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Abstract

Personalized Federated Learning (pFL) has emerged as a
promising solution to tackle data heterogeneity across clients
in FL. However, existing pFL methods either (1) introduce
high computation and communication costs or (2) overfit
to local data, which can be limited in scope and vulnerable
to evolved test samples with natural distribution shifts. In
this paper, we propose PERADA, a parameter-efficient pFL
framework that reduces communication and computational
costs and exhibits superior generalization performance, es-
pecially under test-time distribution shifts. PERADA reduces
the costs by leveraging the power of pretrained models and
only updates and communicates a small number of addi-
tional parameters from adapters. PERADA achieves high
generalization by regularizing each client’s personalized
adapter with a global adapter, while the global adapter uses
knowledge distillation to aggregate generalized information
from all clients. Theoretically, we provide generalization
bounds of PERADA, and we prove its convergence to station-
ary points under non-convex settings. Empirically, PERADA
demonstrates higher personalized performance (+4.85% on
CheXpert) and enables better out-of-distribution generaliza-
tion (+5.23% on CIFAR-10-C) on different datasets across
natural and medical domains compared with baselines,
while only updating 12.6% of parameters per model. Our
code is available at hitps://github.com/NVlabs/PerAda.

1. Introduction

Federated Learning (FL) allows clients to collaboratively
train machine learning models without direct access to their
data, especially for privacy-sensitive tasks [45]. FL was ini-
tially designed to train a single global model for all clients.
However, such a one-model-fits-all paradigm is not effective
when there is client heterogeneity, i.e., the local data are non-
IID across clients with heterogeneous features or label dis-
tributions [35]. Personalized Federated Learning (pFL) [43]
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Figure 1. Accuracy of personalized models on Office-Home.
“Full”/“Partial” denotes full/partial model personalization. PER-
ADA achieves the highest personalized performance and general-
ization by updating the smallest number of model parameters.

has emerged as an effective solution to tackle client hetero-
geneity. In pFL, each client trains a personalized model
on its local data to ensure personalized performance, while
leveraging the aggregated knowledge from other clients to
improve its generalization.

Existing works in pFL commonly use full model person-
alization, where each client trains a personalized model as
well as a copy of the global model from the server for regu-
larization [33, 59]. However, these methods are parameter-
expensive, leading to high computational and communica-
tional costs, which is impractical for clients with limited
computation resources and network bandwidth [26]. Later
on, partial model personalization alleviates this issue by
splitting each client’s one model into personalized param-
eters and shared parameters, where only the set of shared
parameters would be communicated with the server [48].
Nonetheless, these methods tend to overfit more to the lo-
cal training samples since the set of shared parameters does
not encode generalized knowledge well compared to a full
global model. This hurts the performance of partially per-
sonalized models in real-world FL deployment, where the
incoming local test samples are evolving with natural shifts
from the local training distribution [25], e.g., images taken
under varying weather or lighting conditions.

Our Approach. In this work, we propose PERADA, a pFL
framework that reduces communication and computation
costs for clients while personalizing the model and maintain-
ing its generalization to test-time distribution shifts, as shown
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Figure 2. [llustration of PERADA.

in Figure 1. PERADA is a parameter-efficient personalized
FL framework based on Adapter [50] and Knowledge Distil-
lation (KD) [20]. The overview is shown in Figure 2.

Each client has a pretrained model, a personalized adapter,
and a local adapter, where each adapter consists of a small
number of additional parameters planted in the pretrained
model with skip connections. At each training round, to
reduce the computation and communication costs, PERADA
leverages the power of the pretrained model, and only up-
dates the personalized adapter and the local adapter using
local data, and sends the local adapter to the server. In this
way, it limits the number of trainable parameters and only
communicates the local adapter, instead of the full model.

Then, to improve the generalization, the server aggregates
clients’ local adapters (i.e., teachers) via knowledge distilla-
tion and trains the global adapter (i.e., student). Specifically,
it uses the averaged logits from teachers on an unlabeled pub-
lic distillation dataset as the pseudo-labels to train the student.
This avoids directly averaging clients’ models trained on het-
erogeneous local data, while enriching the global adapter
with the ensemble knowledge from clients’ models and miti-
gating the potential model aggregation drifts caused by het-
erogeneity. After that, the server sends the distilled global
adapter back to the clients, which is used to initialize the
local adapter and regularize the training of the personalized
adapter to prevent overfitting and improve the generalization.
During the testing phase, each client uses the personalized
adapter for inference.

To explain why PERADA is effective in improving gener-
alization, we theoretically derive its generalization bounds
under FL covariate (or feature) shift non-IID setting [44]. We
are the first to show that the generalization on a target distri-
bution (e.g., potentially with test-time distribution shift) can

be enhanced for both global model and personalized models
by KD when the distillation optimization error is small, and
the distribution of the unlabeled distillation dataset is close
to the target distribution. We also characterize the role of
different components in PERADA on generalization, such
as client heterogeneity, pretrained model, and the prediction
distance between the global and personalized models.

In addition, we establish convergence guarantees for PER-
ADA in general non-convex settings. The analysis of PER-
ADA is challenging due to the bi-level optimization between
server distillation training and local client training. We es-
tablish the convergence rates for the global model and per-
sonalized models to stationary points and demonstrate the
effects of KD and client heterogeneity on the convergence.
As far as we know, these are the first-known results for FL.
convergence under server distillation.

Empirically, we conduct extensive evaluations on differ-
ent datasets, including natural and medical images (CIFAR-
10, Office-Home, and CheXpert) under both FL covariate-
shift and label-shift non-IID settings. We show that PERADA
achieves competitive personalized accuracy over state-of-the-
art pFL methods with only 12.6% of trainable parameters
while obtaining higher generalization, especially when eval-
uated on out-of-distribution data. We further show that the
benefits of PERADA extend to differentially private (DP) FL
settings and improve the DP-utility trade-offs compared to
full model personalization. In summary,

* We propose PERADA, a lightweight pFL framework with
personalized adapters that provides personalization while
reducing computation/communication costs. We improve
the generalization of PERADA with server-side KD.

* We theoretically analyze the effectiveness of PERADA,
and prove the generalization bounds and the convergence
rates for both the global model and personalized models
under non-convex settings.

* Through extensive experiments, we show that PERADA
achieves higher personalized performance and better gen-
eralization than state-of-the-art pFL methods with smaller
computation and communication costs. Moreover, PER-
ADA retains its benefits under differential privacy.

2. Related Work

Full Model Personalization. Many pFL approaches require
each client to train a personalized model and a global model,
where the global model is used to prevent the personalized
model from overfitting. It includes methods based on meta
learning [12], model mixture [10, 16, 43], global reguarl-
ization [33], mean regularization [16, 17, 59] and cluster-
ing [15, 54]. However, these methods induce high costs by
training two full models in each client and communicating
the full model. Another approach is to locally finetune an FL.
global model (e.g., from FEDAVG [45]). While local fine-
tuning yields promising personalized accuracy [8, 62, 65], it
could be prone to catastrophic forgetting and overfitting to its



(limited) local data, sacrificing the generalizability [25, 49].

Partial Model Personalization trains one model for each
client to reduce the costs, which is partitioned into shared
parameters and personalized parameters, such as personal-
ized feature extractors [9], prediction head [3, 7, 38], batch
normalization [36], adapters [48], and adaptively selected
parameters [58]. Nevertheless, the shared parameters do
not learn generalized information well compared to a full
global model, so the partially personalized models can have
inferior generalization ability. To further reduce the costs,
Shysheya et al. [56] apply parameter-efficient transfer learn-
ing techniques to train FEDAVG and perform local finetuning.
However, it does not specifically address the generalization
issues of personalization, which is the focus of our work.

Knowledge Distillation (KD) in FL. KD is a technique
that transfers the knowledge from one or multiple teacher
models to a student model [20]. Ensemble distillation has
been used to tackle data heterogeneity in generic FL, by
refining the server model with ensemble knowledge from
clients, rather than directly aggregating their model param-
eters. Specifically, the ensemble predictions from clients’
models on an unlabeled dataset are used to guide the train-
ing of the server model, where the unlabeled dataset can be
public data [6, 31, 39] or generated data [67]. Another line
of work leverages client-side local distillation to transfer
global knowledge to local models in generic FL [29, 68]
or personalized models in pFL [46, 66]. To reduce the load
for clients, we focus on parameter-efficient ensemble distil-
lation in the server with public data to train a better global
model, and study its effects on personalized models with
novel convergence guarantees and generalization bounds.

Parameter-efficient fine-tuning techniques applied to
pretrained large models [5] have become the prominent prac-
tice in transfer learning to save computation costs [14, 30,
40]. Motivated by the success of Adapter, a low-cost plug-in
mounted on pre-trained vision models [50] or large language
models [21, 37, 41], we investigate Adapter in the context of
parameter-efficient personalization. Instead of training both
the backbone and adapter for pFL as in [48], we treat the
adapter parameters as personal and the rest of the model pa-
rameters as frozen, and further leverage sever-side ensemble
distillation to improve pFL performance.

3. Preliminaries and Challenges

We consider a typical setting of FL with M clients
where each client m has a training dataset D,, =
{(@mj,Ym.,j),J € [nm]} with n,, data samples dawn
from its local distribution p,,,. Let f(W,z) represents a
model that outputs the logit vector given input x, where
W € R? denotes its model parameters. Let the loss
function be ¢(f(W,z),y), and the empirical loss on lo-
cal data D, associated with client m be L, (W) :=
T];n Z;L;nl t (f (VV, Im,j) 7ym,j)~

Generic FL aims to optimize a single global model with

all clients’ local data with the FL objective: miny L(W)
where L(W) = & Z%zl Ln(W). A standard way to
solve it is FEDAVG, which iterates between local model
training and global model aggregation for multiple commu-
nication rounds. However, due to the heterogeneous local
data distributions among clients, local model would drift
away from each other, making the aggregated global model
deviate from the optimal solution.

Personalized FL learns a personalized model for each
client to perform well on its local data while preventing
overfitting by leveraging the knowledge from other clients.
However, achieving the goal is non-trivial due to the fol-
lowing challenges: (1) High costs: existing full model
personalization studies [12, 16, 33, 59], which optimize
ming (v} 7 Som—y (Lo (Vi) + 3 [[Vin — W|?), require
twice the memory footprint of the full model at each client
by locally updating personalized model V;,, € R¢ and global
model W € R? where X is the /5 regularization weight
controlling the extent of personalization. (2) Limited gener-
alization: partial model personalization [7, 9, 38, 48] is more
efficient by training a full model V,,, = (u, v,,,) at each client
and communicating a subset of parameters, where u € R%
are shared parameters and v,,, € R% are personal param-
eters: min, g, 3 ﬁ Z%Zl L (u, vy,). However, such a
partially personalized model can be dominated by personal
knowledge with v,,, and poor at encoding generalized knowl-
edge with the remaining v from global distribution, leading
to inferior performance under test-time distribution shifts.
Figure 3 depicts such challenges in existing studies.

4. Method
Here we introduce the objectives and algorithm for PERADA.

Personalized and Global Objectives of PERADA. We
address the challenges discussed in Sec. 3 by proposing
PERADA, which improves the efficiency of learning per-
sonalized adapters and enhances their generalization with
regularization and KD. Specifically, we (1) train the person-
alized adapter {v,,} regularized towards a global adapter
w to optimize a personalized objective (Personal Obj), and
(2) train a well-generalized w via KD to optimize a global
objective (Global Obj) under non-IID data, where we use
the alternative optimization between client local training of
local adapter {6,,, } and server KD training of w.

Concretely, we improve the efficiency of partial model
personalization with a pretrained model and personalized
adapters. Here the personalized adapter consists of a small
number of additional parameters with skip connections (in
Figure 2), which can reduce to the identity function when
its parameters are zero [50, 66]. Our personalized adapter
is trained with regularization to prevent overfitting, yielding
the personal objective of each client m:

A
min Py, (U, w) := Ly (U, ) + §||vm —wl|?,

Um
(Personal Obj)



where u € R% denotes the fixed pretrained parameters, and
Um,w € R% are personalized adapter and global adapter,
respectively, with d, < d,,.

Since the global adapter w is trained with all client data,
regularizing v, with w could potentially boost v,,,’s general-
ization power. Thus, enhancing w’s generalization capacity
is crucial for training a personalized model that demonstrates
robust generalization as well. Instead of using FEDAVG [45]
to learn w as in regularization-based pFL method [33], we
leverage server-side ensemble distillation [39] to enrich the
global adapter with ensemble knowledge from clients’ mod-
els and alleviate model aggregation drifts induced by client
heterogeneity, yielding the global objective:

{emm LW )

0., = arg mgin L (u,0), initialized with w.

(Global Obj)

min RKD(
w

where

Here 6,, € R% is client m’s locally updated global
adapter, and we call it as local adapter for distinguish-
ment. The KD loss is defined as: Rp (v, {0 }M_1,w) =
ST o (g LG f(u, w), ), which is the
average distillation loss (between the averaged logits of local
models and logits of the global model) on an auxiliary (unla-
beled) dataset Doy = {; }?;“i drawn from the distribution
Laux- Here fgp(a,b) = KL(o(a),o(b)) is Kullback-Leibler
divergence loss where o is softmax function [20]. Compared
to server-side KD in generic FL [6, 39, 67], we only update
adapters instead of full models, which is more efficient for
training and communication.

Algorithm 1 PERADA with client and server training

1: Input: M clients, pretrained model parameters u, initialized adapters
w?, {v9 }, local datasets {ID;, }, an unlabeled dataset Dayyx

2: Output: Personalized adapters vf, ey vﬂ
3: for communication round ¢ € [T'] do
4. St < Server samples C clients from M clients
S: Server sends global adapter w? to the selected clients
6: for client m € S do
7: Client initializes personalized adapter vInO as vl
8: for step s € [S] do
9: // update personalized adapter
10: ot T ot = mp (Vem (uw,v5) + 2 (vha° — wt))
11: Client sets le “— vfns
12: Client initializes local adapter 93,30 as w?
13: for step e € [E] do
14: // update local adapter
15: 0Lt — 0h — VLo (u, 05°)
16: Client sends local adapter oLt 1o 0 E to server

17: Server initializes the global adapter w"° by averaging
18: wh? — =gttt

mes; T8, 7m

19:  for step r € [R] do

20: // update global adapter
21: wh Tt b7 — NgVwRio (u, {Gf:rl}mesf,,wt’r)
22:  Serversets witl « wt

PERADA Algorithm. Now we introduce the details of
iteratively optimizing the personalized objective and the
global objective. Algorithm 1 presents our workflow. At
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Figure 3. Current full model personalization incurs high computa-
tion costs by training two models, whereas existing partial model
personalization often falls short in terms of generalizability. By up-
dating adapter only, PERADA achieves a favorable balance between

training/communication costs of clients and their pFL performance.

each communication round ¢ € [T, the server selects C
clients S; and broadcasts the current global adapter w?.
To optimize personalized objective, each selected client
m € S, initializes personalized adapter as v%,? < v! , and
updates 1t for S steps with learning rate n, and mini- batches
{€t53523 sampled from D, (L1ne 10). The client sets
personalized adapter vf! « o5 after training. To op-
timize global objectlve, each selected client m initializes
local adapter as the received global adapter 0%,0 < w?, and
makes local updates for FE steps with learning rate 7; and
mini-batches {¢4¢12 sampled from D,,, (Line 15). Then
client m sends the updated local adapter 05! < 04F to
server. After receiving local adapters, the server first initial-
izes the global adapter by parameter—averaging wh0 < g+
where 0! .= 30 s, 13, |9qu 1. Then, the server updates
global adapter for R steps via knowledge distillation from
local adapters (Line 21) with learning rate 7, and batches
{€bm B | sampled from D,,,. The server will send the up-
dated global adapter as w'*! < w" % to clients at the next
communication round.

5. Generalization Bounds of PERADA

In this section, we analyze the generalization bounds for
PERADA by answering the questions: how do the distillation
data distribution and KD optimization impact the generaliza-
tion of the global model? How does the global model impact
the generalization of personalized models?

For notation simplicity, we define p1, - - - , pas as the per-
sonalized hypothesis, where each hypothesis p,, € P,
X — [0,1]* maps the input * € X to a probability vec-
tor over the k classes (i.e., softmax outputs). Similarly,
we define global hypothesis g € G and local hypothesis
hm(x) € Hpm, Vm € [M]. We call “hypothesis” as “model”
in this section. The local dataset D,,, of each client m is
drawn from the local distribution (., and the distillation
dataset D,y of the server is drawn pia,x. We study gener-
alization of the global model and personalized models on
a target distribution p of interest (e.g., with distribution
shifts), by analyzing the effect of local distributions {;, }
and distillation distribution i, used in FL training. We
focus on the generalization bounds under FL covariate shifts
following [44] and defer all proofs to Appendix C.

Global Model. Previous KD-based FL generalization



bounds [39, 68] simply assume a perfect distillation (i.e.,
the global model is the ensemble of local models) which
neglects the actual distillation errors and the choice of
distillation distribution. To take them into account, we
define the ensemble distillation distance on ngy, points
{x;}; =% drawn from fiayy as: @, no (P1, ... A g) o=
= gz — 37 SM iy (:)||1 which measures
the output difference between the global model and the en-
semble of local models. To show g can have good generaliza-
tion bounds on p with KD, our main idea is to bound error
probabilities of g with the expected distillation distances and
errors of local models, and then bound the errors on i by i,
based on prior arts from domain adaptation [4]. We defer
the preliminaries about learning theory to Appendix C.3.

Theorem 1 (Generalization bound of PERADA global
model). Consider empirical datasets D ~ p,Dayy ~
/iauanm ~ Hm with “D)| = |Dm| =n, “D)aux| = Naux-
Let d,, be the VC dimension of H.n, Rad,, be
the empirical Rademacher complexity measured
on Mauy samples.  With probability at least 1 — 0,
for every hy,, € Hp,Ym € [M] and g € G, we

have  Pr [argmaxg(m)y/#y] < 2E 1 —
(z,y)~p Y’ (z,y)~p
g(@),) < OK2[max;(§; 3o Radn,, (Hinl;) +

M
man Ra’dnaux(gl‘])])“‘% Z (%\/Qdm 10g(2n)+10g(6M/5)+

n
m=1

osCM/0) o (JRC) 4 O(Rad, (M) +
M R

a7 2 (2ERR(Dpy, b)) + dygar (D, D) +A) +
m=1

local empirical risk client heterogeneity

2 (I)#auxmaux(hh BRI h]\l; g) +4 TV(N? :uaux)’

ensemble distillation distance TV divergence

ERR(Dma hm) % Z;'Lzl [1 - h'rn(x'm,j)ym,j} a)\m
Epm (B*) + €, (R*), h* := argminpey €, (h) + €, (h).

where

Remark 1. We discuss key implications of Theorem 1: (1)
Ensemble distillation. ®, ., captures the distillation
error measured on the distillation dataset D .,y as minimized
in Line 21. When iy = p, €.g., using data from the target
distribution as the distillation dataset, KD improves the
generalization of g during training by directly minimizing
Do - The smaller the distillation distance, the better
the generalization. When fia,; # 1, KD on pia., decreases
D, .n.. While causing additional generalization gap
measured by TV divergence TV (fauy, pt). Compared to
without KD, using a distillation dataset from a domain
close to v with small TV (piaux, i¢) and reducing @, ..
during KD can also improve the generalization (e.g., when
D, o T 2TV (paux, i) < @, 1., )- We empirically verify
the effect of different distillation datasets in Sec. 7.1. (2)
Quality of local models. The ERR(D,,, h,,) term shows
that reducing the empirical risk of local models w.r.t local

TMaux

distributions (., improves the generalization of the global
model. We verify in Sec. 7.1 that a more powerful pretrained
model, which results in higher quality local models, leads
to better generalization. (3) Sample complexity. More
empirical samples during training improve the generaliza-
tion. We further discuss the effect of client heterogeneity
CZH AH (D, D) (i.e., the empirical H -divergence between
two datasets) and number of classes k in Appendix C.1.
Personalized Models. We show that personalized model
DPm can generalize well on p if global model g generalizes
well on p and p,,, has small prediction distance with g.

Theorem 2 (Generalization bound of PERADA per-
sonalized model). With probability at least 1 — §,
for every p,, € Pn,Ym € [M], and for every

g € G, we have Pr, )., |argmaxp,,(z), #y| <
y/

2B (g )~ (1 = 9(2)y) +257 3232 min {1, [|pm (z) — g(2) 1 }+

61/ 282/%) 1 O (k3/2 [max; Rad, (P|;) + max; Rad,(G];)]).

Remark 2. The first term is the population risk of g on p,
which has been upper bounded by Theorem 1. The second
term is the prediction difference between g and personalized
models. Therefore, the generalization of personalized model
is intrinsically related to the performance of global model. In
Sec. 7.1, we empirically show that moderately increasing the
regularization strength X in (Personal Obj) could improve the
generalization of p,,, by reducing such prediction distance.

6. Convergence Guarantees of PERADA

In this section, we aim to provide the convergence analysis.
We outline the analysis challenges for PERADA, arising from
the bi-level optimization between server distillation and local
training, as well as the personalization regularized by the
global model. Then, we present the convergence analysis
for PERADA global model and personalized model. For
notation simplicity, we will omit the frozen parameters u
and use w/0,, /v, to represent corresponding models.

To convey the salient ideas, we consider full client par-
ticipation (i.e., |S;| = M) for convergence analysis follow-
ing [46, 52]; thus, the stochasticity comes from mini-batch
samplings during client and server training. Below, we first
give several necessary assumptions.

Assumption 1. (Smoothness). £, (6) is L-Lipschitz smooth
Vm € [M] and R({0.,}, w) is L g-Lipschitz smooth.

Assumption 2. (Bounded Variance). The stochastic gra-
dients are unbiased and variance is bounded Vm € [M]:
E|VLy (0) = VL (0) 2 < 0% E[VuR({0n} w) —
VuR({0m}, w)|?* < oF.

Assumption 3. (Bounded Diversity). The variance
of local gradients to global gradient is bounded

LN VL (w) — & M VL (w)? < 7.



(Bounded Gradients). The func-
[M] have bounded gradi-
||VwR({9m}aw)H S GR’

Assumption 4.
tions L., R,P,,Vm €
ents: [[VLn(0)] < G,
||vam(Um; w) || S G’P-
We defer more discussions on the assumptions to Ap-
pendix D.1. Next, we discuss the challenges and present the
main results. All proofs are relegated to Appendix D.
Global Model Convergence with Ensemble Distillation.
Despite the wide applications of knowledge distillation in
FL [29, 66, 68], its convergence analysis is less explored. To
the best of our knowledge, there is no convergence guaran-
tee under server-side ensemble distillation [6, 31, 39, 67].
This lack of research is likely because (1) the complexity of
bi-level optimization between server distillation for w* and
client training for {#¢ }, which incorporates two objectives
(i.e., minimizing distillation loss and local loss respectively);
(2) at each round, the global model is initialized by averaged
local models before distillation, and local models are initial-
ized by the global model before local training. Such mutual
initializations intervene in the model updating trajectories
of w! and {6 } w.r.t their training objectives, making the
convergence even harder to analyze. On the other hand, it
has been empirically shown that ensemble distillation can
improve the global model performance by incorporating di-
verse knowledge from clients (e.g., low £(w!) measured on
all clients’ data) [6, 31, 39, 67]. Therefore, we aim to under-
stand the global model convergence w.r.t L(w') as a function
of ensemble distillation. To overcome the aforementioned
challenges, we regard {60! } as the intermediate models to
update w!t!, and quantify the effects of local client training
and server distillation on optimizing FL global objective:
Theorem 3 (Convergence of PERADA global model). Let

Assumptions 1 to 4 hold, and n; = #\/T Ng = LR%’

denote w"° = 3 Zm 1 0L, then the algorithm satisfies

L BIVE@OI o(Lhetin, 78, Ls )

=0 =0 - VT T TVTLLE/
L(G?+42)

where Ar = L(w?) — L(w ) wlzé’—M—i—W,
and 1y = 40R +32(3G% + ZUR )/T? +2G%. In particular,
—t+1 0 _ ’lU and —t+1,E—1 __ 9t+1
Remark 3. (1) Convergence rate is O(1/+/T) as it is the
dominant term, matching the rate of the general FL non-
convex settings of our interest [46, 59]. (2) Local steps &
distillation steps. With more local updating steps £ and
distillation steps R, the terms ¢); and 2 decrease. It means
that a larger E and R can reduce the required communica-
tion rounds 7' to converge, thus lowering communication
costs. (3) Client heterogeneity is reflected in 7, whose ef-
fect can be mitigated by larger 7. (4) Ensemble distillation
is mainly reflected in o where 0}2% are inherent data sam-
pling noise when using stochastic gradients [12, 59], and G
is from the bounded gradient assumption for distillation. The

distillation gradient can be small when the averaged logits
of local models (teacher) and the logits of the global model
(student) are close (See Equation (11) and more discussion
in Appendix D.1). Notably, the convergence bound remains
valid for any distillation data, even if it is out-of-domain.

Personalized Model Convergence. Regarding personaliza-
tion, unlike [59], to preserve generalization, the global model
w? of PERADA is not updated based on the personalized ob-
jective P(vt,, w?). Thus, it remains unclear how the global
model w' learned from the ensemble distillation impacts
the convergence of personalized models w.r.t P(vl,, w'). In
Theorem 4 (Appendix D.1), we analyze such impacts and
show the convergence rate of personalized models.

7. Experiments

We empirically compare PERADA to existing pFL methods.
We defer the details of experiments and hyperparameter as
well as the additional experimental results to Appendix A.
Data and Model. We use CIFAR-10 [28], Office-Home [61],
and medical image data CheXpert [24]. We simulate pFL
setting for (1) label Non-IID using Dirichlet distribution
Dir(e) [23] with @ = 0.1/0.3 on CIFAR-10/CheXpert, cre-
ating different local data size and label distributions for M
clients; and (2) feature Non-IID on Office-Home by dis-
tributing the data from 4 domains (Art, Clipart, Product, and
Real Word) to 4 clients respectively [58]. We use M = 20
for CIFAR-10/CheXpert, and sample 40% clients at every
round following [7, 39], and use full client participation for
Office-Home following [58]. We use ResNet-18 pretrained
on ImageNet-1K [53] for all datasets. For PERADA!, we use
out-of-domain distillation dataset CIFAR-100 for CIFAR-10,
and use CIFAR-10 for Office-Home/CheXpert.

Baselines. We evaluate full model pFL methods FE-
DAVG+FT [65], DitTo [33], APFL [10], MTL [57],
PFEDME [59], and partial model pFL methods with
decoupled personalized/global parameters, including
FEDBN [36], LG-FEDAVG [38], FEDREP [9], FED-
SiM [48], FEDALT [48]. We also include PERADA W/0 KD,
which is PERADA without Line 21 server-side knowledge
distillation (i.e., using FEDAVG to aggregate global adapter).
Note that we use the same pretrained ResNet as initialization
for all methods for fair comparisons.

Evaluation Metrics. We report the averaged test accuracy
(pFL accuracy) and standard deviation over all clients’ per-
sonalized models. For CheXpert, we report the AUC score
since it is a multi-label classification task. We evaluate
pFL accuracy mainly under two metrics: Local-test (i.e.,
clients’ corresponding local test data) and Global-test (i.e.,
the union of clients’ local test data), to study the personal-
ized performance and generalization (against label or co-
variate shifts), respectively. In addition, for CIFAR-10, we
evaluate pFL generalization against distribution shifts on

'We follow [48] to implement Adapter, which includes prediction head.



Table 1. Parameter-efficiency and averaged test accuracy across all clients’ personalized models. PERADA achieves higher personalized
performance and generalization with a smallest # of trainable parameters. bold/Underline fonts highlight the best/runner-up approach.

. Personalized  # Trained # Comm. CIFAR-10 Office-Home CheXpert
Algorithm Params Params Params

Local-test  Global-test CIFAR-10.1 CIFAR-10-C Local-test Global-test Local-test ~Global-test

STANDALONE Full model 11.18M (7 85.94x ss2 29.77+ so00  25.82+ 62r  26.67+ 7or  81.64+ c0s  59.15+ ss2 65.06+ 185 65.45+ 2
MTL [57] Full model 11.18M 11.18M  86.24+ sas 29.46+ s3s 25.64+ 642 264 + 720 81.824 553 59.25+ 2584 65.15+ 105 65.48+ 23
FEDAVG+FT [65] Full model 11.18M 11.18M* 8891« s5m  43.99+ o957 3549+ so2  36.51+ sas 7942+ 562 7719+ o056 70.16x 07s  70.6 + o
PFEDME [59] Full model 22.36 M 11.18M  90.73+ 467 45.06+ sos  36.51+ 7.2 37.65+ 76 80.21+ 532 75.69+ o0 65.07+ 12 64.86+ 122

APFL [10] Full model 22.36M 11.18M  90.74+ 475 43.92+ ous  35.83+ 75 36.51+ 701 81.24% 451 7698+ 130 68.98+ 100 68.96+ 1.1
DitTO [33] Full model 22.36 M 11L.18M  90.21+ 461 53.82+ 635 4272+ 568 4432+ 503 8177+ 4s  75.66+ 101 6879+ 14  68.86+ 122
FEDBN [36] Batch norm. 11.18M 11.17M  90.37+ 500 43.18+ ser 35.01x 724 36.29% 743 81.86x 513 74.26x o052 68.74x 117 68.83x 1.0s

FEDALT [48] Input layer 11.18M 6.45M 87.07+ 651 32.23+ s2a  27.49: s 2851+ 711 8107+ 550 65.85+ 00 67.63x 115 67.74x 1.
FEDSIM [48] Input layer 11.18M 6.45M 87.93+ 625 33.07+ sa6 2821+ 61 29.15+ 716 82.45+ 505 67.66+ o0s2  67.49+ 132 67.54+ 1.24
LG-FEDAVG [38]  Feat. extractor 11.18M 0.005M  86.7 +so1 29.96+ s 2597+ 621 26.83% 6905 82.04% 596 63.57+ 232 65.78x 162 66.23x 175
FEDREP [9] Output layer 11.18M 11.17M  87.76+ 646 35.19+ 607 30.15+ ss0  30.68+ 631 79.05% sss 7417+ 202 66.66+ 152 66.52+ 1.47
FEDALT [48] Output layer 11.18M 11.17M  89.68+ 5.4 40.68+ 7.5 33.61+ 612 343 + os 83.24+ 306 70.62+ 146 68.27+ 15  68.36+ 1.3
FEDSIM [48] Output layer 11.18M IL1I7TM  89.75+ 551 4198+ 766 34.21: 622 35.31x 670 82.91: 4a6  72.34x o051 68.22: 132 6812+ 124
FEDALT [48] Adapter 12.59M 11.18M  87.26+ 7.7s  31.51s+ sss  27.38+ 665 27.77+ 710 81.4ls 65 57.88+ ssr 7213+ 131 74.67+ 157
FEDSIM [48] Adapter 12.59M 11.18M  87.76x 757 31.97+ 7aa  27.76x s7s 281 & 6as  82.14% 56 58.62+ 320 71.75x 14 74.09+ 155
PERADA W/0 KD Adapter 2.82M 1.41M 9127+ 505 53.81+ 62r 425 + 506 4445+ sas 83314 55 7655+ 247 7677+ 224 77.59+ s
PERADA Adapter 2.82M 1.41M 91.82+ 445 59.05+ 520 4725+ 145 4853+ s7a 8358+ a7 772 & 163 7698+ ssr 7788+ 155

*FEDAVG+FT requires full model communciation during FEDAVG training and there is no communciation during local finetuning.

CIFAR-10.1 [51] and common image corruptions (e.g. Blur,
Gaussian Noise) on CIFAR-10-C [19].

7.1. Evaluation Results

PERADA is parameter-efficient. ResNet-18 model con-
sists of 11.18 million (M) parameters, and the adapter has
1.41M (12.6%) parameters. Tab. 1 reports each client’s #
trainable parameters and # communicated parameters to the
server. We see that PERADA is most parameter-efficient
by locally training two adapters and communicating one
adapter. Most full model pFL requires training two full mod-
els (PFEDME, APFL, DITTO), and sends one full model to
the server. Partial model pFL requires training one full model
and communicating its shared parameter. Note that adapter-
based partial model pFL in FEDALT and FEDSIM are more
expensive than PERADA because they still need to train both
a personalized adapter plus a shared full model (12.59M),
and communicate the full model. Additional comparison
under ResNet-34 shows similar conclusions in Figure 1.
PERADA achieves competitive personalized performance
and better generalization than baselines. Tab. 1 shows
that even with the smallest number of trainable parame-
ters, PERADA achieves the comparable personalized per-
formance (+1.08%, 0.34%, 4.85% on CIFAR-10, Office-
Home, CheXpert) and better generalization (+5.23%, 4.53%,
4.21%, 0.22%, 3.21% on CIFAR-10, CIFAR-10.1, CIFAR-
10-C, Office-Home, CheXpert). Specifically, (a) PERADA
w/0 KD already achieves favorable performance compared
to the best baseline, which shows that the plug-in module
adapter can adapt the pretrained model to FL data distribu-
tions, and personalized adapter can successfully encode both
local knowledges (with local empirical risk) and generalized
knowledge (with regularization). (b) PERADA outperforms
PERADA w/0 KD, which shows that KD improves the gen-
eralization of personalized models (Theorem 2). We present
the convergence curves in Figure 6 (Appendix B) to show
the learning performance from the convergence perspective,

Table 2. Generalization comparison of the global model from
different generic FL and pFL methods on CIFAR-10.

Algorithm Algorithm Type Trained Params Global-test CIFAR-10.1 ~CIFAR-10-C
FEDAVG [45] generic FL Full 69.34 54.95 57.07
FEDPROX [32] generic FL Full 69.64 54.75 56.84
FEDDYN [2] generic FL Full 70.36 56.3 5591
FEDDF [39] (w/ KD) generic FL Full 74.83 60.95 61.23
PFEDME [59] pFL Full 68.25 52.55 56.33
APFL [10] pFL Full 69.79 53.6 57.06
DitTo [33] pFL Full 69.95 55.25 57.33
PERADA W/0 KD pFL Adapter 74.22 576 61.40
PERADA pFL Adapter 76.77 62.5 64.47

where PERADA achieves the best convergence speed.

To verify that such improvement of pFL is due to an
improved global model (Theorem 1), we compare the perfor-
mance of the global model of PERADA to the global model of
state-of-the-art methods in pFL (PFEDME, APFL, DITTO)
and generic FL (FEDAVG, FEDPROX [32], FEDDYN [2],
FEDDF [39]). Note that FEDDF [39] also uses ensemble
knowledge distillation for global model aggregation, but up-
dates the full model. Tab. 2 shows that the generalization
of PERADA global model with adapter also outperforms
baselines, and KD indeed improves our global model.
Existing partial model pFL can have poor generalization
to out-of-distribution shifts. As shown in Tab. 1, these
methods, while showing promising personalized accuracy
on CIFAR-10 and sometimes outperform full model pFL
on Office-Home and CheXpert by personalizing the right
model component, they significantly lag in generalizing to
test-time distribution shifts. (a) Compared to full model
pFL, the root causes of this inferior generalization in exist-
ing partial model pFL methods are twofold: (i) a smaller
number of shared parameters prevents them from effectively
learning global information; (ii) personalized parameters
can predominately encode local information for the partially
personalized model. PERADA circumvents such issues by
regularization, which enforces personalized adapters to learn
both local and global information. (b) Moreover, the fact
that PERADA even w/o KD has better generalization than ex-
isting partial pFL methods suggests that updating the shared
parameters globally via FL on heterogeneous data can com-



Table 3. Averaged test accuracy across personalized models with
data heterogeneity degrees Dir(1) and Dir(0.3) on CheXpert. PER-
ADA achieves best personalized performance and generalization.

Local-test Global-test

Algorithm Per
Dir(1) Dir(0.3) Dir(1) Dir(0.3)
STANDALONE Full 64.69+ 163 6506+ 185 6532+ 17 6545+ 23
MTL Full 65.18 = 65.15+ 1905 65.67+ 172
PFEDME Full 64.8 = 65.07+ 12 64.85+
APFL Full 5 68.98+ 101 6921
DITTO Full 68.79+ 14 68.72+
FEDBN BN 7 69.03+
FEDALT Input 67.88 +
FEDSIM Input 52 67.82%
LG-FEDAVG Feat. extractor 1oz 66.33 +
FEDREP Output 66.49+ 155 66.52 7
FEDALT Output 6841+ oar 6836+ 1:
FEDSIM Output 68.63+ o057 68.12+ 124
FEDALT Adapter i T4T9+ 12 T46T+ 157
FEDSIM Adapter 743 + s T4.09: 155
PERADA W/0 KD Adapter 121 78.02+ 136 T7.59+ 2.
PERADA Adapter 15 7698+ 1si 7802+ 155 77.88: 1ss

promise the pretrained feature exactor. Our findings indicate
that maintaining frozen parameters, as done in PERADA
without KD, is more effective in preserving the capabilities
of the pre-trained model.
Adapter-based personalization methods are generally
effective on CheXpert. Tab. |1 shows that adapter-based
personalization, including FEDALT, FEDSIM, PERADA, are
especially effective on the X-ray data CheXpert. This con-
clusion holds under different degrees of data heterogeneity
Dir(0.3) and Dir(1) in Tab. 3. It indicates that when adapt-
ing to FL domains that have a large domain gap for ImageNet
pre-trained models, e.g., medical domains, adapter personal-
ization may be preferable to input/output/batch-norm pFL.
Effects of KD. We use CIFAR-100 as the distillation dataset
on CIFAR-10, and Figure 4 shows that more distillation
steps and distillation data samples are better for pFL gen-
eralization. These results echo our theoretical analysis in
Theorem 1 that smaller KD optimization error ®,,, . and
a larger number of samples can tighten the generalization
bounds. We also evaluate different distillation datasets, and
Figure 4 shows that out-of-domain datasets (STL-10, CI-
FAR100) can improve generalization compared to the one
without KD (None) by a margin, and achieve comparable
performance compared to in-domain CIFAR10 validation
data. The flexibility of choosing distillation datasets makes it
practical for the server to leverage public data for KD.
Another potential way to improve generalization is by
moderately increasing regularization strength A for less per-
sonalization. However, Figure 7 (Appendix B) show that
an overly large A degrades the personalized performance,
which matches the observation for /5 regularization-based
pFL methods in [48]. Notably, KD does not have such a
negative impact on personalized performance (in Figure 4).
Effects of pretrained models. Starting personalization
from a pretrained model, such as FEDAVG global model,
is commonly considered in pFL [44, 48]. Therefore, we first
train a ResNet-18 global model on FL data from scratch
using FEDAVG and utilize it as initialization for pFL. Re-
sults in Figure 5 show that PERADA also achieves compa-

100 100
—e———e g e——¢ e+ ge—eo o
" es T e T
60 60
55 55
———— 50
- . e———a——1 Fﬁtﬂ
) %0 40
3None STL10  CIFAR100 CIFARTO (Val)
Distillation dataset

35 0
50 2000
Distillation steps

Figure 4. Effect of KD on PERADA evaluated on CIFAR-10. More
distillation steps and data samples lead to better generalization
and out-of-domain distillation data (STL-10, CIFAR-100) achieve

similar performance as in-domain (validation) data.
CIFAR-10 Local-test CIFAR-10 Global-test

Random
55 FedAvg
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03 08 1
Distillation data fraction

A: Standalone
B: MLT

F: FedBN
3 G: FedAlt (input)
H: LGFedAvg

I: FedRep

J: FedAlt (output)
K: FedAlt (adapter)
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Figure 5. Effect of different initializations (Random, FEDAVG
model, and ImageNet pretrained model).

rable personalized performance and higher generalization
than baselines with FEDAVG pretrained model. Moreover,
ImageNet-pretraining leads to better generalization than FE-
DAVG-pretraining for PERADA, which echos Theorem 1
that high-quality local models (enabled by good pretrained
model) can further improve generalization.

Utility under differential privacy guarantees. To further
protect local data privacy, we train our method under sample-
level (e,6) -differential privacy (DP) [11] on CIFAR-10
with a ViT-S/16-224 model 2. Following [42], we consider
full client participation and perform local training with DP-
SGD [1] for both personalized models and the global model
(see experimental details in Appendix A); We set § = 10
and report averaged e across all clients and averaged pFL
accuracy under Local-test. Tab. 4 shows that (1) PERADA
Ww/0 KD retains higher utility than full model personaliza-
tion DITTO under reasonable privacy guarantees due to a
smaller number of trainable parameters and the whole model
is less impacted by DP noise. (2) KD with unlabeled pub-
lic data in PERADA can further improve the utility without
consuming additional privacy budgets.

Table 4. PERADA retains high personalized utility under DP guar-
antee on CIFAR-10 with ViT-S/16-224 model.

Algorithm Personalization €=00 €=0599+303 €=37+212 e=181+112
Ditto Full 98.59 + 1.63  76.76 =24.14  76.75£24.13  76.67 £ 24.12
PERADA W/0 KD Adapter 97.69 + 1.79 7749 £21.21 77.32 +21.16 76.68 & 21
PERADA Adapter 98.08 & 1.28 80.33+ 20.76 79.79 +20.45 77.83+ 19.58

8. Conclusion

We propose a pFL framework PERADA based on
global/personalized adapter and knowledge distillation with
convergence and generalization guarantees, and show that it
reduces computation and communication costs and achieves
higher personalized performance and generalization.

2 As batch normalization layer in ResNet creates dependencies between
samples and violates DP, we use ViT model [64] for DP experiments.
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Appendix
The Appendix is organized as follows:
* Appendix A provides detailed setup and hyperparameters for experiments.
* Appendix B provides additional experiment results.
» Appendix C provides the generalization analysis of PERADA and the full proofs for Theorem | and Theorem 2.
* Appendix D provides the convergence analysis of PERADA and the full proofs for Theorem 3 and Theorem 4.

A. Experimental Details

A.1. Datasets and Model
Table 5. Summary of datasets.
Dataset Task # Training Samples ~ # Test Samples ~ # Validation Samples  # Clients Data Partition # Classes
CIFAR-10 image classification 45000 10000 5000 20 label-shift non-IID (synthetic) 10
Office-Home image classification 12541 1656 1391 4 covariate-shift non-1ID (nature) 65
CheXpert multi-label image classification 180973 20099 22342 20 label-shift non-IID (synthetic) 5

FL datasets We summarize our FL datasets in Tab. 5.

* CIFAR-10 [28] contains nature images for 10 classes, such as cat, bird, dog. We simulate label non-IID on CIFAR-10 using
Dirichlet distribution Dir(«) [23] with o = 0.1, creating different local data size and label distributions for M = 20 clients.

e Office-Home [61] contains images from four domains, i.e., Art, Clipart, Product, and Real Word. All domains share the
same 65 typical classes in office and home. We simulate the feature non-IID by distributing the data from 4 domains to 4
clients, respectively [58].

* CheXpert [24] is a dataset of chest X-rays that contains 224k chest radiographs of 65,240 patients, and each radiograph
is labeled for the presence of 14 diseases as positive, negative, and uncertain. We map all uncertainty labels to positive
(U-Ones [24]). We follow the original CheXpert paper to report the AUC score as a utility metric on five selected diseases,
i.e., Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion. To create the label-shift non-IID on CheXpert,
we view each possible multi-class combination as a “meta-category” and group all combinations that have less than 2000
training samples into a new meta-category, which results in a total of 19 meta-categories. Then we use Dirichlet distribution
Dir(a) with o = 0.3 to create label-shift non-IID based on the 19 meta-categories for M = 20 clients. Such FL data
partition simulates a scenario where different hospitals (clients) have different majority diseases among their patients. Note
that such meta-categories are only used to create FL non-IID data partition, and our utility metric AUC score is always
calculated based on the five diseases, i.e., a 5-label image classification task.

The number of samples for each dataset is shown in Tab. 5, where we use a ratio of 9:1 to split the original training data into

training data and validation data for each dataset.

Distillation datasets We summarize our out-of-domain distillation dataset as below:
* CIFAR-10: we use 50k (unlabeled) samples from the CIFAR-100 training dataset.
* Office-Home and CheXpert: we use 50k (unlabeled) samples from the CIFAR-10 training dataset.
In Figure 4, we conduct the ablation study of distillation on CIFAR-10.
« Distillation steps: we fix the distillation data fraction as 1 and increase steps.
Distillation data fraction: we fix the distillation steps as 100 and increase the data fraction.
Distillation datasets: we fix the distillation steps as 100, data fraction as 1, and use different distillation datasets. Specifically,
we use 100.5k samples from the STL-10 unlabeled+training dataset, 50k samples from the CIFAR-100 training dataset, and
5k samples from the CIFAR-10 validation dataset.

Evaluation datasets As mentioned in Sec. 7.1, we evaluate pFL accuracy mainly under two metrics: Local-test (i.e., clients’
corresponding local test data) and Global-test (i.e., the union of clients’ local test data), to study the personalized performance
and generalization (against label or covariate shifts), respectively. In addition, for CIFAR-10, we evaluate pFL generalization
against distribution shifts on CIFAR-10.1 [51] and CIFAR-10-C [19]. CIFAR-10.1 contains roughly 2,000 new test images
that share the same categories as CIFAR-10, and the samples in CIFAR-10.1 are a subset of the TinyImages dataset [60].



CIFAR-10-C [19] is natural corruption benchmark for test-time distribution shits, containing common image corruptions such
as Blur, Gaussian Noise, and Pixelate. It is generated by adding 15 common corruptions plus 4 extra corruptions to the test
images in the CIFAR-10 dataset.

Model We use a ResNet-18 [18] pretrained on ImageNet-1K [53] for all tasks. We additionally evaluate Office-Home on
ResNet-34 [18] pretrained on ImageNet-1K. The pretrained models are downloaded from PyTorch [47].

Tab. 6 and Tab. 7 show the detailed model architectures of ResNet-18 and ResNet-34 model used for personalization on
Office-Home, respectively. We use the number of parameters in the corresponding layers and the number of parameters in
the full model to calculate the total number of # trainable parameters for different full model pFL and partial model pFL in
Figure 1.

Since we use ResNet-18 for all datasets, the number of parameters of different kinds of layers for CIFAR-10 and CheXpert
are the same, except for the output layer. This is because different datasets have different numbers of classes, which decide the
size of the output layer. In Tab. 1, we report the parameters of the ResNet-18 model on CIFAR-10, where the output layer
consists of 0.0051M parameters.

Table 6. Summary of model architectures of ResNet-18 model used for personalization on Office-Home.

Type Detailed layers # Params. in the layers
Full model full model 1121 M
Input layer 1st Conv. layer 473 M
Feature extractor  the model except last fully connected layer 11.16 M
Batch norm batch normalization layers 0.0078M
Output layer last fully connected layer 0.033M
Adapter residual adapter modules 1.44 M

Table 7. Summary of model architectures of ResNet-34 model used for personalization on Office-Home.

Type Detailed layers # Params. in the layers
Full model full model 21.32M
Input layer 1st Conv. layer 9.78 M
Feature extractor  the model except last fully connected layer 11.16 M
Batch norm batch normalization layers 0.015M
Output layer last fully connected layer 0.033 M
Adapter residual adapter modules 2.57TM

A.2. Training Details

We tuned the hyperparameters according to the personalized performance evaluated on the local validation data. We use SGD
as the client optimizer. For each baseline method as well as our method, we tuned the (client) learning rate via grid search
on the values {5e-4,1e-3, 5e-3, le-2} for CIFAR-10 and CheXpert, and {5e-4, le-3, Se-3, le-2, Se-2} for Office-Home. For
PERADA, we use Adam as the server optimizer. We tuned the server learning rate via grid search on the values {le-5,1e-4,
le-3, le-2} for all datasets. The strength of regularization A is selected from {0.1, 1} following [33] and we use the same A
for PERADA, DITTO, PFEDME. For PFEDME, we use the inner step of ' = 3 as suggested in [59]. For APFL, the mixing
parameter « is selected from {0.1, 0.3, 0.5, 0.7}. The final hyperparameters we used for PERADA are given in Tab. 8.

A.3. Experimental Setups for DP Experiments

Since the batch normalization layer in ResNet-18 requires computing the mean and variance of inputs in each mini-batch,
creating dependencies between training samples and violating the DP guarantees, it is not supported in differentially private
models. Thus, we turn to conduct DP experiments with a ViT-S/16-224 model [64], which is pretrained on ImageNet-21k [53].
We download the pretrained model from Hugging Face [63].

Following [42], we consider full client participation and perform local training with DP-SGD [1] for personalized models
and the global model. On CIFAR-10, the local epoch is 1, and we run all methods for 10 communication rounds. We tuned the
(client) learning rate via grid search on the values {0.01, 0.05,0.1, 0.2, 0.3 } for DiTTO, PERADA W/0 KD, and PERADA. The
optimal learning rate for DITTO, PERADA W/0 KD, and PERADA are 0.05, 0.1, and 0.2, respectively. For PERADA, we set



Table 8. Hyperparameters of PERADA for each dataset.

Hyperparameter CIFAR-10 Office-Home CheXpert
Batch size 64 128 256
Clients per round 8 4 8
Local epochs 10 1 1
# training rounds 200 100 30
Regularization strength A 1 0.1 1
Client learning rate 0.01 0.05 0.01
Server learning rate le-3 le-4 le-5
Distillation step 500 100 50
Distillation batch size 2048 256 128
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Figure 6. Averaged test accuracy of personalized models from participating clients at each communication round.
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the distillation batch size as 32. We select the sever learning rate from {0.005, 0.003, 0.001}, and the optimal server learning
rate is 0.005.

We set the DP parameter § = 10~° and evaluate the averaged pFL accuracy under Local-test. We set the noise level &
as 0.8,1, 1.5 for DP-SGD training to obtain the privacy budgets € = 5.99 + 3.03,3.7 & 2.12,1.81 & 1.12 used in Tab. 4,
respectively. Under each privacy budget, we tuned the clipping threshold via grid search from {1, 2, ..., 10 } for each method.

B. Additional Experimental Results and Analysis

In this section, we provide additional experimental results and analysis, including (1) Convergence analysis; (2) analysis of
pFL performance under different model architectures Office-Home; (3) pFL performance under different data heterogeneity
degrees on CheXpert; (4) generalization comparison of the global model of different pFL methods; (5) effect of the pretrained
model; (6) effect of regularization strength .

Convergence We present the learning performance from the convergence perspective in Figure 6, where we report the
averaged test accuracy of personalized models from the participated clients at each communication round. It shows that PER-
ADA achieves the best convergence speed and converges to a higher personalized performance (local-test) and generalization
performance (global-test).

Performance under different model architectures (ResNet-18 and ResNet-34) on Office-Home. Figure 1 shows the
performance of different pFL under ResNet-18 and ResNet-34. Cross different network architecture, PERADA is able to
achieve the best personalized performance and generalization with the fewest number of trainable parameters. For larger
model, the number of updated parameters difference between full model personalization and our adapter personalization will
be larger, reflecting our efficiency.

Performance under different data heterogeneity degrees on CheXpert. Tab. 3 shows under different data heterogeneity
degrees Dir(1) and Dir(0.3) on CheXpert, PERADA achieves the best personalized performance and generalization. It also
verifies that adapter-based personalization methods, including FEDALT, FEDSIM, PERADA are especially effective on the
X-ray data CheXpert.

Generalization comparison of the global model of different pFL methods. Tab. 2 compare the generalization performance
of the global model in our method to the global model in other full model pFL methods (PFEDME, APFL, DITTO) and generic
FL methods (FEDAVG, FEDPROX [32], FEDDYN [2], FEDDF [39]) on CIFAR-10. MTL and partial model pFL methods are
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excluded from the compression because they do not train a complete global model. We use the same distillation dataset and
distillation steps and data size for FEDDF and PERADA to ensure a fair comparison.

The results show that the global model of PERADA outperforms these baselines, which verifies that KD improves our
global model, and the improved performance of personalized models is due to a well-generalized global model.

Effect of pretrained models. Starting personalization from a pretrained model, such as FEDAVG model [44, 48], is common
in pFL, so we report the results with FEDAVG pretrained model (on FL data from scratch) for all methods® on CIFAR-10.
The results in Figure 5 show that PERADA also achieves comparable personalized performance and higher generalization
than baselines with FEDAVG pretrained model. Moreover, Theorem | shows that high-quality local models (enabled by good
pretrained model) can further improve generalization. Here, we use ImageNet as an example of high-quality pretrained models,
which leads to even higher personalized performance and generalization for PERADA. Additionally, pretrained models lead to
significantly higher pFL accuracy than random initialization for all existing methods; therefore, leveraging a pretrained model,
which is often available for modern deep neural networks [5], is practical and beneficial not only for PERADA but also for
existing pFL methods.

Effect of \. Results on CIFAR-10 and Office-Home in Figure 7 shows that moderately increasing regularization strength
A can improve generalization, but it also degrades the personalized performance, which matches the observation for /5
regularization-based pFL methods in [48].

3FEDSIM is omitted here because its results are similar to FEDALT [48]



C. Generalization Analysis

We give the discussions and analysis for our generalization bounds. The outline of this section is as follows:
* Appendix C.1 provides more discussions on Theorem 1.

» Appendix C.2 provides the peliminaries for generalization bounds and introduces several useful lemmas.
¢ Appendix C.3 provides the proofs for generalization bounds of global model in Theorem 1.

* Appendix C.4 provides the proofs for generalization bounds of personalized model in Theorem 2.

C.1. Additional Discussion

Additional Discussion on Theorem 1. From Theorem 1, we can have the additional observations: (i) Client heterogeneity.
Larger heterogeneity, i.e., higher distribution divergence CZ’H A (Din, D) between local and global datasets, could undermine the
generalization of g, echoing the implications in [39, 68] (ii) Number of classes. The smaller number of classes & is favorable
to generalization, as the classification task with fewer classes is easier to learn. We note that previous FL generalization
bounds [39, 44, 68] are limited to binary classification cases.

C.2. Peliminaries for Generalization Bounds

Here we introduce several existing definitions and lemmas from learning theory.

Lemma 1 (Empirical Rademacher complexity [55]). G be a set of functions Z — [a,b], ¥6 > 0. Let Z1,...,Z, be i.i.d.
random variables on Z following some distribution P. The empirical Rademacher complexity of G with respect to the sample
(Zy,....Zy) is

BA%S(Q) =E, [sup 1 Z Uig(xi)] (D

n
9€9 i

where o = (01, ...,0,)" with o; ~ unif{—1,1}, which is are known as Rademacher random variables.
Moreover, with probability at least 1 — §, we have w.r.t the draw of S that

Vg € G,E[g(2)] < % 3 g(z:) + 2Rs(G) +3(b - a) log(2/9) o

; 2n
1=1

Definition 1 (Risk [4]). We define a domain as a pair consisting of a distribution ug on inputs X and a labeling function
hg: X — AF. The probability according to the distribution s that a hypothesis h disagrees with a labeling function h%
(which can also be a hypothesis) is defined as

eus () = €us (b hg) = Bay)mus(2)y — hs(2)y] 3)

Definition 2 (H -divergence [4]). Given a domain X" with p and ' probability distributions over X, let H be a hypothesis class
on X and denote by I(h) the set for which h € # is the characteristic function; that is, where (x,y) € I(h) < h(z), = 1.
The H -divergence between i and ' is

dyan (i 1) =2 sup | Pr(I(h)) — Pr(I(h))] @

Lemma 2 (Domain adaptation [4]). Let H be a hypothesis space on X with VC dimension d. Considering the distributions
ws and pp. If Dy and DYy, are samples of size n from pg and pur respectively and dunn (DY, D!, n) is the empirical H
-divergence between samples, then for every h € H and any ¢ € (0, 1), with probability at least 1 — 6 (over the choice of
samples) , there exists,

2dlog(2n) + log(2/9) .
n

A

1
i () 20, () + Susn(D5. D) + 1y

where A = €,,,. (h*) + €5 (h*) and h* = arg minpey €., (h) + €, (h) corresponds to ideal joint hypothesis that minimizes
the combined error.



C.2.1 Useful Lemmas
Then, we introduce several useful lemmas.
Lemma 3. [22] For any v € R¥ and y € [k],
2(1-v), >1 {y =+ argmaxvi] .

Proof. Letv € R” be given, and consider two cases. For the first case, if y = arg maxw;, then v € [0, 1]* implies 2(1 — v) >
i

0 =1 |y # argmaxuv; | . For the second case, if y # argmaxv;, thenv, < 1/2and2(1 —v) >1=1 [y # arg maxvi].
Combining the two cases together, we prove the lemma.

Lemma 4. For any functions H with H > h : X — RF, since H takes values in R¥, let H| ;j denote the Rademacher
complexity of each class j,

Rad,, ({(z,y) = 1—h(z),:heH}) =0 (\/%mjaXRadn(’Hb))

where maxy, Rad,, (H|) is the worst-case per class Rademacher complexity.

Proof. The proof follows from a multivariate Lipschitz composition lemma for Rademacher complexity due to [13, Theorem
1]; it remains to prove that v +— t(v), is 1-Lipschitz with respect to the £, norm for any v € R¥ and y € [k].

=Ly =1 Ly, =

1-— =0
dvizy dvizy ( o)

and therefore ||Vt (v),||1 = 1 and thus, by the mean value theorem, for any u € R¥ and v € R, there exists z € [u,v] such
that

[Y(v)y — P(u)y| = [ {(VY(2)y, v = u) < [lv = ullec[VY(V)yll1 < [Jo = ulfco-
In particular, v — ¥ (v), is 1-Lipschitz with respect to the £, norm. Applying the aforementioned Lipschitz composition rule
[13, Theorem 1],

Rad,, ({(z,y) — 1 — h(x), : h € H}) = Rad,, ({(z,y) = ¢¥(h(z))y, :he H})=O (\/EmjaXRadn(Hb))

Lemma 5. For any functions H, with Hy, S hy, : X — R¥ with any m € [M], and h € H where h(z) := 47 EM hom ()
foranyx € X

Rad, (H|;) = Z Rad,,( (5)
m=1

Proof.

Rad, (H|;) = fJE supZel (i),

% € sup ZE’L (Mzhm 131)

hl,...}”uEH .
J



C.3. Proofs for Generalization Bounds of Global Model Theorem 1
Overview Recall the definition of distillation distance:

n

M
1 1
Cpn(hay. o harsg) =~ > gl - i D b)) (©)
m=1

i=1

which measures the output difference between the global model and the ensemble of local models. The server distillation (Line
21 in Algorithm 1) essentially finds the global model g with a small distillation distance @, »,.., meaning that its outputs are
close to the ensemble outputs of local models fi, ..., fas on the out-of-domain distillation dataset Dgyy.

For the generalization bounds of the global model, we aim to show g can have good generalization bounds on p with KD if
it (1) distills knowledge accurately from teachers { f,,,} and (2) the teachers { f,,,} performs well on their local distributions
{ttm }- To sketch the idea, by Lemma 3, we can upper bound error probabilities of g with the expected distillation distances
and errors of local models (i.e., teachers) on u:

Priay)on [arg maxg(z)y 7 y] = E(zy)mnl [arg maxg(z), 7 y] @)
’ 1 M ’ 1 M
<2 E 9(x) = <7 mz::l B () 1 +2 (ng <1 - mz::l hm(:c)y> (8)
ensemble distillation distance errors of teacher models

Then, we can relate the errors of local models h,, on yu to ., with prior arts from domain adaptation [4].
To simply our notations, we define “virtual hypothesis” h € H : X — [0, 1]* , whose outputs are the ensemble outputs
from all local models:

Main Analysis Let us recall Theorem 1.

Theorem 1 (Generalization bound of PERADA global model). Consider empirical datasets D ~ (1, Dayx ~ Lhaux, Dm ~ fim
with |D| = |D,,| = n,|Dawx| = Nawx- Let dy, be the VC dimension of H,,, Rad,,_, be the empirical Rademacher
complexity measured on Nay, samples. With probability at least 1 — 6, for every hy,, € Hp,Vm € [M] and

5 € Gowetave Pr lagmaxg(oly Z9] < 28 [ gle))] < O (G T Rad, () +
Ty)~p Y/ Ty~

M
m=1

(%\/Qdmlog(Qn)n-&-log(GJvf/tS) + /log(g]nVI/(S) n 102gr(z§u/x6) + ORadn(H)) +

M N
ﬁ > (2ERR(Dpn, o) + dpap (D, D) +A) + 2Py na (Bay oo hars ) +4 TV (@, plaux), where ERR(Dyy, hy,) =

m=1

max; Radn,,, (G];)]) + 47

E

1

local empirical risk client heterogeneity ensemble distillation distance TV divergence

%Z?Zl (1= B (T )y s | 5 Am = €pur (R*) + €4 (R*), R* := arg minpey £, (R) + €,(h).
To prove the generalization bounds of the global model Theorem 1, we use Lemma 6 as a bridge.

Lemma 6. Let classes of bounded functions H and G be given withh € H : X — [0,1]* and g € G : X — [0, 1]%. Suppose
{z;} ;== is sampled from a distribution piayy. For every h € H and every g € G, with probability at least 1 — 6,

J log(2/6)
]E(w,y)Nug(x)y < E(w,y)Nuh(I)y + n Z min {1, |lg(x;) — h(xi)|l1} + 2TV (p, frans) + 3
aux

2TLa'IJ.X

k
+2Y  (Rady,, ({z+— h(z)y : h € H}) + Rad,,,, ({z+— g(x), : g € G}))

y'=1



Proof. To start, forany h € H, g € G, write
Eayg(2)y = Eoy(9(x) — h(2))y + Eoyh(a)y
For the first term, since h : X — [0,1]¥ and g : X — [0, 1]*, by Holder’s inequality
Eey(g(z) = h(z))y = /min{l, (9(x) = h(z))y} dp(z,y)
< [ win {1, lg(e) = (@)1} (o)

Here we need 1 in min {1, (g(x) — h(z)), } to make the upper bound tighter, since (g(z)
Note that for any two measures y and v, and for any continuous function f(z) in [0, 1]

— h(z)), < 1 always hold.
/h(ﬂ?)(du(x) —dv(z)) = f(@)(dp(z) - dv(z)) + f(@)(dp(z) — dv(z))

€A z€EB
< |p(A) = v(A)| + [u(B) — v(B)]
<2 sup  |ul(S) — v(S) = 2TV(u,v),
measurable S
where A = {z : du(z) > dv(z)} and B = {z : du(z) < dv(z)}.
Once again invoking standard Rademacher complexity arguments Lemma 1, with probability at least 1 — J, every mapping
x+— min {1, |lg(xz) — h(x)|1} where h € H and g € G satisfies

/mmﬂmmmfh@mgmuu»s/mmﬂmmmfh@wgmmxm

log(2/9)

2naux

+2Rad,,,, ({z = min{1,[|g(z) = h(x)l1} : h e H,g € G})

For the final Rademacher complexity estimate, first note » — min{1, 7} is 1-Lipschitz and can be peeled off, and we use
the definition of the empirical Rademacher complexity (Lemma 1), thus

Rad,,,, ({z = min{1,||g(x) = h(x)[1} : h e H,g € G})
< Rady,,, {2 = lg(z) = h(z)[1: h e H,g € G})

Naux

csup L3 o) =)l
geg -
k 1 e
< Z E. sup ZQ’ lg (z:) —h (‘rl)|y’
; heH Naux “—
y'=1 9eG =1

Since h and g have range [0, 1]¥, then (h — g), has range [—1, 1] for every v/, and since 7 — |r| is 1-Lipschitz over [—1, 1],
combining this with the Lipschitz composition rule for Rademacher complexity and also the fact that a Rademacher random



vector € € {1}" is distributionally equivalent to its coordinate-wise negation —e, then, for every y’ € [k]

Rad,,,, ({z = [9(z) = h(z)l, - h e H, g € G})
< Radn,,, ({z = (9(z) = h(z))y : h € H,g € G})

Taux

1
= E. sup sup € (h(x;) —g(x4)),,
Naux heH gegz ( ( ) ( ))J

Maux Naux

= E. supZeZ xl E. supZ—elg xl)

Naux heH naux geG

= Rady,,, ({z — h(m)y' theH})+ Radnaux ({53 = g(x)y 19 €G})

Inspired by [22], we introduce Lemma 3 to tackle the error probability Pr(; )~ {arg maxg(x), # y} .
y/

Let us define 9)(v) = 1 — v. According to Lemma 3, we can derive the upper bound for Pr , {arg maxg(x), # y} in

Y
Theorem 1 as below

Exzﬂ/)(g(z))y z,y (1 _g(x)y)

Egy [11 [arg maxg(z)y 7 y”

Y

v
o= Nol= &

=—Pr,, {arg maxg(x), # y} 9
,y/

Then we will study the upper bound for E,, ,%(g(z)), in Lemma 7.

Lemma 7. Let classes of bounded functions H and G be given withh € H : X — [0,1]F and g € G : X — [0,1]". Let
classes of bounded functions H,, be given with h,, € ., : X — [0,1]%, Vm € [M]. For every hy, € Hy,,¥m € [M], and
for every g € G, with probability at least 1 — 6,

log(2/9)

2Naux

E eyl = 9(2)y)] SEayympll = h(@)y] + @prpyy i (P - hrs 9) 4 2TV (11, planx) + 3

M
1
+0 <k;3/2 lmfx (M Tnz::l Rad,,_, (Hm|j)> + max Radnm(gb)] >
Proof. We define two function classes

Oy = {(z,y) = ¥ (h(x),) :heH} and Qg :={(z,y)— ¢ (9(x),): g€},

and use the fact that:

Naux Maux

1
E 14 (g W@l == I =g @) =1+ 7 @)l = P (- hars 9)-
W i=1

i=1 @

naux

We use Qy; and Qg in Lemma 6, and use Lemma 4 and Lemma 5 to estimate Rad,, (Q4,) and Rad,, (Qg), with probability
1 — 9, yielding



E(ay)~nlt(9(2))y)]

I & log(2/0
< Byl (A@))] 4~ > min {1, [16(g 1)) — (b)) + 2TV (e ) + 3| o
aux i—1 aux
k
+2) (Rady,, ({z = ¥(h(x))y : h € H}) + Rady,,, ({z = d(g(z))y : g € G})
y'=1
log(2/0
< B yyonll — B@))] + By (i) + 2TV (g ) + 3y | 2L
+0 <k3/ 2 {max Rad,,, (#|;) + maxRad,,, (G| ])] ) (Due to Equation (6) and Lemma 4)
J J
log(2/d
= Egyyoull = h(@)y] + @pppeine (B hars 9) + 2TV (ptau, ) +3 ig &l
| M
+0 (kz3/2 lmjax (M Z Rad,,,, (Hm|j)> + mjaxRadnm(gb) ) (Due to Lemma 5)
m=1

To show our generalization bounds in Theorem 1, it remains to bound E(, ), [1 — h(x),] in Lemma 7.

Lemma 8. Let classes of bounded functions H.,, be given with h,, € H,, : X — [0,1]*, Ym € [M], and d,,, be the VC
dimension of . Then with probability at least 1 — & over the draw of D' = {(x;, y:) }_ from distribution u, and D), from
distribution i, with size n, for every hy, € H,,¥Ym € [M],

M
1 1 -
E(a,y)mp [ = h(2)y] SM Z <E(w,y)~um [1 - hM(fE)y] + id’HA’H(lD;n’IDI)
m=1

A4 \/de log(2n) —Hog(QM/é))
n

where Ay, = €, (K*) + €, (R*) and b* = arg minpey €y, (h) + €, (h).

Proof. Since the predictions from different local models h,,, are independent, we can expand h(x) as below:

We apply Lemma 2 for the target distribution p and each local distribution p,,,. Concretely, with probability 1 — § /M,



Ey)mp (L= hin(2),]

=E (2 p) oo () — B (), (use the fact of labeling function that 1, (z), = 1, (x,y) ~ )

=, (hm) (use the labeling function as in Definition 1)
1. 2d,,, log(2n) + log(2M /5

Sgum (hm) + §dHAH(D;n7D/) +4\/ Og( n);‘ Og( / ) + Am

Y 1. 2d,, log(2n) + log(2M /6

:]E(‘T7y)~ﬂ'm hm( ) hltm( )y‘ + idHAH(DTVL’D) \/ . g( )n g( / ) + AT’L
1. 2d,,, log(2n) + log(2M /5

B, [~ ()] Sl D)+ 2108 £ LB M)

(use the fact of labeling functions that b}, (x), =1, (2,y) ~ pim)

where A\, = ¢, (h*) +e,(h*) and h* := arg minpey €y, (R) + €4 (h).
Combing all m € [M] together, with with probability 1 — §, we have

o [1 = ()]

M
ZE@ IR MEN

M
14
Z <]E(»L Y)~tim [1 - hm(x)y] + idHA?-L(D;mD/) + A+ 4\/

2d, log(2n) + 10g(2M/5)>

n
O
Lemma 9. With probability at least 1 — §, we have w.r.t the draw of D, ~ i, with |D,,| = n that
log(2/8
E(oyyorn [1 - hm(a:)y} < ERR(Dyn, him) + 2 Rady (Hn) + 3 %n/) (10)
where ERR(D,,, hyy) = % 23'1:1 [1 — hm(xmd)ym’j].
Proof. The proofs directly follow Lemma 1 withb = 1,a = 0. O

Given Lemma 7 and Lemma 8 with at least 1 — §/3 probability for each event, and Lemma 9 with at least 1 — 6/3M
probability for each local model m € [M], we can bound E, ,¢(g(z)), in Equation (9), which proves the main result in
Theorem 1.

C.4. Proof for Generalization Bounds of Personalized Models in Theorem 2

Overview For the generalization bounds of the personalized models, we will upper bound error probabilities of p,,, with the
expected prediction distances between the global model and personalized model on p as well as errors of the global model on

L.
Main Analysis The proofs for Theorem 2 are similar to Lemma 6 and Lemma 7. We first introduce Lemma 10 as below.

Lemma 10. Let classes of bounded functions P,,, and G be given with p,, € P, : X — [0,1]* and g € G : X — [0,1]*.
Suppose {x;}_, is sampled from a distribution pi. For every p,, € P, and every g € G, with probability at least 1 — 6,

log(2/0
B2y < Byt me{l I () — gl ) + 3y 250

k
+2)  (Rad, ({z = pm(2)y : pm € Pm}) + Rad, ({2 g(x)y : g € G}))

y'=1



Proof. To start, for any p,,, € P, g € G, write

Em,ypm(x)y = Ew,y(pm(x) - g(x))y + Ez,yg(x)y

For the first term, since p,, : X — [0,1]¥ and g : X — [0, 1]*, by Holder’s inequality

Ezy(pm(z) — g(2))y = /min{L(pm(w) = 9(x))ytdp(z,y) < /min{l»llpm(w) —g(2)|l1} dpx ()

Once again invoking standard Rademacher complexity arguments Lemma 1, with probability at least 1 — J, every mapping
x +— min {1, ||pm(z) — g(x)||1} where p,, € Pp, and g € G satisfies

/ min {1, [pm (1) — g(z2) 1} dpe ()
< / i1, |pm (1) — g(z:) 1 }du(z)

< %Zmin{l, o (5) — g(z:)|1} + 3 %
i=1

+ 2Rad, ({z = min {1, lpm (i) — g(z:)[l1} : pm € P, g € G})
For the final Rademacher complexity estimate, we follow the proofs in our previous Lemma 6 and have

Rad, ({2 = min {1, [pn(z) = g(@)[1} : pm € Pm, g € G})

k
< Z Rad,, {z = [pm(z) — 9(z)|y : Pm € Pm,g € G}).

y'=1
Also following the proof steps in our Lemma 6, we have for every y' € [k]

Rad, ({l‘ = |p7n(33) - g(x)|y’ :Pm € Pm,g € g})
< Rad, ({z = pm(2)y : Pm € Pm}) + Rad,, ({z — g(x), : g € G})

Combining the above results together, we complete the proof. [
Let us recall Theorem 2.

Theorem 2 (Generalization bound of PERADA personalized model). With probability at least 1 — 0, for every

Pm € Pm,Ym € [M], and for every g € G, we have Pr, ., |argmaxpy,(z), #y| < 2Eq yon(l —g(x)y) +
y/

2L 5" min {1, |pm(x) — g(x) ]} + 6/ 2522 1+ O (k3/2 [max; Rad, (P|;) + max; Rad,(G];)]).
Then we prove Theorem 2 as below:

Proof for Theorem 2. Following the proofs in our previous Lemma 7, we define two function classes

Op,, ={(z,y) = Y (pn(®)y) : pm € Pu} and Qg := {(z,y) = ¥ (9(x),) : g € G},

and use the fact that:
1 n
EZHw(pm (i) = (g (@), = Z”l_pm z;) — 1+ g(x)ll, = Z”pm z;) — g (x|,
i=1

We use Qp, and Qg in Lemma 10, and use Lemma 4 and Lemma 5 to estimate Rad,, (Qp, ) and Rad,, (Qg), with
probability 1 — 4, yielding



E(ay)onll = pm(2)y)] = Bz y)mn [ (Pm(2))y)]
log(2/9)

< E@y)~nl(9(2))y)] + % Zmin{l, 1 (pm (i) = Dg(zi)lli} + 3¢/ —5 —

k
+2 ) (Rady ({z = ¥ (pm(@))y : pm € Pr}) +Rady ({2 = ¥(9(2))y : g € G}))

y'=1
L~ log(2/d
<o gyenll = g(@)] + — 3" min {1, [|pm (2:) — g(@i) 1} +3 #
i=1
+0 <k3/2 [max Rad,, (Pm|;) + max Radn(gb)}) (Due to Lemma 4)
J J

Finally, we use Lemma 3 to show that
1 1
Esy (1 —pm(z)y) > iEmy 1 |arg maxp,, (x), #y|| = 3 Pr, , |arg maxp, (z)y # y
y’ y’

Combining all results together, with probability at least 1 — J, we have,

log(2/9)
2n

1 .
Pray [argmasp (o) £ 9] < 2iaould ~ 0]+ 2 S min (1 o) = g} + 6
Y i=1

+0 (k3/2 {max Rad,, (P, |;) + max Radn(gb)} )
J J

This completes the proof.



D. Convergence Analysis

In this section, we present the discussions and analysis for our convergence guarantees. The outline of this section is as
follows:

* Appendix D.1 provides more discussions and additional convergence results.

¢ Appendix D.2 provides the proofs for the global model convergence guarantee in Theorem 3.

* Appendix D.3 provides the proofs for the personalized model convergence guarantee in Theorem 4.

D.1. Additional Discussions and Theoretical Results

Discussions on distillation gradient For simplicity, we denote f(6,z) = ; Z%: 1 f(0, x). The closed-form expression
of VR can be expressed as:

[VwR ({b1,...,0m}, w)

k

= || Ezn o Z Vo |o(f(8,2));1n ((m)] H (KL divergence loss)
k.

_ oTOD i

- IEJU"’Haux ; O'(f('lU,ZL'))Z vw (f( 1) ))1
k

_ L)

- EJ;NHauX ; O—(f(w,x))sz (f( 9 ))l (11)

where k is the number of classes and ¢ denotes the i-th class. Here we note that when the averaged logits from local models
are qual to the logits of global model, i.e., o(f(0,2)); = o(f(w,x));

IVwR ({b1,...,00m},w)| = =0 (12)

k
}Emwpaux Z ng(f(w, 1'))1
=1

because Zle o(f(w,z)); = 1 (which leads to V,, Zle o(f(w,z)); = 0) . Therefore, the norm of distillation gradient
can be small when the averaged logits from local models are close to the logits of global model.

Discussions for Assumptions. Assumption | on Lipschitz smooth and Assumption 2 on the bounded variance for gradients
due to stochastic sampling noise are standard for smooth and non-convex optimization. Assumption 3 quantifies the diversity
of FL clients’ data distribution, which is widely used in FL optimization [12, 27, 35, 46, 52]. We follow [12, 46, 52] to assume
bounded gradient for non-convex FL optimization in Assumption 4.

Convergence of PERADA personalized models.

Theorem 4 (Convergence of PERADA personalized model). When 1, = then the

1 — 1 — 1
(L+)\)\/T’ m ELVT’ ng TLRRT’
algorithm satisfies:

T-15-1

(L+NAp, +¢2  Gr(L+ (AL +$1)!?  Gr(L+ NV Gr(L+No

1
L E(V, P, (v5°, wh)||]2 < O
TS Z Z v (v, wh) [ < ( VTS TVYALES T3/4LrES LES

t=0 s=0

where Ap,, = Pon(09,109,) = Pn(vly, 0'), 61 = 64(37 + 22°), 63 = S + YEOELIN 1 5 Gp (L4 \) + 1),
11, Yo are defined the same as in Theorem 3.

Remark 4. (1) Local steps: a larger local step S can reduce number of rounds 7" for convergence. (2) Connection to global
model: The terms associated with 7, 11, ¥, are related to the convergence rate of the global model, which is indicated in
Theorem 3. For example, a large E can also reduce the number of communication rounds 7 for the personalized model to

convergence. We obtain a convergence rate of O(1/7T"/4) for personalized models. It is worth noting that previous studies
have shown that in strongly convex settings, personalized models converge at the same rate as the global model [33]. However,

)



in strongly convex settings, the minimizers are ensured to be unique, which can simplify the establishment of connections
between global and personalized models by considering their distances to the corresponding minimizers. Here, we present the
results in the more general non-convex setting and additionally analyze the effect of the global model’s ensemble distillation
on personalized models.

D.2. Proofs for the Global Model Convergence Guarantee in Theorem 3

Additional notations Recall the parameter-averaged model is ' 7! = M Zm 1 0111 which is used to initialize the server
global model at round ¢ before the KD training. Let
Ng = 77ng m=mnk (13)

Based on the update rules, we define g* and g, as below, which capture the update of global model during server training, and
the update of local model during client training, respectively.

wth =0 — gt O =w' g, (14)
That is:
1 1 R—1
gt — ——(w“‘l 9t+1 Z VuR( {9t+1}’wt,r)’
ngR =0
gt = L gty = 2 EZ VL (15)
m 'T]lE m - m
According to server update rule w'™! — w! = ' — w! — jj,g'. Note that ' — w' = L Z g O5FL —wt =
— ﬁ 211-\,1/[:1 gL, based on Equation (15). Then we define,
Z gt + 77lgt, which indicates w'*! — w' = —7,6%, (16)

t—1

According to client update rule 0571 — 0!, = (w! —ig¢,) — (w'~' — gl t). Note that w! —w! =1 = —p;, 2 Z%Zl gt — 1,4t

m m

based on Equation (15). Then we define,

bp, = 777;; g+ M Zg — gt + gt which indicates 057 — 0! = —6p,, 17

In our analysis, we define one virtual sequence w! ¢, motivated by [35],

1 M
=) ok (18)
M m=1

—t+1,0 t+1,E—-1 _ ét+1

In particular, w = w' and w

Proof Outline Recall the generic FL objective, which is to minimize the average loss measured on all clients’ data:

1 M
== L (w) (19)
m=1

The goal is to bound the gradients of the global model w.r.t the £(w), which is used to show that the trained models can
converge to the stationary points:

5
L
t

1
ZFEIVL@ )] (20)

-
Il
=]
o
Il
=]



Challenges The challenges of convergence analysis include: (1) Bi-level optimization between server distillation for w? and
client training for {6%,}, which incorporates two objectives (i.e., minimizing distillation loss and local loss respectively), as
shown in Equation (15). (2) Mutual initializations. At each round, the global model is initialized by averaged local models
before distillation, and local models are initialized by the global model before local training. Such mutual initializations
intervene in the model updating trajectories of w? and {9 } w.r.t their training objective. In particular, the server optimization
of w will be influenced by the drift of client optimization of 6,,,, as shown in Equation (16) (i.e., additional deviation with
the term —- Zm 1 g5,). Moreover, client optimization is also 1nﬂuenced by the drlft of server optimization, as shown in
Equation (17) (i.e., additional deviation with the terms "9 g+ 4 Z gt =gt

To overcome the aforementioned challenges, we regard {6t} as the intermediate models to update w'*!, and quantify the
effects of local client updates and server distillation updates on reducing £(w*1).

Supporting lemmas Before we start, we introduce a useful existing result by Jensen’s inequality in Lemma 11:

Lemma 11 (Jensen’s inequality). For any vector x; € R i = 1,..., M, by Jensen’s inequality, we have

M
<MY @
1=1

o 2
>
i=1

We also introduce the following supporting lemmas:

Lemma 12 (Bounded local client drift error). If i < i e < ﬁ we have

< te N 2 2-2 INIE 207
E [chm(e,;,)—vcm(w) } < 202 + 16L%7; <3E[HV£m(w )| }+E> 22)

Moreover, the averaged drift error over E local steps and M clients is:

| ME B 2 21 202
—— > E [Hv.cm(of:j) VLo (w) ] < 202 + 161277 <3f‘y+3IE [Hvz(wt)u } + E> . (23)
Proof.
[va (04) = VL (") ]
—E U’w (056) = VLo (05) + VLo (05) — VLo (w )m
<2E {H%L (05€) — VL (65) } +2E [||v,c ey VL (w )||2]
< 20°% 4 2R {HVLZ (0L€) — Vﬁm(wt)HQ] (Assumption 2)

< 20% +2L°E {Hﬂf;f - wt||2} (Assumption 1)



Ifij < 57 < m < 575, we have

2 ~ 2
E |[lon - || =& U’@fr’f‘l VL (0| ]
=F [H@f{f—l —wt = mVﬁm(wt) + Ulv»cm(wt) - nl%ﬁm(ef{f_l)H }

O]+ 208 [[|[VLmtut) - FLmio )]

< 2B ([0 — ' — mVLm(w
*] = 2B [0 — vt mV L (w1))]

< 2B ([0 = ' |°] + 2B |[m ¥ £m(w?)]

+ 2PE Mvz W) = VLu(05") + VL (057) = VL (05| }
2(1+21E>E[Ha;e—1 W] 4+ 27 (14 28) B [ 9,000 ]
T+ 4P [0 = w!|*] + o

) (1051 = wf]*] + 202 (14 2B) E [V (0) ] + dro?

1+ —=+2
(+2E+n

<y (1 + };) E o5 = w'|’] + G—ZZQE V£ (w
<2Z<1+ )(GUHE{Hva M 4771 )

(®)
< 877 <3E 170 w)]*] + 2)

H } 4771

=272
iLlm o 1 < 5= for all E > 1. Moreover,

Here (a) is because: 7; = ﬁ— and when 771 < 4L2, we have 27)12L2 = “fr < 57
2n? (1+2E) =2(1+2E) & "l < "l because 2E < 3 for E > 1.
(b) is because: 7' (1 l/E) = % < $75 < 2E by using the fact >77"7 ot =2 =Land (1+2)" <

e®foranyz € R,n € N.
Combining the above results together, we have
: )

~ 2
E [vam(agf) _ vcm(wt)H } < 202 + 162772 (3]E [||VLm(wt)Hz} +Z

E[||X||]?, we have the averaged error over M clients:

By the expectation E[|| X ||?] = E[||X — E[X]|?] +
LS B [[vent) ] iw: B [IVEm(wt) - VE@OI] + E [Iv2d)]
M = oo
+E [HVﬁ H ] (Assumption 3)

Moreover, the averaged error over M clients and E local steps is

M,E
o
375 2 B (198 <200 102532 (3743 [0 ] + )

O

Thus, proved.



Lemma 13 (Bounded distillation drift error). If 7], < ﬁ s, < ﬁ, we have

B | [Fureis ) - R0 |

< 20% + 16L%7, (3E [vaR({e;ﬁgl}, )| } 2aR> :

(24)

(25
Proof of Lemma 13.

B |[Fureish bt - a0 |

=E [HVmR Qﬁjl},w ) - Vw’R({Qf:LFl}’wW) + va({eﬁl}’wt}r) N va({0t+1} w )

<2E [H%R({Hﬁl}th’ ) = VuR({0,7 1} w") 2} + 2 [[Vu R0} ') = VW RO} ) ]
< 20?{ + ZL%E [Hwt’r — thQ}

(Assumption 2, Assumption 1)

1 1
If’l’]g < 3Ln - Ng < m,wehave

E [Hwt,r _ thQ} _E [Hwt,r—1 —wt— ngﬁwR({e;ﬁil}’wt,r—l)HQ]

- [Hw —w' =y VRO wh) + =0y VU RO ) =g VRO ) wt ! m
<28 [t = =y R )] + 2 | [0 TR 0) T ure(0 ) 0]
<2 (1 + 1R) E “th’“l — ! } +202 (14 2R)E [Hv R4}, wt ||2]

A LRE | [[wt ! =]+ ando

(1+ 2R+2ngL2>E oot =[] + 203 (14 2R) B (|| VU6 )| + 4ngo
(a) 1 . 21 | 67, Ango}
221 ) B[l -l T e T
R—1 r (G2 4
§22<1+;> (;"E[HVLUR({&,T}, H} anR)
r=0
< Sﬁg( [[[ZuRAE Y w)]|*] + %R)

_ =272
Here (a) is because: 7, = % and when 772 < 4L12 . we have 2n2L% = 2711%53 < 5z < 5= forall R > 1. Moreover,
2n2 (1+2R) =2(1+2R) 5 n" < nq because 2% < 3 for R > 1.
R . n i " z\"
(b) is because: Ze:O (1 1/R) (Hﬂ//# < el/_}% < 2R by using the fact ) . 01 xt = Land (14 £)" <
e’ foranyz € R,n € N.
Combining the above results, we have
~ 2 2
E {van({agl},wt’ ) — VW RO}, w') } < 20% + 16137 (SIE ([VuREO )] + UR)



Recall Equation (14), we have

1 U 1 U
at+1 L t+1 _ _* t =t
0 =+ n;@m M(n;w Mim)- (26)
and we define "
1
—t,e __ t,e
ot = o mZ:l gte. 27)
Lemma 14.
_ i 2L
E[L(w'h) = LE™H)] < (G2 + 462) + 24, (28)
where by = d0% + 32L3,72(3G%, + 222) + 2G%,
Proof.
_ _ 2L
E[£(w') - LE™Y)] < E(VLEO™), ~y9")] + 2= Ellg" 29)
77 7 77 gL
< SEIVLETDIP + FEN + —-Ellg"l” (30)
_ M _ _
= @EHi Z VL (@) + (L2 4 2L)Eug U2, (Basedon £ = ()L M VL,.(6)
2 M m 2 M m=1 m
< Z E|V Lo (0712 + ( + ng—)EH {2 (Lemma 11)
< @GQ (770 + 7o L )EH f12. (Assumption 4)
=2 2
Note that
R—
)12 t,'r‘ 2
Ellg"|* =El - Z )l 31)
r=0
R—-1
1 o~ r
=El3 > (VwR({quil},wt’ ) = VuR({6,1, wt)) + VRO wh)? (32)
r=0
R—-1
1
< QE”E RO, wh™) — Vo, R{05}, wt)) I 4 2E|| Vo, R({OL Y, wh)||>  (from Lemma 13)
r=0
R—1
1 ~
<22 SB[ (VoRA6L !} w'") = VRO, w)) I + 2B VW R({65 ), ) 2 (Lemma 11)
r=0
2
< do% + B2L502(3G% + ‘;R) +2G% = 1. (33)
Therefore, )
_ 7 . 12L
ELL(w'h) = £0™)] < 262 + (2 + D2y, (34)
O
Lemma 15 (From [34]).
LR[c(p Vet + T | sy, 35
[£(07) — EZ 2 P+ =50 + 8 (35)

Proof. We leverage the results from Equation (33) of [34] with A7 = 0 and By = 1%, which are implied by Theorem 2 in
[34]. O

4 Ar and By are defined in [34].




Completing the proof of Theorem 3 Recall our main theorem
Theorem 3 (Convergence of PERADA global model). Let Assumptions I to 4 hold, and 1, = ﬁ Ny = T denote
= M Zm 1 0L¢, then the algorithm satisfies
Ty EIVE@ N o(Laetin 77, De
e - VT T TVTL4E/
where Ap = L(w®) — L(wT), ¢y = 5;4 + %, and Vo = 40% + 32(3G% + 2UR)/Tz + 2G%. In particular,
@0 = wt and wtHE-L = g+l R
(36)

— L(w")]

Proof. Combining Lemma 14 and Lemma 15
(37

ZE[[:( t+1)
(G2+¢)+ 9 4y +Z

E[E(w”'l) — L(w")] — Li(ét) + Li(@t)
En?Lo? _
SIVL@ )+ ZZM + 8 EPL?Y°.

/\

2

Rearrage the inequality and take A T Zt o on both side. We get

T—1E—-1
mLo?
VL(@h)|? < L) - L)) + 10 4 1607 B2L252.
ET;;H P < — = (L) - L") o
Letn, = LElﬁ and n, = ﬁ. Then,
T—1E-1
1 2L 0'2 ’72 L(G2 + ’(/JQ) + L2¢2/LRT
— VL(@"9)|? < —=(L(w°) — L(wT ™)) + + 16— + 39
ET T || )H \/T( ( ) ( )) EM\/T T ELR\/T ( )
O

D.3. Proofs for Personalized Model Convergence Guarantee in Theorem 4
(40)

Additional notations Let
Mp = Snp

as below, which capture the update of personalized model during client training
41

Based on the update rules, we define &/, )

ot — ot = —77p‘5t
That is:
1 1 S—1 _ 1 S—1 -
H=2 Y VP (ol w') = 3 (Vﬁm( 02) 4 A (v wt)) (42)
s=0

t . (Uﬁ:l — v 3

Um npS

Proof Outline The goal is to bound the gradients of personalized models w.r.t the (Personal Obj), which is used to show that
(43)

the trained models can converge to the stationary points

;TZZ IV, P

t=0 s=0

Jw)|?



Supporting lemmas We first introduce some supporting lemmas:

Lemma 16. When n, < %-‘r)\
T—-15-1 T—1
1 2(P,, (v, w®) — P, (vT wT)) 1 GpE|w'tt —wt|,
— P, H|2 < 2B UL L+ \)n,d* 44
TS z:; ~ ||V U( 7n , W )H — inS ( =+ )771) +7c TS 77p ( )
1
Proof. Letn, < 1.
. L+\Nn?
BIP (05 1) = Pttt )] € BV P (o 0~ 7, Pt o)+ LG, P (o), ) 2
(Assumption 1)
(L + Mn? .
< =pl| Vo P (v w0 [P+ (0% + [V P (07 = w) ) (45)
n < (L + )\)7]202
< =PIV P (g wh) P+ = By 1y < 755)
Taking a summation Y5~
t+1  t t ot Tlp = 2y (L+ )‘)577;‘72
E[P(vp ! w") = Pg, w')] < =2 D {1V P (03, w) | + ————. (46)

s=0

We next bound P, (vit wi*t) — P, (vi!, w?). Since bounded gradient implies Lipschitz function, P, is G'p Lipschitz
in terms of w, i.e.,

E[P,, (vEH, with) — P (i wh)] < GRE||w'™ — w!||o. (Assumption 4)

Combine the two statements, rearrange, and take the sum ZZ:Ol on both side:

T—185-1 T-1
2(Py, (00, w°) — P, (vT, wT)) 1 2GpE|witt — wi|a
IEVPm wh||? < 22 Ui +(L+X\)n,62 47
]
Lemma 17. When 1, = #\/:7’
t+1 )2 2 2 77l2¢1 2 N2 2 p2 2
Ellw™ — w'||* < 8nfo? + T + A B[V L(w") || + 20, R* G (48)
where ¢1 = 64(37 + %)
Proof. By definition
| M
Elw —w'|? = EllmE+- > gh, + ngRg'|I?
m=1
< 21 E2E|| Z gh.I? + 20 R*E| g"|)? (49)

m=1



For the first term,

1 1
E|l— ngnn? Bl > (5 D0 VEm0) = VL") + VEWY|?
M
2
< S S BI04 — VL ()] + 28 VL)

< 40% 4+ 6477 E2L* (35 + 3E || VL (w)||* + f) + 2E(| VL (w)]? (Lemma 12)
— 40?4 64T(3§ + 3B || VL(wh)||* + 20 SRV L)

FE
= 40”4 11 + (2 + SDE|VLW)?

For the second term, recall Equation (33), then we have
Ellg"I” < 42 (50)

Therefore,

Ew™" —w'|? < 277;2E2EH* Z gl + 205 R (0%, + GF)

m=1

96
”l¢1+4 (1 T)E||Vﬁ(wt)||2+2ngR2w2.

= 8nfo” +

Completing the proof of Theorem 4 Recall Theorem 4:

Theorem 4 (Convergence of PERADA personalized model). When 1, = T )1\) 7 =5 Ll v g = ﬁ, then the

algorithm satisfies:

T—1S—

1 (L+XNAp, +¢2  Gp(L+AN)(LAL+ 1) Gp(L+ MV  Gp(L+ Mo
P 2< m

TS ZZ IV w)l O( VTS * TY/AI\ES + T3/ALRES T IES )

t=0 5=0
where Ap,, = P (v, w3,) = P (vhy, w'), 61 = 64(37 + 22°), ¢ = So? + YEIEEN 4 /5, Gp(L + A) + L2,
1,9 are defined the same as in Theorem 3.

Next, we combine Lemma 16 and Lemma 17 to prove the above theorem.

Proof. From Lemma 16,

1 T-15-1
T [ Vo P (v, w)|[* <
0

TS

t=0 s=

+ (L + N\)npo? LA Z 2GpE[wtt — w2 (51)

TS fs



Expand the last term according to Lemma 17.

T-1 T-1
1
Nii Z Ellw™*" —w'|| < EJ Z lwttl — wt||2 (Taking square root for Lemma 11)
t=0 t=0

<\ 2 Bl — w2

(Jensen’s inequality E[f(z)] < f(E[z]) for the concave function f(z))

T—1
= \| 8020 + n2ey + 4> nPE|VL(w)[|2 + 202 R T
t=0

E-1

T
< O(aVTm) +my/é1 +2m J > EIVL(@H)|2 + O(ngRy/$2VT)
t=0 e=0
(V3o 2] < X0y i for > 0)

o VA T e LT Vs
SO(EHLE\FJFFO( 1/4(LA1;+¢1)1/2+ﬁ+T 3/4LR\/E)+ :
T—-15-1
SZZEHV P (v, w")|?
t=0 s=0
285, (L4 +<i
- VTS VT
s ) o ) g o )
L ENAp, +de  (LHN2Ge [, 0 2 12, sy IV
=0 N )+ 3 (O( )+ fO( HLAL+y)' P+ T 34LR\/E)>
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