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ABSTRACT

Multi-agent reinforcement learning (MARL) algorithms often strug-
gle to find strategies close to Pareto optimal Nash Equilibrium,
owing largely to the lack of efficient exploration. The problem is ex-
acerbated in sparse-reward settings, caused by the larger variance
exhibited in policy learning. This paper introduces MESA, a novel
meta-exploration method for cooperative multi-agent learning. It
learns to explore by first identifying the agents’ high-rewarding
joint state-action subspace from training tasks and then learning a
set of diverse exploration policies to “cover” the subspace. These
trained exploration policies can be integrated with any off-policy
MARL algorithm for test-time tasks. We first showcase MESA’s
advantage in a multi-step matrix game. Furthermore, experiments
show that with learned exploration policies, MESA achieves sig-
nificantly better performance in sparse-reward tasks in several
multi-agent particle environments and multi-agent MuJoCo envi-
ronments, and exhibits the ability to generalize to more challenging
tasks at test time.
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1 INTRODUCTION

Reinforcement learning (RL) algorithms often adopt a trial-and-
error learning paradigm and optimize the policy based on the re-
ward signals given by the environment. The effectiveness of RL
relies on efficient exploration, especially in sparse reward settings,
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Figure 1: Illustration of structured exploration and unstruc-
tured exploration behavior in the 2-player climb game. The
rows and columns indicate the players’ action space. While
unstructured exploration aims to visit novel states, struc-
tured exploration exploits structures in the joint state-action
space, helping agents coordinatedly and more efficiently ex-
plore the potential high-reward subspace.

as it is critical to get sufficient experiences with high rewards to
guide the training.

The exploration challenge has been studied extensively and ex-
isting works can be categorized mainly into two streams. One
core idea with great success is to incentivize the agent to visit
the under-explored states more frequently by adding an intrinsic
reward based on a visitation measure [3, 25, 28, 37] or some other
heuristics [17, 39].

However, in multi-agent settings, due to the exponential growth
of the joint state-action space, simply visiting more novel states
can be increasingly ineffective. Exploration policies need to better
capture the low-dimensional structure of the tasks and leverage the
structural knowledge for higher exploration efficiency.

Another line of work specifically learns exploration strategies.
However, these works do not explicitly consider the underlying
task structure. For example, Mahajan et al. conditions the policy
on a shared latent variable [24] learned via mutual information
maximization. Liu et al. adopts a goal-conditioned exploration strat-
egy by setting state features as goals [21]. Other works in the
single-agent settings [6, 26, 35] learn exploration policies through
a pre-defined intrinsic reward. All these works train the explo-
ration policy using task-agnostic exploration-specific rewards. In
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Section 4, we will present a simple matrix game to show that popu-
lar exploration methods can have difficulties finding the optimal
solution due to the reward structure of the game.

How can we enable the agents to more effectively explore by
leveraging the intrinsic structure of the environment? We adopt a
meta-exploration framework (i.e., learning to explore) for MARL:
we first train multiple structured exploration policies from a set of
training tasks (referred to as the meta-training stage), and then
use these exploration policies to facilitate agents’ learning in a
test-time task, which is typically a new task sampled from the task
distribution (referred to as meta-testing stage). We develop a multi-
agent meta-exploration method, Cooperative Meta-Exploration in
Multi-Agent Learning through Exploiting State-Action Space Struc-
ture (MESA) for fully cooperative settings. MESA leverages the
task structures by explicitly identifying the agents’ high-rewarding
joint state-action subspace in the training tasks. It then trains a
set of diverse exploration policies to cover this identified subspace.
The exploration policies are trained with a reward scheme induced
by the distance to the high-rewarding subspace. The meta-learned
exploration policies can be combined with any off-policy MARL
algorithm during the meta-testing stage by randomly selecting
learned exploration policies to collect valuable experiences. Such
structured exploration can help the agents to learn good joint poli-
cies efficiently (Figure 1). We empirically show the success of MESA
on the matrix climb game and its harder multi-stage variant. In
addition, we evaluate MESA in two continuous control tasks, i.e.,
the MPE environment [23] and the multi-agent MuJoCo bench-
mark [29]. We demonstrate the superior performance of MESA
compared to existing multi-agent learning and exploration algo-
rithms. Furthermore, we show that MESA is capable of generalizing
to unseen test-time tasks that are more challenging than any of the
training tasks.

2 RELATED WORK

Exploration has been a long-standing challenge in RL with remark-
able progress achieved in the single-agent setting [3, 5, 10, 25, 28,
34, 37]. Most of these works maintain pseudo-counts over states
and construct intrinsic rewards to encourage the agents to visit
rarely visited states more frequently [3, 25, 28, 37]. These count-
based methods have been extended to the multi-agent setting by
incentivizing intra-agent interactions or social influence [17-19, 39].
However, in the multi-agent setting, a simple count-based method
can be less effective due to the partial observability of each agent,
an exponentially large joint state-action space, and the existence
of multiple non-Pareto-optimal NE. Therefore, recent works focus
on discovering the structures of possible multi-agent behaviors.
For example, [24] adopts variational inference to learning struc-
tured latent-space-policies; [15] generates similar tasks with simpler
reward functions to promote cooperation; [21] learns to select a
subset of state dimensions for efficient exploration. We follow a
meta-learning framework and learn structured exploration strate-
gies by exploiting high-rewarding subspace in the joint state-action
space. Our method also leverages a count-based technique as a sub-
routine during the meta-training phase to prevent over-exploitation
and mode collapse.
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Meta reinforcement learning (meta-RL) is a popular RL paradigm
that focuses on training a policy that can quickly adapt on an un-
seen task at test time [9, 12, 14, 20, 32, 40, 42, 44]. Such a paradigm
has been extended to the setting of learning to explore. The key idea
is to meta-learn a separate exploration policy that can be used in
the testing task. Most closely related to our work is [26], where an
exploration policy is pretrained on a set of training tasks. However,
their method is designed for the single-agent setting and learns
the exploration policy by using a task-agnostic intrinsic reward to
incentivize visitation of interesting states , while we directly utilize
the task reward to learn the structure of the environments. Other
existing works in meta-exploration propose to learn a latent-space
exploration policy that is conditioned on a task variable, which
can be accomplished by meta-policy gradient [14, 20, 40], varia-
tional inference [32] or information maximization [42] over the
training tasks. Therefore, at test time, posterior inference can be
performed for the latent variable towards fast exploration strat-
egy adaption. Our approach follows a similar meta-exploration
paradigm by learning additional exploration policies. However, ex-
isting meta-exploration methods focus on the single-agent setting
while we consider much more challenging multi-agent games with
a distribution of similarly-structured tasks, for example, the MPE
environment [23] with a distribution of target landmarks that the
agents need to reach. In addition, we meta-learn a discrete set of
exploration policies through an iterative process, which results in
a much simpler meta-testing phase without the need for poste-
rior sampling or gradient updates on exploration policies. Besides,
some other methods pretrain exploration policies from an offline
dataset [7, 31, 36], which is beyond the scope of this paper.

Finally, our approach largely differs from the setting of multi-task
learning [1, 2, 11, 16, 27], which are commonly evaluated in envi-
ronments with heterogeneous tasks or scenarios. Our exploration
policies are not trained to achieve high returns in the training tasks.
Instead, they are trained to reach as many high-reward state-action
pairs as possible collected in a diverse set of tasks. Therefore, the
state-action pairs covered by a single exploration policy are very
likely to be distributed across different training tasks.

3 PRELIMINARIES

Dec-POMDP. We consider fully-cooperative Markov games de-
scribed by a decentralized partially observable Markov decision
process (Dec-POMDP), which is defined by (S, A, P,R, Q, 0, n,y).
S is the state space. A = Ay X...X Ay, is the joint action space. The
dynamics is defined by the transition function P(s” | s, a). Agents
share a reward function R(s, @), and y € (0, 1) is the discount factor.
Q = Qp X .. X Qp is the joint observation space, where Q; is the
observation space for agent i. At each timestep, each agent i only
has access to its own observation o; € Q; defined by the function
O : S X A — Q. The goal of agents in Dec-POMDP is to maximize
the common expected discounted return under the joint policy 7:
J(m) =Ex [Z¢ V' R(st.ar)].

Learning to Explore. Meta-RL assumes a task distribution p(7")
over tasks, and an agent aims to learn to quickly adapt to a test-time
task Trest drawn from p(7") after training in a batch of training tasks
{Ti | Ti ~ p(‘i')}?zl. Inspired by the explicit exploration methods
[6, 42], we adopt a meta-exploration framework for MARL: we
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learn joint exploration policies 7, from training tasks {7; | 7; ~
p(‘T)}?:1 and use 7, to collect experiences for the training of
the agents’ policy profile s in task Tiest, denoted as 7 (e, Trest)-
Formally, the objective of meta-exploration is

nyRxst,at)H W

t

rr]ﬁxEq;esth(f]‘) En(ne,(ﬁest)

Nash Equilibrium and Pareto Optimality. A joint policy 7
is an NE if each agent’s policy 7; is a best response to the other
agents’ policies 7z ;. That is, for any agent i’s alternative policy 7,
we have Q; () > Qi(ﬂ{, 7_;), where Q; is the value function for
agent i. A joint policy x is Pareto optimal if there does not exist
an alternative joint policy s’ such that Vi, Q;(x’) > Q;() and

3i, Qi(n’) > Qi(o).
4 A MOTIVATING EXAMPLE: CLIMB GAME

We analyze a fully cooperative matrix game known as Climb Game.
In Section 4.1, we show how popular exploration strategies, in-
cluding unstructured strategies like uniform exploration and task-
specific strategies like e—greedy, fail to efficiently explore the climb
game. By contrast, we show in Section 4.2 that a simple structured
exploration strategy can substantially improve the exploration effi-
ciency.

A climb game G¢(n,u,U) is a n-player game with action space
A; ={0,...,U — 1} for any player i. The reward of a joint action
a € A is determined by the number of players performing a specific
action u (denoted as #u), which is

1, if #u = n,
R@)=41-6(0<6<1), if#u=0, )
0, otherwise.

4.1 Exploration Challenge

A climb game G (n, u, U) has three groups of NE: the Pareto optimal
NE (4, u, ..., u), the sub-optimal NEs {(a1, az, ..., an) | Vi, a; # u},
and the zero-reward NEs {(a1,dz,...,an) | 1 < #u < n}. The sheer
difference in the size of the three subsets of NEs makes it particularly
challenging for RL agents to learn the optimal policy profile without
sufficient exploration, as evidenced by the theoretical analysis below
and empirical evaluation in Section 6.

Consider a 2-agent climb game G¢(2,0,U). A joint action a can
be represented by a pair of one-hot vectors [e;, e;] € {0, 132V Let
q(x,y;0) be a joint Q function parameterized by 0 that takes input
x,y € {0,1}V and is learned to approximate the reward of the game.
We hope the joint Q function has the same optimal policy profile.

Definition 4.1. We call a joint Q function q(x,y; 0) equivalently
optimal when q(ey, €9; 0) = maxo<; j<u q(e;, ej;0). When a joint
Q function is equivalently optimal, one can use it to find the optimal
policy.

Since neural networks are difficult to analyze in general [4], we

parameterize the joint Q function in a quadratic form:
q(x,y;W,b,c,d) =x Wy +bTx+c'y+d 3)

A Gaussian prior p(W) = N(W;0,02,I) is introduced under the
assumption that a non-linear W is harder and slower to learn.
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Quadratic functions have been used in RL [13, 38] as a replacement
for the commonly-used multi-layer perceptron, and there are also
theoretical results [8] analyzing neural networks with quadratic
activation. For the climb game, it is easy to verify that the quadratic
coefficients make the joint Q function sufficiently expressive to
perfectly fit the reward function by setting W to be the reward
matrix. Therefore, the learning process of Q is mainly affected by
how the exploration policy samples the data.

(2)

Consider an exploration policy p, ’ that selects joint action

a = (i,j) at step t with probability pét) (i, j). The efficiency of
an exploration policy can be measured by the required number
of steps for learning an equivalently optimal Q function using
the maximum likelihood estimator over the data sampled from
pf,t). The learning objective includes both the prior p(W) and the
likelihood of prediction error p(E;;), where the prediction error
Eij = q(ei, ej;-) — Rij. If the prediction error is assumed to be
depicted by a Gaussian distribution p(E;;) = N (E;j;0, o?) for every
visited joint action (i, j), then the learning objective for the Q
function can be formulated as:

T (W,b,c,d)

T
=B (10 j0)~pt® )7 log (P(W) I—[ P(Ejw jo) ))

t'=1

~

=D Bl yp [log N(q(ei,ej; W, b, c,d) — R;j;0,02)]
t=1

+log N (W30, U%VI) + Const.

©)

We use g (1) (W, b, ¢, d) to denote the learned joint Q function

that maximizes J(T) at step T. g 1) (W, b, ¢, d) is determined by

the exploration policy pét) and the exploration steps T. Then we

have the following theorem for the uniform exploration strategy.

Theorem 4.2 (uniform exploration). Assume § < %, U > 3. Using
a uniform exploration policy in the climb game G¢(2,0,U), it can
be proved that q 4(r) (W, b, ¢, d) will become equivalently optimal
only after T = Q(|A|5™1) steps. When § = 1, T = O(1) steps suffice
to learn the equivalently optimal joint Q function, suggesting the
inefficiency of uniform exploration is due to a large set of sub-optimal
NEs.

The intuition behind Theorem 4.2 is that the hardness of explo-
ration in climb games largely comes from the sparsity of solutions:
a set of sub-optimal NEs exist but there is only a single Pareto
optimal NE. Learning the joint Q function can be influenced by
the sub-optimal NEs. And if the exploration attempts are not well
coordinated, a lot of zero reward would be encountered, making it
hard to find the Pareto optimal NE. We also remark that uniform
exploration can be particularly inefficient since the term |A| can
be exponentially large in a multi-agent system. This indicates that
more efficient exploration can potentially be achieved by reducing
the search space and identifying a smaller “critical” subspace.

To formally prove Theorem 4.2, we define fi, f2, f3 as the step-
averaged probability of taking the joint action in optimal NE, sub-
optimal NE and zero-reward, respectively. We show that to make
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Figure 2: MESA’s meta-learning framework. In the meta-training stage, MESA learns exploration policies to cover the high-
rewarding subspace. In the meta-testing stage, MESA uses the learned exploration policies to assist the learning in an unseen
task. Each color corresponds to a different task, and the colored points represent the high-rewarding joint state-action pairs

collected in that task.

the joint Q function equivalently optimal, there is a necessary con-
dition that fi, f2, f3 should follow. When T is not large enough, this
condition cannot be satisfied. Detailed proof is in Appendix A.2.

Next, we consider the case of another popular exploration para-
digm, e-greedy exploration.

Theorem 4.3 (e-greedy exploration). Assume§ < %, U=>4U2>
owo, L. In the climb game Gf(2,0,U), under e-greedy exploration
with fixed € < % q g (W, b, ¢, d) will become equivalently optimal
only after T = Q(|A|67 e 1) steps. If e(t) = 1/t, it requires T =
exp (Q (|A|671Y)) exploration steps to be equivalently optimal.

The proof is similar to that of Theorem 4.2 (detailed in Appendix
A.3). By comparing 4.2 and 4.3, e-greedy results in even poorer
exploration efficiency than uniform exploration. Note the e-greedy
strategy is training policy specific, i.e., the exploration behavior
varies as the training policy changes. Theorem 4.3 suggests that
when the policy is sub-optimal, the induced e-greedy exploration
strategy can be even worse than uniform exploration. Hence, it can
be beneficial to adopt a separate exploration independent from the
training policy.

The above analysis shows that common exploration strategies
like uniform exploration or e-greedy exploration are inefficient
for such a simple game and the main reason is that it requires
coordination between different agents to reach high-rewarding
states, but naive exploration strategies lack such cooperation.

4.2 Structured Exploration

We will show that it is possible to design a better exploration
strategy with some prior knowledge of the climb game structure.
Consider a specific structured exploration strategy pét)(i, J) =
U1 [ILi:j], where both agents always choose the same action.
With such a strategy, we can quickly find the optimal solution to
the game. More formally, we have the following theorem.
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Theorem 4.4 (structured exploration). In the climb game Gf (2,0,0),

under structured explorationp((at) (i,j) =U"1 []li=j], q g1 (W, b, c,d)
is equivalently optimal at step T = O(1).

Theorem 4.4 shows the efficiency of exploration can be greatly
improved if the exploration strategy captures a proper structure
of the problem, i.e., all agents taking the same action. We fur-
ther remark that by considering a set of similar climb games G =
{Gr(2,u, U)}fj:_ol, the structured exploration strategy pgt) (i,j) =
U1 []l,-= j] can be interpreted as a uniform distribution over the
optimal policies of this game set G. This interesting fact suggests
that we can first collect a set of similarly structured games and then
derive effective exploration strategies from these similar games.
Once a set of structured exploration strategies are collected, we
can further adopt them for fast learning in a novel game with a
similar problem structure. We take the inspiration here and develop
a general meta-exploration algorithm in the next section.

5 METHOD

We detail our method Cooperative Meta-Exploration in Multi-Agent
Learning through Exploiting State-Action Space Structure (MESA)
for cooperative multi-agent learning. As shown in Figure 2, MESA
consists of a meta-training stage (Algo. 1) and a meta-testing stage
(Algo. 2). In the meta-training stage, MESA learns exploration poli-
cies by training in a batch of training tasks that share intrinsic
structures in the state-action space. In the meta-testing stage, MESA
utilizes the meta-learned exploration policies to assist learning in
an unseen task sampled from the distribution of the training tasks.

5.1
The meta-training stage contains two steps: 1) identify the high-
rewarding state-action subspace, and 2) train a set of exploration
policies using the subspace-induced rewards.

Meta-Training

5.1.1
each training task 7;, we collect experiences D;

Identifying High-Rewarding Joint State-Action Subspace. For
{(st,ae,re,se41) -
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Algorithm 1 MESA: Meta-Training

Algorithm 2 MESA: Meta-Testing

Input: Meta-training tasks {‘7{}?:1 ~ p(7), off-policy MARL
algorithm f, distance metric || - ||#
Parameter: #policies E, threshold R*, horizon h
Output: Exploration policies {7, }le
1: M, « 0, global pseudo-count N « 0
2: fori=1toBdo
3. Initialize policy g

4. Train ;g with f and collect dataset D; = {(sz, ar, r¢,Sr+1) }
55 Ms — M, U{r|R(r) > R*,7r € D;}
6: end for
7. fori=1to E do
8 Initialize exploration policy 7,
9:  while z.’s training not converged do
10: Initialize N as N. D —0
11 for t =0 to h-1 do
12: Execute a; ~ né(s,), and observe (s, ar , rs, St+1)
13: Calculate 7; based on Eq. 5 or 6
14: Store (sg, @y, 7y, s¢+1) into D
15: N($(st,ar)) < N(¢p(st.ar)) +1
16: end for
17: Optimize policy 7% with algorithm f
18:  end while
190 Update N using D
20: end for

21: return {ﬂ'é}le

If the reward r; is higher than a threshold R*, we call this joint state-
action pair (s, a;) valuable and store it into a dataset M. For goal-
oriented tasks where r = 15_y,4;, the threshold can be set as R* =1
For other tasks, the threshold can be set as a hyperparameter, for
example, a certain percentile of all collected rewards. A smaller R*
results in a larger identified subspace but a less efficient exploration
policy.

The data stored in M, is highly diversified since it comes from
all the B training tasks, which are expected to share an intrinsic
structure. We expect that with this intrinsic structure, the high-
rewarding joint state-action pairs fall into some low-dimensional
subspace. In the simplest case, they may form several dense clusters,
or many of them lie in a hyperplane. Even if the subspace is not
easily interpretable to humans, it may still be effectively “covered”
by a set of exploration policies (to be found in the subsequent step).

We also explicitly deal with the reward sparsity problem by
assigning a positive reward to a joint state-action pair (s¢, a;) if it
has zero reward but leads to a valuable state-action pair (s, a;)
later in the same trajectory. We also put these relabeled pairs into
the dataset M.. Let t’ = argming~;[rp > 0], we therefore have
the following densified reward function

t'—t
A )Y :
ry =

e,

ry, re=0,
()

ry > 0.
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Input: Test task 77, meta-trained exploration policies {né}izl,

off-policy MARL algorithm f
Parameter: horizon h
Output: Policy 7y for task 7~
1: Initialize policy mg, D = 0, annealing €
2: while not converged do
3:  Determine p, under annealing probability schedule e
4 Choose policy to perform rollouts by

~ {ne ~U{RLE), wp. pe
”d =

Ty, otherwise.

5. fort=0toh-1do

6 Execute a; ~ g (st).

7: Observe transition (s¢, az, 1y, St+1)-

8 D — DU (st,at,1t,5t+1)

9: end for

10:  Optimize 7y with algorithm f on replay buffer D
11: end while

12: return 7y

5.1.2  Learning Exploration Policies. In this step, we aim to learn
a diverse set of exploration policies to cover the identified high-
rewarding joint state-action subspace. We use a distance metric
Il - ll# (e.g., Iz distance) to determine whether two state-action
pairs are close. Then if a visited joint state-action pair (s, @) is close
enough to the identified subspace M., i.e., minge p, |I(s, @), d||# <
€, it would be assigned a derived positive reward 7. Increasing
the value of B in the collection step would generally result in a
more accurate distance measurement. However, this comes at the
cost of making the minimization calculation more computationally
expensive.

To encourage a broader coverage of the subspace and to avoid
mode collapse, the reward assignment scheme ensures that repeated
visits to similar joint state-action pairs within one trajectory would
result in a decreasing reward for each visit. Similar to [37], we
adopt a pseudo-count function N with a hash function ¢(s, a) to
generalize between similar joint state-action pairs. We then apply
a decreasing function f; : N +— [0,1] on the trajectory-level
pseudo-count N(¢((s, a)). The resulted reward assignment scheme
is defined as follows:

e = Frfa(N(¢((sz.ar))) lmindeM* I (se.ar).d|lF<e (6)

After one exploration policy is trained with this reward, we
will train a new policy to cover the part of the identified subspace
that has not yet been covered. This is achieved by having a global
pseudo-count N which is updated after training each exploration
policy using its visitation counts and is maintained throughout the
training of all exploration policies. This iterative process continues
until the subspace is well-covered by the set of trained exploration
policies.
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5.2 Meta-Testing

During meta-testing, MESA uses the meta-learned exploration poli-
cies {7} }f:l to assist the training of any generic off-policy MARL al-
gorithm on a test-time task 7. Specifically, for each rollout episode,
we choose with probability € to execute one uniformly sampled
exploration policy 7, ~ U ({7} }?:1). For the best empirical perfor-
mance, we also adopt an annealing schedule € : T +— [0, 1] so that
the exploration policies provide more rollouts at the initial stage of
the training and are gradually turned off later.

Here we further provide some analysis of deploying the meta-
learned exploration policy on unseen testing tasks.

Theorem 5.1 (Exploration during Meta-Testing). Consider goal-
oriented tasks with goal space G C S. Assume the training and
testing goals are sampled from the distribution p(x) on G, and the
dataset has N i.i.d. goals sampled from a distribution q(x) on S. If
the exploration policy generalizes to explore € nearby goals for every
training sample, we have that the testing goal is not explored with

probability at most
- N KL(pllg) + H(p)
P~ [ 91 = eqVar < 0 | FHEIDIHD

Theorem 5.1 shows that the good performance of meta-learned
exploration policy relies on 1) a small difference between the train-
ing and testing distribution; and 2) a structured, e.g., low-dimensional
high-rewarding subspace G to reduce H (p). And when uniformly
sampling the training data, KL(p||q) is bounded by log Q¢ in our
method. This term, however, can be up to log Q g with an uncoor-
dinated exploration on the joint state space S, where Qg can be
exponentially larger than Q.

™)

5.3 Implementation Detail of MESA

We choose MADDPG, following the centralized training with de-
centralized execution (CTDE) paradigm, as the off-policy MARL
algorithm for MESA since it can be applied to both discrete and
continuous action space, as shown in its original paper [23]. We use
a clustering mapping f as the hash function ¢ so that the dataset
M. is clustered into C clusters defined by the clustering function
fe : 8§ X A — [C]. The cluster mapping is implemented with the
KMeans clustering algorithm [22]. The number of exploration poli-
cies to learn is viewed as a hyperparameter. See the Appendix for
detailed hyperparameter settings.

6 EXPERIMENTS

Our experimental evaluation aims to answer the following ques-
tions: (1) Are the meta-learned exploration policies capable of
achieving more efficient exploration during meta-testing on newly
sampled tasks in matrix climb game variants (Section 6.2) and
high-dimensional domains (Section 6.3 and 6.4)? (2) Can these
meta-learned exploration policies successfully generalize to unseen
test-time tasks from a more challenging (e.g., with more agents) test
task distribution which is different the training task distribution
(Section 6.5)?

6.1 Evaluation Setup

Compared Methods. We compare to 3 multi-agent reinforcement
learning algorithms: MADDPG [23], MAPPO [41], and QMIX [33],

>
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Figure 3: Learning curve of the two climb game variants w.r.t
number of environment steps. The return is averaged over
timesteps for the multi-stage games. The dotted lines indicate
the suboptimal return of 0.5 (purple) and the optimal return
1 (blue) for each agent.

to measure the effectiveness of our exploration policies. We also
compare to 3 multi-agent exploration algorithm: MAVEN [24],
MAPPO with RND exploration [5], and EMC [43]. To compare
with baselines that adopt a similar meta-training stage, we add two
naive meta-learning baselines, including one with an unconditioned
shared policy, which is trained over all training tasks, and one with a
goal-conditioned policy, which takes the target landmarks as parts
of the input. We also adapt the single-agent meta-RL algorithm
MAESN [14] to the multi-agent setting. Finally, we adapt the single-
agent C-BET [26] to multi-agent settings based on MAPPO. The
training and testing tasks are as defined in Section 6.1. Please refer
to the Appendix for more visualization and experimental results.

Environments. We experiment on the Climb Game, Multi-agent
Particle Environment (MPE) [23], and multi-agent MuJoCo [29],
on which generating a distribution of meta-training tasks p(7") is
feasible.

6.2 Climb Game Variants

First, we consider task spaces consisting of variants of the afore-
mentioned climb games. We extend previous climb game to (1)
one-step climb game G(n, k, u, U), which is a n-player game with
U actions for each player, and the joint reward is 1 if #u =k, 1 -0
if #u = 0, and 0 otherwise. The task space 7;7"¢ consists of all
one-step climb games that contain two players and U actions; (2)
multi-stage climb game, which is an S-stage game where each
stage is a one-stage climb game with the same number of avail-
able actions. Each stage ¢ has its own configuration (k¢, u;) of the
one-stage climb game G(2, ks, us, U). Agents observe the history
of joint actions and the current stage t. The task space 7;?}‘1& con-
sists of all multi-stage climb games with S stages and U actions. In
our experiments, we use 77" and TS”‘?(‘)‘M as the task space for the
one-step and multi-stage Climb Games. We choose uniformly at
random ten training tasks and three different test tasks from the
task space 77, and we keep § = % as in the classic climb games.
Results on Climb Game Variants. For the matrix games, we
additionally compare with MA-MAESN, which is our adaptation
of the original single-agent meta-learning algorithm MAESN [14]
to the multi-agent scenario In the single-step matrix game, MESA
exhibits better performance, being able to find the optimal reward
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Figure 4: Learning curves of MESA and the compared baselines w.r.t the number of environment interactions during the
meta-testing stage in the MPE domain and the multi-agent MuJoCo environment Swimmer. The two dotted lines indicate the
ideal optimal (purple) and sub-optimal (blue) return summed over timesteps. A return above the blue line would typically
indicate that the agents are able to learn the optimal strategy.

in some harder tasks when k = 2, while other baselines are stuck
at the sub-optimal reward for almost all tasks.

In the more challenging 10-action multi-stage game where task
space is exponentially larger, MESA outperforms all compared
algorithms by a large margin. With the help of the exploration
policies that have learned the high-rewarding joint action pairs,
MESA quickly learns the optimal joint action for each stage and
avoids being stuck at the sub-optimal.

R=1

‘e

Both at target

R=0.5
target ams &
o

Both not at target

target

@
target

Not inside landmark

target @

Only 1 at target landmark

Figure 5: Visualizations of a 2-player 3-landmark MPE climb
game.

6.3 MPE Domain

We extend the matrix climb games to MPE [23], which has a con-
tinuous high-dimensional state space. Agents must first learn to
reach the landmarks under sparse rewards and then learn to play
the climb games optimally.

In a MPE Climb Game G(n, k, u, U, {L j}(l)f—l) (Figure 5), there are
U non-overlapping landmarks with positions {L; }EI:BI. The reward
is non-zero only when every agent is on some landmark. Agents
will be given a reward of 1 if there are exactly k agents located
on the u-th landmark (target landmark), and a suboptimal reward
of 1 — § will be given when none of the agents are located on the
target landmark. Otherwise, the reward will be zero. As before, u
and k are not present in the observation and can only be inferred
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Figure 6: Visualization of structured exploration behaviors
discovered by the meta-trained exploration policy in MESA.

from the received reward. A task space 7;[1\/[[;) E consists of all MPE
climb games with n players and U landmarks. We evaluate MESA
on the 2-agent tasks (‘7?;”J E and %AéPE) and 3-agent tasks (7;A§1PE

and ‘G%WE) while fixing k = 2. Each sampled training and testing
task has a different configuration of landmark positions.

Adaptation Performance in MPE. We show in Figure 4 the
learning curve of our approach MESA compared with the afore-
mentioned baseline methods. MESA outperforms the compared
baselines by a large margin, being able to coordinately reach the
task landmark quickly, as evidenced by the near-optimal reward.
Even when combined with RND-based exploration, MAPPO easily
sticks to the sub-optimal equilibrium. Value-based methods like
QMIX and MAVEN are unable to learn the correct Q-function be-
cause the reward is quite sparse before agents can consistently
move themselves to a landmark. EMC sometimes jumps out of the
suboptimal equilibrium with curiosity-driven exploration, but the
performance is not robust. Furthermore, as the meta-learning base-
lines only learn the sub-optimal behavior during meta-training, they
fail to learn the optimal equilibrium during test time and quickly
converge to the suboptimal equilibrium.

Visualization of Exploration Policies. To answer question
(2), we visualize the learned exploration policies in a 2-agent 3-
landmark MPE task in Figure 6. We can see that the learned ex-
ploration policy consecutively visited the 3 landmarks within 20
timesteps in one trajectory.

6.4 Multi-agent MuJoCo Environments

We also extend the matrix climb games to multi-agent MuJoCo
environments [29]. We consider specifically the 2-agent Swimmer
environment where each agent is a hinge on the swimmer’s body,
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and each agent’s action is the amount of torque applied to hinge
rotors. The extension considers the angles between the two hinges
and the body segments. Each task in the task space is a target angle
such that a reward of 1 will be given only if the two angles are both
close to the target angles, a 0.5 suboptimal reward is given if none
of two angles are close to the target, and a reward of 0 if only one
of the two angles are close.

This multi-agent environment is extremely hard as agents are
very likely to converge to the suboptimal reward of 0.5, which is
confirmed by the results that none of the baselines were able to
find the optimal equilibrium in Figure 4. Therefore, MESA vastly
outperforms all the compared baselines by learning a final policy
that frequently reaches the target angle.

6.5 Generalization Performance of MESA

In this section, our goal is to evaluate the generalization perfor-
mance of the meta-trained exploration policy in scenarios where
the meta-training and meta-testing task distributions are different.
In particular, we focus on the setting where the test-time tasks are
more challenging than the training-time tasks and examine how an
exploration policy learned from simpler tasks can boost training
performances on harder tasks.

The test task here is uniform on the 3-agent high-difficulty MPE
Climb games. The task difficulty is defined by the average pairwise
distances between the landmark positions and the initial positions
of the agents. We consider two simpler training task distributions,
including (1) a 2-agent setting with the same difficulty, and (2) a
3-agent setting with a lower difficulty. In both settings, the meta-
training tasks are less challenging than the test-time tasks. For
evaluation, the meta-trained exploration policy from each setting
will be directly applied to assist the training on the more challenging
test-time tasks, without any fine-tuning.

We modified the neural network architecture by adopting an
attention layer in both actor and critic to ensure they are compatible
with a varying number of agents. The attention mechanism acts as
an aggregation function between the relative positions of the other
agents and its own relative position to the landmarks to handle
the varying observation dimensions. Additionally, we employed
behavior cloning (BC) [30] on the rollouts of the exploration policies
as a warm-up to accelerate learning of the final policy.

In Figure 7, we present the generalization results from our study.

We evaluate the zero-shot generalization ability of the meta-exploration

policy by measuring the average number of high-reward transitions
hit in a test task randomly sampled from the test task distribution.
As shown on the left of Figure 7, the meta-exploration policies are
able to explore the test-time tasks much more efficiently than a
random exploration policy, even on test-time tasks that are drawn
from a harder task distribution. Notably, the generalization ability
increases with the number of exploration policies (B). Using the
meta-exploration policies trained on the simpler tasks, MESA is able
to consistently reach the high-reward region in the unseen hard
3-agent tasks, as opposed to the vanilla MADDPG algorithm that
only learns the sub-optimal equilibrium. We also see that with an
increasing number of meta-exploration policies, the performance
of MESA increases, but the improvement becomes marginal, while
the meta-training time increases linearly with E.
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Figure 7: Generalization results of MESA on the hard 3-agent
MPE Climb game. Left: Zero-shot generalizability of the meta-
exploration policies, measured by the number of visitations
on high-reward transitions per episode on the test tasks. The
purple dotted line corresponds to the random exploration
policy. The plot shows the concatenated training curves for
all exploration policies. Right: Learning curves of MESA un-
der different settings using the meta-exploration policies
trained on the two different training-task distributions.

7 CONCLUSIONS

This paper introduces a meta-exploration method, MESA, for multi-
agent learning. The key idea is to learn a diverse set of exploration
policies to cover the high-rewarding state-action subspace and
achieve efficient exploration in an unseen task. MESA can work
with any off-policy MARL algorithm, and empirical results confirm
the effectiveness of MESA in climb games, MPE environments, and
multi-agent MuJoCo environments and its generalizability to more
complex test-time tasks.

ACKNOWLEDGMENTS

This research is supported in part by NSF IIS-2046640 (CAREER)
and Sloan Research Fellowship. We thank NVIDIA for providing
computing resources. Zhicheng Zhang is supported in part by SCS
Dean’s Fellowship. The funders have no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.

REFERENCES

[1] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask reinforce-
ment learning with policy sketches. In ICML. PMLR, 166-175.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
2017. Hindsight experience replay. arXiv preprint arXiv:1707.01495 (2017).
Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic
motivation. NeurIPS 29 (2016), 1471-1479.

Avrim Blum and Ronald Rivest. 1988. Training a 3-node neural network is
NP-complete. NeurIPS 1 (1988).

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2018. Exploration
by random network distillation. In ICLR.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. 2017. GEP-PG: Decoupling
Exploration and Exploitation in Deep Reinforcement Learning Algorithms. In
ICML.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. 2020. Offline Meta Learning of
Exploration. arXiv preprint arXiv:2008.02598 (2020).

Simon Du and Jason Lee. 2018. On the power of over-parametrization in neural
networks with quadratic activation. In ICML. PMLR, 1329-1338.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. RI 2: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779 (2016).

[2]

[3]

[4]



Full Research Paper

[10]

[11]

[12]

[13]

=
it

[15]

[16

[17]

(18]

[19]

[20

[21]

[22

[23]

[24

[25]

[26]

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2021. First return, then explore. Nature 590, 7847 (2021), 580-586.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In ICML. PMLR, 1407-1416.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th ICML
(PMLR, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1126-1135. https:
//proceedings.mlr.press/v70/finn17a.html

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. 2016. Continu-
ous deep g-learning with model-based acceleration. In ICML. PMLR, 2829-2838.
Abhishek Gupta, Russell Mendonca, Yuxuan Liu, Pieter Abbeel, and Sergey Levine.
2018. Meta-Reinforcement Learning of Structured Exploration Strategies. NIPS
2018 (2018), 5302-5311.

Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Béhmer, and Shimon Whiteson.
2021. Uneven: Universal value exploration for multi-agent reinforcement learning.
In ICML. PMLR, 3930-3941.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,
and Hado van Hasselt. 2019. Multi-task deep reinforcement learning with popart.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 3796-3803.
Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Duenez-
Guzman, Antonio Garcia Castaneda, Jain Dunning, Tina Zhu, Kevin McKee,
Raphael Koster, et al. 2018. Inequity aversion improves cooperation in intertem-
poral social dilemmas. NIPS 2018 31 (2018).

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social influence
as intrinsic motivation for multi-agent deep reinforcement learning. In ICML.
PMLR, 3040-3049.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A
Ortega, DJ Strouse, Joel Z Leibo, and Nando de Freitas. 2018. Intrinsic social
motivation via causal influence in multi-agent RL. (2018).

Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. 2019. Meta rein-
forcement learning with task embedding and shared policy. arXiv preprint
arXiv:1905.06527 (2019).

ITou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. 2021. Cooper-
ative exploration for multi-agent deep reinforcement learning. In ICML. PMLR,
6826-6836.

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129-137.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
NIPS.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.
MAVEN: Multi-Agent Variational Exploration. In NeurIPS, Vol. 32. 7613-7624.
Georg Ostrovski, Marc G Bellemare, Adron Oord, and Rémi Munos. 2017. Count-
based exploration with neural density models. In ICML. PMLR, 2721-2730.
Simone Parisi, Victoria Dean, Deepak Pathak, and Abhinav Gupta. 2021. Interest-
ing object, curious agent: Learning task-agnostic exploration. NeurIPS 34 (2021),
20516-20530.

2093

[27

[28

[29

(30]

@
=

[32

[33

(34

[35

[38

[39

[40

[41

[42

[43

[44

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. 2016. Actor-Mimic:
Deep Multitask and Transfer Reinforcement Learning. In ICLR (Poster).

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. 2017.
Curiosity-driven exploration by self-supervised prediction. In ICML. PMLR, 2778-
2787.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny,
Philip Torr, Wendelin B6hmer, and Shimon Whiteson. 2021. Facmac: Factored
multi-agent centralised policy gradients. NeurIPS 34 (2021).

Dean A Pomerleau. 1991. Efficient training of artificial neural networks for
autonomous navigation. Neural computation 3, 1 (1991), 88-97.

Vitchyr H Pong, Ashvin Nair, Laura Smith, Catherine Huang, and Sergey Levine.
2021. Offline Meta-Reinforcement Learning with Online Self-Supervision. arXiv
preprint arXiv:2107.03974 (2021).

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen.
2019. Efficient off-policy meta-reinforcement learning via probabilistic context
variables. In ICML. PMLR, 5331-5340.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In ICML. PMLR, 4295-4304.
Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-
grave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. 2018.
Learning by playing solving sparse reward tasks from scratch. In ICML. PMLR,
4344-4353.

Lukas Schifer, Filippos Christianos, Josiah P Hanna, and Stefano V Albrecht.
2022. Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated
Exploration. In Proceedings of the 21st AAMAS. 1146-1154.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey

Levine. 2020. Parrot: Data-Driven Behavioral Priors for Reinforcement Learning.
In ICLR.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,
John Schulman, Filip De Turck, and Pieter Abbeel. 2017. # exploration: A study
of count-based exploration for deep reinforcement learning. In 31st NIPS, Vol. 30.
1-18.

Pin Wang, Hanhan Li, and Ching-Yao Chan. 2019. Quadratic Q-network for learn-
ing continuous control for autonomous vehicles. arXiv preprint arXiv:1912.00074
(2019).

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. 2019. Influence-
Based Multi-Agent Exploration. In ICLR.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. 2018. Learning to explore
with meta-policy gradient. arXiv preprint arXiv:1803.05044 (2018).

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
arXiv:2103.01955 [cs.LG]

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie
Fan, and Chongjie Zhang. 2021. Metacure: Meta reinforcement learning with
empowerment-driven exploration. In ICML. PMLR, 12600-12610.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen,
Changjie Fan, Yang Gao, and Chongjie Zhang. 2021. Episodic Multi-agent Rein-
forcement Learning with Curiosity-driven Exploration. NeurIPS 34 (2021).
Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal,
Katja Hofmann, and Shimon Whiteson. 2020. VariBAD: A Very Good Method
for Bayes-Adaptive Deep RL via Meta-Learning. In ICLR.



	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A Motivating Example: Climb Game
	4.1 Exploration Challenge
	4.2 Structured Exploration

	5 Method
	5.1 Meta-Training
	5.2 Meta-Testing
	5.3 Implementation Detail of MESA

	6 Experiments
	6.1 Evaluation Setup
	6.2 Climb Game Variants
	6.3 MPE Domain
	6.4 Multi-agent MuJoCo Environments
	6.5 Generalization Performance of MESA

	7 Conclusions
	Acknowledgments
	References

