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ABSTRACT

Multi-agent reinforcement learning (MARL) methods often suf-

fer from high sample complexity, limiting their use in real-world

problems where data is sparse or expensive to collect. Although

latent-variable world models have been employed to address this is-

sue by generating abundant synthetic data for MARL training, most

of these models cannot encode vital global information available

during training into their latent states, which hampers learning

e�ciency. The few exceptions that incorporate global information

assume centralized execution of their learned policies, which is

impractical in many applications with partial observability.

We propose a novel model-basedMARL algorithm, MABL (Multi-

Agent Bi-Level world model), that learns a bi-level latent-variable

world model from high-dimensional inputs. Unlike existing models,

MABL is capable of encoding essential global information into the

latent states during training while guaranteeing the decentralized

execution of learned policies. For each agent, MABL learns a global

latent state at the upper level, which is used to inform the learn-

ing of an agent latent state at the lower level. During execution,

agents exclusively use lower-level latent states and act indepen-

dently. Crucially, MABL can be combined with any model-free

MARL algorithm for policy learning. In our empirical evaluation

with complex discrete and continuous multi-agent tasks including

SMAC, Flatland, and MAMuJoCo, MABL surpasses SOTA multi-

agent latent-variable world models in both sample e�ciency and

overall performance.
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1 INTRODUCTION

Multi-agent reinforcement learning (MARL) o�ers a powerful, ver-

satile approach for addressing a variety of real-world problems that

require coordination among multiple agents, such as the control of

robot swarms [1, 23], autonomous vehicles [6], and more [18, 44].

These scenarios o�er myriad challenges: agents must often learn to

behave from high-dimensional, partially observable inputs while

grappling with the issue of non-stationarity induced by other agents

simultaneously learning in the environment [22, 29]. The resulting

complexity often translates to a tremendous amount of environ-

ment interactions for learning e�ective policies [9]. In practical

scenarios, collecting such interaction data is resource-intensive

and time-consuming [2], underscoring the importance of sample

e�ciency.

In the single-agent setting, model-based RL has shown promise

in improving sample e�ciency by enabling agents to utilize pre-

dictive models of environment dynamics [4, 35, 40]. These models,

commonly referred to as world models, are often used to gener-

ate synthetic data from which agents can learn how to act. These

approaches have been shown to improve sample e�ciency by reduc-

ing the number of environment interactions needed to learn good

behavior [14, 20, 25, 37]. However, they still require learning in a

high-dimensional space. In recent years, however, model-based RL

algorithms have employed latent-variable world models [12, 13, 20]

to learn low-dimensional latent states from high-dimensional in-

puts. Trajectories of latent states generated by the model are then

used for policy learning. Although this family of methods represents

the state-of-the-art in the single-agent setting, they have only re-

cently been brought to bear in MARL [41]. Yet, current approaches

[7, 19] su�er from key limitations.

In MARL, the established paradigm of centralized training with

decentralized execution (CTDE) [22, 32] o�ers a pragmatic balance

that enables centralized learning by allowing agents access to ad-

ditional information during training, as long as each agent only

accesses its private observation during policy execution. This para-

digm ensures scalability and practicality in scenarios where agents

have to act in a decentralized manner. We refer to the totality of

information available to an agent during training, including its pri-

vate observation, as “global information". By following the CTDE

paradigm, model-based MARL agents can utilize global information

in their models during training to enhance latent representation

learning, potentially leading to more sample-e�cient learning.

However, existing multi-agent latent-variable world models are

either incapable of incorporating global information [19] or do so,



Figure 1: Overview of how the MABL bi-level model encodes

global information into the global latent state while training

while informing the agent latent state (left), which is com-

puted from the agent’s observation during execution (right).

but fail to ensure that agents only use their own observations dur-

ing execution [7, 42]. This is because they compute latent states by

accessing the observations of all agents. Although the latter class

of approaches yields state-of-the-art sample e�ciency, they per-

form centralized training with centralized execution (CTCE). This

paradigm requires a continuous transfer of inputs between agents

and a centralized controller, a transformer block [7, 42], during

execution. This, in turn, leads to increased latency, bottlenecks, and

high susceptibility to communication failures. It also makes these

approaches inapplicable to settings with partial observability and

without communication channels between agents. Moreover, these

approaches are not designed to incorporate any global information

that is available in addition to agents’ observations, and omitting

such crucial information during training can be detrimental to

learning.

To address the problem of incorporating global informationwhile

maintaining CTDE, we introduceMulti-Agent Bi-Level World Model

(MABL), the �rst CTDE multi-agent latent-variable world model

method that incorporates relevant global information, to train poli-

cies purely using synthetic trajectories of latent states generated

by the model. The key insights behind MABL are that for each

agent, 1. relevant global information can be encoded into a global

latent state to learn policies through centralized training, and 2.

the global latent state need not be used during execution and can

instead be used to inform the representation learning of a sepa-

rate agent-speci�c latent state used during decentralized execution.

Speci�cally, as shown in Figure 1, MABL introduces a novel bi-level

model to learn a hierarchical latent space. At the top level, the

model learns the global latent state; at the bottom level, it learns an

agent latent state, conditioned on the global latent state. MABL can

be used as an additional module with any existing MARL algorithm.

Our empirical studies on the challenging StarCraft Multi Agent

Challenge (SMAC) [32], Flatland [26], and Multi-Agent MuJoCo

(MAMuJoCo) [30] benchmarks show that MABL outperforms the

state-of-the-art in sample e�ciency across a variety of discrete and

continuous multi-agent tasks.

2 PRELIMINARIES

Multi Agent Reinforcement Learning. We consider MARL in a

partially observable Markov game [27]. The game is represented

as ă = ïĊ, ď,A, Č, Ďğ , {Oğ }, {ċğ }, Ąð. Ċ = {1, . . . , Ĥ} is the set of

agents, ď the set of states, and A =

∏
ýğ the joint action space,

where ýğ is the action space for agent ğ . At timestep Ī , agent ğ ∈ Ċ

receives an observation ĥğĪ governed by the observation function

ċğ (ĩ) : ď → Oğ , and chooses an action ėğĪ ∈ ýğ . Given the current

state ĩĪ and the agents’ joint action aĪ = {ėğĪ }
Ĥ
ğ=1, the environment

transitions to the next state ĩĪ+1 according to the state transition

function Č (ĩĪ+1 |ĩĪ , aĪ ) : ď×A×ď → [0, 1]. Each agent then receives

a reward Ĩ ğĪ according to its reward function Ďğ : ď × ėğ → R.

Each agent takes actions according to its policy ÿğ (ėğĪ |ă
ğ
Ī ), which

is conditioned on its action-observation history ăğĪ . Together, these

policies comprise the joint policy ÿ , which induces the action-value

function for each agent ğ , čÿ

ğ = Eÿ [
∑∞
Ġ=0Ą

ĠĨ ğĪ+Ġ ], where Ą ∈ [0, 1]

is the discount factor. In model-free MARL, agents do not know Č

or Ď and must learn policies that maximize č by interacting with

the environment.

Model-Based Reinforcement Learning. In contrast to model-free

methods, model-based RL methods learn an explicit model trained

to estimate the environment dynamics (i.e., state transition Č and

reward function(s) Ď) using self-supervised learning [14, 20, 37].

We consider the most popular style of model-based RL methods,

which follow the Dyna algorithm [37], where the model of the

environment dynamics, called a world model, is learned from real

environment interactions. To deal with high-dimensional inputs,

model-based RL algorithms have employed latent-variable world

models [12, 13, 20] that learn and generate trajectories of compact,

low-dimensional latent states İ from observations and actions, ĥ

and ė, as input during policy learning.

Latent-Variable World Models. Latent-variable world models are

implemented as sequential variational auto-encoders [17] for learn-

ing environment dynamics. More concretely, consider a partially

observable Markov decision process (POMDP) [3] described by

ïď,ý, Č, Ď,O,ċ,Ąð, where the symbols mean the same as before,

except with a single agent. Given training data consisting of ob-

servation and action sequences {ĥ1, ė0, . . . , ĥĐ , ėĐ−1}, we can train

the sequential variational auto-encoders with latent variables İĪ
to maximize the probability of the data Ħ (ĥ1:Đ |ė0:Đ−1). Directly

maximizing this probability is challenging, so a typical approach

is to consider the Evidence Lower Bound (ELBO) [17] for the log-

likelihood of the sequence of observations:

logĦ (ĥ1:Đ |ė0:Đ−1) g Eİ1:Đ ∼ħ

Đ∑

Ī=1

[
logĦ (ĥĪ |İĪ )

−ĀćĈ
(
ħ(İĪ |ĥĪ , ėĪ−1)∥Ħ (İ̂Ī |ėĪ−1)

)
]
,

where ĀćĈ refers to the KL divergence. The latent-variable model

thus consists of a transition model representing the prior distribu-

tion Ħ (İ̂Ī |ėĪ−1), a representation model representing the posterior

distribution ħ(İĪ |ĥĪ , ėĪ−1), and an observation decoder Ħ (ĥ̂Ī |İĪ )

to reconstruct observations ĥ̂Ī from latent states İĪ . All compo-

nents are parameterized by neural networks and trained through

amortized variational inference [17]. Once trained, İĪ serves as

the compact latent state at time Ī , and the model can be used to

generate synthetic trajectories of latent states for RL training.



Figure 2: Transition dynamics components of the bi-level

latent-variable model. Shaded circled nodes represent in-

puts, unshaded circled nodes represent random variables,

and square nodes represent deterministic embeddings. The

transitionmodel and recurrentmodels are shownusing black

arrows; the representationmodel is shown using blue arrows.

3 MULTI-AGENT BI-LEVEL WORLD MODEL

We propose Multi-Agent Bi-Level world model (MABL), a novel

model-based MARL algorithm that uses a latent-variable world

model architecture. Crucially, our model leverages the insight that

vital global information — such as the observations of all agents and

any extra information available during training — does not itself

need to be used during execution, as long as we use it to inform

the representation that is used during execution. In this way, we

achieve centralized training with decentralized policy execution.

Concretely we propose a bi-level latent-variable world model.

The global latent state at the top level of the hierarchy encodes

information about the global state of the environment relevant to

the agent’s learning. The global latent state is used to inform the

learning of an agent latent state at the bottom level of the hierarchy

to encode agent-speci�c local information. The agent latent state

can be computed during execution time using just the agent’s ob-

servation, meaning that it is more informative (because it encodes

information derived from the global state during centralized train-

ing) but also more useful (because it can be computed and used in

a decentralized manner during execution time).

In this section, we �rst describe our novel bi-level world model

architecture and explain how it encodes relevant global information.

We then detail the training framework for the model and MARL

algorithm that is trained with the latent trajectories generated by

the model. Throughout this section, we describe the algorithm with

respect to an agent ğ .

3.1 Bi-Level World Model

To e�ectively capture environment dynamics in multi-agent set-

tings, we introduce a novel bi-level architecture for the world model.

The bi-level world model embeds high-dimensional inputs into la-

tent representations to form a predictive model, as we now explain.

Themodel takes as input multi-agent trajectories of lengthĐ , rep-

resented as {ĥğĪ , ĩĪ , aĪ−1, Ĩ
ğ
Ī }
Đ
Ī=1. The input trajectories are sampled

from a bu�er, which we call the model bu�er, populated through

interactions of the agents with the environment. Our model com-

prises of neural networks that serve two main functions: learning

the transition dynamics and supporting the trajectory generation

for MARL training. We refer to the former as Transition Dynamics

components and the latter as Auxiliary components. All compo-

nents are parameterized by neural networks with combined weights

ć and are trained jointly. Each agent has a bi-level model, but the

parameters (ć ) of model are shared among all agents to ensure

scalability to settings with a large number of agents.

3.1.1 Transition Dynamics Components. We �rst describe the

Transition Dynamics components, as illustrated in Figure 2. They

are the recurrent models, the representation model, the transition

model, and the observation model:

Recurrent Models:





Global: ℎ
ĝ,ğ
Ī = Ĝ

ĝ,ğ

ć
(ℎ
ĝ,ğ
Ī |ℎ

ĝ,ğ
Ī−1, İ

ĝ,ğ
Ī−1, aĪ−1)

Agent: ℎė,ğĪ = Ĝ ė,ğ
ć

(ℎė,ğĪ |ℎė,ğĪ−1, İ
ė,ğ
Ī−1, ėĪ−1)

Representation Model:

(Posterior Distribution)

{
Global: İ

ĝ,ğ
Ī ∼ ħć (İ

ĝ,ğ
Ī |ĩĪ , İ

ė,ğ
Ī , ℎ

ĝ,ğ
Ī )

Agent: İė,ğĪ ∼ ħć (İ
ė,ğ
Ī |ĥğĪ , ℎ

ė,ğ
Ī )

Transition Model:

(Prior Distribution)

{
Global: İ̂

ĝ,ğ
Ī ∼ Ħć (İ̂

ĝ,ğ
Ī |ℎ

ĝ,ğ
Ī )

Agent: İ̂ė,ğĪ ∼ Ħć (İ̂
ė,ğ
Ī |ℎė,ğĪ , İ̂

ĝ,ğ
Ī )

Observation Model: ĥ̂ğĪ = Ħć (ĥ̂
ğ
Ī |ℎ

ė,ğ
Ī , İė,ğĪ ) .

Recurrent Models. To accurately learn multi-agent environment

dynamics, the latent states should not only capture information

about the current state of the environment but also past states

and actions, especially in partially observable settings. The goal of

the recurrent models is to capture this relevant historical informa-

tion with deterministic embeddings. The global recurrent model

propagates information about past environment states and joint

actions through its embeddings ℎ
ĝ,ğ
Ī . In contrast, the agent recurrent

model captures information about the action-observation history

of the agent through ℎė,ğĪ . Both recurrent models are implemented

as Recurrent Neural Networks (RNNs) [24], and the embeddings

are computed as hidden states of the RNNs.

Representation Model. The representation model learns the over-

all posterior distribution, which we factorise into global and agent

posterior distributions over the global (İ
ĝ,ğ
Ī ) and agent (İė,ğĪ ) latent

states, as they are potentially easier to learn. We implement the

posterior latent states as vectors of multiple categorical variables

as in [13].

Transition Model. The role of the transition model is to predict

future global and agent latent states without access to the envi-

ronment global state and the agent observation that causes them.

This way, the transition model can be used to generate synthetic

trajectories for policy learning. Speci�cally, it learns the overall

prior distribution over global (İ̂
ĝ,ğ
Ī ) and agent (İ̂ė,ğĪ ) latent states,

factorised into global and agent prior distributions, similar to the

posterior. One key di�erence between the posterior latent states

and the prior latent states is that İ
ĝ,ğ
Ī is conditioned on ĩĪ and İ

ė,ğ
Ī

is conditioned on ĥğĪ . As with the representation model, the prior

latent states are vectors of multiple categorical variables.



Observation Model. The observation model outputs a prediction

of the current observation ĥ̂ğĪ , given the agent embedding ℎė,ğĪ and

the agent posterior latent state İė,ğĪ . It is required to train the bi-level

model using amortized variational inference.

Bene�ts of Bi-Level Structure. At each timestep Ī , the agent prior

latent state İ̂ė,ğĪ is conditioned on the global prior latent state İ̂
ĝ,ğ
Ī in a

top-down fashion. Simultaneously, the global posterior latent state

İ
ĝ,ğ
Ī is conditioned on the agent prior latent state İė,ğĪ in a bottom-up

fashion. This conditioning ensures a �ow of information between

the top and bottom levels of the latent-variable model, leading to a

structured hierarchy of latent states. We design the representation

model to enable inference of the agent posterior latent İė,ğĪ during

execution without computing İ
ĝ,ğ
Ī . The latent-variable model thus

incorporates relevant global information without violating CTDE.

3.1.2 Auxiliary Components. The goal of our model is to gen-

erate synthetic trajectories for MARL training. At a minimum, to

learn how to act using synthetic trajectories, MARL agents addition-

ally require feedback in terms of reward and knowledge of whether

a state is terminal [12, 13]. Furthermore, in some environments,

the availability of actions changes at each timestep [7]. As a result,

we include auxiliary components in our model for predicting these

values over trajectories.

The auxiliary components are implemented as neural networks,

one each for predicting the reward, episode termination, and avail-

able actions at each timestep Ī . We predict rewards using a reward

predictor network that outputs a continuous value Ĩ̂ ğĪ . Empirically,

we �nd that feeding just İė,ğĪ and ℎė,ğĪ to the reward predictor results

in better overall performance. The termination predictor predicts

whether the current state is terminal or not by outputting Ą̂ğĪ , a

binary value that is 1 if the episode terminates at time Ī . The avail-

able action predictor predicts ý̂ĩ,ğĪ , a vector of size ý, each value

of which denotes whether that action is available at time Ī . Both

the termination and available action predictors are implemented as

Bernoulli distributions, and take as input, İė,ğĪ , İ
ĝ,ğ
Ī , ℎė,ğĪ and ℎ

ĝ,ğ
Ī .

Though not used to generate trajectories, our model also includes

an action decoder neural network to reconstruct each agent’s action

ė̂ğĪ as an auxiliary component. As described in prior work [7, 16],

the action decoder encourages the model to encode agent-speci�c

information into the latent states. It does so by maximizing mutual

information between each agent’s latent state and its action. The

auxiliary components are:

Reward Predictor: Ĩ̂ ğĪ ∼ Ħć (Ĩ̂
ğ
Ī |İ

ė,ğ
Ī , ℎė,ğĪ )

Termination Predictor: Ą̂ğĪ ∼ Ħć (Ą̂
ğ
Ī |İ

ė,ğ
Ī , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī )

Available Action Predictor: ý̂ĩ,ğĪ ∼ Ħć (ý̂
ĩ,ğ
Ī |İė,ğĪ , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī )

Action Decoder: ė̂ğĪ ∼ Ħć (ė̂
ğ
Ī |İ

ė,ğ
Ī , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī ) .

3.2 Training the Model

Having described the bi-level model architecture, we now explain

the loss function used to train the model. We train all components of

our model jointly with the loss L(ć ). The loss is a sum of multiple

terms. We write the total loss L(ć ) as:

L(ć ) = LELBO + LĨ̂Ī + LĄ̂Ī + L
ý̂Ī

+ Lė̂Ī .

The �rst term is the ELBO loss LELBO, which trains the transi-

tion dynamics components to maximize the ELBO under the data

generating distribution Ħ (ĥğ
1:Đ

|a0:Đ−1) using amortized variational

inference. We provide a detailed derivation of the ELBO in Appen-

dix A. We write it as:

LELBO = −

Đ∑

Ī=1

logĦć (ĥ̂
ğ
Ī |İ

ė,ğ
Ī , ℎė,ğĪ )

+ ĀćĈ

(
ħć (İ

ė,ğ
Ī |ĥğĪ , ℎ

ė,ğ
Ī ) | |Ħć (İ̂

ė,ğ
Ī |ℎė,ğĪ , İ̂

ĝ,ğ
Ī )

)

+ ĀćĈ

(
ħć (İ

ĝ,ğ
Ī |ĩĪ , İ

ė,ğ
Ī , ℎ

ĝ,ğ
Ī ) | |Ħć (İ̂

ĝ,ğ
Ī |ℎ

ĝ,ğ
Ī )

)
.

The �rst term in LELBO corresponds to maximizing the log like-

lihood of the observations, given İė,ğĪ and ℎė,ğĪ . The second and third

terms together minimize the KL divergence (ĀćĈ) between the

overall prior and posterior distributions, Ħć (.) and ħć (.). We have

two KL divergence terms as we factorize the overall prior and pos-

terior distributions into global and agent distributions. To ensure

that the distributions are learnt e�ectively, we use KL balancing

[13].

The remaining terms in L(ć ) train the auxiliary components to

maximize the log likelihoods of their corresponding targets, given

the latent states from the representation model and the determinis-

tic embeddings from the recurrent models. These are:

Reward: LĨ̂Ī = −

Đ∑

Ī=1

logĦć (Ĩ̂
ğ
Ī |İ

ė,ğ
Ī , ℎė,ğĪ )

Termination: LĄ̂Ī = −

Đ∑

Ī=1

logĦć (Ą̂
ğ
Ī |İ

ė,ğ
Ī , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī )

Available action: L
ý̂Ī

= −

Đ∑

Ī=1

logĦć (ý̂
ĩ,ğ
Ī |İė,ğĪ , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī )

Action decoder: Lė̂Ī = −

Đ∑

Ī=1

logĦć (ė̂
ğ
Ī |İ

ė,ğ
Ī , İ

ĝ,ğ
Ī , ℎė,ğĪ , ℎ

ĝ,ğ
Ī ) .

3.3 Learning Multi-Agent Behavior

A bene�t of our method is that model learning is independent of

the MARL algorithm used for policy learning. This allows us to

use any o�-the-shelf value-based or actor-critic MARL algorithm.

In this section, we explain how we can train a generic actor-critic

MARL algorithm using latent trajectories generated by our model.

Each agent is equipped with a policy, or actor, ÿğ
ĉ
, which is

implemented as a neural network with parameters ĉ and trained to

maximize the MARL objective. The actor outputs an action:

ėğĪ ∼ ÿĉ (ė
ğ
Ī |İ

ė,ğ
Ī /İ̂ė,ğĪ , ℎė,ğĪ ) .

MABL infers İė,ğĪ solely from its current observation and its agent

embedding (ℎė,ğĪ ), facilitating decentralized policy execution. Each

agent is also equippedwith a criticĒ ğ
č
that is represented by a neural

network with parameters č and estimates the value function:

Ē̂ ğĪ ∼ Ē ğ
č
(İ̂ğĪ , ℎ

ė,ğ
Ī , ℎ

ĝ,ğ
Ī ) .

As the critic is centralized, its input is a concatenation of the global

latent state and the agent latent state, which we represent by İ̂ğĪ . As



Algorithm 1MABL: Learning a Multi-Agent Bi-Level World Model

1: Initialize shared actor ÿĉ , critic Ēč , bi-level model ĉć and

model bu�er D

2: for Ĥ ∈ Ċ episodes do ² Environment Interaction

3: Collect an episode of environment data using ÿĉ
4: Store data in D

5: forģ ∈ ĉ model training steps do ² Model Training

6: Draw BM sequences uniformly from D

7: Train modelĉć on BM via loss L(ć )

8: end for

9: for Ĩ ∈ Ď policy learning steps do ² MARL Training

10: Draw BR sequences uniformly from D

11: Generate latent trajectoriesDL from BR usingĉć , ÿĉ
12: Compute MARL objective on DL

13: Update ÿĉ and Ēč using the MARL objective

14: end for

15: end for

in [7], the critic includes a self-attention mechanism [39]. The actor

and critic network parameters are shared by all agents to facilitate

faster training in tasks that involve large numbers of agents [46].

If we were to instead use a value-based MARL algorithm (e.g, Q-

MIX [31]), for policy learning, each agent’s critic can be represented

by čğ (İ̂
ė,ğ
Ī , ℎė,ğĪ ) and the global critic can be represented by:

čĪĥĪ (č1 (İ̂
ė,1
Ī , ℎė,1Ī ), ..., čĤ (İ̂

ė,Ĥ
Ī , ℎė,ĤĪ ), İ̂

ĝ,1
Ī , ..., İ̂

ĝ,Ĥ
Ī ).

The trajectories used for training consist of latent states gener-

ated by the model. We now detail the iterative procedure [11, 33]

outlined in Algorithm 1 that we use for training MABL.

First, the MARL agents interact with the environment to collect

real environment data (Lines 3 and 4). These trajectories are stored

in the model bu�erD to use for model training. Second, the bi-level

model is trained using trajectories sampled from D (Lines 5-8). We

then freeze the weights of the bi-level model in preparation for

MARL training.

Third, the MARL training occurs using synthetic trajectories

of length Ą generated by the model (Lines 9-14). Speci�cally, BĎ
sequences in the form of states, observations, and previous joint

actions are drawn from D (Line 10). From each tuple of state, ob-

servations, and previous joint actions in a sequence, corresponding

global and agent latent states are then computed by the represen-

tation model. For Ą − 1 timesteps that follow, at each timestep,

Ī , the agents choose a joint action aĪ according to their policies.

The transition model and recurrent models then predict the next

latent states İ̂ė,ğĪ+1 and İ̂
ĝ,ğ
Ī+1. This process is repeated to generate

trajectories of latent states of length Ą starting from each tuple.

Then, the auxiliary components of the model take as input the

necessary components to predict rewards, termination conditions,

and available actions to generate latent trajectories DĈ of the form

{İė,ğ1 , İ
ĝ,ğ
1 , İ̂ė,ğ

2:Ą
, İ̂
ĝ,ğ
2:Ą

, ℎė,ğ
1:Ą

, ℎ
ĝ,ğ
1:Ą

, Ĩ ğ
1:Ą

, Ąğ
1:Ą

, ý̂ğ
1:Ą

}
Ĥ

ğ=1
.

Finally, the MARL algorithm is trained on DĈ (Lines 12 and 13)

following the CTDE paradigm. We choose the popular actor-critic

MARL algorithm Multi-Agent PPO (MAPPO) [46] for policy learn-

ing, as it has achieved strong results in various multi-agent tasks.

4 EXPERIMENTAL EVALUATION

In this section, we present an empirical study of the sample e�-

ciency of MABL against state-of-the-art algorithms on three chal-

lenging benchmarks: SMAC [32], Flatland [26], and MAMuJoCo

[30]. First, we perform a comparative evaluation of MABL against

other CTDE multi-agent latent-variable world models. On observ-

ing strong performance gains, we then ask whether MABL would

perform similarly to or better than even CTCE multi-agent latent-

variable world models whose agents have access to the observations

of all other agents during execution. Since MABL is a CTDEmethod,

it is at a natural disadvantage in such a comparison. We then per-

form ablation studies to examine the attributes of the bi-level model

that lead to MABL’s performance gains. In summary, our empirical

analysis is aimed at answering the following questions:

RQ1: Does MABL lead to better sample e�ciency compared to

the state-of-the-art CTDE multi-agent latent-variable world

models?

RQ2: Does MABL lead to comparable sample e�ciency com-

pared to the state-of-the-art CTCEmulti-agent latent-variable

world models?

RQ3: Is the bi-level latent-variable model responsible for the

improved sample e�ciency? If so, what features of the model

lead to these improvements?

Environments. We brie�y describe the three benchmarks we use

(SMAC, Flatland, and MAMuJoCo) and provide a detailed descrip-

tion in the Appendix B.3. For the SMAC benchmark, we conduct

experiments on two Easy maps (2s vs 1sc and 3s vs 4z), one Hard

map (3s vs 5z), and two Super Hard maps (Corridor and 3s5z vs 3s6z).

We defer comparison plots for the 2s vs 1sc to Appendix B.4, as it

is the easiest task across all environments and serves as a sanity

check.

The Flatland benchmark is a discrete action-space 2D grid en-

vironment that simulates train tra�c on a railway network. Each

agent controls a train and receives a positive reward on reaching its

destination and penalties for colliding with other agents or being

late. We conduct experiments with the 5 and 10 agent variants.

Both SMAC and Flatland have discrete action spaces. We also eval-

uate our algorithm on MAMuJoCo [30], a continuous multi-agent

robotic control benchmark where each agent controls a portion

of the joints that together control the robot. We conduct experi-

ments on the 2-agent Humanoid and 2-agent Humanoid Standup

environments.

Experimental Details. Because we aim to investigate improve-

ments in sample e�ciency, we adopt the low data regime estab-

lished in prior work [7, 12, 15, 42]. In our experiments, we train

each algorithm across 3 independent runs with the same number of

environment steps. We ensure that each algorithm that uses world

models also generates the same number of synthetic samples for

training. In our comparisons, we use the same MARL algorithm,

MAPPO, for policy learning. We detail the hyperparameters, neural

network architecture, and implementation speci�cs in Appendix B

and make our code available here.

Baselines. We compare MABL against state-of-the-art CTDE and

CTCE baselines. The CTDE baselines are Dreamer-v2 [13] and



Figure 3: Comparisons against CTDE baselines across all environments. Curves show the mean over 3 independent runs, and

shaded regions show the minimum and maximum scores. X axis shows the number of steps in the environment; Y axis denotes

the win-rate for SMAC, and the reward for Flatland and MAMuJoCo. Plots are smoothed using exponential moving average.

MABL not only achieves better overall performance than the baselines, but does so more rapidly, underscoring its sample

e�ciency.

MAPPO [46]. Dreamer-v2 is a state-of-the-art single-agent model-

based RL algorithm, which we implement as a multi-agent algo-

rithm by learning a latent-variable world model independently for

each agent. Including MAPPO trained solely on real environment

data as a baseline serves to examine the e�ectiveness of our model-

based baselines, all of which train MAPPO on synthetic latent

trajectories. The CTCE baselines are MAMBA [7] and MAG [42],

which are the current state-of-the-art in MARL with latent-variable

world models. MAMBA [7] uses a transformer encoder block to

aggregate observations of all agents to compute latent states for

each agent, which are then input to agent policy networks. Because

MAMBA requires the transformer block to compute latent states

during execution, each agent requires access to the inputs of other

agents during execution, resulting in centralized policy execution.

MAG [42] is a recent work that builds upon MAMBA to achieve

state-of-the-art sample e�ciency on SMAC. MAG has one world

model per agent, with a separate set of model parameters per agent.

It uses the same model architecture as MAMBA, inheriting the

CTCE property from it. The di�erence from MAMBA is that the

world models are now trained jointly to interact with each other,

taking into account the long-term joint e�ect of local predictions

at each step to generate trajectories with lower cumulative errors

[42]. We provide a conceptual comparison of all model-based MARL

algorithms we consider in Appendix B.5.

4.1 Performance Comparison: CTDE methods

We now compare MABL with CTDE baselines. In Figure 3, we

present the performance of MABL and CTDE baselines on the

entirety of the low data regime. In Table 1, we summarize the �nal

performance of all algorithms over the last 15k environment steps.

These results show that, except on the Easy 2s vs 1sc SMAC map,

MABL consistently outperforms all CTDE baselines in terms of

sample e�ciency by large margins, answering RQ1. On the Easy 2s

vs 1sc map, the win-rate of MABL is close to the best-performing

baseline MAPPO while Dreamer-v2 fails to learn a good policy. In

addition, MABL initially achieves a high win-rate of 80% nearly 2x

faster than MAPPO on this task (Appendix B.4). The performance

gains of MABL are signi�cant in challenging SMAC environments

such as Corridor and 3s5z vs 3s6z, as well as HumanoidStandup,

demonstrating MABL’s capability to handle complex tasks.

The superior overall score and sample e�ciency of MABL reveals

the bene�t of incorporating global information into the representa-

tion learning of latent-variable world models.

4.2 Performance Comparison: CTCE Methods

Given the surprisingly strong performance of MABL compared

with CTDE baselines, we now compare MABL against state-of-the-

art CTCE methods. CTCE methods access global information at

execution time, putting our method at a disadvantage.

ShouldMABL perform comparably or better than CTCEmethods,

it would suggest that the bi-level model captures more pertinent

information in its latent states for policy learning than existing

state-of-the-art techniques.

We plot the performance of MABL compared to CTCE baselines

in Figure 4. Surprisingly, from Table 1 and Figure 4, we observe that

MABL achieves superior or comparable sample e�ciency to both

MAMBA andMAG on all benchmarks. MABL outperformsMAMBA

on all environments except on the Easy 2s vs 1sc SMACmap and the

Super Hard 3s5z vs 3s6z map. MABL and MAMBA achieve nearly

a 100% win-rate on 2s vs 1sc. On 3s5z vs 3s6z, both algorithms

achieve a win-rate of nearly 20% after just 450k environment steps.

We see a similar trend in performance when comparing MABL

and MAG. MABL outperforms MAG on Flatland, MAMuJoCo, and

all SMAC maps — except 2s vs 1sc, where both algorithms achieve

nearly perfect performance, and the Super Hard Corridor map,

where they exhibit similar levels of performance. Overall, MABL



CTDE CTCE

Benchmark Map/Environment Steps MABL Dreamer-v2 MAPPO MAMBA MAG

SMAC

2s vs 1sc 100k 92±7 37±40 98±3 94±7 87±23

3s vs 4z 100k 83±18 4±11 0 24±23 30±32

3s vs 5z 200k 31±30 14±24 0 2±8 5±13

Corridor 450k 52±31 5±16 0 31±30 55±27

3s5z vs 3s6z 450k 19±17 0 0 19±27 16±23

Flatland
5 agents 100k 51±27 40±26 22±22 29±27 19±19

10 agents 450k 31±19 22±20 18±16 29±27 13±14

MAMuJoCo
Humanoid 200k 550±90 304±23 429±36 328±27 423±104

HumanoidStandup 800k 106k±29k 54k±11k 30k±0.3k 83k±30k 76k±22k

Table 1: Comparison of the average win-rate (% for SMAC)/reward, and standard deviation in win-rate/reward over the last 15k

environment steps across environments. Numbers in bold indicate the highest mean performance among all CTDE methods.

Except on the Easy 2s vs 1sc map, MABL outperforms CTDE baselines on all environments. MABL also either outperforms or

performs similarly to the best CTCE baseline on all tasks.

Figure 4: Comparisons against CTCE baselines across all environments. Curves represent the mean over 3 independent runs,

and shaded regions show the minimum and maximum scores. X axis shows the number of environment steps; Y axis denotes

the win-rate for SMAC and the reward for Flatland and MAMuJoCo. Plots are smoothed using exponential moving average.

MABL either matches or outperforms the CTCE baselines across all environments.

either matches or outperforms even state-of-the-art CTCE methods,

answering RQ2 in the a�rmative.

A surprising observation is that the CTDE baselines perform

better overall than the CTCE baselines on the 5-agent Flatland

task. This result suggests that, in relatively less complex environ-

ments where each agent’s observation has enough information

to learn good behavior, simpler algorithms like Dreamer-v2 may

excel in representation learning compared to MAMBA or MAG.

The results also show that CTCE baselines perform more e�ective

representation learning than the CTDE baselines on more com-

plex environments. However, MABL demonstrates consistent high

performance across all environments, pointing to improved repre-

sentation learning compared to both CTDE and CTCE baselines. In

the next section, we investigate this further through an ablation

study.

4.3 Ablation Study

Given the performance of MABL compared to both CTDE and

CTCE methods, we now seek to understand the attributes of MABL

model that contribute most to these gains in sample e�ciency.

Suspecting that better representation learning using the bi-level

model leads to these gains, we ablate two attributes of our model.

First, we ablate the global latent state. Our model learns a bi-level

latent space and is capable of encoding global information into the

upper-level global latent state. To understand the importance of the

global latent state for policy learning, we remove the upper level.

The model we obtain is the same as Dreamer-v2 and learns only

the agent latent state with access to the observation of the agent.

In our plots, we refer to this variant as Dreamer-v2.

Second, we suspect that learning one global latent state per agent

enables better representation learning, as the model can more read-

ily incorporate information relevant to each agent into its global



Figure 5: Training curves of ablation studies, smoothed using an exponential moving average. X axis denotes the number of

environment steps. Shaded regions show the maximum and minimum win-rate. MABL outperforms all ablations, implicating

the crucial role of the bi-level model.

latent state. To test this, we modify the upper level of the model

such that we learn a single shared global latent state instead of

Ċ separate ones. Because each of the Ċ lower-level agent latent

states is conditioned on the single global latent, the model cannot

encode relevant global information for each agent into the agent’s

respective global latent. We call the resulting variant MABL-SG

(Single Global).

We perform ablation studies on one SMAC map from each level

of di�culty: 3s vs 4z (Easy), 3s vs 5z (Hard), and Corridor (Super

Hard). We visualize the training curves in Figure 5. On all maps,

MABL achieves greater sample e�ciency than the two variants.

Because Dreamer-v2 exhibits the lowest performance overall, we

believe that the bi-level model’s ability to incorporate global in-

formation through the global latent state is most responsible for

MABL’s gains in sample e�ciency. The decreased performance

of MABL-SG compared to MABL supports our hypothesis that

learning per-agent global latents, as opposed to a single shared

global latent, improves policy learning. We suspect that the use

of a single, shared global latent facilitates the encoding of noisy

and irrelevant information, which impedes performance. Taken

together, the superior performance of MABL highlights the crucial

role of the bi-level model. In particular, these experiments suggest

that the bi-level model successfully incorporates relevant global

information into the global latent and learns a structured hierarchy

of latent states, answering RQ3.

5 RELATEDWORK

The majority of work in MARL focuses on the model-free set-

ting [8, 22, 28]. Despite their impressive performance, model-free

MARL algorithms often su�er from a high sample complexity. Sev-

eral approaches have been developed to address this issue. One

line of work [31, 34, 36, 45] uses the insight of value decomposi-

tion [5]: value functions can be decomposed into simpler functions

which can be learned more easily. Another line of work focuses

on actor-critic methods [8, 22, 30, 46] that learn a centralized critic

conditioned on global state and joint action. Because we can use

any model-free MARL algorithm for learning multi-agent policies

in latent space, these techniques are complementary to our contri-

butions.

In MARL, latent-variable models have shown promise in learn-

ing the reward function in inverse RL [10] and representations

of competing agents’ strategies [43]. We focus on latent-variable

world models in MARL. While prior work [19] uses a multi-step

latent-variable world model in 2-player games to predict future joint

observations and actions, it is only applicable in 2-agent scenarios,

does not generate synthetic data, and does not follow the CTDE

paradigm. Only recently have latent-variable world models been

used to learn environment dynamics in Markov games to improve

sample e�ciency [7, 42]. These approaches are based on direct

extensions of single-agent methods that use latent-variable world

models [13]. The dynamics of each agent is learned as though the

agent is in a POMDP, and deep learning architectures, speci�cally,

the transformer [21, 39], aggregate latent states from all agents to

reduce non-stationarity and model errors [7, 42].

However, latent-variable models designed this way cannot be

used for decentralized execution, as they require access to all obser-

vations to predict latent states. They also cannot incorporate any

additional global information available during training In multi-

agent tasks such as the global state in SMAC, for example, which is

crucial to learn successful behaviors from latent states.

6 CONCLUSION

We presented a novel model-based MARL algorithm, MABL, that

learns policies purely using latent trajectories generated by a bi-

level latent-variable world model. Our model e�ectively learns

environment dynamics in multi-agent tasks by factorizing the latent

space into a high-level global latent state and a low-level agent

latent state. We evaluated MABL across a variety of tasks in SMAC,

Flatland and MAMuJoCo. MABL, which is a CTDE method, greatly

outperforms state-of-the-art CTDE baselines in sample e�ciency

on all environments except for the simplest SMAC map, 2s vs 1sc.

MABL either outperforms or performs similarly to even state-of-

the-art CTCE baselines in sample e�ciency across all environments.

While we achieve gains in sample e�ciency, the learned latent states

are not interpretable. To deploy our method in a real-world scenario,

future work should involve improving representation learning to

achieve interpretability of the latent space.
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