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ABSTRACT

Multi-agent reinforcement learning (MARL) algorithms often strug-

gle to �nd strategies close to Pareto optimal Nash Equilibrium,

owing largely to the lack of e�cient exploration. The problem is ex-

acerbated in sparse-reward settings, caused by the larger variance

exhibited in policy learning. This paper introduces MESA, a novel

meta-exploration method for cooperative multi-agent learning. It

learns to explore by �rst identifying the agents’ high-rewarding

joint state-action subspace from training tasks and then learning a

set of diverse exploration policies to “cover” the subspace. These

trained exploration policies can be integrated with any o�-policy

MARL algorithm for test-time tasks. We �rst showcase MESA’s

advantage in a multi-step matrix game. Furthermore, experiments

show that with learned exploration policies, MESA achieves sig-

ni�cantly better performance in sparse-reward tasks in several

multi-agent particle environments and multi-agent MuJoCo envi-

ronments, and exhibits the ability to generalize to more challenging

tasks at test time.
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1 INTRODUCTION

Reinforcement learning (RL) algorithms often adopt a trial-and-

error learning paradigm and optimize the policy based on the re-

ward signals given by the environment. The e�ectiveness of RL

relies on e�cient exploration, especially in sparse reward settings,
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Figure 1: Illustration of structured exploration and unstruc-

tured exploration behavior in the 2-player climb game. The

rows and columns indicate the players’ action space. While

unstructured exploration aims to visit novel states, struc-

tured exploration exploits structures in the joint state-action

space, helping agents coordinatedly and more e�ciently ex-

plore the potential high-reward subspace.

as it is critical to get su�cient experiences with high rewards to

guide the training.

The exploration challenge has been studied extensively and ex-

isting works can be categorized mainly into two streams. One

core idea with great success is to incentivize the agent to visit

the under-explored states more frequently by adding an intrinsic

reward based on a visitation measure [3, 25, 28, 37] or some other

heuristics [17, 39].

However, in multi-agent settings, due to the exponential growth

of the joint state-action space, simply visiting more novel states

can be increasingly ine�ective. Exploration policies need to better

capture the low-dimensional structure of the tasks and leverage the

structural knowledge for higher exploration e�ciency.

Another line of work speci�cally learns exploration strategies.

However, these works do not explicitly consider the underlying

task structure. For example, Mahajan et al. conditions the policy

on a shared latent variable [24] learned via mutual information

maximization. Liu et al. adopts a goal-conditioned exploration strat-

egy by setting state features as goals [21]. Other works in the

single-agent settings [6, 26, 35] learn exploration policies through

a pre-de�ned intrinsic reward. All these works train the explo-

ration policy using task-agnostic exploration-speci�c rewards. In



Section 4, we will present a simple matrix game to show that popu-

lar exploration methods can have di�culties �nding the optimal

solution due to the reward structure of the game.

How can we enable the agents to more e�ectively explore by

leveraging the intrinsic structure of the environment? We adopt a

meta-exploration framework (i.e., learning to explore) for MARL:

we �rst train multiple structured exploration policies from a set of

training tasks (referred to as the meta-training stage), and then

use these exploration policies to facilitate agents’ learning in a

test-time task, which is typically a new task sampled from the task

distribution (referred to as meta-testing stage). We develop a multi-

agent meta-exploration method, CooperativeMeta-Exploration in

Multi-Agent Learning through Exploiting State-Action Space Struc-

ture (MESA) for fully cooperative settings. MESA leverages the

task structures by explicitly identifying the agents’ high-rewarding

joint state-action subspace in the training tasks. It then trains a

set of diverse exploration policies to cover this identi�ed subspace.

The exploration policies are trained with a reward scheme induced

by the distance to the high-rewarding subspace. The meta-learned

exploration policies can be combined with any o�-policy MARL

algorithm during the meta-testing stage by randomly selecting

learned exploration policies to collect valuable experiences. Such

structured exploration can help the agents to learn good joint poli-

cies e�ciently (Figure 1). We empirically show the success of MESA

on the matrix climb game and its harder multi-stage variant. In

addition, we evaluate MESA in two continuous control tasks, i.e.,

the MPE environment [23] and the multi-agent MuJoCo bench-

mark [29]. We demonstrate the superior performance of MESA

compared to existing multi-agent learning and exploration algo-

rithms. Furthermore, we show that MESA is capable of generalizing

to unseen test-time tasks that are more challenging than any of the

training tasks.

2 RELATEDWORK

Exploration has been a long-standing challenge in RL with remark-

able progress achieved in the single-agent setting [3, 5, 10, 25, 28,

34, 37]. Most of these works maintain pseudo-counts over states

and construct intrinsic rewards to encourage the agents to visit

rarely visited states more frequently [3, 25, 28, 37]. These count-

based methods have been extended to the multi-agent setting by

incentivizing intra-agent interactions or social in�uence [17–19, 39].

However, in the multi-agent setting, a simple count-based method

can be less e�ective due to the partial observability of each agent,

an exponentially large joint state-action space, and the existence

of multiple non-Pareto-optimal NE. Therefore, recent works focus

on discovering the structures of possible multi-agent behaviors.

For example, [24] adopts variational inference to learning struc-

tured latent-space-policies; [15] generates similar taskswith simpler

reward functions to promote cooperation; [21] learns to select a

subset of state dimensions for e�cient exploration. We follow a

meta-learning framework and learn structured exploration strate-

gies by exploiting high-rewarding subspace in the joint state-action

space. Our method also leverages a count-based technique as a sub-

routine during the meta-training phase to prevent over-exploitation

and mode collapse.

Meta reinforcement learning (meta-RL) is a popular RL paradigm

that focuses on training a policy that can quickly adapt on an un-

seen task at test time [9, 12, 14, 20, 32, 40, 42, 44]. Such a paradigm

has been extended to the setting of learning to explore. The key idea

is to meta-learn a separate exploration policy that can be used in

the testing task. Most closely related to our work is [26], where an

exploration policy is pretrained on a set of training tasks. However,

their method is designed for the single-agent setting and learns

the exploration policy by using a task-agnostic intrinsic reward to

incentivize visitation of interesting states , while we directly utilize

the task reward to learn the structure of the environments. Other

existing works in meta-exploration propose to learn a latent-space

exploration policy that is conditioned on a task variable, which

can be accomplished by meta-policy gradient [14, 20, 40], varia-

tional inference [32] or information maximization [42] over the

training tasks. Therefore, at test time, posterior inference can be

performed for the latent variable towards fast exploration strat-

egy adaption. Our approach follows a similar meta-exploration

paradigm by learning additional exploration policies. However, ex-

isting meta-exploration methods focus on the single-agent setting

while we consider much more challenging multi-agent games with

a distribution of similarly-structured tasks, for example, the MPE

environment [23] with a distribution of target landmarks that the

agents need to reach. In addition, we meta-learn a discrete set of

exploration policies through an iterative process, which results in

a much simpler meta-testing phase without the need for poste-

rior sampling or gradient updates on exploration policies. Besides,

some other methods pretrain exploration policies from an o�ine

dataset [7, 31, 36], which is beyond the scope of this paper.

Finally, our approach largely di�ers from the setting of multi-task

learning [1, 2, 11, 16, 27], which are commonly evaluated in envi-

ronments with heterogeneous tasks or scenarios. Our exploration

policies are not trained to achieve high returns in the training tasks.

Instead, they are trained to reach as many high-reward state-action

pairs as possible collected in a diverse set of tasks. Therefore, the

state-action pairs covered by a single exploration policy are very

likely to be distributed across di�erent training tasks.

3 PRELIMINARIES

Dec-POMDP. We consider fully-cooperative Markov games de-

scribed by a decentralized partially observable Markov decision

process (Dec-POMDP), which is de�ned by ïS,A, %, ',¬,O, =,Wð.

S is the state space.A ≡ A1× ...×AĤ is the joint action space. The

dynamics is de�ned by the transition function % (B′ | B, ė). Agents

share a reward function '(B, ė), and W ∈ (0, 1) is the discount factor.

¬ ≡ ¬1 × .. × ¬Ĥ is the joint observation space, where ¬ğ is the

observation space for agent 8 . At each timestep, each agent 8 only

has access to its own observation >ğ ∈ ¬ğ de�ned by the function

O : S ×A ↦→ ¬. The goal of agents in Dec-POMDP is to maximize

the common expected discounted return under the joint policy ÿ :

J (ÿ) = Eÿ
[∑

Ī W
Ī'(BĪ , ėĪ )

]
.

Learning to Explore.Meta-RL assumes a task distribution ? (T )

over tasks, and an agent aims to learn to quickly adapt to a test-time

task Ttest drawn from ? (T ) after training in a batch of training tasks

{Tğ | Tğ ∼ ? (T )}
þ
ğ=1. Inspired by the explicit exploration methods

[6, 42], we adopt a meta-exploration framework for MARL: we



learn joint exploration policies ÿě from training tasks {Tğ | Tğ ∼

? (T )}þğ=1 and use ÿě to collect experiences for the training of

the agents’ policy pro�le ÿ in task Ttest, denoted as ÿ (ÿě ,Ttest).

Formally, the objective of meta-exploration is

max
ÿě

ETtest∼Ħ (T)

[

Eÿ (ÿě ,Ttest )

[
∑

Ī

WĪ'ğ (BĪ , ėĪ )

] ]

. (1)

Nash Equilibrium and Pareto Optimality. A joint policy ÿ

is an NE if each agent’s policy cğ is a best response to the other

agents’ policies ÿ−ğ . That is, for any agent 8’s alternative policy c ′ğ ,

we have &ğ (ÿ) g &ğ (c
′
ğ , ÿ−ğ ), where &ğ is the value function for

agent 8 . A joint policy ÿ is Pareto optimal if there does not exist

an alternative joint policy ÿ
′ such that ∀8, &ğ (ÿ

′) g &ğ (ÿ) and

∃8, &ğ (ÿ
′) > &ğ (ÿ).

4 A MOTIVATING EXAMPLE: CLIMB GAME

We analyze a fully cooperative matrix game known as Climb Game.

In Section 4.1, we show how popular exploration strategies, in-

cluding unstructured strategies like uniform exploration and task-

speci�c strategies like n−greedy, fail to e�ciently explore the climb

game. By contrast, we show in Section 4.2 that a simple structured

exploration strategy can substantially improve the exploration e�-

ciency.

A climb game � Ĝ (=,D,* ) is a =-player game with action space

Ağ = {0, . . . ,* − 1} for any player 8 . The reward of a joint action

ė ∈ A is determined by the number of players performing a speci�c

action D (denoted as #D), which is

'(ė) =





1, if #D = =,

1 − X (0 < X < 1), if #D = 0,

0, otherwise.

. (2)

4.1 Exploration Challenge

A climb game� Ĝ (=,D,* ) has three groups of NE: the Pareto optimal

NE (D,D, . . . , D), the sub-optimal NEs {(01, 02, . . . , 0Ĥ) | ∀8, 0ğ ≠ D},

and the zero-reward NEs {(01, 02, . . . , 0Ĥ) | 1 < #D < =}. The sheer

di�erence in the size of the three subsets of NEsmakes it particularly

challenging for RL agents to learn the optimal policy pro�le without

su�cient exploration, as evidenced by the theoretical analysis below

and empirical evaluation in Section 6.

Consider a 2-agent climb game � Ĝ (2, 0,* ). A joint action ė can

be represented by a pair of one-hot vectors [eğ , eĠ ] ∈ {0, 1}
2đ . Let

@(x, y;\ ) be a joint Q function parameterized by \ that takes input

x, y ∈ {0, 1}đ and is learned to approximate the reward of the game.

We hope the joint Q function has the same optimal policy pro�le.

De�nition 4.1. We call a joint & function @(x, y;\ ) equivalently

optimal when @(e0, e0;\ ) = max0fğ, Ġ<đ @(eğ , eĠ ;\ ). When a joint

& function is equivalently optimal, one can use it to �nd the optimal

policy.

Since neural networks are di�cult to analyze in general [4], we

parameterize the joint & function in a quadratic form:

@(x, y;W, b, c, 3) = x¦Wy + b¦x + c¦y + 3 (3)

A Gaussian prior ? (W) = N(W; 0, f2ĭ� ) is introduced under the

assumption that a non-linear W is harder and slower to learn.

Quadratic functions have been used in RL [13, 38] as a replacement

for the commonly-used multi-layer perceptron, and there are also

theoretical results [8] analyzing neural networks with quadratic

activation. For the climb game, it is easy to verify that the quadratic

coe�cients make the joint & function su�ciently expressive to

perfectly �t the reward function by setting W to be the reward

matrix. Therefore, the learning process of & is mainly a�ected by

how the exploration policy samples the data.

Consider an exploration policy ?
(Ī )
ě that selects joint action

ė = (8, 9) at step C with probability ?
(Ī )
ě (8, 9). The e�ciency of

an exploration policy can be measured by the required number

of steps for learning an equivalently optimal & function using

the maximum likelihood estimator over the data sampled from

?
(Ī )
ě . The learning objective includes both the prior ? (W) and the

likelihood of prediction error ? (�ğ Ġ ), where the prediction error

�ğ Ġ = @(eğ , eĠ ; ·) − 'ğ Ġ . If the prediction error is assumed to be

depicted by a Gaussian distribution ? (�ğ Ġ ) = N(�ğ Ġ ; 0, f
2
ě ) for every

visited joint action (8, 9), then the learning objective for the &

function can be formulated as:

J (Đ ) (W, b, c, 3)

=E
{ (ğ (Ī ) , Ġ (Ī ) )∼Ħ

(Ī )
ě }

Đ

Ī=1

log

(

? (W)

Đ∏

Ī ′=1

? (�ğ (Ī ) Ġ (Ī ) )

)

=

Đ∑

Ī=1

E
(ğ, Ġ )∼Ħ

(Ī )
ě

[
logN(@(eğ , eĠ ;W, b, c, 3) − 'ğ Ġ ; 0, f

2
ě )

]

+ logN(W; 0, f2ĭ� ) + Const. (4)

We use @J (Đ ) (W, b, c, 3) to denote the learned joint & function

that maximizes J (Đ ) at step ) . @J (Đ ) (W, b, c, 3) is determined by

the exploration policy ?
(Ī )
ě and the exploration steps ) . Then we

have the following theorem for the uniform exploration strategy.

Theorem 4.2 (uniform exploration). Assume X f 1
6 ,* g 3. Using

a uniform exploration policy in the climb game � Ĝ (2, 0,* ), it can

be proved that @J (Đ ) (W, b, c, 3) will become equivalently optimal

only after ) = ¬( |A|X−1) steps. When X = 1, ) = $ (1) steps su�ce

to learn the equivalently optimal joint Q function, suggesting the

ine�ciency of uniform exploration is due to a large set of sub-optimal

NEs.

The intuition behind Theorem 4.2 is that the hardness of explo-

ration in climb games largely comes from the sparsity of solutions:

a set of sub-optimal NEs exist but there is only a single Pareto

optimal NE. Learning the joint & function can be in�uenced by

the sub-optimal NEs. And if the exploration attempts are not well

coordinated, a lot of zero reward would be encountered, making it

hard to �nd the Pareto optimal NE. We also remark that uniform

exploration can be particularly ine�cient since the term |A| can

be exponentially large in a multi-agent system. This indicates that

more e�cient exploration can potentially be achieved by reducing

the search space and identifying a smaller “critical” subspace.

To formally prove Theorem 4.2, we de�ne 51, 52, 53 as the step-

averaged probability of taking the joint action in optimal NE, sub-

optimal NE and zero-reward, respectively. We show that to make



Figure 2: MESA’s meta-learning framework. In the meta-training stage, MESA learns exploration policies to cover the high-

rewarding subspace. In the meta-testing stage, MESA uses the learned exploration policies to assist the learning in an unseen

task. Each color corresponds to a di�erent task, and the colored points represent the high-rewarding joint state-action pairs

collected in that task.

the joint & function equivalently optimal, there is a necessary con-

dition that 51, 52, 53 should follow. When) is not large enough, this

condition cannot be satis�ed. Detailed proof is in Appendix A.2.

Next, we consider the case of another popular exploration para-

digm, n-greedy exploration.

Theorem 4.3 (n-greedy exploration). Assume X f 1
32 ,* g 4,* g

fĭf
−1
ě . In the climb game � Ĝ (2, 0,* ), under n-greedy exploration

with �xed n f 1
2 , @J (Đ ) (W, b, c, 3) will become equivalently optimal

only after ) = ¬( |A|X−1n−1) steps. If n (C) = 1/C , it requires ) =

exp
(
¬

(
|A|X−1

) )
exploration steps to be equivalently optimal.

The proof is similar to that of Theorem 4.2 (detailed in Appendix

A.3). By comparing 4.2 and 4.3, n-greedy results in even poorer

exploration e�ciency than uniform exploration. Note the n-greedy

strategy is training policy speci�c, i.e., the exploration behavior

varies as the training policy changes. Theorem 4.3 suggests that

when the policy is sub-optimal, the induced n-greedy exploration

strategy can be even worse than uniform exploration. Hence, it can

be bene�cial to adopt a separate exploration independent from the

training policy.

The above analysis shows that common exploration strategies

like uniform exploration or n-greedy exploration are ine�cient

for such a simple game and the main reason is that it requires

coordination between di�erent agents to reach high-rewarding

states, but naive exploration strategies lack such cooperation.

4.2 Structured Exploration

We will show that it is possible to design a better exploration

strategy with some prior knowledge of the climb game structure.

Consider a speci�c structured exploration strategy ?
(Ī )
ě (8, 9) =

* −1
[
1ğ=Ġ

]
, where both agents always choose the same action.

With such a strategy, we can quickly �nd the optimal solution to

the game. More formally, we have the following theorem.

Theorem4.4 (structured exploration). In the climb game� Ĝ (2, 0,* ),

under structured exploration ?
(Ī )
ě (8, 9) = *

−1
[
1ğ=Ġ

]
,@J (Đ ) (W, b, c, 3)

is equivalently optimal at step ) = $ (1).

Theorem 4.4 shows the e�ciency of exploration can be greatly

improved if the exploration strategy captures a proper structure

of the problem, i.e., all agents taking the same action. We fur-

ther remark that by considering a set of similar climb games G =

{� Ĝ (2, D,* )}
đ −1
ī=0 , the structured exploration strategy ?

(Ī )
ě (8, 9) =

* −1
[
1ğ=Ġ

]
can be interpreted as a uniform distribution over the

optimal policies of this game set G. This interesting fact suggests

that we can �rst collect a set of similarly structured games and then

derive e�ective exploration strategies from these similar games.

Once a set of structured exploration strategies are collected, we

can further adopt them for fast learning in a novel game with a

similar problem structure. We take the inspiration here and develop

a general meta-exploration algorithm in the next section.

5 METHOD

We detail our method Cooperative Meta-Exploration in Multi-Agent

Learning through Exploiting State-Action Space Structure (MESA)

for cooperative multi-agent learning. As shown in Figure 2, MESA

consists of a meta-training stage (Algo. 1) and a meta-testing stage

(Algo. 2). In the meta-training stage, MESA learns exploration poli-

cies by training in a batch of training tasks that share intrinsic

structures in the state-action space. In the meta-testing stage, MESA

utilizes the meta-learned exploration policies to assist learning in

an unseen task sampled from the distribution of the training tasks.

5.1 Meta-Training

The meta-training stage contains two steps: 1) identify the high-

rewarding state-action subspace, and 2) train a set of exploration

policies using the subspace-induced rewards.

5.1.1 Identifying High-Rewarding Joint State-Action Subspace. For

each training task Tğ , we collect experiencesDğ = {(BĪ , ėĪ , AĪ , BĪ+1)}.



Algorithm 1 MESA: Meta-Training

Input: Meta-training tasks {Tğ }
þ
ğ=1 ∼ ? (T ), o�-policy MARL

algorithm 5 , distance metric ∥ · ∥F
Parameter: #policies �, threshold '★, horizon ℎ

Output: Exploration policies {ÿğ
ě }

ā
ğ=1

1: M∗ ← ∅, global pseudo-count #̂ ← 0

2: for i = 1 to B do

3: Initialize policy ÿĂ

4: Train ÿĂ with 5 and collect dataset �ğ = {(ĩĪ , ėĪ , AĪ , ĩĪ+1)}

5: M∗ ←M∗ ∪ {g | '(g) g '
★, g ∈ �ğ }

6: end for

7: for i = 1 to E do

8: Initialize exploration policy ÿ
ğ
ě

9: while ÿğ
ě ’s training not converged do

10: Initialize # as #̂ ,D ← ∅

11: for t = 0 to h-1 do

12: Execute ėĪ ∼ ÿ
ğ
ě (BĪ ), and observe (BĪ , ėĪ , AĪ , BĪ+1)

13: Calculate ÂĪ based on Eq. 5 or 6

14: Store (BĪ , ėĪ , ÂĪ , BĪ+1) into D

15: # (q (BĪ , ėĪ )) ← # (q (BĪ , ėĪ )) + 1

16: end for

17: Optimize policy ÿ
ğ
ě with algorithm 5

18: end while

19: Update #̂ using D

20: end for

21: return {ÿğ
ě }

ā
ğ=1

If the reward AĪ is higher than a threshold '
★, we call this joint state-

action pair (BĪ , ėĪ ) valuable and store it into a datasetM∗. For goal-

oriented tasks where A = 1ĩ=ĝĥėĢ , the threshold can be set as '
★
= 1.

For other tasks, the threshold can be set as a hyperparameter, for

example, a certain percentile of all collected rewards. A smaller '★

results in a larger identi�ed subspace but a less e�cient exploration

policy.

The data stored inM∗ is highly diversi�ed since it comes from

all the � training tasks, which are expected to share an intrinsic

structure. We expect that with this intrinsic structure, the high-

rewarding joint state-action pairs fall into some low-dimensional

subspace. In the simplest case, they may form several dense clusters,

or many of them lie in a hyperplane. Even if the subspace is not

easily interpretable to humans, it may still be e�ectively “covered”

by a set of exploration policies (to be found in the subsequent step).

We also explicitly deal with the reward sparsity problem by

assigning a positive reward to a joint state-action pair (BĪ , ėĪ ) if it

has zero reward but leads to a valuable state-action pair (BĪ ′ , ėĪ ′ )

later in the same trajectory. We also put these relabeled pairs into

the datasetM∗. Let C
′
= argminĪ ′>Ī [AĪ ′ > 0], we therefore have

the following densi�ed reward function

ÂĪ =

{
WĪ
′−Ī · AĪ ′ , AĪ = 0,

AĪ , AĪ > 0.
(5)

Algorithm 2 MESA: Meta-Testing

Input: Test task T̂ , meta-trained exploration policies {ÿğ
ě }

ā
ğ=1,

o�-policy MARL algorithm 5

Parameter: horizon ℎ

Output: Policy ÿĂ for task T̂

1: Initialize policy ÿĂ , D = ∅, annealing n

2: while not converged do

3: Determine ?ě under annealing probability schedule n

4: Choose policy to perform rollouts by

ÿĚ =

{
ÿě ∼ U({ÿ

ğ
ě }

ā
ğ=1), w.p. ?ě

ÿĂ , otherwise.

5: for t = 0 to h-1 do

6: Execute ėĪ ∼ ÿĚ (BĪ ).

7: Observe transition (BĪ , ėĪ , AĪ , BĪ+1).

8: D ← D ∪ (BĪ , ėĪ , AĪ , BĪ+1)

9: end for

10: Optimize ÿĂ with algorithm 5 on replay bu�er D

11: end while

12: return ÿĂ

5.1.2 Learning Exploration Policies. In this step, we aim to learn

a diverse set of exploration policies to cover the identi�ed high-

rewarding joint state-action subspace. We use a distance metric

∥ · ∥F (e.g., ;2 distance) to determine whether two state-action

pairs are close. Then if a visited joint state-action pair (B, ė) is close

enough to the identi�ed subspaceM∗, i.e.,minĚ∈M∗ ∥(B, ė), 3 ∥F <

n , it would be assigned a derived positive reward Â . Increasing

the value of � in the collection step would generally result in a

more accurate distance measurement. However, this comes at the

cost of making the minimization calculation more computationally

expensive.

To encourage a broader coverage of the subspace and to avoid

mode collapse, the reward assignment scheme ensures that repeated

visits to similar joint state-action pairs within one trajectory would

result in a decreasing reward for each visit. Similar to [37], we

adopt a pseudo-count function # with a hash function q (ĩ, ė) to

generalize between similar joint state-action pairs. We then apply

a decreasing function 5Ě : N ↦→ [0, 1] on the trajectory-level

pseudo-count # (q ((B, ė)). The resulted reward assignment scheme

is de�ned as follows:

ÃĪ = ÂĪ 5Ě (# (q ((BĪ , ėĪ )))
[
1minĚ∈M∗ ∥ (ĩĪ ,ėĪ ),Ě ∥F<Ċ

]
(6)

After one exploration policy is trained with this reward, we

will train a new policy to cover the part of the identi�ed subspace

that has not yet been covered. This is achieved by having a global

pseudo-count #̂ which is updated after training each exploration

policy using its visitation counts and is maintained throughout the

training of all exploration policies. This iterative process continues

until the subspace is well-covered by the set of trained exploration

policies.



5.2 Meta-Testing

During meta-testing, MESA uses the meta-learned exploration poli-

cies {ÿğ
ě }

ā
ğ=1 to assist the training of any generic o�-policyMARL al-

gorithm on a test-time task T̂ . Speci�cally, for each rollout episode,

we choose with probability n to execute one uniformly sampled

exploration policy ÿě ∼ U({ÿ
ğ
ě }

ā
ğ=1). For the best empirical perfor-

mance, we also adopt an annealing schedule n : ) ↦→ [0, 1] so that

the exploration policies provide more rollouts at the initial stage of

the training and are gradually turned o� later.

Here we further provide some analysis of deploying the meta-

learned exploration policy on unseen testing tasks.

Theorem 5.1 (Exploration during Meta-Testing). Consider goal-

oriented tasks with goal space G ¦ S. Assume the training and

testing goals are sampled from the distribution ? (G) on G, and the

dataset has # i.i.d. goals sampled from a distribution @(G) on S. If

the exploration policy generalizes to explore n nearby goals for every

training sample, we have that the testing goal is not explored with

probability at most

%fail ≈

∫
? (G) (1 − n@(G))Ċ3G f $

(
 !(? | |@) + H (?)

log(n# )

)
. (7)

Theorem 5.1 shows that the good performance of meta-learned

exploration policy relies on 1) a small di�erence between the train-

ing and testing distribution; and 2) a structured, e.g., low-dimensional,

high-rewarding subspace G to reduceH(?). And when uniformly

sampling the training data,  !(? | |@) is bounded by log¬G in our

method. This term, however, can be up to log¬S with an uncoor-

dinated exploration on the joint state space S, where ¬S can be

exponentially larger than ¬G .

5.3 Implementation Detail of MESA

We choose MADDPG, following the centralized training with de-

centralized execution (CTDE) paradigm, as the o�-policy MARL

algorithm for MESA since it can be applied to both discrete and

continuous action space, as shown in its original paper [23]. We use

a clustering mapping 5ę as the hash function q so that the dataset

M∗ is clustered into � clusters de�ned by the clustering function

5ę : S × A ↦→ [�]. The cluster mapping is implemented with the

KMeans clustering algorithm [22]. The number of exploration poli-

cies to learn is viewed as a hyperparameter. See the Appendix for

detailed hyperparameter settings.

6 EXPERIMENTS

Our experimental evaluation aims to answer the following ques-

tions: (1) Are the meta-learned exploration policies capable of

achieving more e�cient exploration during meta-testing on newly

sampled tasks in matrix climb game variants (Section 6.2) and

high-dimensional domains (Section 6.3 and 6.4)? (2) Can these

meta-learned exploration policies successfully generalize to unseen

test-time tasks from a more challenging (e.g., with more agents) test

task distribution which is di�erent the training task distribution

(Section 6.5)?

6.1 Evaluation Setup

Compared Methods. We compare to 3 multi-agent reinforcement

learning algorithms: MADDPG [23], MAPPO [41], and QMIX [33],

Figure 3: Learning curve of the two climb game variants w.r.t

number of environment steps. The return is averaged over

timesteps for themulti-stage games. The dotted lines indicate

the suboptimal return of 0.5 (purple) and the optimal return

1 (blue) for each agent.

to measure the e�ectiveness of our exploration policies. We also

compare to 3 multi-agent exploration algorithm: MAVEN [24],

MAPPO with RND exploration [5], and EMC [43]. To compare

with baselines that adopt a similar meta-training stage, we add two

naive meta-learning baselines, including one with an unconditioned

shared policy, which is trained over all training tasks, and onewith a

goal-conditioned policy, which takes the target landmarks as parts

of the input. We also adapt the single-agent meta-RL algorithm

MAESN [14] to the multi-agent setting. Finally, we adapt the single-

agent C-BET [26] to multi-agent settings based on MAPPO. The

training and testing tasks are as de�ned in Section 6.1. Please refer

to the Appendix for more visualization and experimental results.

Environments.We experiment on the Climb Game, Multi-agent

Particle Environment (MPE) [23], and multi-agent MuJoCo [29],

on which generating a distribution of meta-training tasks ? (T ) is

feasible.

6.2 Climb Game Variants

First, we consider task spaces consisting of variants of the afore-

mentioned climb games. We extend previous climb game to (1)

one-step climb game� (=, :,D,* ), which is a =-player game with

* actions for each player, and the joint reward is 1 if #D = : , 1 − X

if #D = 0, and 0 otherwise. The task space T one
đ

consists of all

one-step climb games that contain two players and * actions; (2)

multi-stage climb game, which is an (-stage game where each

stage is a one-stage climb game with the same number of avail-

able actions. Each stage C has its own con�guration (:Ī , DĪ ) of the

one-stage climb game � (2, :Ī , DĪ ,* ). Agents observe the history

of joint actions and the current stage C . The task space Tmulti
ď,đ

con-

sists of all multi-stage climb games with ( stages and* actions. In

our experiments, we use T one
10 and Tmulti

5,10 as the task space for the

one-step and multi-stage Climb Games. We choose uniformly at

random ten training tasks and three di�erent test tasks from the

task space T , and we keep X =
1
2 as in the classic climb games.

Results on Climb Game Variants. For the matrix games, we

additionally compare with MA-MAESN, which is our adaptation

of the original single-agent meta-learning algorithm MAESN [14]

to the multi-agent scenario In the single-step matrix game, MESA

exhibits better performance, being able to �nd the optimal reward



Figure 4: Learning curves of MESA and the compared baselines w.r.t the number of environment interactions during the

meta-testing stage in the MPE domain and the multi-agent MuJoCo environment Swimmer. The two dotted lines indicate the

ideal optimal (purple) and sub-optimal (blue) return summed over timesteps. A return above the blue line would typically

indicate that the agents are able to learn the optimal strategy.

in some harder tasks when : = 2, while other baselines are stuck

at the sub-optimal reward for almost all tasks.

In the more challenging 10-action multi-stage game where task

space is exponentially larger, MESA outperforms all compared

algorithms by a large margin. With the help of the exploration

policies that have learned the high-rewarding joint action pairs,

MESA quickly learns the optimal joint action for each stage and

avoids being stuck at the sub-optimal.

Figure 5: Visualizations of a 2-player 3-landmark MPE climb

game.

6.3 MPE Domain

We extend the matrix climb games to MPE [23], which has a con-

tinuous high-dimensional state space. Agents must �rst learn to

reach the landmarks under sparse rewards and then learn to play

the climb games optimally.

In a MPE Climb Game �̄ (=, :,D,* , {!Ġ }
đ −1
0

) (Figure 5), there are

* non-overlapping landmarks with positions {!Ġ }
đ −1
Ġ=0

. The reward

is non-zero only when every agent is on some landmark. Agents

will be given a reward of 1 if there are exactly : agents located

on the D-th landmark (target landmark), and a suboptimal reward

of 1 − X will be given when none of the agents are located on the

target landmark. Otherwise, the reward will be zero. As before, D

and : are not present in the observation and can only be inferred

Figure 6: Visualization of structured exploration behaviors

discovered by the meta-trained exploration policy in MESA.

from the received reward. A task space TMPE
Ĥ,đ

consists of all MPE

climb games with = players and* landmarks. We evaluate MESA

on the 2-agent tasks (TMPE
2,5

and TMPE
2,6

) and 3-agent tasks (TMPE
3,5

and TMPE
3,6

) while �xing : = 2. Each sampled training and testing

task has a di�erent con�guration of landmark positions.

Adaptation Performance in MPE. We show in Figure 4 the

learning curve of our approach MESA compared with the afore-

mentioned baseline methods. MESA outperforms the compared

baselines by a large margin, being able to coordinately reach the

task landmark quickly, as evidenced by the near-optimal reward.

Even when combined with RND-based exploration, MAPPO easily

sticks to the sub-optimal equilibrium. Value-based methods like

QMIX and MAVEN are unable to learn the correct &-function be-

cause the reward is quite sparse before agents can consistently

move themselves to a landmark. EMC sometimes jumps out of the

suboptimal equilibrium with curiosity-driven exploration, but the

performance is not robust. Furthermore, as the meta-learning base-

lines only learn the sub-optimal behavior duringmeta-training, they

fail to learn the optimal equilibrium during test time and quickly

converge to the suboptimal equilibrium.

Visualization of Exploration Policies. To answer question

(2), we visualize the learned exploration policies in a 2-agent 3-

landmark MPE task in Figure 6. We can see that the learned ex-

ploration policy consecutively visited the 3 landmarks within 20

timesteps in one trajectory.

6.4 Multi-agent MuJoCo Environments

We also extend the matrix climb games to multi-agent MuJoCo

environments [29]. We consider speci�cally the 2-agent Swimmer

environment where each agent is a hinge on the swimmer’s body,



and each agent’s action is the amount of torque applied to hinge

rotors. The extension considers the angles between the two hinges

and the body segments. Each task in the task space is a target angle

such that a reward of 1 will be given only if the two angles are both

close to the target angles, a 0.5 suboptimal reward is given if none

of two angles are close to the target, and a reward of 0 if only one

of the two angles are close.

This multi-agent environment is extremely hard as agents are

very likely to converge to the suboptimal reward of 0.5, which is

con�rmed by the results that none of the baselines were able to

�nd the optimal equilibrium in Figure 4. Therefore, MESA vastly

outperforms all the compared baselines by learning a �nal policy

that frequently reaches the target angle.

6.5 Generalization Performance of MESA

In this section, our goal is to evaluate the generalization perfor-

mance of the meta-trained exploration policy in scenarios where

the meta-training and meta-testing task distributions are di�erent.

In particular, we focus on the setting where the test-time tasks are

more challenging than the training-time tasks and examine how an

exploration policy learned from simpler tasks can boost training

performances on harder tasks.

The test task here is uniform on the 3-agent high-di�culty MPE

Climb games. The task di�culty is de�ned by the average pairwise

distances between the landmark positions and the initial positions

of the agents. We consider two simpler training task distributions,

including (1) a 2-agent setting with the same di�culty, and (2) a

3-agent setting with a lower di�culty. In both settings, the meta-

training tasks are less challenging than the test-time tasks. For

evaluation, the meta-trained exploration policy from each setting

will be directly applied to assist the training on themore challenging

test-time tasks, without any �ne-tuning.

We modi�ed the neural network architecture by adopting an

attention layer in both actor and critic to ensure they are compatible

with a varying number of agents. The attention mechanism acts as

an aggregation function between the relative positions of the other

agents and its own relative position to the landmarks to handle

the varying observation dimensions. Additionally, we employed

behavior cloning (BC) [30] on the rollouts of the exploration policies

as a warm-up to accelerate learning of the �nal policy.

In Figure 7, we present the generalization results from our study.

We evaluate the zero-shot generalization ability of themeta-exploration

policy by measuring the average number of high-reward transitions

hit in a test task randomly sampled from the test task distribution.

As shown on the left of Figure 7, the meta-exploration policies are

able to explore the test-time tasks much more e�ciently than a

random exploration policy, even on test-time tasks that are drawn

from a harder task distribution. Notably, the generalization ability

increases with the number of exploration policies (�). Using the

meta-exploration policies trained on the simpler tasks, MESA is able

to consistently reach the high-reward region in the unseen hard

3-agent tasks, as opposed to the vanilla MADDPG algorithm that

only learns the sub-optimal equilibrium. We also see that with an

increasing number of meta-exploration policies, the performance

of MESA increases, but the improvement becomes marginal, while

the meta-training time increases linearly with E.

Figure 7: Generalization results of MESA on the hard 3-agent

MPEClimb game. Left: Zero-shot generalizability of themeta-

exploration policies, measured by the number of visitations

on high-reward transitions per episode on the test tasks. The

purple dotted line corresponds to the random exploration

policy. The plot shows the concatenated training curves for

all exploration policies. Right: Learning curves of MESA un-

der di�erent settings using the meta-exploration policies

trained on the two di�erent training-task distributions.

7 CONCLUSIONS

This paper introduces a meta-exploration method, MESA, for multi-

agent learning. The key idea is to learn a diverse set of exploration

policies to cover the high-rewarding state-action subspace and

achieve e�cient exploration in an unseen task. MESA can work

with any o�-policy MARL algorithm, and empirical results con�rm

the e�ectiveness of MESA in climb games, MPE environments, and

multi-agent MuJoCo environments and its generalizability to more

complex test-time tasks.
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