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Abstract
Truthfulness is paramount for large language mod-
els (LLMs) as they are increasingly deployed
in real-world applications. However, existing
LLMs still struggle with generating truthful con-
tent, as evidenced by their modest performance
on benchmarks like TruthfulQA. To address this
issue, we propose GRAdual self-truTHifying
(GRATH), a novel post-processing method to en-
hance truthfulness of LLMs. GRATH utilizes
out-of-domain question prompts to generate pair-
wise truthfulness training data with each pair con-
taining a question and its correct and incorrect
answers, and then optimizes the model via di-
rect preference optimization (DPO) to learn from
the truthfulness difference between answer pairs.
GRATH iteratively refines truthfulness data and
updates the model, leading to a gradual improve-
ment in model truthfulness in a self-supervised
manner. Empirically, we evaluate GRATH us-
ing different 7B-LLMs and compare with LLMs
with similar or even larger sizes on benchmark
datasets. Our results show that GRATH ef-
fectively improves LLMs’ truthfulness without
compromising other core capabilities. Notably,
GRATH achieves state-of-the-art performance on
TruthfulQA, with MC1 accuracy of 54.71% and
MC2 accuracy of 69.10%, which even surpass
those on 70B-LLMs. The code is available at
https://github.com/chenweixin107/GRATH.

1. Introduction
With the rapid development of large language models
(LLMs), they have been deployed in a wide range of appli-
cations (Bommarito II & Katz, 2022; Driess et al., 2023; Lo,
2023). Yet, there is evidence (Bang et al., 2023) showing
that LLMs may not answer truthfully, leading to hallucina-
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Figure 1. Accuracy of pretrained models, DPO, and GRATH on
TruthfulQA’s MC1 and MC2 tasks. We evaluate DPO and GRATH
on two pretrained models, Llama2-Chat-7B and Zephyr, based on
an OOD training dataset—ARC-Challenge. GRATH effectively
improves MC1 and MC2 accuracy of Llama2-Chat-7B(Zephyr) by
24.5%(11.6%) and 23.8%(8.9%). DPO enhances MC1 and MC2
accuracy of Llama2-Chat-7B by 6.5% and 6.8% while decreasing
those on Zephyr by 4.2% and 2.6%. The performance of DPO
compared to GRATH indicates its vulnerability to OOD data.

tion, i.e., generate factually incorrect content. The halluci-
nation phenomenon could cause great harm, especially in
safety-critical applications (Wang et al., 2023; Chen et al.,
2023a), underscoring the critical importance of ensuring the
models produce truthful outputs. TruthfulQA (Lin et al.,
2022) has been considered as a mainstream benchmark for
measuring the truthfulness of the model answers to the ques-
tions that provoke imitative falsehoods. In particular, MC1
is distinguished as the most challenging task among those
built on this benchmark, since even state-of-the-art LLMs
could only achieve modest accuracy levels (e.g., the MC1 ac-
curacy of Llama2-Chat-70B (Touvron et al., 2023) is merely
31.09%). These challenges reveal the urgent demand for
enhancing the truthfulness of models’ outputs.

Existing work (Chuang et al., 2023; Burns et al., 2023)
proposes to seek the truthfulness direction within LLMs and
shift the model representations along the direction, which
leads to truthful outputs. Such process often relies on in-
domain data sourced from TruthfulQA (Chen et al., 2023b;
Li et al., 2023b). Whereas, in real-world scenarios, it is
common to encounter a broad spectrum of data that falls
outside the intended testing domain, i.e., out-of-domain
(OOD) questions. On the other hand, annotating answers
to this extensive range of questions can be prohibitively
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Figure 2. Framework of GRATH, which consists of three components. Given a pretrained base model, GRATH (a) creates pairwise
truthfulness training data via few-shot prompting. An illustrative example is on the left. A pair of truthfulness data includes a question, a
correct answer and an incorrect answer. (b) Fine-tune the pretrained model via DPO based on the pairwise truthfulness training data. The
model will learn from the truthfulness difference in the self-generated answer pairs and enhance its truthfulness (i.e., self-truthify itself).
(c) Iteratively generate data and optimize model for T iterations, thus gradually boosting model truthfulness in a self-supervised manner.

expensive and labor-intensive. Furthermore, there exists a
risk that these annotations could be noisy or even poisoned
(Carlini et al., 2023), leading to a potential decline in model
performance. Hence, a natural question arises: Can we
effectively utilize OOD queries to improve the truthfulness of
LLMs without needing to rely on human-annotated answers?

Inspired by the recent alignment technique—Direct Pref-
erence Optimization (DPO)—which aligns LLMs with hu-
man preferences via learning from the pairwise answers
that differ in human alignment level, in this work, we pro-
pose a novel post-processing method to boost the truthful-
ness of pretrained LLMs, named GRAdual self-truTHifying
(GRATH), which adaptively generates data using the LLM
itself and then optimizes the model via DPO in a self-
supervised manner, without the necessity for any anno-
tated answer to the given OOD questions. The pipeline of
GRATH is illustrated in Figure 2. First, given a pretrained
model, GRATH creates pairwise truthfulness training data
for a sequence of questions via few-shot prompting (a pair
of truthfulness data is a question and the corresponding cor-
rect and incorrect answers). Then, GRATH employs DPO to
fine-tune the pretrained model based on the pairwise truth-
fulness training data, thus enhancing model truthfulness
through learning from the difference in answers. Finally,
GRATH alternatively refines truthfulness training data and
updates the model in an iterative way, leading to the gradual
improvement in model truthfulness. As illustrated in Fig-
ure 1, when applied to either Llama2-Chat-7B or Zephyr,
GRATH could gain a substantial enhancement in both MC1
and MC2 accuracy over the respective pretrained models. In
contrast, utilizing OOD questions alongside the annotated
pairwise answers, DPO yields a smaller improvement in
Llama2-Chat-7B’s performance compared to GRATH, and
it even results in a deterioration of performance on Zephyr,
which reveals its vulnerability to the domain gap.

We conduct intensive experiments, and our empirical re-
sults demonstrate that GRATH significantly enhances the
MC1 and MC2 accuracy of Llama2-Chat-7B, elevating them
from 30.23% to 54.71% and from 45.32% to 69.10%, re-
spectively. This marks a new state-of-the-art (SOTA) per-
formance on the TruthfulQA benchmark, surpassing even
larger-scale models such as those with 70 billion parameters.
Crucially, GRATH achieves this without compromising the
pretrained model performance on other established bench-
marks, including ARC, HellaSwag, and MMLU. These re-
sults underscore GRATH’s capability to bolster the truth-
fulness of LLMs while preserving their core capabilities.
Furthermore, we conduct a series of ablation studies and
delve into the truthifying processes within GRATH, aiming
to gain insights into how to learn more truthfulness.

Our main contributions are threefold. 1) We discover that
the model learned via DPO would be more truthful in testing
domain if i) the domain gap between pairwise truthfulness
training data and testing data is smaller; ii) the distributional
distance between correct and incorrect answers within pair-
wise truthfulness training data gets larger. 2) We propose
a GRAdual self-truTHifying method, GRATH, to enhance
the truthfulness of LLMs in a self-supervised manner. In
particular, it adaptively generates pairwise answers to OOD
questions and then fine-tunes the model via DPO to improve
model truthfulness. 3) We empirically show that GRATH
can significantly improve LLMs’ truthfulness, achieving
SOTA performance on TruthfulQA’s MC1 and MC2 tasks.

2. Related Work
The burgeoning interest in leveraging LLMs to generate
text for practical applications necessitates the truthfulness
of LLMs. In response to this need, a variety of benchmarks
(Li et al., 2023a; Zhang et al., 2023) have been developed
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to assess the model truthfulness. Notably, TruthfulQA (Lin
et al., 2022) has emerged as a prominent benchmark, and
its adoption by Open LLM LeaderBoard (Beeching et al.,
2023) underscores its significance. In particular, there are
multiple-choice questions with a single correct answer in
its MC1 task while with a set of correct answers in its MC2
task. A line of research (Chen et al., 2023b; Li et al., 2023b;
Chuang et al., 2023; Burns et al., 2023; Zou et al., 2023; Lee
et al., 2023a; Azaria & Mitchell, 2023) leverages the mod-
els’ internal representations (i.e., activations across different
layers) to enhance truthfulness. The reliance on representa-
tions often necessitates the selection of specific layers. If
the optimal layer is not chosen, the enhancement may be
compromised. The other line of methods (Joshi et al., 2023)
directly focuses on the models’ external expressions (i.e.,
output probabilities) and proposes fine-tuning approaches
to improve truthfulness. However, they usually require in-
domain data, which is often not accessible in practice. Also,
both lines of methods require costly annotated data.

RLHF (Ouyang et al., 2022) and the follow-up work (Bai
et al., 2022; Lee et al., 2023b; Gallego, 2023) align LLMs
with human preferences by applying reinforcement learning
(RL) to optimize the supervised fine-tuned (SFT) model
against the reward model trained on pairwise preference
data. However, the use of Proximal Policy Optimization
(PPO) (Schulman et al., 2017) in RL presents challenges due
to the instability and inefficiency. To address this, numerous
efficient methods (Dong et al., 2023; Rafailov et al., 2023;
Song et al., 2023; Yuan et al., 2023) have been proposed. In
particular, DPO develops an objective function to directly
optimize the model to adhere to pairwise preference data,
avoiding the need to fit a reward model. It is shown better
than RLHF while easier to implement and needs fewer re-
sources, making it the focal point of our paper. Nevertheless,
the domain gap issue inherent in DPO (i.e., the vulnerability
to domain shifts) has not yet been thoroughly studied, which
could potentially lead to performance degradation. On the
other hand, it still requires a large amount of annotations for
pairwise preference data, which could be costly. In practical
scenarios, we might only have limited annotated data.

Concurrently, there are several works also leveraging self-
generated data to improve LLMs’ capabilities. Different
from them, we focus on enhancing model truthfulness. Un-
like SPIN (Chen et al., 2024), we do not require a large
human-annotated dataset to initialize an SFT model, nor do
we rely on an external scalar feedback signal as a quality
indicator like ReSTEM (Singh et al., 2023) or utilize LLM
to reward answers as in Self-Rewarding (Yuan et al., 2024),
since our primary concern is the relative truthfulness be-
tween generated correct and incorrect answers, rather than
the absolute truthfulness of each. As opposed to GAN-like
training in SPIN or SFT in ReSTEM , we utilize DPO, with
a specific focus on exploring the domain gap issue in DPO.

3. Method
We propose a GRAdual self-truTHifying method for LLMs,
named GRATH, which gradually enhances the model truth-
fulness in a self-supervised manner. As illustrated in Figure
2, GRATH consists of three components, 1) creating pair-
wise truthfulness data, 2) self-truthifying, and 3) gradual
self-truthifying. In this section, we will elaborate on the
mechanisms of different components, demonstrating how to
obtain a truthful model given a pretrained base model.

3.1. Creating Pairwise Truthfulness Data

Annotating correct and incorrect answers for large-scale
questions could take a substantial amount of human effort
and resources. Hence, we attempt to prompt the model to
generate a correct answer aT and an incorrect answer aF to
any given question q.

Questions. Assume that the ultimate goal for the model is
to gain high truthfulness on questions from a target domain
Dtarget. In practice, we hardly have access to Dtarget since
we do not know which domain the model would be tested
on. Therefore, we randomly select an open-source dataset
consisting of questions, i.e., {qi}n

i=1
✓ Dsource. Note that in

practice, the dataset is usually out-of-domain in terms of the
target domain.

Prompt. We design the following prompt p(·) intriguing
the model to generate a correct answer ai

T
and an incor-

rect answer ai
F

to any question q
i, constituting a pair of

truthfulness training data (qi, ai
T
, a

i

F
).

p(qi) = “Consider the following question: qi\nPlease
generate a correct answer and an incorrect answer.
Make sure the answers are plausible. There is no need
to give an explanation.”

Few-shot Demonstrations. To ensure the model gener-
ates responses in the desired format, we include a few
demonstrations {(q̂j , âj

T
, â

j

F
)}m

j=1
before the above prompt.

An illustrative template T(p(·); {(q̂j , âj
T
, â

j

F
)}m

j=1
) along

with the model response is shown in Figure 2. Detailed tem-
plates are illustrated in Figure 10, 11, 12 in Appendix B. We
also give some examples of the created pairwise truthfulness
training data in Figure 13 in Appendix C.

3.2. Self-Truthifying

Recent offline alignment methods (Rafailov et al., 2023;
Song et al., 2023) align LLMs with humans by increas-
ing the probability of generating responses annotated with
higher quality while decreasing that annotated with lower
quality. That is, the alignment of the model is improved via
learning from the responses that differ in alignment quality.
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Inspired by this, we attempt to learn from the responses
that differ in truthfulness, thus enhancing the truthfulness
of the model. Specifically, we leverage an effective offline
alignment method DPO (Rafailov et al., 2023) to fine-tune
the pretrained base model using the created pairwise truth-
fulness training data.

Formally, let ⇡✓ denote the model to be fine-tuned where
✓ are learnable parameters, ⇡ref denote the fixed reference
model, and Dpair := {(qi, ai

T
, a

i

F
)}n

i=1
denote all pairwise

truthfulness training data. The loss function of DPO, i.e.,
LDPO (⇡✓;⇡ref , Dpair), is given by:

� 1

n

P
n

i=1


log �

✓
� log

⇡✓(ai

T
|qi)

⇡ref(ai

T
|qi)

� � log
⇡✓(ai

F
|qi)

⇡ref(ai

F
|qi)

◆�
,

where � is the logistic function and � serves as a parameter
that regulates the deviation from the reference model ⇡ref ,
with both ⇡✓ and ⇡ref being initialized as the pretrained base
model ⇡pre.

By minimizing the loss function, the likelihood of gener-
ating correct (incorrect) answers will increase (decrease),
thus contributing to a more truthful model. Since the model
enhances its truthfulness by learning from the difference in
answer pairs that are generated by itself without requiring
any external annotations, we name the learning process as
self-truthifying.

3.3. Gradual Self-Truthifying

Gradual self-truthifying consists of two alternative
steps—refining the data and updating the model. These
steps are executed alternatively in an iterative manner, con-
tributing to the gradual improvement in model truthfulness.

Step 1: Refining Data. Intuitively, the model with im-
proved truthfulness could generate correct answers with
higher correctness, which inherently benefits the process of
learning from the truthfulness difference in answer pairs.
Hence, regarding the self-truthified model as the base model,
we prompt it to generate correct answers and substitute those
in the pairwise truthfulness training data while leaving the
incorrect answers fixed.

Step 2: Updating Model. Based on the refined pairwise
truthfulness training data, we employ self-truthifying on the
base model (i.e., fine-tune the base model via DPO), aiming
to improve its truthfulness by learning from the truthfulness
difference in the answer pairs. Subsequently, the learned
model will be used to update the base model.

The above process of refining the data and updating the
model could be repeated iteratively until a predetermined

number of iterations is reached. Through this iterative ap-
proach, we could gradually boost the model truthfulness in
a self-supervised manner. The overall procedure of GRATH
is summarized in Algorithm 1.

Algorithm 1 GRATH

Input: a pretrained model ⇡pre, a set of questions {qi}ni=1, few-
shot demonstrations {(q̂j , âj

T
, â

j

F
)}mj=1, prompting template

T(p(·); ·), number of fine-tuning steps s, number of iterations
T

Output: a model with high truthfulness ⇡⇤
✓

# (a) Create pairwise truthfulness data
(ai

T , a
i

F ) = ⇡pre

�
T(p(qi); {(q̂j , âj

T
, â

j

F
)}mj=1)

�
for i in [n]

D
0

pair = {(qi, ai

T , a
i

F )}ni=1

# (b) Self-truthifying
⇡
0

✓  ⇡pre, ⇡ref  ⇡pre

⇡
1

✓  ⇡
0

✓ fine-tuned with LDPO

�
⇡
0

✓ ;⇡ref , D
0

pair

�
for s steps

# (c) Gradual self-truthifying
for t in [T ] do

(ãi

T , ã
i

F ) = ⇡
t

✓

�
T(p(qi); {(q̂j , âj

T
, â

j

F
)}mj=1)

�
for i in [n]

D
t

pair = {qi, ãi

T , a
i

F }ni=1

⇡ref  ⇡
t

✓

⇡
t+1

✓
 ⇡

t

✓ tuned with LDPO

�
⇡
t

✓;⇡ref , D
t

pair

�
for s steps

end for
return ⇡

⇤
✓ = ⇡

T+1

✓

4. Experiments
4.1. Experimental Setup

Models. We adopt two widely-used 7B-LLMs as pre-
trained base models, which are Llama2-Chat-7B (Touvron
et al., 2023) and Zephyr (Tunstall et al., 2023). Each is
used to create pairwise truthfulness training data and ini-
tialize the base model in self-truthifying. During gradual
self-truthifying, this self-truthified model is used as the base
model in the first iteration, and subsequently, the model
trained by DPO will serve as the base model in the next
iteration. Following (Tunstall et al., 2023), we compare
GRATH against a variety of open-access models featured
on Open LLM Leaderboard (Beeching et al., 2023) with
scales of parameters ranging from 7B to 70B, including
Xwin-LM (Ni et al., 2024), Mistral-Instruct (Jiang et al.,
2023), MPT-Chat (Team, 2023), StableLM-↵, Llama2-Chat
(Touvron et al., 2023), Zephyr (Tunstall et al., 2023), Vi-
cuna (Chiang et al., 2023), WizardLM (Xu et al., 2023), and
Guanaco (Dettmers et al., 2023).

Baseline Methods. In addition to the above open models,
we also compare GRATH with various fine-tuning methods
which cover two main categories: human alignment meth-
ods—SFT, DPO (Rafailov et al., 2023), RLHF (Ouyang
et al., 2022) and truthfulness enhancement methods—RepE
(Zou et al., 2023), ITI (Li et al., 2023b). To apply human
alignment methods within the realm of truthfulness, we
implement them using the same dataset as ours, i.e., ARC-
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Challenge. Different from ours, they would utilize both
the questions and the annotated answers. Besides, we re-
port ITI’s results using its published model and reproduce
RepE using its open-source codes. All of the methods use
LLama2-Chat-7B as the pretrained base model.

Datasets and Evaluation Metrics. When creating pair-
wise truthfulness training data, we utilize training samples
from ARC-Challenge (Clark et al., 2018) as the source of
questions, while using six QA primer examples from Truth-
fulQA as few-shot demonstrations which follows the im-
plementation in (Zou et al., 2023). The core capabilities of
the models are assessed using testing samples from ARC-
Challenge, HellaSwag (Zellers et al., 2019), and MMLU
(Hendrycks et al., 2021). Meanwhile, the truthfulness of
the models is evaluated on TruthfulQA’s MC tasks (Lin
et al., 2022), where we utilize the entire dataset for assess-
ment unless otherwise specified. We follow the evaluation
configurations and procedures introduced in Open LLM
Leaderboard, adopting accuracy as the metric. Specifically,
MC1 accuracy is the percentage of assigning the highest
probability to the single correct answer in TruthfulQA’s
MC1 task. MC2 accuracy is the normalized total probability
assigned to a set of correct answers in the MC2 task.

Implementation Details. We prompt the pretrained
model to generate pairwise answers to all questions in ARC-
C. The model generations that do not follow the format
defined in demonstrations are filtered out, which results
in 1092 pairs of truthfulness training data in total. We
adopt DPO to fine-tune the model for 1000 steps using the
parameter-efficient technique—LoRA (Hu et al., 2022). Em-
pirically, we find out that a single iteration T = 1 suffices
to yield substantial improvements in truthfulness, signify-
ing GRATH as an efficient and convenient post-processing
approach for enhancing LLMs’ truthfulness. More details
about the experimental setup are presented in Appendix A.

4.2. Effectiveness of GRATH

4.2.1. COMPARISON WITH OPEN MODELS

The performance of a variety of open-access models and
GRATH over two pretrained base models on different bench-
mark datasets are shown in Table 1.

Compared with the corresponding pretrained base models,
GRATH marginally improves performance on ARC-C, al-
beit with a slight trade-off in performance on HellaSwag and
MMLU. These results suggest that GRATH could preserve
the performance on these datasets, maintaining the models’
core capabilities.

On the TruthfulQA benchmark, we observe that GRATH
effectively improves the MC1 and MC2 accuracy, with
both increased by an average of over 15%. In particular,

GRATHLlama2 achieves the state-of-the-art (SOTA) perfor-
mance, with impressive MC1 accuracy of 54.71% and MC2
accuracy of 69.10%. Notably, this 7B model’s performance
even outstrips that of larger-scale models, including those
with 70B parameters. For instance, its MC1 and MC2 accu-
racy exceed those of the leading 70B model (i.e., Xwin-LM
v0.1) by substantial margins of 14.44% and 9.44%, respec-
tively. Meanwhile, GRATHZephyr also demonstrates superior
performance compared to the selected open models. More
experimental results are shown in Appendix D.1. These
results indicate that GRATH serves as an effective post-
processing method to bolster the truthfulness of different
LLMs with minimal impact on their core capabilities.

Table 1. Performance of GRATH compared with various open
models on Open LLM Leaderboard. On TruthfulQA’s MC1
and MC2 tasks, GRATHLlama2 achieves SOTA performance, and
GRATHZephyr ranks as the second best. On other core functionality
benchmarks, GRATH maintains similar performance compared to
the corresponding pretrained base models.

Model Size ARC Hella MMLU TQA TQA
Swag MC1 MC2

StableLM-Tuned-↵ 7B 31.91 53.59 24.41 23.99 40.37
MPT-Chat 7B 46.50 75.51 37.62 27.05 40.16
Xwin-LM v0.1 7B 56.57 79.40 49.98 32.93 47.89
Mistral-Instruct v0.1 7B 54.52 75.63 55.38 39.53 56.28
Vicuna v1.3 33B 62.12 83.00 59.22 37.09 56.16
Guanaco 65B 65.44 86.47 62.92 36.47 52.81
Llama2-Chat 70B 67.32 87.33 69.83 31.09 44.92
WizardLM v1.0 70B 65.44 84.41 64.05 38.68 54.81
Xwin-LM v0.1 70B 70.22 87.25 69.77 40.27 59.86

Zephyr 7B 62.46 84.35 60.70 42.23 57.83
GRATHZephyr 7B 65.02 81.57 51.39 53.86 66.73

Llama2-Chat 7B 52.73 78.50 48.14 30.23 45.32
GRATHLlama2 7B 57.76 79.63 46.88 54.71 69.10

4.2.2. COMPARISON WITH BASELINE METHODS

The performance comparison between different fine-tuning
methods is illustrated in Table 2. These methods include
human alignment methods (SFT, DPO, RLHF) and truthful-
ness enhancement methods (RepE, ITI, GRATH). Note that
RLHF employs RL to fine-tune the SFT model obtained in
its first stage. To study how this fine-tuning paradigm learns
truthfulness, we also apply RL on pretrained base model,
excluding the influence of SFT base model, denoted as RL.

Among various human alignment methods, DPO performs
the best, as it not only slightly increases the average accuracy
on ARC-C, HellaSwag, and MMLU datasets, but also boosts
the average accuracy on TruthfulQA’s MC tasks by 6.65%.
In comparison, RL barely affects the pretrained model’s
performance while both SFT and RLHF tend to diminish
the performance, which indicates that SFT might not be
an appropriate strategy for fine-tuning models with OOD
training data. When it comes to methods aimed at enhancing
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truthfulness, RepE is superior to DPO, effectively increasing
the average accuracy on TruthfulQA by 14.18%. Moreover,
GRATH even outperforms RepE, delivering a substantial
improvement of 24.14% while maintaining performance
on the other three datasets. These results again validate
GRATH’s effectiveness in enhancing the model truthfulness.

Table 2. Performance comparison between human alignment meth-
ods—SFT, DPO, RMRL, RL, and truthfulness enhancement meth-
ods—RepE, ITI, GRATH. All methods are applied on Llama2-
Chat-7B. On TruthfulQA’s MC1 and MC2 tasks, GRATHLlama2

achieves SOTA performance, and RepE ranks as the second best.
On other core functionality benchmarks, most methods maintain
similar performance compared to Llama2-Chat-7B.

Method ARC Hella MMLU AVG TQA TQA AVGSwag MC1 MC2

Llama2-Chat7B 52.73 78.50 48.14 59.79 30.23 45.32 37.77

SFT 51.88 76.65 45.89 58.14 22.40 34.52 28.46
DPO 62.97 81.84 44.01 62.94 36.72 52.13 44.42
RL 53.41 78.36 48.30 60.03 30.11 44.89 37.50
RLHF 49.91 76.56 45.14 57.20 22.64 34.37 28.50
RepE 57.59 78.75 47.86 61.40 43.45 60.45 51.95
ITI 52.73 78.50 48.17 59.80 30.23 45.32 37.77
GRATHLlama2 57.76 79.63 46.88 61.42 54.71 69.10 61.91

4.3. In-Depth Exploration of GRATH

In this section, we will delve into GRATH to comprehend
how it facilitates the learning of a truthful model. We first in-
troduce different disparity concepts that will be instrumental
in our analysis.

Definition 1 (Domain Gap). The domain gap refers to
the disparity between the training domain and the testing
domain. More precisely, it refers to the disparity between
the pairwise truthfulness training data and the testing data.

Definition 2 (Distributional Distance). The distributional
distance within pairwise truthfulness training data refers to
the disparity between the distribution of correct answers and
that of incorrect answers.

Definition 3 (Pairwise Distance). The pairwise distance
between a correct answer aT and an incorrect answer aF is
the Euclidean distance between their vectors projected onto
a representation space M, i.e., dpair(aT , aF ) = kM(aT )�
M(aF )k2.

In particular, we use the representation at the last token in the
last layer of the Llama2-Chat-7B model. Consequently, the
distributional distance can be characterized by the statistics
of {dpair(aiT , aiF )}ni=1

(e.g., mean).

4.3.1. TOWARDS UNDERSTANDING HOW TO LEARN
TRUTHFULNESS IN SELF-TRUTHIFYING

In this section, we aim to investigate the factors that affect
the truthfulness of the model learned in self-truthifying.

— Does the domain gap between pairwise truthfulness train-
ing data and testing data impact the truthfulness learned
by DPO? During evaluation, the truthfulness of the learned
model is assessed in a particular testing domain. Herein, we
explore how this truthfulness is influenced when the domain
gap in the training data is widened or narrowed.

The model learned by DPO is more truthful in the testing
domain if there is a smaller domain gap between pair-
wise truthfulness training data and testing data. First, we
split TruthfulQA into 700 training samples and 117 testing
samples. One training sample (i.e., a pair of truthfulness
data) comprises a question, a correct answer, and a randomly
selected incorrect answer. To elevate the degree of domain
gap with respective to the testing domain, we employ a
sentence-level transformation (Krishna et al., 2020) on the
answers in training samples. In particular, we transform
the answers to the Shakespearean style with different levels
of perturbations characterized by the parameter top-p. A
larger top-p indicates higher level of perturbation, thereby
increasing the domain gap in the answers. Note that top-p =
0.0 equates to no transformation, hence no domain gap. As
illustrated in Figure 3(left), there is a clear downward trend
in both MC1 and MC2 accuracy as the domain gap in an-
swers widens. This pattern demonstrates that 1) when there
is no domain gap in questions, the model learned by DPO
will be less truthful if the domain gap in answers increases.

Figure 3. MC1 and MC2 accuracy of DPO (left) and SFT (right)
with varying degrees of transformations applied on the answers
in pairwise truthfulness training data. A larger top-p indicates a
larger domain gap between truthfulness training data and testing
data. Downward trends here in each figure indicate that the model
learned by either DPO or SFT will be less truthful if the domain
gap in answers increases. DPO performs better than SFT overall.

In Section 4.2, DPO is applied on the pairwise truthfulness
data created using OOD questions (from ARC-C) and 6
in-domain few-shot demonstrations (from TruthfulQA). We
denote such DPO which leverages the model’s generated
answers as DPO

QOOD

G(FSIND)
. Here, we extend this creating

procedure to more diverse setups, including: i) merging
the ground-truth correct and incorrect answers annotated in
ARC-C into the prompt during model generation (denoted
as DPO

QOOD

G(FSIND,GT )
); ii) altering the few-shot demonstra-

tions to OOD examples sourced from HaluEval dataset (Li
et al., 2023a) (denoted as DPO

QOOD

G(FSOOD)
); iii) combining

6
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Figure 4. MC1 and MC2 accuracy of DPO (left) and SFT (right). DPO and SFT are applied with truthfulness training data created using a
variety of strategies. QOOD (QIND) represents using OOD (in-domain) questions from ARC-C (TruthfulQA); AOOD indicates using
annotated answers from ARC-C; G(·) indicates using answers generated by LLMs. Specifically, FSOOD (FSIND) corresponds to
OOD (in-domain) few-shot demonstrations, and GT implies merging ground-truth answers into the prompts. We find i) DPO

QOOD

G(FSIND)

performs the best among all DPO
QOOD , indicating that the usage of in-domain demonstrations yields answers that are closer to testing

domain, leading to a more truthful model. ii) Arrows symbolize performance shifts as questions are transitioned from OOD to in-domain.
The trends towards upper right indicate that the model will be more truthful if the domain gap in questions decreases. The same findings
hold for SFT. iii) DPO outperforms SFT since it improves the pretrained model’s truthfulness in general.

both of them (denoted as DPO
QOOD

G(FSOOD,GT )
). In addition,

we consider directly feeding the annotated pairwise answers
in ARC-C to DPO which is denoted as DPO

QOOD

AOOD
. For

a fair comparison, we uniformly utilize 700 truthfulness
training data across all strategies. Note that without the
usage of demonstrations, the model might fail to generate
700 truthfulness data. Thus, we do not study this zero-shot
setting. As depicted by the circles in Figure 4(left), we
discover that DPO

QOOD

G(FSIND)
(shown by the purple circle)

performs the best among all DPO
QOOD . We infer that its

utilization of in-domain demonstrations potentially yields
answers that are closer to the testing domain. In contrast,
other strategies that either refer to the OOD ground-truth
answers or switch to OOD demonstrations might cause the
generated answers to deviate from the testing domain, thus
impairing performance in comparison to DPO

QOOD

G(FSIND)
.

The results indicate that 2) when there is a domain gap in
questions, the model learned by DPO will be less truthful if
the domain gap in answers increases.

So far, we have discussed the impact of the domain gap in
answers on model truthfulness. To further explore the effects
of the domain gap in questions, we implement the same four
answer generation strategies, but using in-domain questions
(from TruthfulQA). Arrows in Figure 4(left) symbolize the
performance shifts as the questions are transitioned from
OOD to in-domain under each respective strategy. Notably,
there is a trend toward the upper right, signifying a general
improvement when the questions become in-domain, which

demonstrates that 3) the model learned by DPO will be more
truthful if the domain gap in questions decreases.

— Can SFT be a better choice than DPO in terms of learning
truthfulness? In addition to studying the effects of training
data, here we focus on the fine-tuning technique. We are in-
trigued by whether the widely-used approach—Supervised
Fine-Tuning (SFT)—offers comparable benefits with DPO.

The model learned via SFT is less truthful in the testing
domain if there is a larger domain gap between pairwise
truthfulness training data and testing data. Besides, SFT
is less effective than DPO for improving truthfulness.
Here, we replicate the setups previously used, with the dif-
ference that SFT only utilizes correct answers instead of
pairwise answers. Specifically, we first apply varying levels
of transformations on the annotated correct answers from
TruthfulQA. The downward trends of accuracy in Figure
3(right) demonstrate that 1) when there is no domain gap
in questions, the model learned by SFT will be less truthful
if the domain gap in answers increases. Next, we follow
the same answer generation strategies given questions from
ARC-C, while applying the generated correct answers to
SFT. As shown in Figure 4(right), SFT

QOOD

G(FSIND)
(shown

by the purple circle) outperforms other SFT
QOOD (repre-

sented by circles in other colors), suggesting that 2) when
there is a domain gap in questions, the model learned by
SFT will be less truthful if the domain gap in answers in-
creases. Then, upon switching the questions from OOD to
in-domain, the trend of most arrows toward the upper right

7
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signifies that 3) the model learned by SFT will be more
truthful if the domain gap in questions decreases. Notably,
we discover that the majority of DPO’s points are situated
to the upper right of the pretrained model (shown by the red
star), signifying enhanced model truthfulness. By contrast,
most SFT’s points are located in the lower left of the pre-
trained model, suggesting degraded model truthfulness. The
comparison indicates that 4) DPO is more effective than
SFT for improving model truthfulness.

— How does the number of fine-tuning steps affect the model
truthfulness as well as other core capabilities? We defer the
discussion to Appendix D.2.

4.3.2. TOWARDS UNDERSTANDING HOW TO LEARN
TRUTHFULNESS IN GRATH

In this section, we aim to investigate the factors that af-
fect the truthfulness learned in GRATH. Following the no-
tations in Section 3, T denotes the iterations in gradual
self-truthifying. To avoid ambiguity, let TDPO denote the
times that DPO is executed. Apparently, TDPO = T + 1.
In particular, DPO

0 refers to the scenario where no DPO
is performed, meaning the model remains in its pretrained
state. DPO

1 represents the DPO in self-truthifying while
DPO

t (1 < t  TDPO) corresponds to its use in gradual
self-truthifying.

— Does the distributional distance between correct and
incorrect answers within pairwise truthfulness training data
impact the truthfulness learned by DPO? In GRATH, we
fine-tune the model using DPO two times since T = 1.
Then, a natural question arises: Compared to DPO

1, why
the model can be more truthful after DPO

2? Is it only
because the base model is more truthful? Or is it also related
to the quality of truthfulness data used in DPO

2?

The model learned via DPO is more truthful if the distri-
butional distance between correct and incorrect answers
within pairwise truthfulness training data is larger. Fig-
ure 5(left) depicts the distributions of pairwise distance in
truthfulness data used in DPO

1 and DPO
2. There is a

distinct shift towards right when transitioning from DPO
1

to DPO
2, with the mean value evolving from 65.94% to

87.80%. This trend indicates that the truthfulness data in
DPO

2 exhibits a larger distributional distance. To further
validate whether truthfulness data with a larger distributional
distance contributes to a more truthful model, we fine-tune
the pretrained model with DPO using these two datasets,
respectively. As illustrated in Figure 5(right), both MC1
and MC2 accuracy present an uplift, verifying that a larger
distributional distance within truthfulness data leads to a
higher degree of truthfulness in the model learned via DPO.

— Can the alignment approach adopted in GRATH be ex-
tended from DPO to various direct alignment from prefer-

Figure 5. Left: Distributions of pairwise distance in truthfulness
data used in DPO

1,2. Right: Performance of the pretrained model
fine-tuned with truthfulness data used in DPO

1,2 on TruthfulQA.
The improved performance indicates that a larger distributional
distance within truthfulness data leads to a more truthful model.

ence (DAP) approaches? DAP approaches aim to align a
policy directly with preference pairs, with DPO being a rep-
resentative one. To explore the effectiveness of GRATH ap-
plied with different DAP approaches, we replace DPO with
two representative DAP approaches: IPO (Azar et al., 2024)
and RSO (Liu et al., 2024), respectively, and demonstrate the
performance of the resulting models in Table 3. In particular,
the models obtained after self-truthifying and an iteration of
gradual self-truthifying are denoted by GRATHDAP1

Llama2 and
GRATHDAP2

Llama2, respectively.

The alignment approach adopted in GRATH can be gen-
eralized from DPO to various direct alignment from pref-
erence approaches. Compared to the pretrained base model,
all of the DAP approaches, i.e., DPO, IPO, and RSO, could
effectively increase the average accuracy on the TruthfulQA
benchmark by over 9% in self-truthifying. During gradual
self-truthifying, they could further improve the truthfulness
of the corresponding self-truthified models, leading the av-
erage accuracy on the TruthfulQA benchmark to 61.91%,
53.51%, and 49.13%, respectively. Meanwhile, their per-
formance on other core functionality benchmarks maintains
similar to that of the pretrained base model. Therefore,
GRATH is generalizable over different DAP approaches.

Table 3. Performance comparison between the pretrained base
model (i.e., Llama2-Chat-7B) and GRATH using various direct
alignment from preference (DAP) approaches. GRATHDAP1

Llama2 and
GRATHDAP2

Llama2 denote the models obtained after self-truthifying and
an iteration of gradual self-truthifying, respectively.

Method ARC Hella MMLU AVG TQA TQA AVGSwag MC1 MC2

Llama2-Chat7B 52.73 78.50 48.14 59.79 30.23 45.32 37.77

GRATHDPO1

Llama2 56.40 79.68 47.22 61.10 41.25 56.21 48.73
GRATHDPO2

Llama2 57.76 79.63 46.88 61.42 54.71 69.10 61.91

GRATHIPO1

Llama2 57.85 78.49 44.34 60.23 41.49 60.77 51.13
GRATHIPO2

Llama2 57.34 79.10 44.46 60.30 44.43 62.58 53.51

GRATHRSO1

Llama2 54.61 79.19 47.83 60.54 38.43 56.97 47.70
GRATHRSO2

Llama2 56.74 79.50 46.33 60.86 39.90 58.37 49.13
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— What is the relationship between the number of DPO
executions TDPO and the amount of pairwise truthfulness
training data n? To answer the question, we fix the number
of fine-tuning steps as 1000 in each DPO execution and
conduct GRATH with varying TDPO and n.

GRATH is an efficient approach to boost model truthful-
ness. In particular, a larger amount of pairwise truth-
fulness training data leads to a more truthful model. As
shown in Figure 6, under a fixed TDPO, GRATH with fewer
samples tends to exhibit lower performance, as reflected in
the diminished MC1 and MC2 accuracy. Note that MC2
accuracy could be NaN, which is possibly due to that the
numerous executions lead the model over-fitting to pair-
wise truthfulness data, at the expense of deviating from the
pretrained model. This deviation might hinder the model
from generating fluent text, resulting in an extremely low
probability of generating fluent text. Consequently, MC2
accuracy, defined as the normalized probability assigned
to a set of correct answers, might be NaN. And for a fixed
amount of truthfulness data n, GRATH typically achieves
its peak MC1 accuracy when TDPO = 3 or 4. Notably,
this optimal accuracy declines as n reduces. These results
demonstrate that GRATH only requires TDPO  4 to attain
its highest level of MC1 accuracy, with larger amounts of
truthfulness data yielding higher degree of truthfulness.

Figure 6. MC1 (left) and MC2 (right) accuracy of GRATH with
different amounts of truthfulness data n and numbers of DPO
executions TDPO . For a fixed TDPO , a larger n leads to a more
truthful model. MC2 accuracy might be NaN due to over-fitting.

— How does the number of iterations affect the model truth-
fulness as well as other core capabilities? What is the
impact of the choice of DPO’s reference model? We defer
the discussion to Appendix D.3.

5. Discussion
Overfitting to Pairwise Data. As the training progresses,
the learned model might overfit to the pairwise training
data (Azar et al., 2024). This overfitting could affect some
capabilities implicitly learned during pretraining, as implied
by the performance drop on core functionality benchmarks
in later iterations during gradual self-truthifying, which is
shown in Figure 8 in Appendix D.3. This impact might lead

to generations of lower quality in certain aspects, potentially
affecting the truthfulness of the fine-tuned model.

Here, we provide some potential solutions to overfitting.
1) Early stopping: Such strategies include reducing the
steps in DPO or the number of truthifying iterations. For
instance, as shown in Figure 8, there is minimal impact on
the performance on core functionality benchmarks when
the model is truthified for one or two iterations. 2) Setting
DPO’s reference model as the pretrained base model: As
specified in Section 3, DPO’s reference model is set as the
current base model in each truthifying iteration, which may
accelerate model’s overfitting to pairwise data. In Appendix
D.3, we explore how the choice of reference model in DPO
affects the performance of the learned model, where we
fix DPO’s reference model as the pretrained base model.
Results demonstrate that adding regularization towards the
pretrained base model can facilitate stable performance on
core functionality benchmarks throughout the training.

Enhancement of LLMs’ Multiple Capabilities. While
the focus of this paper is on truthfulness, LLMs are expected
to exhibit a range of desirable qualities. A natural question
arises: How can we enhance LLMs’ multiple capabilities si-
multaneously? A naive idea would be to extend the creation
procedure in GRATH to generate pairwise answers that
differ in diverse attributes, e.g., harmlessness and morality.

Due to space limit, we defer the discussion on the evaluation
of model truthfulness to Appendix E.

6. Conclusion
In this paper, we propose GRATH, a novel post-processing
method to enhance LLMs’ truthfulness. Intensive exper-
iments have demonstrated GRATH’s effectiveness, OOD-
resilience, cost-effectiveness, and efficiency. Furthermore,
beyond the methodology itself, we provide an innovative
fine-tuning paradigm, i.e., gradual self-training, which lever-
ages the self-generated data to improve a model’s certain
ability, while utilizing the model’s improved ability to gener-
ate data of better quality. The alternative interaction between
them contributes to the gradual enhancement in the ability.
Diverse alignment approaches can be incorporated into this
paradigm, as evidenced by our exploration of DPO, SFT,
IPO, and RSO. Such flexibility enables it to capitalize on the
distinct benefits of different approaches, potentially offering
widespread implications for LLMs.
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Impact Statement
Our work aims to enhance the truthfulness of LLMs, and
we focus on reducing the possibility of LLMs generating
misinformation. We expect our work will not have negative
societal consequences if there is any. Overall, fully equip-
ping LLMs with comprehensive trustworthiness attributes
is critical before large-scale LLM deployment in the real
world, which still remains an unresolved challenge, and
our work aims to push the frontier of it. Addressing this
challenge is crucial for further enhancing the reliability of
LLMs across various applications.
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A. More Details about Experimental Setup
In this section, we will provide more details about the ex-
perimental setup.

Models. In Section 4.2, we report the performance of dif-
ferent models across various benchmark datasets. Most
results come from the Open LLM LeaderBoard (Beeching
et al., 2023). In particular, for the Zephyr model (Tunstall
et al., 2023), we adopt the results of its beta version instead
of the alpha version. In ablation studies, i.e., when inves-
tigating the factors that affect the truthfulness learned in
self-truthifying and gradual self-truthifying, we uniformly
use Llama2-Chat-7B as the pretrained base model in all
experiments.

Baseline Methods. RepE (Zou et al., 2023) provides a
variety of representation engineering methods to improve
a model’s different capabilities. Here, we select the pro-
posed honesty control method LoRRA, which could en-
hance the model truthfulness as evidenced by the improved
performance on TruthfulQA’s MC1 task. Since they do not
publish their performance on the leaderboard, we use their
open-source codes to reproduce the LoRRA method with
Llama2-Chat-7B serving as the pretrained base model. The
reported results in Table 2 are consistent with those in their
paper.

Datasets and Evaluation Metrics. We follow the evalua-
tion configurations, including the zero/few-shot setting, and
procedures outlined in the Open LLM LeaderBoard, utiliz-
ing the same Language Model Evaluation Harness library
(Gao et al., 2021) to implement the evaluation. The leader-
board covers a variety of benchmark datasets, of which we
select four for our experiments: ARC-Challenge (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), MMLU
(Hendrycks et al., 2021), and TruthfulQA (Lin et al., 2022).
Specifically, ARC-Challenge and HellaSwag are utilized
to gauge the commonsense reasoning abilities of language
models, with normalized accuracy (accnorm) serving as the
evaluation metric. MMLU, designed to test multi-task lan-
guage understanding, comprises numerous subtasks. Here,
we use accuracy (acc) for each subtask and calculate the
average as the final metric for MMLU. TruthfulQA, on the
other hand, is employed to evaluate the truthfulness of lan-
guage models, particularly their capacity to avoid imitative
falsehoods. As detailed in Section 4.1, we employ MC1
(mc1) and MC2 accuracy (mc2) as the metrics for assessing
performance on TruthfulQA.

Implementation Details. When creating pairwise truth-
fulness training data, we prompt the pretrained model to
generate pairwise answers to all questions in ARC-C. How-
ever, the model generations might not follow the format

defined in the demonstrations, which would be excluded.
In total, this process results in 1092 pairs of truthfulness
training data. In Step 1 of gradual self-truthifying, we create
pairwise answers to questions in 1092 truthfulness training
data. If a generation is consistent with the designated for-
mat, the original correct answer is substituted with this new
generation; if not, the initial correct answer is retained.

In self-truthifying and Step 2 of gradual self-truthifying,
we adopt DPO to fine-tune the model for 1000 steps. In
particular, we implement DPO (Rafailov et al., 2023) us-
ing the Transformer Reinforcement Learning (TRL) library
(von Werra et al., 2020). We adopt the default parameter
configurations and implement DPO using one RTX A6000
GPU. Moreover, to enable an efficient training, we utilize
the parameter-efficient technique—LoRA (Hu et al., 2022),
setting its rank as 8, alpha as 16, and dropout parameter as
0.05. Within the above setup, one step in DPO takes about
4 seconds and one DPO execution takes about one hour.

B. Prompting Template Details
In this section, we will illustrate the prompting templates
for generating pairwise truthfulness data. Figure 10 and
11 represent the templates for Llama2-Chat models and
Zephyr models, respectively. Specifically, we utilize six
QA primer examples from TruthfulQA as few-shot demon-
strations. $question$ in the prompt will be replaced by
questions from the given dataset.

Recall that in Section 4.3.1, we merge the ground-truth
answers into the prompt. The corresponding template is il-
lustrated in Figure 12. Compared to the above templates, we
add a candidate correct answer and a candidate incorrect an-
swer to each demonstration and the final prompt. And these
candidate answers come from the annotated dataset—ARC-
C.

C. Examples of Pairwise Truthfulness Data
In Figure 13, we illustrate some examples of the pairwise
truthfulness training data used in DPO

1 and DPO
2. The

top examples illustrate instances in which both generated
correct answers are ground-truth correct. The middle exam-
ples showcase scenarios where both of the generated correct
answers are ground-truth incorrect. The bottom examples
display situations where the initially generated correct an-
swer (the one used in DPO

1) is ground-truth incorrect,
whereas the subsequent one (the one used in DPO

2) is
ground-truth correct.

The ground-truth incorrectness of some generated correct an-
swers might indicate that GRATH makes the model improve
its truthfulness via learning from the relative difference be-
tween generated correct and incorrect answers, instead of
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the absolute truthfulness of the generated correct answers.

D. More Experimental Results
D.1. Effectivess of GRATH

In addition to Zephyr and Llama2-Chat-7B, we also apply
the proposed method GRATH on a model of larger scale, i.e.,
Llama2-Chat-13B. As shown in Table 4, GRATH markedly
boosts the MC1 and MC2 accuracy by 16.65% and 13.71%,
respectively. Concurrently, it marginally enhances perfor-
mance on the ARC and HellaSwag datasets, albeit with little
decrement in performance on MMLU. The results demon-
strate that GRATH acts as a potent post-processing method,
significantly strengthening the truthfulness of the models
while preserving other core capabilities with minimal detri-
ment.

Table 4. Performance of GRATH and the corresponding pretrained
base model—Llama2-Chat-13B.

Model Size ARC Hella MMLU TQA TQA
Swag MC1 MC2

Llama2-Chat-13B 13B 59.13 81.94 54.61 28.03 43.95
GRATHLlama2-Chat-13B 13B 65.87 83.86 52.57 44.68 57.66

D.2. Towards Understanding How to Learn
Truthfulness in Self-Truthifying

— How does the number of fine-tuning steps affect the model
truthfulness as well as other core capabilities?

We illustrate the variation of the model performance on
benchmark datasets across fine-tuning steps in Figure 7. As
the fine-tuning progresses, there is a notable improvement
in both MC1 and MC2 accuracy on TruthfulQA, with the
metrics stabilizing around the 1000th step. Conversely, the
performance on ARC-C, HellaSwag, and MMLU almost
maintains consistency throughout fine-tuning. Therefore,
we adopt 1000 fine-tuning steps in our experiments.

D.3. Towards Understanding How to Learn
Truthfulness in Gradual Self-Truthifying

— How does the number of iterations affect the model truth-
fulness as well as other fundamental abilities?

Figure 8 displays the changes in model performance on
benchmark tasks across iterations. Initially, within the first
few iterations, there is a significant improvement in the
model performance on TruthfulQA’s MC1 task, while the
results on other datasets remain relatively stable. However,
beyond a certain number of iterations, a decline in perfor-
mance is observed across all datasets. Notably, the MC2
accuracy on TruthfulQA registers as NaN starting from the
third iteration, which is not presented in the figure. These

Figure 7. Performance of GRATH on four benchmark datasets with
varying fine-tuning steps.

findings suggest that, on one hand, GRATH effectively en-
hances performance on TruthfulQA within just a few itera-
tions without detrimentally affecting other capabilities. On
the other hand, extending the number of iterations leads
to a deterioration in overall performance, likely due to the
overfitting issue associated with DPO, as discussed in Sec-
tion 4.3.2. Consequently, we set TDPO = 2 (equivalent to
T = 1) for our experimental setup.

Figure 8. Performance of GRATH on four benchmark datasets with
varying iterations. Note that the performance on TruthfulQA’s
MC2 task is not reported since MC2 accuracy becomes NaN at the
third iteration.

— How does the choice of reference model in DPO affect the
performance of the learned model? In GRATH, we set the
reference model as the current base model when applying
DPO. But, an alternative exists—using the pretrained model
as the reference model, which means that the reference
model in DPO is fixed across iterations.

To explore this, we fix the reference model as the pretrained
model, execute GRATH for 10 iterations, and assess the
performance on benchmark datasets, as depicted in Figure
9. The transparent lines represent the scenario where the
current base model serves as the reference (corresponding
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to Figure 8’s results), whereas the dotted lines symbolize
the use of the pretrained model as the reference. We ob-
serve that the results on ARC-C, HellaSwag, and MMLU
remain steady, suggesting a preservation of the model’s
core capabilities. On the other hand, there is a consistent
enhancement in model performance on TruthfulQA, indica-
tive of a gradual improvement in model truthfulness. Note
that MC2 accuracy is omitted in Figure 8 due to the poten-
tial non-applicability (NaN); however, with the pretrained
model as the reference, MC2 accuracy won’t become NaN
but instead exhibits an increase. Despite this stable growth,
it’s noticed that the optimal performance on TruthfulQA
does not reach the levels achieved when the current base
model is used as the reference.

The results are reasonable since if using the pretrained
model as the reference model, DPO’s objective function
will apply a regulation factor (i.e., �) to limit deviations
from the pretrained model. Consequently, compared to the
scenario where the current base model is the reference, the
learned model is more similar to the pretrained model, yield-
ing stable results across ARC-C, HellaSwag, and MMLU.
Nevertheless, this regulatory effect also means that gains in
truthfulness are slower and less pronounced.

In summary, if a model trainer cares more about the in-
fluence on the model’s core capabilities and there is less
concern for rapid and significant enhancements in truthful-
ness, then the pretrained model should serve as the reference.
Conversely, if a model trainer prioritizes efficiency and sub-
stantial gains in truthfulness—and is willing to accept minor
impacts on core capabilities—then opting for the current
base model as the reference and executing GRATH for only
a few iterations emerges as a highly efficient and effective
approach.

Figure 9. Performance of GRATH on four benchmark datasets with
varying iterations. The dotted lines indicate using the pretrained
model as the reference model in DPO while the transparent lines
indicate using the base model as the reference model in DPO.

D.4. Results on More Tasks

In this paper, we assess model truthfulness using the
multiple-choice (MC) tasks from TruthfulQA, which are
commonly utilized in previous work and recognized by the
Open LLM Leaderboard. In addition, a generative task is in-
troduced in TruthfulQA. On this task, the model is prompted
to generate a one- to two-sentence answer in response to
a given question. However, the evaluation process for this
task involves either using a proprietary LLM to predict the
truthfulness of the answer or applying similarity-based met-
rics from natural language generation which cannot fully
capture human assessments of truthfulness.

Nevertheless, here we present the results on this generative
task. Specifically, we first fine-tune the davinci-002 GPT
(Brown et al., 2020) using the provided fine-tuning data and
then prompt it to judge whether a model’s response is cor-
rect or not. Besides, we adopt similarity metrics, BLEURT
(Sellam et al., 2020) and ROUGE1 (Lin, 2004) in partic-
ular, to identify the closest correct and incorrect answers
to a model’s response. We then compute the accuracy by
comparing whether the similarity to the closest correct an-
swer is greater than that to the closest incorrect answer. The
results are illustrated in Table 5. In particular, GRATHDPOn

Llama2
denotes GRATH applied with DPO n times and (fixed ⇡ref )
indicates that DPO’s reference model is fixed as the pre-
trained base model, rather the current base model, during
gradual self-truthifying.

Table 5. Performance comparison between the pretrained base
model (i.e., Llama2-Chat-7B) and GRATH with different con-
figurations on TruthfulQA benchmark. MC1 ACC and MC2 ACC
denote accuracy on multiple-choice tasks while the others repre-
sent accuracy on the generative task. The best results are in bold
and the second best results are underlined.

Model MC1 MC2 BLEURT ROUGE1 GPT
ACC ACC ACC ACC ACC

Llama2-Chat-7B 30.2 45.3 51.8 46.0 24.2
GRATHDPO1

Llama2 41.3 56.2 55.2 48.2 25.5
GRATHDPO2

Llama2 54.7 69.1 54.6 34.6 8.69
GRATHDPO10

Llama2 (fixed ⇡ref ) 48.4 64.3 60.5 51.0 24.4

Compared to the pretrained base model, GRATHDPO1

Llama2 ex-
hibits improvements on both multiple-choice and generative
tasks, suggesting that the proposed self-truthifying method
effectively enhances the model’s ability to choose truth-
ful answers and generate truthful responses. In contrast,
GRATHDPO2

Llama2 achieves SOTA accuracy on the multiple-
choice tasks but does not perform as well on the generative
task. This indicates that when DPO’s reference model is set
as the current base model, gradual self-truthifying may im-
pair the model’s ability to generate truthful statements. On
the other hand, when the reference model for DPO is fixed
as the pretrained base model, the resulting model performs
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exceptionally well on both tasks, with a 18.9% improvement
in MC2 ACC and an 8.7% increase in BLEURT ACC. These
results demonstrate that by adding regularization towards
the pretrained base model, the proposed method effectively
enhances the model’s ability to identify as well as generate
truthful text.

Overall, GRATH offers various ways to enhance the truth-
fulness of LLMs for different objectives. Specifically, self-
truthifying alone can significantly improve the model’s abil-
ity to identify and generate truthful text. To further enhance
the capability of identifying truthfulness efficiently, one
could set DPO’s reference model as the current base model
and apply gradual self-truthifying over few iterations. Con-
versely, to achieve strong performance across both tasks, the
optimal approach involves fixing DPO’s reference model
as the pretrained base model and conducting gradual self-
truthifying for several iterations.

E. Other Discussions
Evaluation of Model Truthfulness. In this paper, we
evaluate model truthfulness using TruthfulQA’s multiple-
choice (MC) tasks, as these tasks are widely adopted by prior
work as well as the Open LLM Leaderboard. Additionally,
the TruthfulQA benchmark introduces a generative task. We
report the results on this task in Appendix D.4.

On the whole, existing benchmarks for evaluating model
truthfulness are limited due to the inherent challenges in
defining and measuring this concept. Here, we provide some
potential directions for evaluating model truthfulness from
different perspectives:

• Evaluating an LM’s internal truthfulness: One way to
measure an LM’s internal belief of truthfulness is by
assessing how well truthful and untruthful statements
can be separated within the representation space.

• Evaluating an LM’s external truthfulness: Given that
world knowledge is constantly updated, one approach
to evaluating the truthfulness of an LM’s outputs is to
measure the semantic similarity between the generated
text and the information retrieved from a knowledge
base. In addition to truthfulness, informativeness and
fluency are also crucial for model outputs. Therefore,
developing a comprehensive benchmark that evaluates
all these desired properties is necessary.

• Evaluating the gap between an LM’s internal and ex-
ternal truthfulness: This involves testing whether the
model generates responses honestly, bridging the gap
between what the model knows internally and what it
outputs externally.
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Figure 10. Prompting template for Llama2-Chat models. $question$ in the prompt will be replaced by questions from the given dataset.
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Figure 11. Prompting template for Zephyr models. $question$ in the prompt will be replaced by questions from the given dataset.
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Figure 12. Ground-truth answers-based prompting template for Llama2-Chat models. $question$, $candidate correct answer$, and
$candidate incorrect answer$ in the prompt will be replaced by questions, correct answers, and incorrect answers from the given dataset.
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Figure 13. Examples of pairwise truthfulness data. In GRATH, DPO is applied twice: once during self-truthifying (denoted as DPO
1)

and once during an iteration of gradual self-truthifying (denoted as DPO
2). The left figure illustrates the truthfulness data used in

DPO
1, while the right figure depicts the data used in DPO

2. The answers in green are ground-truth correct while the answers in red
are ground-truth incorrect. Top: Both generated correct answers are ground-truth correct. Middle: Both generated correct answers are
ground-truth incorrect. Bottom: The first generated correct answer is ground-truth incorrect while the second one is ground-truth correct.
The ground-truth incorrectness of some generated correct answers implies that the self-truthifying process improves model truthfulness
via learning from the relative difference between generated correct and incorrect answers, instead of the absolute truthfulness of the
generated correct answers.
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