2012; Levine et al., 2020). Due to offline data quality and no access
to simulators or any world models for exploration, the offline RL problem suffers from the out-of-distribution (Robey
et al., 2020; Yang et al., 2021) challenge. Many works (Fujimoto et al., 2019; Kumar et al., 2019; 2020; Fujimoto & Gu,
2021; Kostrikov et al., 2021) have introduced deep offline RL algorithms aimed at alleviating the out-of-distribution issue
by some variants of trust-region optimization (Schulman et al., 2015; 2017). The earliest and most promising theoretical
investigations into model-free offline RL methodologies relied on the assumption of uniformly bounded concentrability such
as the approximate modified policy iteration (AMPI) algorithm (Scherrer et al., 2015) and fitted Q-iteration (FQI) (Munos &
Szepesvari, 2008) algorithm. This assumption mandates that the ratio of the state-action occupancy distribution induced by
any policy to the data generating distribution remains uniformly bounded across all states and actions (Munos, 2007; Antos
et al., 2008; Munos & Szepesvari, 2008; Farahmand et al., 2010; Chen & Jiang, 2019). This makes offline RL particularly
challenging (Foster et al., 2022) and there have been efforts to understand the limits of this setting.

Robust RL: The robust Markov decision process framework (Nilim & El Ghaoui, 2005; Iyengar, 2005) tackles the challenge
of formulating a policy resilient to model discrepancies between training and testing environments. Robust reinforcement
learning problem pursues this objective in the data-driven domain. Deploying simplistic RL policies (Corporation, 2021)
can lead to catastrophic outcomes when faced with evident disparities in models. The optimization techniques and analyses
in robust RL draw inspiration from the distributionally robust optimization (DRO) toolkit in supervised learning (Duchi &
Namkoong, 2018; Shapiro, 2017; Gao & Kleywegt, 2022; Bertsimas et al., 2018; Namkoong & Duchi, 2016; Blanchet et al.,
2019). Many heuristic works (Xu & Mannor, 2010; Wiesemann et al., 2013; Yu & Xu, 2015; Mannor et al., 2016; Russel &
Petrik, 2019) show robust RL is valuable in such scenarios involving disparities of a simulator model with the real-world
model. Many recent works address fundamental issues of RMDP giving concrete theoretical understanding in terms of
sample complexity (Panaganti & Kalathil, 2021b; 2022; Xu* et al., 2023; Shi & Chi, 2022; Shi et al., 2023). Many works
(Panaganti & Kalathil, 2021a; Wang & Zou, 2021; Panaganti & Kalathil, 2022) devise model-free online and offline robust
RL algorithms employing general function approximation to handle potentially infinite state spaces. Recent work (Panaganti
et al., 2023b) introduces distributional robustness in the imitation learning setting. There have been works (Panaganti, 2023;
Panaganti et al., 2023a; Wang et al., 2023c) connecting robust RL with offline RL by linking notions of robustness and
pessimism.

B. Theoretical Discussions and Final Remarks ww
In this section, we first discuss the proof ideas for our results, focusing on discussions of the assumptions and their
improvements. Next, we compare our results with the most relevant ones from the robust RL literature. Our Table 1 should
be used as a reference. Finally, we discuss the bilinear model architecture in detail, as ours is the first work to consider it in
the robust RL setting under the general function architecture for the value and dual functions approximations.

Discussions on Proof Sketch: We first discuss our RPQ algorithm (Algorithm 1) result. We note that the concentrability
(Assumption 1) assumption requires the data-generating policy to be robust exploratory. That is, it covers the state-action
occupancy induced by any policy and any ¢-divergence set transition model. We reiterate the proof idea of the suboptimality
result (Panaganti et al., 2022, Theorem 1) of the RFQI algorithm (Panaganti et al., 2022, Algorithm 1). We highlight the most
important differences with Panaganti et al. (2022); Zhang et al. (2024) here. Firsty, we generalize the robust performance
lemma (Eqymd, [V | = Eayodo V5] < 2|Q™ — Qkel|1../(1 — 7) at Equation (26)) for any general o-divergence problem.
Secondly, we identify that it is hard to come up with a unified analysis for general ¢-divergences in robust RL setting via the
dual reformulation of the distributionally robust optimization problem (Duchi & Namkoong, 2018, Proposition 1). Thus, a
direct extension of the results in Panaganti et al. (2022) is hard for general ¢-divergences. By RPQ analyses, we showcase
that it is indeed possible to get a unified analysis for the robust RL problem using the RRMDP framework. Thirdly, we show
the generalization bounds for the empirical risk minimization (Proposition 7) and least squares (Proposition 8) estimators
for general (p-divergences with unified results. By these three points, equipped with the more general robust exploratory
concentrability (Assumption 1), we have a unified general ¢-divergences suboptimality result (Theorem 1) for the RPQ
algorithm.
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We now discuss our HyTQ algorithm (Algorithm 2) result. We immediately make an important note here. The concentrability
assumption improvement is two-fold: all-policy concentrability (Assumption 9) to single concentrability, and then to the
robust Bellman error transfer coefficient (Assumption 4) via Lemma 8. We refer to Foster et al. (2022); Song et al. (2023)
for further discussion on such concentrability assumption improvements and tightness in the non-robust offline RL. We
leave it to future work for more tightness of these assumptions in the robust RL setting. We execute a tighter analysis in our
HyTQ algorithm result (Theorem 2) compared to our RPQ algorithm TV (-divergence specialized result (Theorem 4). We
summarize the steps as follows:

Step (a): We meticulously arrive at the following robust performance lemma (c.f. Equations (37) and (39)) for each algorithm
iteration k: Eggnado V5™ (50) = V5™ (50)] € Ynsg By amap [(TQF 11 (5,0) = QF (5,0)) 1]+ X550 By e [(QF(s,0) —
T Q.1 (s,a))+]. We highlight that the first summand here depends on the samples from state-action occupancy of the
optimal robust policy and for the second summand it is the w.r.t. the learned HyTQ policies. It is now intuitive to connect
the first summand with the offline samples and the second with the online samples.

Finally, step (b): With the above gathered intuition, firstly, the history dependent dataset collected by different offline
data-generating policy and the learned HyTQ policies on the nominal model P° warrants more sophisticated generalization
bounds for the empirical risk minimization and least squares estimators. We prove a generalization bound for empirical
risk minimization when the data are not necessarily i.i.d. but adapted to a stochastic process in Appendix D. This result is
applicable to more machine learning problems outside of the scope of this paper as well. Finally, equipped with the transfer
coefficient (Assumption 4) and bilinear model (Assumption 7) assumptions for the nominal model P°, we formally show
generalization bounds for the empirical risk minimization and least squares estimators in Propositions 9 and 10 respectively.
We complete the proof by combining these two steps.

Remark 3. We offer computational tractability in our RPQ and HyTQ algorithms due to the usage of empirical risk
minimization (Steps 4 & 9 resp.), over the general function class G, and least-squares (Steps 5 & 10 resp.), over the general
function class F, computationally tractable estimators. This two-step estimator update avoids the complexity of solving the
inner problem for each state-action pair (leading to scaling issues for high-dimensional problems) in the original robust
Bellman operators (Equations (3) and (10)). To the best of our knowledge, no purely online or purely offline robust RL
algorithms are known to be tractable in this sense, except other robust Q-iteration and actor-critic methods (discussed in
Section 1) and except under much stronger coverage conditions (like single-policy and uniform) in the tabular setting.

Theoretical Guarantee Discussions: In the suboptimality result (Theorem 1) for the RPQ algorithm (Algorithm 1), we
only mention the leading statistical bound with a problem-dependent (on (-divergence) constant c,, (A, y). We provide the
exact constants pertaining to different (-divergences in a restated statement of Theorem 1 in Theorem 3. Furthermore, the
constants ¢y, ¢z, cs in Theorem 3 take different values for different ¢-divergences provided in Proposition 3. Similarly, for
the suboptimality result (Theorem 2) of the HyTQ algorithm (Algorithm 2), we provide a more detailed bound in a restated
statement in Theorem 5.

In the following we provide comparisons of suboptimality results with relevant prior works. But first, we make an important
note here on p, the robustness radius parameter in RMDPs, and ), the robustness penalization parameter in RRMDPs,
mentioned briefly in Table 1. (Levy et al., 2020; Yang et al., 2023) establish the regularized and constrained versions of
DRO and robust MDP problems, respectively, are equivalent by connecting their respective (A and p) robustness parameters.
Moreover, both observe rigorously that A and p are inversely related. This is intuitively true, as A — oo and p — 0 both
yield the non-robust solutions on the nominal model P° and as A — 0 and p — oo both yield the conservative solutions
considering the entire probability simplex for the transition dynamics. However, it is an interesting open problem to establish
an exact analytical relation between the robustness parameters A and p. We leave this to future research as it is out of the
scope of this work.

Here we specialize our result (Theorem 3) for the chi-square ¢-divergence YR3L problem. We get the suboptimality

max{ﬁ,)\}\/clog(l}"\\gl)
(1-7)2VN
suboptimality of Algorithm 2 in Yang et al. (2023, Theorem 5.1) for chi-square -divergence is stated for A = 1/(1 — )

~ max{ﬁ, log(|S|[.A[)}

as O d?nin(li’Y)3N1/3
for comparison between these two results in the tabular setting with generative/simulator modeling assumption: function

approximation classes with full dimension yields log(|F||G|) = O(|S||.A|) (Panaganti et al., 2022) and uniform support
data sampling yields pmin = 1/(|S]|A]) and C < |S||A] (Shi et al., 2023). Now our result with A = 1/(1 — ~) reduces

for the RPQ algorithm as o , where we only have presented the higher-order terms. The

> where dy;, is described in Table 1. We use the typical equivalence from RL literature
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3 3 1 /
to O (%) and their result (Yang et al., 2023) reduces to 4] (3| A maﬁil;)g);;/Slog(ls‘lA‘)}
warrant attention here. Firstly, compared to a model-based robust regularized algorithm (robust value iteration using
empirical estimates of the nominal model P°) (Yang et al., 2023, Theorem 3.2), our suboptimality bound is worse off by the
factors /|S||.A| and 1/(1 — ~y). We leave it to future work to fine-tune and get optimal rates. Secondly, their result Yang
et al. (2023, Theorem 5.1) exhibit inferior performance compared to ours in all parameters, but we do want to note that they
make a first attempt to give suboptimality bounds for the stochastic approximation-based algorithm. The dependence on
|S||.A| is typically known to be bad using the stochastic approximation technical tool (Chen et al., 2022), and Yang et al.
(2023, Discussion on Page 16) conjectures using the Polyak-averaging technique to improve their suboptimality bound rate
to N—1/2,

) . Two comments

Here we discuss and compare our result for the total variation o-divergence setting. As mentioned in Remark 1, we have
a specialized result in Appendix E.2 for the total variation ¢-divergence. We get the suboptimality result (Theorem 4)

. A [ 2/ Civ log(IF11G])
for the RPQ algorithm as O (W
et al. (2022, Theorem 1) mentioned in Table 1 also exhibits same suboptimality guarantee replacing A with p~1. As we
noted before, p (the robustness radius parameter in RMDPs) and A (the robustness penalization parameter in RRMDPs)

are inversely related, and for the TV -divergence we observe a straightforward relation between the two as A = p~ 1.

Using the earlier arguments for a tabular setting bound, our result further reduces to o (%

to the minimax lower bound (Shi et al., 2023, Theorem 2), our suboptimality bound is worse off by the factors /|S||.A|
and 1/(1 — 7). Nevertheless, we push the boundaries by providing novel suboptimality guarantee studying the robust RL
problem in the hybrid RL setting. Furthermore, as mentioned earlier in Remark 2, we provide the offline+online robust RL

suboptimality guarantee O (max{C’(ﬂ'*), 1}VdH3 (A + H) log(|F]| |Q|/5)/\/N) in the Appendix F. We also remark that

the HyTQ algorithm can be proposed under the RMDP setting with a similar suboptimality guarantee due to the similarity of
the dual Bellman equations under the TV @-divergence for RMDPs and RRMDPs (c.f. Equation (33) and Xu* et al. (2023,
Lemma 8)). For the sake of consistency and novelty, we present our results solely for the RRMDP setting. As mentioned
earlier, the concentrability assumption improvement is two-fold (Lemma 8): all-policy concentrability (Assumption 9) to
single concentrability to transfer coefficient. This is the first of its kind result that does not yet have any existing lower
bounds to compare in the robust RL setting. Under similar transfer coefficient, Bellman completeness, and bilinear model
assumptions, the HyTQ algorithm sample complexity (Corollary 5) is comparable to that of a non-robust RL algorithm
(Song et al., 2023), i.e., O(max{(C(7*))?, 1}dH® log(H|F|/§)/e?). We leave it to future work for developing minimax
rates and getting optimal algorithm guarantees.

) , where we again only have presented the higher-order terms. Panaganti

). Now comparing this

Here we specialize our result (Theorem 3) for the KL -divergence yR3L problem. We get the suboptimality for RPQ as

6 A=y exp{(A(1—=7)) "' }1/Clog(|FIG])
(1—y)2vVN

) , where we only have presented the higher-order terms. Using the earlier

arguments for a tabular setting bound, our result with A = 1/(1 — ~y) again reduces to O (%) Zhang et al. (2024,
Theorem 5) mentioned in Table 1 also exhibits same suboptimality guarantee. Two remarks are in order here. Firstly, we
remark that our RPQ algorithm and its theoretical guarantee unifies for a class of -divergence classes, whereas Zhang et al.
(2024, Algorithm 1) is specialized for the KL (-divergence. This steers towards our first main contribution discussed in
Section 1. Secondly, we remark the robust regularized Bellman operator Equation (3) for the KL (-divergence has a special
form due to the existence of an analytical worse-case transition model. This arrives at a special structure of the form of an
exponential robust Bellman operator in a Q-value-variant space. This special structure helps avoid the dual variable function
update (Step 4) in the RPQ algorithm and the log(|G|) factor in the suboptimal guarantee. We choose not to include this
specialized result in this work (like we did for the TV ¢-divergence in Appendix E.2) and directly point to Zhang et al.
(2024). We do highlight here an important note for such a choice in our paper. The abovementioned special structure forces
us to get online samples from all the transition kernels (c.f. Assumption 1), which is unrealistic in practice, to achieve an
improvement in the hybrid robust RL setting. We leave it to future work for developing such improved algorithm guarantees
in the hybrid robust RL setting for other ¢-divergences.

Discussion of Bilinear Models in the Hybrid Robust RL setting: We emphasize that while our bilinear model for the
HyTQ algorithm is specialized to low occupancy complexity (i.e. the occupancy measures themselves have a low-rank
structure) and low-rank feature selection model (i.e. the nominal model P° has a low-rank structure) in Appendix F.2,
the function classes F (Q-value representations) and G (dual-value representations) can be arbitrary, potentially nonlinear
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function classes (neural tangent kernels, neural networks, etc). Thus, even in the tabular setting with large state space (e.g.
|S| > O(10°)) for the bilinear model, our suboptimality bounds only scale with the complexity of the function classes F
and G, which can considerably be low compared to |S|. For example, linear function approximators (e.g. linear feature
dimension d = log(|F||G|) < |S||.A]), RKHS approximators with low dimension features, neural tangent kernels with low
effective neural net dimension, and more function approximators. Moreover, our work solves the robust RL problem with
more nuances, which is at least as hard as the non-robust RL problem. Thus, due to the new upcoming research status of
robust RL in the general function approximation setting, we believe it is currently out of scope for this work to satisfy more
general bilinear model classes (Du et al., 2021). Nevertheless, our initial findings for robust RL by the HyTQ algorithm in
the hybrid learning setting reveal the hardness of finding larger model classes for RRMDPs with general ¢-divergences.

C. Useful Technical Results -

We state the following result from the penalized distributionally robust optimization literature (Levy et al., 2020).

Lemma 1 (Levy et al., 2020, Section A.1.2). Let P° be a distribution on the space X and letl : X — R be a loss function.
For p-divergence (1), we have

I(X) -
sup EP[I(X) - )\Dcp(P7 PO)] = inf )\Epo |:<p* <()n):| +n,
P& Po neR A

where p*(s) = sup;~q{st — o(t)} is the Fenchel conjugate function of . Moreover, the optimization on the right hand
side is convex in 1.

We state a standard concentration inequality here.

Lemma 2 (Bernstein’s Inequality (Vershynin, 2018, Theorem 2.8.4)). Fix any ¢ € (0,1). If X1, -+ , X1 are independent
and identically distributed random variables with finite second moment. Assume that | X; — E[X,]| < M, for all t. Then we
have with probability at least 1 — 6:

E[X1] ——ZXt <

2E[X?] log(2/6) Mlog(?/d)
T 3T '

We now state a useful concentration inequality when the samples are not necessarily i.i.d. but adapted to a stochastic process.

Lemma 3 (Freedman’s Inequality (Song et al., 2023, Lemma 14)). Let X1, -- , X1 be a sequence of M > 0-bounded real
valued random variables where X; ~ P; from some stochastic process Py that depends on the history X1,--- , X;_1. Then,
forany § > 0and \ € [0,1/2M], we have with probability at least 1 — 0:

log(2/0)
e

T
BLX; | PJ)| < A3 _(2MIELX: | R +ELX? | P+

1

We now state a result for the generalization bounds on empirical risk minimization (ERM) (Shalev-Shwartz & Ben-David,
2014).

Lemma 4 (ERM Generalization Bound (Panaganti et al., 2022, Lemma 3)). Let P be the data generating distribution on
the space X and let H be a given hypothesis class of functions. Assume that for all x € X and h € H for loss function | we
have that |l(h, )| < ¢ for some positive constant c; > 0 and I(h, x) is c3-Lipschitz in h. Given a dataset D = {X;}¥,,
generated independently from P, denote h as the ERM solution, i.e. h = arg ming, ¢4, (1/N) Z 1 U(h, X;). Furthermore,
let H be a finite hypothesis class, i.e. |H| < oo, with |h o x| < cg forall h € H and x € X. For anyﬁxed 6 €(0,1) and

h* € argming, ¢y Ex~p[l(h, X)], we have

h 21 21 5
o pll(h, X)] — Exeopll(h*, X)] < 2ep051) 2BUHD 4 5. [2108(8/0)
N N
with probability at least 1 — §.

We now state a result from variational analysis literature (Rockafellar & Wets, 2009) that is useful to relate minimization of
integrals and the integrals of pointwise minimization under decomposable spaces.
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Remark 4. A few examples of decomposable spaces are LP(S x A, £(S < A), ), foranyp > 1, and M(S x A, 3(S x A)),
the space of all (S x A)-measurable functions.

Lemma 5 (Rockafellar & Wets, 2009, Theorem 14.60). Let X be a space of measurable functions from ) to R that is
decomposable relative to a o-finite measure (i on the o-algebra A. Let f : ) x R — R (finite-valued) be a normal integrand.
Then, we have

inf flw, z(w))p(dw) :/ (mf flw, x)) p(dw).

2€X J,eQ weN
Moreover, as long as the above infimum is finite, we have that ' € argmin,cy | ., f(w, z(w))u(dw) if and only if
z'(w) € argmin, g f(w, x) for p-almost everywhere.

Now we state a few results that will be useful for the analysis of our finite-horizon results in this work. The following result
(Song et al., 2023, Lemma 6) is useful under the use of bilinear model approximation. This result follows from the elliptical
potential lemma (Lattimore & Szepesvari, 2020, Lemma 19.4) for deterministic vectors.

Lemma 6 (Elliptical Potential Lemma). Let X, (f!), -+, X5 (f1) € R? be a sequence of vectors with | X1, (f!)|| < Bx <
oo forallt < T and fix o > B%. Define $.j, = Z:Zl Xn(fO)Xn(f7)" + ol gxq fort € [T). Then, the following holds:

Yot IXn(f) s, < v/2dT log(1 + (TBX/(od))).

We now state a result for the generalization bounds on the least-squares regression problem when the data are not necessarily
1.i.d. but adapted to a stochastic process. We refer to Van Erven et al. (2015) for more statistical and online learning
generalization bounds for a wider class of loss functions.

Lemma 7 (Online Least-squares Generalization Bound (Song et al., 2023, Lemma 3)). Let L, M > 0, § € (0,1), and
let X be an input space and ) be a target space . Let H : X — [—M, M] be a given real-valued hypothesis class
of functions with |H| < oo. Given a dataset D = {(z;,y;)}Y, denote h as the least square solution, i.e. h =
argming ¢, EZ\; (h(xt) — yt)%. The dataset D is generated as xy ~ Py from some stochastic process Py that depends on
the history {(x1,y1), ..., (Xt—1,Y1—1)}, and y; is sampled via the conditional probability p(- | x;) as y: ~ p(- | x¢) =
h*(x+) + e¢, where the function h* satisfies approximate realizability i.e. infpc3 (1/N) Zil Eynp, (h*(z) — h(2))? <7,
and &;Y | are independent random variables such that E[y; | x;] = h*(x;). Suppose it also holds max; |y;| < L and
max, |h*(x)| < M. Then, the least square solution satisfies with probability at least 1 — §:

ZEENP, — h*(2))? < 3yN + 64(L + M)2 log(2|H]/5).

D. Useful Foundational Results Y S

We provide the following result highlighting the necessary characteristics for specific examples of the Fenchel conjugate
functions @*.

Proposition 3 (¢-Divergence Bounds). Ler V' € [0, Vmax]|5| be any value function and fix a probability distribution
P° € A(S). Define h(y,n) = (A¢* ((n—1y)/\) —n). Consider the following scalar convex optimization problem:
inf,cocr Esmpoh(V(s),n). Let the maximum absolute value in © be less than or equal to c3, let |h(V (s),n)| < c1 for all
1 € O, and let h(V (s),n) be co-Lipschitz in 1; hold for some positive constants ¢y, ¢, c3. We have the following results for
different forms of p:

(i) Let Assumption 8 hold. For TV distance i.e. p(t) = |t—1|/2, we have © = [—\/2, \/2], hence c3 = \/2, ¢1 = 2A+Viax,
and co = 2.

(ii) For chi-square divergence i.e. o(t) = (t — 1)%, we have © = [\, 2Vipax + 2)], hence c3 = 2Viax + 2\, ¢1 =
A+ (2Vimax + 4N) (BB + 2), and c5 = (3 4 Yaex),

(iii) For KL divergence i.e. p(t) = (t — 1)2, we have © = [\, Vipax + A, hence c3 = Vipax + A, c1 = Aexp( max) -1),
and cy = (exp(Ymex) + 1),

(iv) Fix @ € (0,1). For a-CVaR i.e. o(t) = 1[0,1/a), we have © = [0, Vinax/(1 — )], hence ¢z = Viax/(1 — @),
c1 = 2Vimax/(a(l — )), and ca = 1+ a1

Proof. We first prove the statement for TV distance with ¢(t) = |t — 1|/2. From ¢-divergence literature (Xu* et al., 2023),
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we know
_% S S _%a
@ (s)=4s s€[-3,3]
+oo s> %
Thus, we have
}]Iel]%ESNPOh(V(S)vn) - 7%161{{ ESNPD P‘(p ( A )] n
a -V 1
@ inf Espo [)\maux{nf(s)7 —3 1—n

neR, T/*min; Vi(s) S%
-V 1
© Eswpo[Amax{w7—§}] -7

neR, <3 A
Q' inf  Eeopel(n - V(s) +A2)4] — M2
neR,$<3
D it Eeopl(f — V(s)s] o
neR <A
(_e) : I e
—Oglg,fg Eswpo[(n' =V (s)+] = 7', (17)

where (a) follows by definition of ¢*, (b) by Assumption 8, (c) by the fact max{z,y} = (z —y)4 +y forany z,y € R, and
(d) follows by making the substitution 7 = 7’ — A /2. Finally, for (e), notice that since V' (s) > 0, Egwpo[(n' =V (s))+]—1' =
—n' > 0 holds when 7’ < 0. So inf,/¢(—oo,0] Es~po[(n" — V(8))+] =7’ = 0is achieved at ' = 0.

We immediately have © = [—A/2,A/2] since n = i’ — A\/2. Since n < A/2 and V(s) < Viyax, we further get
[h(V(s),n)| < 2X + Vinax. Forny,m2 € O, from the fact |(z)+ — (y)+| < [(z — y)+| < |2 — y| we have [2(V(s), m) —
h(V(s),n2)| < 2|m — nz|. This proves statement ().

We now prove the statement for chi-square divergence with (t) = (t — 1)? following similar steps as before. From
p-divergence literature (Xu* et al., 2023), we know ¢*(s) = (s/2 + 1)1 — 1. Thus, we have

. . m=Vis),
inf By poh(V(s),n) = if Eapo[Ap™ (=) =
. n—Vis) 27y
= inf Esvpe M= + D3 = A—1
D inr LB pol(r — V()2 +A—1f
n’eR 4\ s +
( 1

1 f 7ESN o I V 2 )\_ ’
77/6[%,21‘9mx+4A] AN P [(n (8)i]+ 7,

where ( f) follows by making the substitution 7 = 7 — 2. Finally, for (g), observe that the function g(n’) = 25 Espo[(n/ —
V(s))3] + XA — 1’ is convex in the dual variable i’ and inf, cr g(n') < 0 since it is a Lagrangian dual variable. Since
V(s) > 0, A\ —n, < 0 where 7, is any solution of inf,/cgr g(1') < 0. When 1’ > 2Vj,.x + 4\, notice that g(n') >
(1 = 2(Vinax + 201" +4X%) > X > 0, since 0 < V(s) < Vinax.

We immediately have © = [— X, 2V,ax + 2] since n = ' — 2. Since 1 < 2Viax + 2X and V (s) > 0, we further get
IM(V(s),m)| € A+ (2Vimax + 4X)(24mex 4 2). For ny, 12 € O, from the facts [(2)4 — (y)+] < [(z — y)+| < |z — y| and

(@)3 = )] = 1(@)+ — @)+ |((x)+ + ()+). we have [2(V(s),111) = h(V (5),712)] < (3+ (Vinax)) |11 — n2|. This proves
statement (7).

We now prove the statement for KL divergence with ¢(t) = tlogt following similar steps as before. From ¢-divergence
literature (Xu* et al., 2023), we know ¢*(s) = exp(s — 1). Thus, we have

. . M ACONS
inf B peh(V(s),n) = If Bowpe g™ (F——=)] =
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= it EppoPexp( 1)
e s Y R
@ e B pafexp(— / }V(S) — 1))+,
where (h) follows by making the substitution = —7’. Finally, for (j), observe that the function g(n') =

AE, . po [exp(w — 1)] + n/ is convex in the dual variable 1’ since it is a Lagrangian dual variable. From Cal-
culus, the optimal ' = —X + Alog Espo exp(=V (s)/A). S0 1’ € [=A — Vinax, —A] since 0 < V(s) < Vipax.

We immediately have © = [\, Vinax + A] since n = —7'. Since < Vipax + A and V(s) > 0, we further get |h(V (s),n)| <
A(exp(¥max) —1). For 11,72 € O, from the fact exp(—=x) is 1-Lipschitz for z > 0, we have |h(V (s),m1) — h(V (s),n2)| <
(exp( mx) + 1)|m1 — m2|. This proves statement (i4).

We now prove the statement for a-CVAR with ¢(t) = 1[0, 1/«). From o-divergence literature (Levy et al., 2020), we know
©*(s) = (s)+/a. Thus, we have

inf B poh(V(s),7) = inf Bapulre (1 )] =

neRr

7171t€1f *Ewpo[(ﬂ V(s)+]l —n
1

= inf —Espo —n. 1
sere™ o Eepelln = V(s)a] — a8)

—
=

For (k), notice that since V(s) > 0, (1/a)Es~po[(n—V (s))+]—n = —n > 0 holds when n) < 0. Also, since V' (s) < Vipax,
(1/a)Espo[(n — V(s))+] —n > 0 holds when 1 > Vipax /(1 — ).

We immediately have © = [0, Vipax/(1 — «)]. We further get |h(V (s),n)| < 2Vimax/(a(1 — @)). For 1, n2 € ©, from the
fact |(2)+ — (y)+| < (& —y)+| < |z — y| we have [2(V(s),1m) — h(V(s),1m2)| < (L + a~!)[n1 — 12| This proves the
final statement of this result. O

We now state and prove a generalization bound for empirical risk minimization when the data are not necessarily i.i.d. but
adapted to a stochastic process. This result is of independent interest to more machine learning problems outside of the scope
of this paper as well. Furthermore, this result showcases better rate dependence on N, from O(1/v/N) to O(1/N), than the
classical result Lemma 4 (Shalev-Shwartz & Ben-David, 2014). This result is not surprising and we refer to Van Erven
et al. (2015, Theorems 7.6 & 5.4), in the i.i.d. setting, for such O(1/N) fast rates with bounded losses to empirical risk
minimization and beyond.

Proposition 4 (Online ERM Generalization Bound). Let N > 0, § € (0, 1), let X be an input space, and let Y be the target
Jfunctional space. Let H C Y be the given finite class of functions. Assume that for all x € X and h € H for loss function |
we have that |l(h(z))| < c for some positive constant ¢ > 0. Given a dataset D = {x;}Y_,, denote h as the ERM solution,

ie. h+ argming ¢4, Zl 1 U(h(x;)). The dataset D is generated as x; ~ Py from some stochastic process Py that depends

on the history {x1, ..., T 1}, where the function hy € argmincy, E,p, [I(f(7))] satisfies approximate realizability i.e.
| X
5 S B ((Aw0) ~ b7 (@0) < .

(hy(x))| < c. Then, the ERM solution satisfies

ZEItNPt Z ]EthPt )) S 3’YN + 48010g(2 |H| /6)

with probability at least 1 — 0.
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Proof. We adapt the proof of least-squares generalization bound (Song et al., 2023, Lemma 3) here for the empirical risk
minimization generalization bound under online data collection. Fix any function h € H. We define the random variable
Zl = 1(h(zy)) — I(h} (z¢)). Immediately, we note | Z!'| < 2c for all ¢. By definition of A}, we have a non-negative first
moment of Z}':

EPt [th] = EItNPtl(h(xt)) - EitNPtl(h: (xt)) (19)
By symmetrization, assuming I(h} (z;))? < [(h(x;))?, we have that
0 < Ep[(Z)?) < Expop, [20(h(24))* = 2 U(h(z2)) - U (1))
< 20U((@4)) B, ~p, (L (A1) — 1(h{ (1))
< 2¢-Egpnp, (L(A(1)) = (R (21)))-

Similarly assuming I(h} (z;))? > I(h(x))?, we get 0 < Ep,[(Z])?] < 2¢-Eq,p, (L(h(x1)) — (R} (x+))). Thus, uniformly,
we have

0 <Ep[(Z)°] < 2¢- Eg,np, (I(A(x2)) — (R} (21))). (20)

We remark that (20) is called Bernstein condition (Van Erven et al., 2015, Definition 5.1) when all sampling distributions
P,’s are identical. This is one of the sufficient conditions on the loss functions to get O(1/N)-generalization bounds for
empirical risk minimization.

Now, applying Lemma 3 with A € [0,1/4c] and 6 > 0, we have

N N
3> 2t = Bpl2t] <33 (albn 2] + En (2t ) + PEED
< 6N Y Eryer (1(h(a)) — (07 (1)) + 2C/)

t=1

with probability at least 1 — §, where the last inequality uses (19) and (20). We set A = 1/12¢ in the above, we get for any
h € H, with probability at least 1 — ¢:

N

N
< 53 B (1)) — 107 () + 12¢10g(2 M /9),

by union bound over h € H. Using (19), we rearrange the above to get:

N N
S22 < 5 Baen () = 0 (w0))) + 12¢ log(2 H] /5) @y
t=1 t=1

and
N N
> Bapmr, (W(h(2) = 1R (20) <23 2] + 24clog(2[H] /9). (22)
- t=1

Define the function & € arg ming, ¢4, Zivzl E.,~p, (L(h(x:)) — (R} (x¢))), which is independent of the dataset D. By (21)
for h and the approximate realizability assumption, we get

N N
-~ 3 3
S ZF < 53 Bapr () — Uh; (1)) + 12¢log(2[H] /8) < SN +12clog(2[H] /9).
t=1 t=1
By definitions of h and the ERM function B, we have that

N N
S z0 = 1)) — 1B () IERIUAED)) Zzh
t=1 t=1
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From the above two relations, we get

YN + 12clog(2 |H| /9).

N w

>zl <

t=1

Now, using this and using (22) for the function h, we get

N N
Y Baepnr d(h(@)) = Uh; (20)) <2 Z)' + 24clog(2 [H] /8) < 3YN +48clog(2 [H] /3),
t=1 t=1

which holds with probability at least 1 — §. This completes the proof. O

We now state a useful result for an infinite-horizon discounted robust p-regularized Markov decision process
(S, A,m, P°, \,v,¢,dp). This result helps our RPQ algorithm’s policy search space to be the class of deterministic
Markov policies.

Proposition 5. The robust regularized Bellman operator T (3)

(TQ)(s,a) =7r(s,a) + 7, irelf (IESINPSWQ [ma}x Q(s',a")] + ADy(Ps a, P;a)),
s,a s,a a

and the value function operator (T,V)(-) = max, (T Q)(+, a) are both y-contraction operators w.r.t sup-norm. Moreover,

their respective unique fixed points Q% and V', for optimal policy ©*, achieve the optimal robust value max, VY. Further-

more, the robust regularized optimal policy ©* is a deterministic Markov policy satisfying 7*(-) = arg max, Q3 (-, a).

Proof. The ~y-contraction property of both operators directly follow from the fact inf,, p(z) —inf, ¢(z) < sup,(p(x)—q(z)).
Furthermore, this result is a direct corollary of (Yang et al., 2023, Proposition 3.1) and (Iyengar, 2005, Corollary 3.1). [

We now state a similar result for a finite-horizon discounted robust y-regularized Markov decision process (S, A, P° =
(P,‘;)f;ol, r = (rh),lf;017 A, H,¢,dy). This result helps our HyTQ algorithm’s policy search space to be the class of
non-stationary deterministic Markov policies.

Proposition 6. The robust regularized Bellman operator T (10) and the value function operator T, are as follows:

(TQh+1)<57 a’) = T’h(S, CL) + inf (ES'NPh,s,a [H}I@X Qh+1(5/7 CL/)] + )\DSP(Ph,s,aa P}(L),s,a)) and

P s,a€Ph,s,a

(ToVi41)(s) = max rn(s,a) + | inf (Egnpy. o Vis1(s)] + ADy(Phsias P oa)) | -
a h,s,a h,s,a

The optimal robust value V,; \ satisfies the following robust dynamic programming procedure: Starting with Vy; \ = 0,
doing backward iteration of Ty, i.e., Via = T Vi L1 we get Vit forall h € [H]. Furthermore, the robust regularized
optimal policy T* is a non-stationary deterministic Markov policy satisfying 7 (-) = argmax, Qj, (-, a) for all h € [H]
where

QZ,A(~,a) =rp(s,a) + o ilelt;)h \ (Es’~Ph,S,a[Vﬁk+1(5l)] + ADy (P s,a, P;L’)S’a)).

Moreover, as Vi, \ = 0= QY ,, it suffices to backward iterate T, i.e., do Qj, = TQ} ,  to get Qj,  forall h € [H].

Proof. We start with the optimal robust value definition V", = max, V;7, = max,infpep V;f :& The value function

claims in this statement are direct consequences of (Iyengar, 2005, Theorem 2.1 & 2.2) and (Zhang e? al., 2024, Theorem 2)
with the reward function r;.

It remains to prove Q* dynamic programming with 7". That is, we establish V;' , (-) = max, Q}, (-, a) forall h € [H] with
the dynamic programming of 7". We use induction to prove this. The base case is trivially true since V7 \ =0 = Q7 ,. By
T, we have

QZ,)\(Sv a) = (TQZ+1,)\)<87 a’)
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= Th(sv a) + inf (]ES/NPh,s,a [H}IE}X QZ—H(S/v a/)] + ADQD(Ph,s,aa P;;,S,(L))

P s.a€Ph,s,a
=rp(s,a) + inf (ES’NP;L,s,a [V:+1(3,)] + )‘Dcp(Ph,s,aa Pi?,s,a))?
Ph,s,aeph,,s,a

where the last equality follows by the induction hypothesis V;, | ,(-) = max, @} 5 (-, a). Maximizing this both sides
with action a and by the dynamic program V;*\ = T, V), | , we get V" \ (-) = max, Qj; (-, ). This completes the proof
of this result. O
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E. Offline Robust p-regularized RL Results - w

In this section, we set Vipax = 1/(1 — 7) whenever we use results from Proposition 3. In the following, we use constants
c1, 2, cg from Proposition 3.

We first prove Proposition 1 that directly follows from Lemma 1.

Proof of Proposition 1. For each (s, a), consider the optimization problem in (3)

inf (]ES/NPS o [V(S/)] + >\D¢(R‘z,aa RSa)) = - sup (]ES’NPS a [7‘/(5/)] - /\Dsﬂ(ljs,a? Psoa))
Py a€Psa ’ ’ P.o€Pa ’ ’

a -n' = V(s

@ o (AEw_po [0" < n (s )>] o)
n’'e A

b - V(s

® _ inf (A\Eg po [©* (77 ( )>] —n)
ne A

© . « (n=V(s)

9 inf (\Eygpo ,
inf (AEy~py, o ( )

where (a) follows from Lemma 1, (b) by setting = —#’, and (c¢) by Proposition 3. This completes the proof. O

We now prove Proposition 2 which mainly follows from Lemma 5.

Proof of Proposition 2. Since the conjugate function ¢*(-) is continuous, define a continuous function in 7 for each
(s,a) € S x Ah((s,a),n) = (AEg~po_o* ((n—maxy f(s',a"))/A) —n). We observe h((s,a),n) in (s,a) € S x A
is ¥(S x A)-measurable for each 7 € ©, where © is a bounded real line. This lemma now directly follows by similar
arguments in the proof of Panaganti et al. (2022, Lemma 1). O

Now we state a result and provide its proof for the empirical risk minimization on the dual parameter.

Proposition 7 (Dual Optimization Error Bound). Let gy be the dual optimization parameter from Algorithm 1 (Step 4) for
the state-action value function f and let T, be as defined in (7). With probability at least 1 — 0, we have

21og(|G 2log(8|F|/6
sup [|Tf — Tg, [l < 2yc2c3/ # +5c1yf # + yeg.
fer

Proof. We adapt the proof from Panaganti et al. (2022, Lemma 6). We first fix f € F. We will also invoke union bound for
the supremum here. We recall from (8) that gy = arg min, cg Lqual (g; f). From the robust Bellman equation, we directly
obtain

H7—§ff - Tf”l,u = ’Y(Es,aN;tlEs’NP;’,a ()‘W*((Ef(sa a) - H}?Xf(sla al))/)‘) - gf(sv CL))

— inf (ABwrpy, 0 (9 — max J(s',0))/A) = n)))

@ (BB, (" (@5(5,0) — mi (', a)/A) = Gy (s, 0))

= Exam [0 By, 0" (0 max f(s'.a)/3) =)

b .~ -
& (B amrmapr, (A" (G5 (5,) — max £(5,0')) /) = G (5, 0))

— inf Eyampgmrs, (9" ((g(s,a) — max f(s',a'))/A) — g(s,a)))
geLY(p) ' a

= V(s anp,smpg, (A" (G (5, @) —max f(s', ")) /X) = Gy (s, )
= nf By anps vy, (A7 ((9(5,0) —max f(s',a'))/A) — g(s,a))

+ (il Esanpsnpg, (A" ((9(s, ) — max f(s',a7) /) = g(s,a))
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— inf Esgnpsnpe, (A" ((9(s,a) —max f(s',a))/A) — g(s,a)))
geL! (1) a

(e)
< V(B ampsrnpz, (A" ((G1(5,0) — max f(s',a"))/A) = G(s, a))

= I By anpsopy, (A" ((9(s,0) = max f(s','))/A) — g(s,a))) + 7eg

(d) 2log(|G 2log(8/6
< 2vcoc3 % + 5¢c1 % + veg.
(a) follows since inf, h(g) < h(gy). (b) follows from Proposition 2. (c) follows from the approximate dual realizability

assumption (Assumption 3).

For (d), we consider the loss function (g, (s,a,s’)) = X¢* ((9(s,a) —max, f(s',a’))/A) — g(s,a) (for e.g.
(g, (s,a,s")) = [(g(s,a) + 2X — maxy f(s',a’))2]/4\ — X — g(s,a)) and dataset D = {s;,a;, s;} ;. Since f € F and
g € G, we note that |I(g, (s,a,s’))| < ¢1, where the value of ¢; > 0 depend on specific forms of ¢* as demonstrated in
Proposition 3. Furthermore, take (g, (s, a, s’)) to be ca-Lipschitz in g and |g(s, a)| < ¢3, since g € G, for some positive
constants cp and c3. Again, these constants depend on specific forms of ¢* as demonstrated in Proposition 3. With these
insights, we can apply the empirical risk minimization result in Lemma 4 to get (d).

With union bound, with probability at least 1 — §, we finally get

21og(|G 21og(8|F|/6
up (171~ T, e < Treacsy] oI s, [2IOBEAO) g
fer

which concludes the proof. O

We next prove the least-squares generalization bound for the RFQI algorithm.

Proposition 8 (Least squares generalization bound). Let fg be the least-squares solution from Algorithm I (Step 5) for the
state-action value function f and dual variable function g. Let T, be as defined in (7). Then, with probability at least 1 — 6,
we have

sup sup || 7, f — ng2 w < Vber + \/(127)2 +18(1 + 701)\/1810g(2.7:|g|/5)'

fEF geg N

Proof. We adapt the least-squares generallzatlon bound given in Agarwal et al. (2019, Lemma A.11) to our setting. We
recall from (9) that fg = arg mee F Lron(Q f,9). We first fix functions f € F and g € G. For any function f’ € F,

f

we define random variables z; as

A= (F(sivan) = v = (Tyf)(sivai) — i)

where y; = 1, — YA@*((9(ss, a;) — maxy f(s},a’))/A) + vg(si,a;), and (s;, a;, s;) € D with (s;,a;) ~ u, s P.;)“al'
It is straightforward to note that for a given (s;, a;), we have Ey; wpo  [y:] = (T, f)(si, a;). We note the randomness of zi
given f, f' € F and g € G is from the dataset pairs (s;, a;, s}).

Since f, f’ € F and g € G, from Proposition 3, we write both (7, f)(s;, a;),y; < 1+ ~ye1, where the value of ¢; > 0

depend on specific forms of ¢*. Using this, we obtain the first moment and an upper-bound for the second moment of zlf "as
follows:

I= Egnpo  A(f (sivai) = (Tgf)(si,03)) - (' (51, 03) + (T f) (565 a5) — 2y5)]

= (f'(siyai) = (Tyf) (50, 0:))?,
By, 12 = Bgpy |, [(F(sis00) = (T f)(si,00)) - (F (5i5.00) + (To ) (i, 0) — 294)°]
= (f'(sisai) = (Tgf)(s1,00))? - Egrpe , [(f'(s0:ai) + (Tof)(50,a:) — 24:)]

< Cl(f/(sivai) - (Ef)(si’ai))Qv

ES’NPU [Z

1 Qg
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where C, = ﬁ + 18(1 + 7). This immediately implies that

! 2
SV =T = 15
Es; aimps)~Po a; [(zzf 1< G 1Tof = f' ||2 e

S

EsiaaiNH’S;"’Pso

’

From these calculations, it is also straightforward to see that |2/ — E,, o - 1,5~ PO [z]]| < 2Cy almost surely.

si,a4

Now, using the Bernstein’s inequality (Lemma 2), together with a union bound over all f/ € F, with probability at least
1 — 4, we have

Al 2C — 13, 1og(2|F|/6
Cis S\/ ITof — P18, 108(21F1/8) | 21 108(21F/0) o)
=1

N 3N ’

for all f/ € F. This expression coincides with Panaganti et al. (2022, Eq.(15)). Thus, following the proof of Panaganti et al.
(2022, Lemma 7), we finally get

4 9C1 log(4].F]/9)

175 f = foll2,0 < 6 i (24)
We note a fact /= +y < \/z + /y. Now, using union bound for f € F and g € G, with probability at least 1 — 4, we

finally obtain

\/ 18C1 log(2|F[|9]/8)

supsup||Tf ngguS\/Ge + N

FEF g€G

This completes the least-squares generalization bound analysis for the robust regularized Bellman updates. O

We are now ready to prove the main theorem.

E.1. Proof of Theorem 1 - i

Theorem 3 (Restatement of Theorem 1). Let Assumptions 1 to 3 hold. Let i be the RPQ algorithm policy after K
iterations. Then, for any 6 € (0, 1), with probability at least 1 — 6, we have

N PN 2108(1G)) 2log(8.71/9)
™ TK < 2 2o\ ittt = bl ViVl
L e JF(1772<W2C3 N o N *

+ 2/C (W—F\/ +18(1 + 1)\/1810g(2]|\.;-"||g|/6)).

2
(1=7)? (1—7)?

Proof. We let Vi, (s) = Qp(s, mi(s)) for every s € S. Since 7, is the greedy policy w.r.t Q, we also have Vi (s) =
Qr(s,mr(s)) = max, Q(s,a). We recall that V* = V™ and Q* = Q™ . We also recall from Section 2 that Q" is
a fixed-point of the robust Bellman operator 7 defined in (3). We also note that the same holds true for any stationary
deterministic policy 7 from Yang et al. (2023) that Q™ satisfies Q" (s,a) = r(s,a) +yminp, ,<po_ (Es~p,  [V7(s")] +
ADy(Ps o, P2 ,)). We now adapt the proof of Panaganti et al. (2022, Theorem 1) using the RRBE in its primal form (3)
directly instead of its dual form 4).

We first characterize the performance decomposition between V™ and V™% . We recall the initial state distribution d. Since
V7 (s) > V™ (s) for any s € S, we observe that
0 <Esondo [V (50) = V™ (50)] = Esymaty [(V™ (50) = Vi (50)) — (V7 (50) = Vic (s0))]

= Eaomdo [(Q™ (50,7 (50)) — Qi (50, Tk (50))) — (@™ (s0, T (50)) — Qi (50, T (50)))]

© Bty [ (50,7 (50)) — @i (50,7 (50)) + @ (50, 7 (50)) — QT (50, w5 (s0))]
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= Euondo [QT (50,7 (50)) — Qi (50,7 (50)) + Qi (50, Tk (50)) — Q™ (50,7 (50))
+ Q™ (s, (50)) — Q" (s0, Tk (50))]
©]

< Eaynds [Q™ (50,7 (50)) — Qi (50,7 (50)) + Qi (50, i (50)) — @™ (50, 7k (50))

+ min E, . V™ ()] + ADo(Pr ~ oy, P°
7[P50 ”K(éo)épeo WK(SO)( 1~Psg, ﬂK(QU)[ ( )] ( 0,7x (50)> S(),TFK(S())))
— min Es, ~p, N + ADy (Psy ri(50)> Po X
P, 7\'1r((so)<é 20+ rK(so)( PﬁO”‘K(SO)[ (81)] ( 0,7k (s0) 5077"K(50)))]]

< Esondo [|Q™ (50,7 (50)) = Qi (50, 7" (50))]] + Esgeao [|QT (50, ¢ (50)) — Q¢ (50, T (50))]

+ ’YESoNdoE51~P7’K>‘“‘“ (|V7r* (s1) = V™ (s1)])

50,7k (50)

30 (B 107 (577 (9) = Qs (D) 107 (5. 7(5) ~ Qe ()] ) 05)
h=0

where (a) follows from the fact that 7 is the greedy policy with respect to Q i, (b) from the Bellman equations, and (c)
from the following definition

PTFK In;gl c argmin (ES/NPS,WK(S)[VWK( )]+)\D ( s, (s)) Pso,TrK(s)))'

S,
x P, TR (s o <P, sz(s)

We note that this worse-case model distribution can be non-unique and we just pick one by an arbitrary deterministic rule.
We emphasize that this model distribution is used only in analysis which is not required in the algorithm. Finally, (d) follows
with telescoping over |V’T* — V7| by defining a state distribution dj, ., € A(S), for all natural numbers i > 0, as

do it h =0,
dh,ﬂK = {PTK'KJIHH :

. !
o e (') otherwise, with " ~ dj,—1 -

We note that such state distribution proof ideas are commonly used in the offline RL literature (Agarwal et al., 2019;
Panaganti et al., 2022; Bruns-Smith & Zhou, 2023; Zhang et al., 2024).

For (25), with the v-norm notation i.e. || f||2 , = (Es a~v|f(s,a)[P)!/? for any v € A(S x A), we have

Eso~do [Vﬂ*] - ESO"‘dO Vﬂ-K Z’Y <Q7T* - or* T ||Q7T* - QK”l,dh,-;rK 071'1()7 (26)

where the state-action distributions are dj, -, © 7*(s,a) & dp . ($)L(a = 7*(s)) and dp, rp © Ti (S, a) X dp 7y (5)1(a =
Tk (s)). We now analyze the above two terms treating either dj, ., o 7* or dj, r, o Tk as a state-action distribution v
satisfying Assumption 1. First, considering any s, a ~ v satisfying Q™ (s,a) > Q (s, a) we have

0 SQW* (87(1) - QK(S,G) < Qﬂ* (s,a) - TQKfl(sva) + |TQK*1(Sva) - QK(S,G)‘
< Q" (s,0) = TQx-1(s,0) + | TQx—1 —
(e .
< Q™ (s,a) — TQr-1(s,a) + VO|TQx -1 — Qxll1u

(i) . Tt 0
*W[g,?ié%;a(Es ~Py max QT (s, )]+ ADy (Ps.a, Pyo))

- Ps,gngg;a(Eswps,a[rrg}x Qr-1(s",a")] + ADy(Pya, P7,))]

+VC|TQk -1 — Qklli,

< (E, - pQsc—1min (max Q™ (s',a/) —max Qg _1(s',d))) + VC|TQx -1 —

< V(E,, _pex1min max|Q” (s',a") = Qr-1(s',a))) + VO TQr-1 — Qk s (27
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where (e) follows by the concentrability assumption (Assumption 1), (f) from Bellman equation, operator 7T, (g) follows,
similarly as step (c¢), from the following definition

ng”’min € argmin (ES/NPS,a[m@X Qr-1(s',a")] + ADy(Ps 4, P?,)).
P, .<P?, a

We again emphasize that this model distribution is analysis-specific and we just pick one by an arbitrary deterministic rule
since it may not be unique. (h) follows by the fact |sup, p(z) — sup, q(z)| < sup,, |p(z) — ¢(x)|. Now, by replacing

PRx-1min wigh pR™ min jp step (g) and repeating the steps for any s, a ~ v satisfying Q™ (s,a) < Qx (s, a), we get

0= Qu(5,0) = Q% (5,0) S Y(E,,_or  max|Q7 (5, 0) = Quc (s, @) + VOITQr 1 — Quclliee (28)

We immediately note that both PZS~™" and P min satisfies D, (P ™", P2,) < 1/(A(1 — 7)) and

DSO(PSQ;* min pe ) < 1/(A(1 —~)), which follows by their definition and the facts Qx_1 € F, 1Q™ lloo < 1/(1 — 7).
Define the state-action probability distribution v/ as, for any s’, a’,

V(s a) = Z v(s,a)1{Q™ (s,a) > Q(s,a)} PLs-1mn(1{a = arg max Q™ (s',b) — Qi _1(s',b)|}

s,a

+3 u(s, ) 1{Q (s.a) < Qi (s,a)}PE ™(s')1{a’ = arg max Q™ (s',b) — Qi —1(s',b)[}.

s,a
Now, we can combine (27)-(28) as follows

1Q™ = Qxlliw <AQ™ — Qr_1llhiw + VOITQxr -1 — Qkll1,
(4) .
<ANQRT — Qr-1ll1 + VC||Tgr Q-1 — Qkll2,p + VO TQr -1 — Ty 1 Qrc—1ll1,1

where (7) uses the fact || - |1, < || - ||2,p-

Now, by recursion until iteration 0, we get

K-1

1w <Y sup Q7 = Qollis + VC Y AITQx-1-¢ — Tores_ Qi -1l

t=0

Q™ — Qx

K-1
+ \/5 Z 7t||7;JK7171QK717t - QKft

t=0

|2,u

@) ~K K
< 17_77 +VC Z YNTQr—1-¢ — Tox1 . Qr—1-tl1,1
t=0

K-1
+ \/5 Z ’yt||7-gK—l—tQK*1*t - QKftHQ»#

t=0
) AK /O Ve
< -/ 4 sup |[Tf — T, flli.+
1_7 1_7]"6]-'” af || M 1
K
y C vC
< — _ T
< 1_7+1_7;t€1§||7f Tor Fll+ 5

sup |75, f = fa;ll2.u
fer

sup sup || Tgf = fgll2,- (29)
fEF geG

where (j) follows since |Q™ (s,a)| < 1/(1 —7),Qo(s,a) = 0, and (k) follows since gy is the dual variable function from

the algorithm for the state-action value function f and f, as the least squares solution from the algorithm for the state-action
value function f and dual variable function g pair.

Now, using Lemma 7 and Lemma 8 to bound (29), and then combining it with (26), completes the proof of this theorem. [
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(e e

E.2. Specialized Result for TV ¢-divergence L3 33

We now state and prove the improved (in terms of assumptions) result for TV ¢-divergence.

Assumption 9 (Concentrability). There exists a finite constant Cy, > 0 such that for any v € {d po} C A(S x A) for
any policy 7 (can be non-stationary as well), we have ||v /| ., < v/Ciy.

Assumption 10 (Fail-state). There is a fail state sy such that r(sy,a) = 0 and Ps, .(sf) = 1, foralla € Aand P € P
satisfying Drv (Pss o1, P ) < max{1,1/(AN(1 —~))} forall ', a’.

Theorem 4. Let Assumptions 2, 3, 9 and 10 hold. Let 7y be the RPQ algorithm policy after K iterations. Then, for any
6 € (0,1), with probability at least 1 — 0, we have

27K 2\/0tv W 21og(8|F|/0)
VT yTE < + e
(1-7)?2 (@1- “ N

2\/CTV 181log(2|F||G|/9)

withcy =20+ (1/(1 = 7)), c2 = 2,¢3 = A/2

2
( —) +18(1 +

Proof. We can now further use the dual form (4) under Assumption 10. We again start by characterizing the performance
decomposition between V™ and V™% . This proof largely follows the proofs of Theorem 1 and Panaganti et al. (2022,
Theorem 1). In particular, we use the total variation RRBE its dual form (4) under Assumption 10 in this proof. That is, for
all w and @ € F, from (17) we have

@ (5,0) =r(s.0) = inf (Bumps, (0= V()] — ) and (0)
(TQ)(s,a) =7(s,a) — inf (Egpe [(n—maxQ(s',a'))+] —n).
n€l0,A] a

We recall the initial state distribution dy. Since V™ (s) > V7% (s) for any s € S, we begin with step (b) in Theorem 1:
0 <Esymdy [V (50) = V™ (s0)]
< Eogndo[Q7 (50,7 (50)) = Qe (50,7 (50)) + Qi (50, e (50)) = QT (50, 7k (0))

+ 9] min (E51~Pso,w(so> V™ (51)] + ADy( Py rse (s0) Psoo,ﬂK(SO)))
PSo ‘”K(SO)<< 50,7k (50)
_ Eq, YK ADy(Pay i (s0)s P2
b WK(SOI)Iinm WK(go)( 1 Pso,wK(so)[ (51)] + ( 0,7xk (80) somx(so)))]]

D B 107 (50,7 (50)) — Qe (50,7 (50))]] + Byt [0 (50, 1 (50)) — Qi (50,1 (50))

+ 1Eso~do S%P(Emp (0= V™ (s1)+ = (= V™ (51))4))

50,k (50)

< Eondo[|Q™ (50,7 (50)) = Qre(50, 7 (50))]] + Eageao [|Q™ (0, ¢ (50)) — Q¢ (0, ¢ (50)) ]

+ ’YESoNdOESlNP:oJK(so) (|Vﬂ—* (81) — Ve (sl)l)
() & . .
L3 (B 107 (5 () = el D+ 107 s mcls) ~ Quelsme)]). 6D
=0

where (a) follows from (30) and the fact | sup,, f(z) — sup, g(z)| < sup, |f(x) — g(x)|, (b) follows from the facts
@)+ — (¥)+ < (z —y)4 and (z)4 < |z| for any z,y € R. We make an important note here in step (b) regarding the
dependence on the nominal model P° distribution unlike in step (c¢) in the proof of Theorem 1. This important step helps
us improve the concentrability assumption in further analysis. Finally, (c) follows with telescoping over |V”* — V™% | by
defining a new state distribution dj, -, € A(S), for all natural numbers h > 0, as

; do ifh =0,
B = . .
K PY sy Otherwise, with s~ dp—1 -
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For (31), with the v-norm notation i.e. || f||2 , = (Es a~w|f (s, a)|P)M/? for any v € A(S x A), we have

EsoNdo [Vﬂ*] - ESONdO [VWK] < Z'Yh <Q7T* - QK |1,dh,7rK07T* + ||Q7T* - QK”l,dthowK)y
h=0
<> A @sup QT - Qklla), (32)
h=0 v

where the second inequality follows since both dj, ., o 7* and dj, », o Tx satisfy Assumption 9. We now analyze the
summand in (26):

1Q™ — Qxlliw <1Q™ = TQxr-1l1w + I TQx-1 — Qx|

(d) .
<NQ™ = TQx-1lhw + VOl TQr -1 — Qi
= (Eq.amn|Q (5,0) — TQxr_1(5,a)]) + VCi [ TQx 1 — Qk

© )
< (Es,amvysup [Egnpo ((n — maxQx-1(s',a)) 4 — (n — max Q™ (s',a'))4)])
n a a

1,v

1p

1,u

+VCuw||TQr-1 — Qk
f

) .
S (Es7a~u|]Es’~P;’7a (HE}XQW (Slva/) - HZE}XQK—I(S/a a/))+|) + V C‘W”TQK—I - QK

(9) -
S V(Es,aqus’ng’ya H}f}x |Q7r (Sla a/) - QK—l(Slya/)D + V OtVHTQK—l - QK”l,M

1,p

(h) .

<ANNQT —Qr-1lli,v + VO TQr-1 — Qxll1,u

(%) N

<AHQT — Qk-1lli + VCull Ty, Qr—1 — Qi ll2,u + VOWITQr -1 — Tgre ., Qi1

where (d) follows by Assumption 9, (e) from Equation (30) and the fact | sup,, p(z) —sup, ¢(x)| < sup,, |p(x) —gq(z)], (f)
from the fact |()+ — (v)+| < |(x — y)+|, (g) follows by Jensen’s inequality and by the facts | sup,, p(z) — sup,, q(z)| <
sup, |p(x) — ¢(z)| and (z)4 < ||, (h) follows by defining the distribution " as v'(s",a’) = >__ , v(s,a) P, (s")1{a’ =
arg max, |Q™ (s',0) — Qr—1(s",b)|}, and (i) using the fact that || - ||1,,, < || - ||2,,.- The rest of the proof follows similarly
as in the proof of Theorem 1.

1,
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F. Hybrid Robust p-regularized RL Results L X X X3

In this section, we set Vi .x = H whenever we use results from Proposition 3. We remark that we have attempted to
optimize the absolute constants inside log factors of the performance guarantees. In the following, we use constants ¢y, ca, c3
from Proposition 3.

Now we provide an extension of Proposition 7 using Proposition 4 when the data comes from adaptive sampling.
Proposition 9 (Online Dual Optimization Error Bound). Fixé € (0,1). Fork € {0,1,--- ,K -1}, h € {0,1,--- , H — 1},
let g,’j be the dual optimization function from Algorithm 2 (Step 4) for the state-action value function Q’,ﬁ 41 using samples in

the dataset {DZ, Dg, ‘. ,’Dﬁ_l}. Let T4 be as defined in (14) and let N = mog + K - mon. Then, with probability at least
1 -6, we have

1
ITQh+1 = T Qlisall i, < p— (32gN + 48¢, log(2H K|G|F/0)) = Aduat,onn  and

1

Mon

k—1
Y NTQ = Ty Qb i lliap < (3egN + 48cy log(2H K|G||F|/6)) = Adual,on-
7=0

Proof. Fixk € {0,1,--- \,K =1}, h € {0,1,--- , H — 1}, Q. € Fn1. The algorithm solves for g}’ in the empirical
risk minimization step as:
k T k
gp = argimn Ldual(g; Qh+17 D)v
9gEGh
where dataset D = {(sfl, afl, SZ.H)}iSN with N = meg + k - mon. The first mog samples in D are
{(s},,a},, s}, +1)}i§moﬁ.‘ = D)’ (recall that these are generated by the offline state-action distribution py,), the next mo,
samples are {(s},,aj,, 5}, ,,) ?;Cﬁjfﬁ“f = DY (recall that these are generated by the state-action distribution d]°), and so on

where the samples {(s}, a},, s}, +1)}?;°,f,§jffﬁlgx°+1 = Dj, (recall that these are generated by the state-action distribution

dy7) forall 7 < k — 1. We first have the following from step (b) in the proof of Proposition 7:

k—1
K k k k
Mot | TQh 1 — Tgr Qn 1l + Mon Z 1T Q1 — TgrQpyalliar-

7=0
= Moff [ES,GNMh7S/NP£a (/\90*((9}]: (Sa a) - H?:?X QE-{-I (5/7 a/))/)‘) - g}’i(sv a))

— inf Es,awuh,S’NP;’a(/\80*((9(57 a) — max QZ+1(3/7 a’))/)\) —9g(s,a))]
gEL (1n) ’ a’

k—1
+ Mo Y By anarr srape, A" (g1 (s,0) — max Q41 (s',a")/A) = g5(5,0))
7=0

B B, (00" (905,0) ~ max Qh (), )/X) ~ g(5,)

(@) * :
= Moff [Es>a~uh’5’~P;’,a ()‘90 ((92(57(1) - IILa/.X QZ+1(3I, a/))//\) - 92(8, a))

— Esampn,s'~pPe, (A" ((9Z1(s,a) — max Qlfi-kl(slv a'))/A) = g2 (s,a))]
k—1
+ Mo Y By anarr srape, A0 (g1 (s,0) — max Q41 (s',a")/A) = g5(5,0))
7=0
B e, 00" (63(5,0) — max Q)1 (/,01)) /) — g2(s. )]
Motf
= Z Esz,aiwuh,s}LJrlNPD? . [()‘(p*((gili(sﬁw aﬁl) - H}?X Qﬁ+1<52+1, a/))/)‘) - gﬁ(‘gﬁu a;z))
=1

i g
h%h

— (A" (g1 (s, aj) — max Q4 (sh41,0))/A) = g4 (s}, )]
Moff +Mon

+ E. im0
Z spsap~dy, St~

O.
st ,a
i=Mogr+1 h

O™ ((gh (s, i) — max Q1 (sj41,0))/A) = 5 (s, a3))
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— (A" (g0 (s, a) — max Q1 (shy1,0))/A) — g5 (sh, ai,))]
()
< 3egN + 48¢; log(2|G||.F|/9),

where (a) follows by defining the corresponding true solutions g* for all 7 € {—1,0,1,--- ,k — 1}. For (b) with the
empirical risk minimization solution g,’j , we use Proposition 4 by setting ¢ = ¢; (with ¢q, constant dependent on H and
A, from Proposition 3) and since g € Gr,, QF | € Fri1 with sizes |G, | < |G| and | Fj11| < | F| under the union bound.
Taking a union bound over k € {0,1,--- K — 1}, h € {0,1,--- , H — 1}, and bounding each term separately, completes
the proof. O

Now we provide an extension of Proposition 8 using Lemma 7 when the data comes from adaptive sampling.

Proposition 10 (Online Least-squares Generalization Bound). Fix § € (0,1). For k € {0,1,--- ,K — 1}, h €
{0,1,--- ,H — 1}, let Qﬁ be the least-squares solution from Algorithm 2 (Step 5) for the state-action value function
QY1 and dual variable function gy’ using samples in the dataset {D},, D}, - - - ,Dﬁ_l }. Let T, be as defined in (14) and let
N = meog + K - meoy. Then, with probability at least 1 — §, we have

1Ty @ — Q) (V37N +8(1+ 1 + H)VIogRHKIGIFI/0)) = Arqon and

2,01 < F

k—1
1
; I7os@hs = Qg < = (V327N +8(1+ e + H)\logRHKGI1/3)) = Avon.

Proof. We adapt the proof of Song et al. (2023, Lemma 7) here. Fix k € {0,1,--- K — 1}, h € {0,1,--- ,H — 1},
gy € Gn,and Qf | € Fp1. The algorithm solves for Q} in the least-squares regression step as:

QF = aggerﬁin Lionq(Q; Q415 9, D),
h

where dataset D = {(x;,¥;) }i<ny With N = meg + k - mop and
T = (Szi.m az) and Yi = T}L(S7;L7 a;;L) - )‘(p*((gi(sﬁu a%) - H}I@X Q;CH-I(S;H-D a/))/)‘) + gﬁ(S;N a;x)'

The first mog samples in D are {(;, y;) }i<m. = D} (recall that these are generated by the offline state-action distribution
141, the next mey, samples are {(x;, ;) Znﬁijfﬁ"l“ = DO (recall that these are generated by the state-action distribution dy°),
and so on where the samples {(x;, yﬁ}ﬁ"ﬁiiﬁlﬁ?ﬁﬁ

dpm)forall7 <k —1.

1 = D7 (recall that these are generated by the state-action distribution

For using Lemma 7, we first note for any sample (z,y) in D with = (sp,ap) and y = (rp(sp,an) —

Ao* ((gF (snyan) — maxaea,,y QF 11 (snt1,a"))/A) + gi(sh,an)), there exists some fh41 € Fri1 by Assumption 5
such that the following holds:

Ely | 2] = Es,punrg, . (ra(sn,an) — A0 (g5 (sn, an) — L8 Qh41(sn+1,d))/X) + gis(sn, an))
- EEQZJA(S’“ an) < far1(sn,an).
We also note for any sample in D, |y| < 1 + ¢; (with ¢, constant dependent on H and )\, from Proposition 3) and

fry1(s,a) < H for all s,a. With these notes, applying Lemma 7, we get that the least square regression solution QZ
satisfies

N
ZE[(E,@QZH@ ) = Qh(:))? | D] < 3er,eN + 64(1 + c1 + H) log(2|G]|F| /)
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with probability at least 1 — &, since g’,ﬁ € Gy, and Qﬁﬂ € Fpy1 with sizes |Gy | < |G| and | Fp41] < |F| under the union
bound. Recall the samples in D) are independently and identically drawn from the offline distribution 1, and the samples
in D} are independently and identically drawn from the state-action distribution d;". Thus we can further write as

Mott|| Ty @l 1 — Qhll3,, + 1on Z | Tgr @i = Qi3 arr < 3ereN +64(1+ c1 + H)?log(2(G||F|/9).

Taking a union bound over k € {0,1,--- K — 1}, h € {0,1,--- , H — 1}, bounding each term separately, and using the
fact /z +y < \/x + ,/y, completes the proof. O

We are now ready to prove the main theorem.

F.1. Proof of Theorem 2 TR

Theorem 5 (Restatement of Theorem 2). Let Assumptions 4 to 8 hold and fix any § € (0, 1). Then, HyTQ algorithm policies
{7k} re k) satisfy

K—

y—t

~ V™) <O((veF, +2g)K*?H)
k:O

+ O(max{C(7*), 13WVAKH?(A+ H)log(HK|F||G|/5)\/1og(1 + (K/d)))

with probability at least 1 — 0.

Proof. We let Vii(s) = QF(s,m(s)) for every s,h. Since 7 is the greedy policy w.rt QF, we also have
ViE(s) = QF(s,mx(s)) = max, QF(s,a). We recall that V* = V™ and Q* = Q™ . We also note that the same
holds true for any stationary Markov policy 7 from (Zhang et al., 2024) that Q™ satisfies Q7 (s,a) = rp(s,a) +
yminp, , ,<pe . (Esnp, . Vi (8)]+ADy(Phs,a; Py ,))- We can now further use the dual form (4) under Assumption
8, that is, for all 7 and fr+1 € Frea,

Qh(s.0) =ru(s.) = inf (Every, [0 V()] ~ 7). and (33)

(T fns1)(s,a) =rp(s,a) — neif(l)f/\] (Esnpp, [0 — mex fra(s'sa') 4] =)

(Tg fat1)(s:0) = (s, a) = Egpp | [(gn(s,a) —max fry1(s',a")) 4] + gn(s, a).

We first characterize the performance decomposition between VO’T* and V™. We recall the initial state distribution dy. Since
V™ (s) > V7 (s) for any s € S, we observe that

K-—1 § K—1
0< > Eagmdo V5 (50) = V5™ (50)] = Y Bagmao (Vi (50) = Viy'(50)) — (Vg™ (50) — Vif'(50))]
k= k=0

0
K-
Z somids [(QF (30,7 (50)) — Q5 (50, mk (50))) — (QF* (50, 7k (50)) — Q6 (50, Tk (50)))]

k=0
K-1 K-1

<D Eagay [(QF (50,7 (50)) = Q6 (50, mk(50)) 4] + Y Eusgredy [(QF (50, M (50)) — Q5 (50, 7k(50)))+] - (34)
k=0 k=0

(I) (Ir)

We rewrite the state-action distribution d;‘,’f , dropping P, as dj, for simplicity. Letting df also denote a state distribution
(A(S)), we can write it as, for all h,

- do ifh =0,
h= . L , , (35)
P,fﬂsl,a, otherwise, with 8" ~ df _,,a’ ~ m,(s).
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Analyzing one term in (1) of (34) starting with the facts that 7, is the greedy policy with respect to Q¥ and function () is
non-decreasing in z € R:

Eomdo [(QF (50, (50)) — Q6 (50, m(50)))+] < By g [(QF (s0,a0) — Qi (0, a0))+]

(@) .
< Ey agmdz [(QF (50,00) = TQY(50,a0))+] + Eqy ggmar [(TQT (50, a0) — Qf (50, a0))+]

(d) .
< By ooy (0D (Ernrg . [(n— max Qi (s1, )y — (- max QF (s1,@))])
n a a

+ ]Eso,ao~dg* [(TQIIC(SOa CLO) - QIS(SQ, ao))+]

(c)
< ]ESO,aOng* (EslNP&S

(d)
<E

(max Q7 (s1,d) — max QF (s1,0")) )4 + By, o naz [(TQ1(50,00) — Q5 (50, a0)) 4]

0,20

s0,a0~dl P s0.a0 (Ql (513 (81)) - Qllg(sh 7Tk(81)))+ + ]Eso,aowdg* [(TQIf(Sm a’O) - ng(SOa Cl()))+}
= Esowd'f* [(QT* (‘917 ™ (81)) - Ql (817 7Tk(81)))+] + Eso,agng* [(TQ]f(SO> ao) - QIS(S()? a0>)+]a (36)

where (a) follows by triangle inequality for (-) operation, (b) from Bellman equation, operator 7, and the fact inf, p(x) —
inf, g(z) < sup,(p(x) — q(x)), (c) from the fact (z)+ — (y)+ < (x — y)4 for any z,y € R, (d) follows by Jensen’s
inequality and by definitions of policies 7* and 7. Now, recursively applying this method for first term over horizon in (36)
we get

Eqmp

Esondo [(QF (50,7 (50)) — Q5 (50, Tk (0))) +]
< Esyna [(QF (s1, 7" (511)) = Qi (s, i (s12))) 4] + D By g (T Q4 (5,0) — Qi(s,)) 4]

h=0

T

-1

<D By g [(TQh 41 (5,0) — Qf(s.a))4], (37)

0

>
I

where the last inequality holds since V7 (sg) = 0 for all  and Q% (s, 7k (sz)) = 0.

Recall

th01 ]Es Jandr” (T fry1(s,a) — fa(s,a))4]

1ex S0 Esamyun (| T fuga (s, 0) — fu(s,a)]
Now, using (37) in (I) of (34), the following holds w1th probability at least 1 — 6/2:

C(r*) =

K—1H-1
Z Esomdo [(Q (50,7 (50)) — Q" (s0, ™k (50)) Z Z Eqqnar | (TQh41(s,a) — Q5(s,a))4]
k=0 h=0
() K1 H—
< Z C(nm |TQh+1 Qh 11,100
k=0 h=
= = . .
<y o) Z(nmhﬂ Ty Ty Q1 — Qkll2n)
k=0 =
(9)
§ KHC(’]T*)(AduaI,oH + ATQ,OH)7 (38)
where (e) follows from definition of C'(7*) in Assumption 4, (f) from triangle inequality and the fact || - |1, < || - |2, 45

and (g) follows from Propositions 9 and 10.

For (1), firstly we note Eq, g, [(Q* (50, 71(50)) — Q" (50, T4(0))) 4] = Ey gy [(Q" (50, 30) — Q7 (50, a0)) 1. So,
following the same analysis as in (1), we get

H-1

ESONdU [(Qk (307 7rk<50)) - ch (50’ Wk(So)))+] < Z IES.,ade’c [(Qlfb(s, Cl) - TQ;CH-I(S? Cl))+]

h=0
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||P1m

E, onart [(@Qh(5,0) = (Tye Qi 11)(5,0)+ + (T Qi) (5,0) = (T QR 41)(s,0))+], (39)

where the last inequality follows by triangle inequality for (-) operation.

Now, using (39) in (II) of (34), we have

Z E gt [(Q (50, mi(50)) — @™ (s, mi(50)))] <

O

Nw
=

-1

N

H-1
Es,aNd:k [(Qﬁ(& a‘) - (nfLQZJrl)(S a + Es a~d, k §Q§+1)(S’ a) - TQ;CLJrl(S’ a’))+]' (40)

k=0 0 h=0

>
Il

0

=~
I
=

Recall bilinear model from Assumption 7: E .+ [(frn — Ty, fas1)+] = [(Xn(f), Wi (f, 9))|-
h

Analyzing the first part of (40), the following holds with probability at least 1 — §/2:

K—1H-1 () K—1H-1
S N Em (@ - Ty @h) ] €T ST (K@), W@ gM))|
k=0 h=0 k=0 h=0
() K—-1H-1
< 1@l 2 IWHQE, 6
k=0 h=0 '
K—-1H-1
= 3 S X @l W@ . 08) TSk W(QF )
k=0 h=0 o
K—1H-1
= X0 (@) 51, | (WR(QF, g* th QNXK(Q)T +o)WH(QF, g*)
k=0 h=0 =0

=
L
=
o
L

I
]

=
I
<)

XA (@l | S IV 65 Xn(@) + o W@, g
1=0

—
<
>
i
A
T
|
_
o
I
-

X0 (Q) I

k—1;h

[(Wi(@QF, %), Xn(Q))I” + 0 B},

INS
7

>
Il
=]
-
Il
o

=

N
=
L
m
,_.
Ea
L

IN
]

X0 (@) s, | ST @y — QI . + 0B

ﬁ‘
(e}
<

(=)

0
z

k—1;h

< X (@)l ( ZH b1 — Q52 o+ \/oBE)

£
I
=
>
I
<

(m) K—1H-1
<

< (Arqon + y/0BZ)) Z Z ||Xh(Qk)||z,;11;h

k=0 h=0

(n) K
< (Arqon + BXBW)\/2dH2 log(1 + E)K’ 4D

where (h) follows from Assumption 7, (i) from matrix Cauchy-Schwarz inequality, (j) from Assumption 7, and (k) by
Assumption 7 with || - ||17d7hr7¢ <|- ||27d:7,:

T .

[(WR(QF,6%), Xn(Q) | = B, qoari [(Qh(5,0) = (TQh41)(5,@)+] < | Te Qi yr —

Finally, (1) follows by the fact \/z +y < \/x + ,/y, (m) follows from Proposition 10, and (n) follows from Lemma 6.
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Now recall bilinear model from Assumption 7: E art (Tgn frr1 — T fre1)4] = |<X h Wh f,g >| Following analysis

above in (41) for the second part of (40) using Assumptlon 7 and Proposmon 9, the following holds with probability at least
1—0/2:

K-

m

-1

K
By amar [(Tgr Qh+1 TQhi1)+) < (Aduaron + BXBW)\/2dH2 log(1 + E)K' 42)
k=0

=
Il

0

Now combining Equations (41) and (42) with (40) we have

=
T

-1

E, s [(Q° (50, i (50)) = Q™ (50, Tk (50)))+]

0

>
Il
=)
>
Il

K
< (Adual,on + Aern + 2BXBW)\/2dH2 log(l —+ E)K’

with probability at least 1 — §. Finally, we combine this and (38) with (34):

~

—1
0< Esomdo (V5 (50) — Vg* (s0)] < KHC(m*)(Aduatoft + Arqof)+
0

el
Il

K
(Adual,on + ArQ,on + 2BXBW)\/2dH2 log(l —+ E)K

Let N = meog + K - moy. Using offline bounds from Propositions 9 and 10 with ¢; = 2\ + H from Proposition 3, we have:
K-1
0< " Eupnas [V (50) — Vg™ (s0)] < KHC(r")-
k=0
1
Moft

(

(32g N + 48(2\ + H) log(2HK|G||F|/3)) + — - (V327N +8(1+ 22 + 2H) IogCHKGI[F/9) )

K
+ (Adual,on + ArQ,on + QBXBW)\/Qde log(l + E)K

Now using on-policy bounds from Propositions 9 and 10 with ¢; = 2\ 4+ H from Proposition 3, we have:

K-1
0< 3" Bupma [V§ (50) = Vi (s0)] < KHC(w"):
k=0
1 1
( (3egN +48(2\ + H) log(2HK|G||F|/0)) + <\/3e;7rN+8(1—|—2)\+2H)\/log(2HK\g||]-"|/6)>)
Moft \/ Moff
+ ( (3egN +48(2\ + H) log(2HK|G||F|/d))
1 K
+ <\/35er +8(1+21+ 2H)\/log(2HK|g||}'|/6)) +2BxBw) - \/2dH2 log(l+ —)K
v/ Mon ’ d
Finally, choosing higher order terms by setting mo, = 1 and mog = K, we get
K—1
0< Z Esondo Vo' (s0) — VOTrk (s0)]
k=0

< VEHCO(r*)(6(eg + e73)K? + (8 + 112X + 64H) log(2H K|G|| F|/5))

+ (6(eg + \EF) K? + 8 + 112X + 64H log(2H K |G||F|/8) + 2Bx Bw) - \/2dH2 log(1 + %)K
< O((VEFs +e¢) K2 H) + O(max{C(r*), 1}VdK H2(\ + H) log(HK|F||G|/8)/log(1 + (K/d))).

The proof is now complete. O
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F.2. HyTQ Algorithm Specialized Results L3 33

In this section we specialize our main result Theorem 2 for different bilinear model classes and also provide an equivalent
sample complexity guarantee in the offline robust RL setting.

Before we move ahead, we showcase an important property of our robust transfer coefficient C () for any fixed policy.
Fixing a nominal model P°, the transfer coefficient considers the distribution shift w.r.t the data-generating distribution along
the general function class which the algorithm uses. It is in fact smaller than the existing density ratio based concentrability
assumption (Assumption 9). We state this result in the following lemma.

Lemma 8. For any policy m and offline distribution i, we have C(m) < supy, ; , dj; (s, a)/pn(s, a).

Proof. By definition in Assumption 4, we get that

O(r) = e =0 Boantg (T i (9:) = (5.0))
I M B [Thn (5:0) = (s )
e 01 Esamag [ Tfns1(5,0) = (s, a)]]
T S B [T it (52) = Jul5,0)]
| _
=

<m

(2) ]Es andr | T frt1(s,a) — fr(s, a)]
T frt1(s,a) — fu(s, a)l

where (a) follows from the Mediant inequality. O

dj,(s, a)

hsa;uh S, CL)

ma.
feF, he[H] Esampnl

Remark S. The concentrability assumption (Assumption 9) is in fact the same non-robust RL concentrability assumption
(Munos & Szepesvdri, 2008; Chen & Jiang, 2019). We make two important points here. Firstly, our transfer coefficient is
larger than the transfer coefficient (Song et al., 2023, Definition 1) using the fact || - ||1,, < || - ||2,u- Secondly, our transfer
coefficient is not directly comparable with the [2-norm version transfer coefficient (Xie et al., 2021, Definition 1). It is an
interesting open question for future research to investigate about minimax lower bound guarantees w.r.t different transfer
coefficients for both non-robust and robust RL problems.

We now define a bilinear model called Low Occupancy Complexity (Du et al., 2021, Definition 4.7). The nominal model
P° and realizable function class JF has low occupancy complexity w.r.t., for each h € [H], a (possibly unknown to the
learner) feature map ¥ = (¢, : S x A — J), where ) is a Hilbert space, and w.r.t. to a (possibly unknown to the learner)
map vy, : F — Y such that for all f € F, with greedy policy 7/ w.r.t. f, and (s,a) we have

A5 (s,a) = (Wn(s,a), va(f)). (43)

‘We make the following assumption on the offline data-generating distribution (or policy by slight notational override for
convenience).

Assumption 11. Consider the Low Occupancy Complexity model (bilinear model) on ) = R®. Let the offline data
distribution j1 = { i } he ) satisfy a low rank structure, i.e. pp(s,a) = (Yn(s,a), v (o)) = Zie[d] Vni(s,a)vn i (fo),
for some f° € F.

Now we extend our main result Theorem 2 in this next result specializing to the Low Occupancy Complexity (43) bilinear
model.

Corollary 3 (Cumulative Suboptimality of Theorem 2 in Low Occupancy Complexity (43) bilinear model). Consider the
Low Occupancy Complexity (43) bilinear model. Let Assumptions 4 to 6 and 8 hold and fix any 6 € (0,1). Then, HyTQ
algorithm policies {my.} (k) satisfy

K—1
STV V™) <O((yErs + 2g) KP/H)
k=0

+ O(max{C(r*), 1}VdK H2(A + H)log(HK|F||G|/8)/log(1 + (K/d)))
+ O(VdKH* ma () M2l vn(s, a)ll2/log(1 + (K/d)))
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with probability at least 1 — 0. Now, consider the offline data distribution as in Assumption 11 with perfect robust Bellman
completeness, i.e. exy = 0 = eg. We have C(7*) < Suph_’ie[d](1/;7i/yh’l-(f°ff)).

Proof. Using the Low Occupancy Complexity (43) bilinear model, we have E , .r[(Ty, fa+1 — Tfrs1)+] =
PO
<Xh(f)7W;?(f,g)>,Where

Xu(f)=wm(f),  Wilfg) = D Wuls,a)(Tonfus1)(s,a) = (T farn)(s,0)) 4

(s,a)eSxA

We also have ]Ed;;;:f [(fn — Tgn frt1)+) = (Xn(f), W;X(f, g)), where

Wilf.o) = Y. ¥n(s,a)(fuls.a) = (Ty, fas1)(s, @)

(s,a)eSxA

Furthermore, we set Bx = maxye 7 ||v4(f)||2. Since F is realizable and 7, is complete, we set By = H|| >~ (s, a)ll2.
Then the result directly follows by Theorem 2.

For the second statement, first note that the occupancy dg* is low-rank as well since we assume perfect Bellman completeness.
Following the proof of Lemma 8 we get

C(TF*) — max hH:_O1 ]Es,arvd;:* [(T.fh-‘rl(sa a) - fh(S, a )+]

1€F S B [ T faga (5,0) — fu(s,a)]
0 By g [T fria(s,0) = fu(s, )]

<max —g— |
F7 3 =0 Esampn | T fry1(s,a) = f(s, a)]
(a) ES;aNd;{[leh+l<s>a) - fh(S,Cl)”
< max
rerhel] Es amp, [|T fri1(s,a) — fu(s, a)l]
dr (d) vy
< sup (50) Qo

hosa h(8,0) = picla) Vhi(foT)’

where (a), (b) follows from the Mediant inequality. This completes the proof. O

We now define a bilinear model called Low-rank Feature Selection Model (Du et al., 2021, Definition A.1). The nominal
model P° is a low-rank feature selection model if it satisfies Py . ,(s") = (0n(s,a),¥n(s")), for each h € [H] and all
(s,a,s’), with a (possibly unknown to the learner) map 6 = (6, : S x A — ) and a (possibly unknown to the learner)
map ¥, : S — Y, where ) is a Hilbert space.

This model specializes to the kernel MDP model when the map 6 is known to the learner (Jin et al., 2021a, Definition 30).
This model also specializes to the low-rank MDP model when )) = R (Huang et al., 2023, Assumption 1) and furthermore
to linear MDP model when the map 6 is also known to the learner (Du et al., 2021, Definition A.4).

We make the following assumption on the offline data-generating distribution (or policy by slight notational override for
convenience).

Assumption 12. Consider the Low-rank MDP Model (bilinear model). Let the offline data distribution ji = { i, } he[m)
satisfy maxy 5o 7} (als)/pn(als) < o and suppose that p is induced by the nominal model, i.e. po(s) = do(s)
(starting state distribution) and pin(s) = Es armpy 1 Pp_1 g o (8) for any h > 1. Furthermore, suppose that u sat-
isfies that the feature covariance matrix X, |9 = Esampn 1 [0n(s,a)0n(s,a) "] is invertible for all h € [H)] and
T fr1(s,a) — fu(s,a)|] > 1 for at least one h € [H) and all f € F.

Esampn

Now we extend our main result Theorem 2 in this next result specializing to the Low-rank Feature Selection Model bilinear
model.
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Corollary 4 (Cumulative Suboptimality of Theorem 2 in Low-rank Feature Selection Model (bilinear model)). Consider
the Low-rank Feature Selection Model (bilinear model). Let Assumptions 4 to 6 and 8 hold and fix any 6 € (0,1). Then,
HyTQ algorithm policies {my,}c|x) satisfy

K—

H

— V™) <O((\/e7: +eg)K*/?H)
k:O

+ O(max{C(7*), 1}VdK H2(X + H) log(HK|F||G|/6)\/log(1 + (K/d)))

+ O(VAKH| Y 0n(s,a)ll2ll D ¥n(s)ll2/log(1 + (K/d)))

with probability at least 1 — §. Now, consider the offline data distribution as in Assumption 12 with a low-rank MDP model.
We have

H
O(W*) S V QOLHZES aNdh,—l,Tr*
s po

h=1

(s,a)g-1  + Ve
Hp—1,9

Proof. We first begin with establishing a Q-value-dependent linearity property for the state-action-visitation measure

d;é’f ! (s,a). To do this, we adapt the proof of Huang et al. (2023, Lemma 17) here. We start by writing the state-visitation
measure by recalling Equation (35) here:

hvﬂ"f o) hfl,'n'f
Ayl (sn) = Y. Pooa(sn)ml_i(als)dps ™ (s)
(s,a)€ESx.A

QST Gu(sia), dn (s (als)d ™ (s)

(s,a)eSxA

(Y Ouls, ] (als)d ™ (s)own(sn)) = (nsn), vims (F)),

(s,a)eSx.A

N

where (a) follows by the low-rank feature selection model definition, and the last equality follows by taking a functional
1) . . . . . .

Ut (f) =254 0n(s, a)w£_1 (a\s)d;@o L7 (s). Since we consider the finite action space with possibly large state space

setting for our results, the state-action visitation measure for the deterministic non-stationary policy 7/ is now given by

h,rf .
dps (sn,an) = <¢§L,ﬂf(3h7 an), Vs (f)) with "/J;lmf(shvah) Ctpn(sp)H{an = 7Th( )} for features % i SX A=
Y. Here C' > 0 is a normalizing constant such that the state-action visitation measure is a probability measure.

We now have I . s [(Tgn farr = T fur1)+] = (Xu(f), Wi (f, 9)), where

Xn(f) = Vnqxs (f), Wi(f9) = D Char(s,0)(To fag1)(s,0) = (T frs1)(5,0)) 4

(s,a)ESX.A

Wealso have 1 [(f = Ty St )] = (Xn(£), Wi (. 9)). where

Wilfg) = D s (5,0)(fuls,0) = (Tg far1) (s, @)+

(s,a)eSx.A
Furthermore, we set
;
- O ( avou < 6 = By.
r;lgglll/h( N2 = maXHZ n(s,a)mf (als)dp, "™ (s)]l2 < 1D On(s,a)ll2 = Bx

s,a

Since F is realizable and 7, is complete for all g € G, we set

H”thwfsa)b_HCszh (s)H{a = mf (s )}||2<HCHZ% )2 = Bw.
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Then the first result directly follows by Theorem 2. Following the proof of Song et al. (2023, Lemma 13) for our transfer
coefficient C(7*), with the facts (z — y)? < |z — y||z + y| for z,y > 0 and || f||o < H for all b € [H], the last statement
for C(7*) follows. This completes the proof. O

Now we extend our main result Theorem 2 in this next result to showcase sample complexity for comparisons with
offline+online RL setting.

Corollary 5 (Offline+Online RL Sample Complexity of the HyTQ algorithm). Let Assumptions 4 to 8 hold. Fix any
d € (0,1) and any & > 0, and let Nyot be the total number of sample tuples used in HyTQ algorithm. Then, the uniform
policy T (uniform convex combination) of HyTQ algorithm policies {7y } e[k satisfy, with probability at least 1 — 6,

~ max{(C(r*))?, 1}dH3(\ + H)?

V™ VT <e, ifN > Ny = O log?(H|F]|G|/6)).

2

Proof. This proof is straightforward from the Theorem 2 using a standard online-to-batch conversion (Shalev-Shwartz &
Ben-David, 2014, Theorem 14.8 & Chapter 21). Define the policy 7 = Uniform{ng, ..., mx_1}. From Theorem 2, we get

K-1
T T 1 * T
0= Esgnay [V5" (50) = V5 (s0)] = 4= D Eognds [VF" (50) = V5™ (50)]
k=0

< O((vEFs +€g)K**H) + O(max{C ("), 1}y/dH? /K (\ + H) log(HK |F||G| /6)\/log(1 + (K/d))).

We recall that our algorithm uses m.g H number of offline samples and m, H K number of on-policy samples in the
datasets {D}/, DY), --- , DF ™1} for all h € [H]. Since we set m,, = 1 and meg = K, the total number of offline and
on-policy samples is 2H K.

Fix any & > 0. For approximations & r ., £g, we first assume there exists K, = O(H*) such that O((,/e7;+eg)K*?H) <
g/2forall K > K;. Let

K, = 52 (C()? JdH> (A + H)®

= log (H|F1|G|/9))-

Then, for K > K + K, we have E, q, [V (s0) — Vi (s0)] < & with probability at least 1 — &. So, the total number of
samples is at least Nyot:

Niot = 2H(K, + K3) = 5(max{(0(w*))2, 1Y dH3(\ + H)?

log®(H|F1|G|/9)).

2

This completes the proof. O
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