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Abstract

Despite the success of equivariant neural networks

in scientific applications, they require knowing

the symmetry group a priori. However, it may be

difficult to know which symmetry to use as an

inductive bias in practice. Enforcing the wrong

symmetry could even hurt the performance. In

this paper, we propose a framework, LieGAN,

to automatically discover equivariances from a

dataset using a paradigm akin to generative ad-

versarial training. Specifically, a generator learns

a group of transformations applied to the data,

which preserve the original distribution and fool

the discriminator. LieGAN represents symmetry

as interpretable Lie algebra basis and can discover

various symmetries such as the rotation group

SO(n), restricted Lorentz group SO(1, 3)+ in tra-

jectory prediction and top-quark tagging tasks.

The learned symmetry can also be readily used in

several existing equivariant neural networks to im-

prove accuracy and generalization in prediction.

Our code is available at https://github.com/Rose-

STL-Lab/LieGAN.

1. Introduction

Symmetry is an important inductive bias in deep learning.

For example, convolutional neural networks (Krizhevsky

et al., 2017) exploit translational symmetry in images, and

graph neural networks utilize permutation symmetry in

graph-structured data (Kipf & Welling, 2016). Equivariant

networks have led to significant improvement in generaliza-

tion, sample efficiency and scientific validity (Zaheer et al.,

2017; Weiler & Cesa, 2019; Cohen et al., 2019a; Wang et al.,

2021). Interest has surged in both theoretical analysis and

practical techniques for building general group equivariant

neural networks (Kondor & Trivedi, 2018; Cohen et al.,

2019b; Bekkers, 2019; Finzi et al., 2021).
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Figure 1. Connection between symmetry and data distribution.

MNIST classification is invariant to a subset of SE(2) transfor-

mations. If the digits are transformed by random rotations and

translations within this subset, the resulting data distribution pt

remains close to the original distribution pd.

However, a key limitation of equivariant neural networks is

that they require explicit knowledge of the data symmetry

before a model can be constructed. In practice, it is some-

times difficult to identify the true symmetries of the data,

and constraining the model by the exact mathematical sym-

metry might not be optimal in real-world situations (Wang

et al., 2022). These challenges call for approaches that can

automatically discover the underlying symmetry of the data.

Neural networks that discover unknown symmetry play the

role of AI scientists , not only by making data-driven pre-

dictions, but also by identifying and describing physical sys-

tems through their symmetries and generating new scientific

insights through the close relationship between symmetry,

conservation laws and underlying governing equations (Alet

et al., 2021). Most existing work on symmetry discovery can

only address a small fraction of potential symmetry types,

such as finite groups (Zhou et al., 2020), subsets of a given

group (Benton et al., 2020) or individual group elements

(Desai et al., 2021). L-conv (Dehmamy et al., 2021) can dis-

cover continuous symmetries without discretization of the

groups, but has limited computational efficiency. A more

general framework is needed for the discovery of various

real-world symmetries.

In this work, we present a novel framework for discovering

continuous symmetry from data using generative adversarial

training (Goodfellow et al., 2014). We establish the con-

nection between symmetry and data distribution as in figure

1. Our method then trains a symmetry generator that trans-

forms the training data and outputs a similar distribution to

the original dataset, which suggests equivariance or invari-
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ance to the learned tranformations. Making use of the theory

of Lie groups and Lie algebras, our method, LieGAN, is able

to discover continuous symmetries as matrix groups. More-

over, through different parameterization strategies, it can

also deal with other types of symmetries, such as discrete

group transformation, as well as the subset of a group.

Our main contributions can be summarized as follows:

1. We propose LieGAN, a method for automatically dis-

covering symmetries from data, capable of learning

general linear symmetries, including the rotation group

SO(n) and restricted Lorentz group SO(1, 3)+.

2. LieGAN is interpretable, directly yielding an orthogo-

nal Lie algebra basis as a discovery result.

3. We show that the Lie algebra learned by LieGAN leads

to excellent performance in downstream tasks such as

N -body dynamics and top quark tagging.

4. We propose LieGNN, a modified E(n) Equivariant

Graph Neural Network (EGNN) (Satorras et al., 2021)

that integrates symmetries learned by LieGAN, achiev-

ing similar performance to equivariant models with

ground truth symmetries.

2. Related Work

Equivariant Neural Networks. Many works have ad-

dressed the problems of designing neural network modules

that are equivariant to specific transformations, such as per-

mutation in sets (Zaheer et al., 2017), local gauge transfor-

mations (Cohen et al., 2019a), scaling (Worrall & Welling,

2019), rotation on spheres (Cohen et al., 2018) and general

E(2) transformations on Euclidean plane (Weiler & Cesa,

2019). Another branch of works focus on developing theo-

retical guidelines and practical methods for building general

group equivariant neural networks (Cohen & Welling, 2016;

Kondor & Trivedi, 2018; Cohen et al., 2019b; Finzi et al.,

2020; 2021). However, these methods rely on explicit a

priori knowledge of the data symmetry. Instead, we are

interested in discovering knowledge of the symmetry itself.

The learned symmetry can then be used to select or design

an equivariant neural network to make predictions.

Generative Adversarial Training. The original genera-

tive adversarial network (GAN) (Goodfellow et al., 2014)

uses a generator to transform random noise into target dis-

tribution. Many variants of GAN have been proposed to

address different tasks other than the unrestricted generation

(Mirza & Osindero, 2014; Karras et al., 2019; Isola et al.,

2016; Zhu et al., 2017; Antoniou et al., 2017). In particular,

CycleGAN (Zhu et al., 2017) learns a generator that maps

the input image to another domain. DAGAN (Antoniou

et al., 2017) also takes data points from a source domain

and generalizes them to a broader domain with a generator

to perform data augmentation, which is related to our task,

as the augmenting process can be regarded as a set of trans-

formations to which the data is invariant. These works use

samples from the original distribution instead of random

noise as generator input and perform domain transfer or

generalization with a generator. Our work proposes another

usage of such design. The generator in our model produces

transformations that are applied to data samples, and discov-

ers the underlying symmetry by learning the correct set of

transformations.

Symmetry Discovery. Many existing symmetry discov-

ery methods (Benton et al., 2020; Zhou et al., 2020; Romero

& Lohit, 2021; Krippendorf & Syvaeri, 2020) limit their

search space to a small fraction of potential symmetry types.

MSR (Zhou et al., 2020) reparameterizes network weights

into task weights and a symmetry matrix and meta-learns

the symmetry matrix to provide information about task sym-

metry. However, it can only be applied to finite groups

and scales linearly in space complexity with the size of the

group, which eliminates the possibility of applying this algo-

rithm to infinite continuous groups. Augerino (Benton et al.,

2020) addresses a different but relevant scenario: learning

the extent of symmetry within a given group. Partial G-

CNN (Romero & Lohit, 2021) also learns group subsets via

distributions on group to describe the symmetry at different

levels in the model. These approaches can only be applied to

cases where the symmetry group is known. Krippendorf &

Syvaeri (2020) proposes to detect symmetries by construct-

ing a synthetic classification task and examining the struc-

ture of network embedding layers. This method involves

some manual procedures, such as defining the classification

task and choosing the metric for latent space analysis. Our

work aims to address all of the above limitations within a

unified, automated framework.

L-conv (Dehmamy et al., 2021) develops a Lie algebra con-

volutional network that can model any group equivariant

functions. However, it performs first order approximation

for matrix exponential and uses recursive layers to push the

kernel away from the identity, which may become too ex-

pensive in practice. Moreover, the experiments are limited

to image datasets.

Desai et al. (2021) also proposes to discover symmetries of

the dataset distribution with a GAN. A major limitation of

their algorithm is that the model can only learn one group

element in a single round of training and has to rely on

other techniques such as subgroup regularization or group

composition to identify the group. Also, their definition of

symmetry is different from ours.

Comparison between LieGAN and other works on symme-

try discovery can be found in Table 1. To the best of our
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knowledge, our approach is the first to address the discovery

of such a variety of symmetries including discrete group,

continuous group, and subset of given or unknown group.

Table 1. Comparison of different models’ capability of discovering

different kinds of symmetries

SYMMETRY MSR AUGERINO LIEGAN

DISCRETE ✓ ✗ ✓

CONTINUOUS ✗ ✗ ✓

GIVEN GROUP SUBSET ✗ ✓ ✓

UNKNOWN GROUP SUBSET ✗ ✗ ✓

3. Background

Before presenting our methodology, we provide some pre-

liminary concepts that appear frequently in our work. We

assume basic knowledge about group theory.

Lie group. A Lie group is a group that is also a differ-

entiable manifold. It can be used to describe continuous

transformations. For example, all 2D rotations form a Lie

group SO(2), where rotation with angle θ can be represented

by R =

[

cos θ − sin θ
sin θ cos θ

]

. Also, all Euclidean transforma-

tions including reflection, rotation and translation form the

Lie group of E(n). Each Lie group is associated with a

Lie algebra, which is its tangent vector space at identity:

g = TIdG. The basis of the Lie algebra Li ∈ g are called

(infinitesimal) generators of the Lie group. Group elements

that are infinitesimally close to identity can be written in

terms of these generators: g = Id +
∑

i ϵiLi.

We can use an exponential map exp : g → G to map Lie

algebra elements to Lie group elements. For matrix groups,

matrix exponential is such a map. For a connected Lie group

G, its elements can be written as g = exp(
∑

i wiLi).

Group representation. We are interested in how group

elements transform the data. We assume that the input space

is X = R
n. A group element g ∈ G can act linearly on

x ∈ X via ρX (g), where ρX : G → GL(n) is a group rep-

resentation. ρX maps each group element g to a nonsingular

matrix ρX (g) ∈ R
n×n that transforms the input vector.

A group representation ρ : G → GL(n) induces a rep-

resentation for the Lie algebra g = TIdG denoted as

dρ : g → gl(n), which relate to the representation of its Lie

group by exp(dρ(L)) = ρ(exp(L)).

4. Symmetry Discovery

We aim to automatically discover symmetry from data. For-

mally, let D = {(xi, yi)}Ni=1 be a dataset with distribu-

tion xi, yi ∼ pd(x, y), input space X = R
n, output space

Y = R
m and an unknown function f : X → Y . We have:

Definition 1 (Equivariance). Suppose a group G acts on

X and Y via representations ρX : G → GL(n) and ρY :
G → GL(m). Then, a function f : X → Y is equivariant

if ∀g ∈ G, (x, y) ∈ D, ρY(g)y = f(ρX (g)x). We omit ρX
and ρY when clear and write gy = f(gx).

We also address invariance in this work, which is a special

case of equivariance when ρY(g) = Id. Next, we describe

the formulation to relate symmetry discovery with genera-

tive adversarial training (Goodfellow et al., 2014).

4.1. Generative Adversarial Symmetry Discovery

By Definition 1, if a group element acts on the input, the

output of an equivariant function is also transformed corre-

spondingly by the representation of the same element. From

another perspective, if all the data samples are transformed

in this way, the transformed data distribution should remain

similar to the original dataset distribution, as is demonstrated

in figure 1.

At a high level, we want to design a generator that can

efficiently produce transformed input and a discriminator

that can not distinguish real samples from the dataset and the

outputs from the generator. Through adversarial training, the

generator tries to fool the discriminator by learning a group

of transformations that minimize the divergence between

the transformed and the original distributions. This group

of transformations defines the symmetry of interest.

We present our symmetry discovery framework in figure 2.

We are interested in how the group G acts on data through

its representations ρX and ρY . We learn G as a subgroup of

GL(k) for some k chosen based on the task. The represen-

tations ρX : GL(k) → GL(n) and ρY : GL(k) → GL(m)
are also chosen and fixed based on the task. The GAN gen-

erator Φ samples an element from a distribution µ defined

on GL(k) and then applies it to x and y:

Φ(x, y) = (ρX (g)x, ρY(g)y) (1)

For an invariant task, for example, we set k = n and

ρX = Id the standard representation and ρY = 1 the trivial

representation. For a time series prediction task, predicting

a system state based on t previous states, we set k = m and

n = tm and ρX = Id⊕t and ρY = Id.

Under this formulation, the generator should learn a sub-

group of the transformations to which f : X → Y is equiv-

ariant. That is, it should generate a distribution close to the

original data distribution. Similar to the setting in GAN, we

optimize the following minimax objective:

min
Φ

max
D

L(Φ, D)

=Ex,y∼pd,g∼µ

[

logD(x, y) + log(1−D(Φ(x, y)))
]
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Figure 2. Structure of the proposed LieGAN model. The transformation generator learns a continuous Lie group acting on the data that

preserves the original joint distribution. For example, this figure shows a task of predicting future 3-body movement based on past

observations, where the generator could learn rotation symmetry.

=Ex,y∼pd
[logD(x, y)] + Ex,y∼pg

[log(1−D(x, y))](2)

where D is a standard GAN discriminator that outputs a

real value as the probability that (x, y) is a real sample,

pd is the density of the original data distribution and pg is

the generator-transformed distribution given according to

change-of-variable formula by

pg(x, y) =

∫

g

µ(g)pd(g
−1x, g−1y)/(|ρX (g)||ρY(g)|)dg

(3)

Under the ideal discriminator, the generator in the original

GAN formulation minimizes the JS divergence between

two distributions (Nowozin et al., 2016). In our setting, we

prove that our generator can achieve zero divergences with

the correct symmetry group under certain circumstances.

Theorem 1. The generator can achieve zero JS divergence

by learning a maximal subgroup G∗ ⊂ GL(n) with re-

spect to which y = f(x) is equivariant if pd(x) is dis-

tributed proportionally to the volume of inverse group ele-

ment transformation along each orbit of G∗-action on X ,

that is, pd(gx0) ∝ |ρX (g−1)||ρY(g−1)|.

The hypothesis of Theorem 1 is equivalent to saying that

pd(x) is uniform along each group action orbit when the

transformation is volume preserving, as in the case of rota-

tion. However, as this is often not satisfied in practice, there

is no guarantee that the generator can achieve zero diver-

gences with nonidentical transformations. Nevertheless, as

formalized in the following theorem, the generator can learn

a nontrivial symmetry under some weak assumptions.

Theorem 2. Under assumptions 1, 2 and 3, the GAN loss

function under the ideal discriminator L(Φ, D∗) is lower

with a generator that learns a subspace of the true Lie

algebra g∗ than a generator with an orthogonal Lie algebra

to g∗. That is, if g1 ∩ g∗ ̸= {0}, g2 ∩ g∗ = {0}, then

L(g1, D
∗) < L(g2, D

∗) = 0.

Theorem 2 ensures that a partially correct symmetry results

in lower loss function value than an incorrect symmetry. In

other words, optimizing (2) leads to symmetry discovery.

The related assumptions and proofs for Theorem 1 and 2

are deferred to Appendix A.1.

4.2. Parameterizing Distributions Over Lie Group

We use the theory of Lie groups to model continuous sets

of transformations. To parameterize a distribution on a Lie

group with c dimensions and k representation dimensions,

our model learns Lie algebra generators {Li ∈ R
k×k}ci=1

and samples the coefficients wi ∈ R for their linear combi-

nation from either a fixed or a learnable distribution. The

Lie algebra element is then mapped to a Lie group element

using the matrix exponential (Falorsi et al., 2019).

w ∼ γβ(w), g = exp
[

∑

i

wiLi

]

(4)

The coefficient distribution γβ can be either fixed or updated,

depending on our focus of discovery. If we have little infor-

mation on the group, then by learning the Li and leaving

the coefficient distribution fixed, our model can still express

distributions over many different groups. On the other hand,

we may want to find a subgroup or a subset of some known

group. For example, the symmetry may be some discrete

subgroup of SO(2) for some tasks. In this case, we fix L
as the rotation generator and learn γβ , revealing peaks at

certain values. Learning γβ is also useful when the task is

not equivariant to the full group, but displays invariance for

a subset of transformations, for example, the case of MNIST

image classification, where the rotation by π will obscure

the boundary between ª6º and ª9º (Benton et al., 2020).

Generally, allowing for β to be learnable gives the model

more freedom to discover various symmetries.

The coefficient distribution γβ may be parameterized in

different ways. A normal distribution centered at the origin

is a natural choice, since it assigns the same probability

density for a group element and its inverse, and the variance

can either be fixed or learned through the reparameterization
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trick (Kingma & Welling, 2013). However, a multimodal

distribution like a Gaussian mixture model may be better at

capturing discrete subgroups.

However, we note that a limitation of using the Lie algebra

to parameterize transformations is that it can only capture a

single connected component of the Lie group. Some groups

such as E(n) do not have a surjective exponential map and

their group elements must be described by introducing addi-

tional discrete generators: g = exp[
∑

i tiLi]
∏

j hj .

4.3. Regularization Against Trivial Solutions

In our optimization problem (2), the generator can learn a

trivial symmetry of identical transformation. We alleviate

this issue by penalizing the similarity between the input and

output of the generator. Let R be similarity function on

X × Y . The regularizer is then defined

lreg(x, y) = R(Φ(x, y), (x, y)). (5)

We note that the similarity function need to recognize the

difference in data before and after the transformation. In

practice, we use cosine similarity, which only has scaling

invariance in all dimensions.

Another issue arises when dealing with multi-dimensional

Lie groups. The model is encouraged to search through

different directions in the manifold of the general linear

group with multiple channels, i.e. Li’s. In practice, however,

we find that they tend to learn similar elements. To address

this problem, we introduce another regularization against

the channel-wise similarity, denoted as

lchreg(Φ) =
∑

1≤i<j≤c

Rch(Li, Lj) (6)

where c is the number of channels in generator and Rch

is the cosine similarity for Li weights. We also consider

setting Rch to be the Killing form (Knapp & Knapp, 1996) ,

a metric defined in the Lie algebra. In this case, minimizing

lchreg corresponds to discovering an orthogonal basis for

the Lie algebra. In practice, we find that cosine similarity

works best.

Combining these regularizers with (2), we optimize the

following objective:

Lreg(Φ, D) =E(x,y),g[logD(x, y) + log(1−D(Φ(x, y)))

+ λ · lreg(x, y)] + η · lchreg(Φ)
(7)

4.4. Model Architecture

LieGAN consists of two components, the generator and the

discriminator. The generator simply samples a Lie group

element to transform the input data and does not have any

deep neural network. The discriminator can be any network

architecture that fits the input. In practice, we use Multi-

layer Perceptron (MLP) as a discriminator unless otherwise

stated. We find that the generator loss is usually higher than

the discriminator loss during training, which suggests that

the generator’s task of finding the correct set of symmetry

transformations is harder. Therefore, a simple discriminator

architecture is sufficient.

5. Using the Discovered Symmetry

The discovered symmetry can be used as an inductive bias

to aid prediction. For instance, Augerino (Benton et al.,

2020) develops an end-to-end pipeline that simultaneously

discovers invariance and trains an invariant model. For our

method, there are multiple ways of utilizing the learned Lie

algebra representation in downstream prediction tasks.

5.1. Data Augmentation

A natural idea would be augmenting the training data with

the transformation generator in LieGAN, which would lead

to better generalization and robustness similar to other data

augmentation approaches (Dao et al., 2019). To perform

data augmentation in the equivariance scenario, we trans-

form the input with group element g and transform the

model output with g−1 to obtain the final prediction

ŷ = g−1fmodel(gx). (8)

5.2. Equivariant Model

The discovered symmetry from LieGAN can also be easily

incorporated into existing equivariant models due to its ex-

plicit representation of the Lie algebra. This procedure is

specific to different equivariant model architectures. We pro-

vide two examples of incorporating the learned symmetry

into EMLP (Finzi et al., 2021) and EGNN (Satorras et al.,

2021), which are also used in experiments.

EMLP. Finzi et al. (2021) provide a simple interface for

building equivariant MLPs for arbitrary matrix groups. We

can directly use the discovered Lie algebra basis as input to

the method and obtain an MLP equivariant to the correspond-

ing connected Lie group, with only a minor modification

to the model. The original EMLP constructs a constraint

matrix according to the specified group and projects net-

work weights to its null space. This does not work well

with the symmetry discovered by LieGAN, because it in-

evitably has some numerical error that results in a higher

rank constraint matrix and thus lower rank weight matrix.

In practice, we raise the singular value threshold to obtain

an approximate equivariant subspace with more dimensions.

Implementation details can be found in Appendix B.1.
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EGNN. Satorras et al. (2021) encode the E(n) equivari-

ance in a graph neural network (GNN) by computing in-

variant edge features using the Euclidean metric. Similarly,

Gong et al. (2022) develop a Lorentz invariant GNN for

jet tagging by computing invariant edge features using the

Minkowski metric. Both methods may be summarized as:

mij =ϕe(hi, hj , ∥xi − xj∥2J , ⟨xi, xj⟩J)
where ∥u∥J =

√
uTJu, ⟨u, v⟩J = uTJv (9)

where hi and hj are scalar node features, ∥ · ∥2J and ⟨·⟩2J are

norms and inner products computed with metric tensor J
and ϕe is a neural network. The tensor J can be varied to

enforce different symmetries, such as diag(1,−1,−1,−1)
for O(1, 3) and Idn for E(n). Under this formulation, the

input features for ϕe are group invariant scalars, which leads

to equivariance of the entire architecture.

However, the selection of metric tensor J relies on knowl-

edge of the specific symmetry group, and the application of

such equivariant models is restricted if no a priori knowl-

edge about the symmetry is readily available. We show

that the discovered symmetry from LieGAN can replace

the requirement of theoretical knowledge through a simple

procedure. First, we derive an equivalent relation between

an arbitrary Lie group symmetry and its invariant metric

tensor (see Appendix A.3 for proof).

Proposition 1. Given a Lie algebra basis {Li ∈ R
k×k}ci=1,

η(u, v) = uTJv (u, v ∈ R
k, J ∈ R

k×k) is invariant to

infinitesimal transformations in the Lie group G generated

by {Li}ci=1 if and only if LT
i J + JLi = 0 for i = 1, 2, ..., c.

This suggests that if we have the discovered a Lie algebra

basis {Li}ci=1, we can obtain the invariant metric tensor J
for the corresponding Lie group easily by solving a linear

equation. However, directly solving this system gives a

zero solution for J . Also, as the basis discovered by Lie-

GAN inevitably has some numerical error, there may not be

a nonzero solution. Taking these into consideration, we add

a regularization term and optimize the following objective

to get an approximation of ideal metric tensor

argmin
J

c
∑

i=1

∥LT
i J + JLi∥2 − a · ∥J∥2 (10)

with a > 0. The choice of regularization coefficient a
and the type of matrix norm can be flexible. A small push

from zero is sufficient to get a reasonable metric J . With

this approach, we can construct equivariant GNN for any

discovered Lie group, which we refer to as LieGNN.

6. Experiments

We experiment on several tasks to demonstrate the capability

of LieGAN. Specifically, we aim to validate (1) whether Lie-

GAN can discover different types of symmetries mentioned

in Table 1; (2) whether the discovered symmetry, combined

with existing models, can boost prediction performance.

6.1. Baselines

Direct comparison with other symmetry discovery methods

is not always possible, since these works deal with differ-

ent settings for discovery (see Table 1). MSR (Zhou et al.,

2020) uses a largely different discovery scheme from ours

and can only learn finite symmetry groups, so it is not in-

cluded in the experiments. SymmetryGAN (Desai et al.,

2021) only learns an individual group element, which dif-

fers from our definition of symmetry discovery. We only

include it in the first experiment to explain the difference.

We mainly compare our method with Augerino (Benton

et al., 2020), which also learns with Lie algebra represen-

tation. Augerino was originally developed for discovering

a subset of a given group rather than an unknown symme-

try group. We adapted Augerino from parameterizing the

distribution over the given group to the distribution over the

entire general linear group search space. Specifically, in the

original Augerino forward function

faug−eq(x) = Eg∼µg
−1f(gx), (11)

we parameterize the distribution µ as in Equation (4). This

provides ground for comparison between our method and

theirs. To differentiate between this modified version with

the original Augerino, we denote this approach as Augerino+

in the following discussion.

Also, we incorporate the symmetry learned by the discovery

algorithms into compatible models such as EMLP (Finzi

et al., 2021) and LorentzNet (Gong et al., 2022). It should

be noted that these prediction models are not directly com-

parable with our method since they use known symmetry

whereas we focus on symmetry discovery. We combine

them with LieGAN to verify whether our learned symmetry

representation leads to comparable prediction accuracy with

the exact symmetry in theory.

6.2. N-Body Trajectory

We test our model as well as the baselines, Augerino

and SymmetryGAN, on the simulated n-body trajectory

dataset from Hamiltonian NN (Greydanus et al., 2019).

It consists of the interdependent movements of multiple

masses. We use a setting where two bodies with iden-

tical masses rotate around one another in nearly circular

orbits. The task is to predict future movements based on

the past series, which is rotational equivariant. The input

and output feature for each timestep has 4n dimensions,

consisting of the positions and momentums of all bodies:

[q1x, q1y, p1x, p1y, ..., qnx, qny, pnx, pny]. The dataset and

training details, as well as an alternative experiment setting
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with three bodies, are provided in Appendix C.1.

We search for symmetries acting on the position and mo-

mentum of each mass separately, which induces a parame-

terization of 2× 2 block diagonal matrix for the generator.

(a) Ground truth (b) LieGAN (c) LieGAN-ES

(d) Augerino+ (e) SymmetryGAN

Figure 3. Comparison between different methods on 2-body tra-

jectory dataset. LieGAN discovers the correct rotation symmetry

with both the original parameterization and the alternative one with

expanded search space (LieGAN-ES), whereas Augerino+ fails.

SymmetryGAN only discovers one group element.

As is shown in Figure 3, LieGAN can discover a symmetry

that is nearly identical to ground truth, with a cosine correla-

tion of 0.9998. We should note that the scale of the generator

should not be taken into consideration when we compare

different representations, because they are basis in the Lie

algebra and are scale irrelevant. In contrast, Augerino+ only

achieves a cosine similarity of 0.4880 with ground truth,

which suggests that Augerino cannot be readily applied to

discovering unknown groups.

On the other hand, SymmetryGAN (Desai et al., 2021) pro-

duces a very similar visualization to ground truth symmetry.

However, this result has a completely different interpreta-

tion. Instead of a Lie algebra generator that generates the

entire group, SymmetryGAN is learning only one element

of the group. In this case, it learns a rotation by π
2 , which

coincides with the Lie algebra generator.

In addition, we expand the symmetry search space of Lie-

GAN to enable interactions between the position or momen-

tum of different bodies. The result is shown in Figure 3c.

Given that the origin is located at the center of mass and

that the two bodies have the same mass, this can be viewed

as another possible representation of the same rotation sym-

metry. Details of derivation for this result are included in

Appendix A.2.

Besides the interpretation of the learned symmetry, we can

also inject it into equivariant MLP or use it augment the

training data. For prediction, The train and test datasets are

Table 2. Test MSE loss of 2-body trajectory prediction. Lie-

GAN and LieGAN-ES correspond to different parameterizations

of our model as is shown in Figure 3. Symmetries from different

discovery models and ground truth are inserted into EMLP or used

to perform data augmentation. HNN is also included for campar-

ison between equivariant models and model with other types of

inductive bias.

Model EMLP Data Aug.

LieGAN 6.43e-5 3.79e-5

LieGAN-ES 2.41e-4 6.17e-5

Augerino+ 9.41e-4 1.47e0

SymmetryGAN - 6.79e-4

Ground truth 9.45e-6 1.39e-5

HNN 3.63e-4

MLP 8.49e-2

constructed to have different distributions so that knowledge

of symmetry would be useful for generalization. The results

are shown in Table 2. All experiments use the same config-

uration for MLP except for the introduced equivariance or

data augmentation procedure. For Equivariant MLP, the two

parameterizations of LieGAN outperform other symmetry

discovery methods, approaching the performance of ground

truth symmetry. MLP with no equivariance constraint can

achieve lower training loss, but has trouble generalizing to a

test set with the shifted distribution. For data augmentation,

LieGAN can also achieve comparable accuracy to ground

truth symmetry. SymmetryGAN only transforms the data

by a fixed transformation, and its performance lies between

continuous augmentation and no augmentation.

6.3. Synthetic Datasets

Next, we apply LieGAN to a synthetic regression problem

given by f(x, y, z) = z/(1 + arctan y
x mod 2π

k ). This

function is invariant to rotations of a multiple of 2π/k in xy
plane, which form a discrete cyclic subgroup of SO(2) with

a size of k. The goal is to demonstrate that our model can

capture the symmetries of not only continuous Lie groups

but also their discrete subgroups.

In this task, we fix the coefficient distribution to a uniform

distribution on an integer grid of [−10, 10] to capture dis-

crete symmetry. Figure 4 shows an example of LieGAN dis-

covery in a dataset with C7 rotation symmetry. The dis-

covered symmetry is almost identical to ground truth, with

an MAE of 0.003. Unlike the previous case of continuous

rotation, the scale of the basis matters because LieGAN is

modeling a set of discrete rotation symmetries with fixed

angles. When acting on data, LieGAN leaves the overall

data distribution unchanged while non-trivially transforms

individual data points in the highlighted sector. LieGAN

discovers not only the rotation group but also the correct

7
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(a) LieGAN (b) Ground truth

(c) Original data (d) Transformed data

Figure 4. Result on the synthetic discrete rotation invariant task.

(a-b): LieGAN discovers the correct rotation group and the correct

scale of transformations. (c-d): Data distribution on z = 1 plane.

The color indicates the output function value. LieGAN leaves the

overall data distribution unchanged while non-trivially rotating

individual data points in the highlighted sector.

scale of transformations, which demonstrates its ability to

learn a subgroup of an unknown group, which is yet another

generalization from discovering the continuous symmetry

of an entire Lie group.

Additional results on synthetic tasks can be found in Ap-

pendix C.2 and C.3. For this rotation invariant task, we

change the parameter k to show that LieGAN can capture

different discrete rotation groups. We also compare LieGAN

with the baseline, SymmetryGAN, to demonstrate its ad-

vantage. Besides, other synthetic functions are designed to

show that LieGAN can deal with various symmetry groups

and can even work well on complex values.

6.4. Top tagging

We are also interested in finding symmetry groups with more

complicated structures. For example, Lorentz group is an

important set of transformations in many physics problems.

It is a 6-dimensional Lie group with 4 connected compo-

nents. While our method cannot be readily generalized

to the problem of finding discrete generators, we can test

whether it is capable of extracting the identity component of

the Lorentz group, SO(1, 3)+. We use Top Quark Tagging

Reference Dataset (Kasieczka et al., 2019) for discovering

Lorentz symmetry, where the task is to classify between top

quark jets and lighter quarks. There are 2M observations in

total, each consisting the four-momentum of up to 200 parti-

cle jets. The classification task is Lorentz invariant, because

a rotated or boosted input momentum should belong to the

same category.

In this task, we set the generator to have up to 7 channels,

which is slightly more than enough to capture the structure

of 6-dimensional SO(1, 3)+. We use cosine similarity as

between-channel regularization function lchreg.

Figure 5. LieGAN discovers an approximate SO(1, 3)+ symmetry

in top tagging dataset, where channels 0, 1, 3 indicate boost along

x-, y- and z-axis and channels 2, 5, 6 correspond to SO(3) rota-

tion. Bottom-right: Computed invariant metric of the discovered

symmetry by solving Equation (10).

The discovery results are shown in Figure 5. The four

dimensions in the matrix correspond to the 4-momentum

(E/c, px, py, pz). LieGAN is successful in recovering the

SO(1, 3)+ group. Its channels 2, 5, 6 correspond to SO(3)
rotation, and channels 0, 1, 3 indicate boost along x-, y- and

z-axis. In addition, the generator learns an additional Lie

algebra element that scales different input dimensions with

approximately the same amounts.

(a) Original (b) Transformed

Figure 6. The data distribution before and after the LieGAN trans-

formations. The overall distribution remains unchanged, while the

highlighted data points are non-trivially transformed.

Besides, figure 6 visualizes the distribution of the leading

jet component in each event before and after LieGAN trans-

formations. For better demonstration, four 2D marginal dis-

tributions of (E, px), (E, py), (E, pz), (px, py) are plotted.

The overall distribution remains unchanged, while the data

points in the highlighted portions are rotated and boosted

8
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Table 3. Test accuracy and AUROC on top tagging. Our proposed

model, LieGNN, reaches the performance with LorentzNet which

explicitly encodes Lorentz symmetry. The result of non-equivariant

GNN (LorentzNet (w/o)) and EGNN is from Gong et al. (2022).

Model Accuracy AUROC

LorentzNet 0.940 0.9857

LieGNN 0.938 0.9848

LorentzNet (w/o) 0.934 0.9832

EGNN 0.922 0.9760

to new locations. These results suggest that LieGAN is ca-

pable of discovering high-dimensional Lie groups and also

decoupling the group structure to a simple and interpretable

representation of Lie algebra basis.

It is also possible to inject this knowledge of Lie group

symmetry into existing prediction models. Following the

guideline in Section 5.2, we compute the invariant metric of

the discovered symmetry (Figure 5 bottom-right), which is

almost identical to the true Minkowski metric, with a cosine

correlation of −0.9975. The computed metric is used to

construct the LieGNN equivariant to the discovered group.

Table 3 shows the prediction results. Without requiring any

prior knowledge, LieGNN with the metric derived from

LieGAN discovery reaches the performance of LorentzNet

(Gong et al., 2022) with the true Minkowski metric.

7. Conclusion

In this paper, we present a method of discovering symmetry

from training dataset alone with generative adversarial net-

work. Our proposed framework addresses the discovery of

various symmetries, including continuous Lie group sym-

metries and discrete subgroup symmetries, which is a signif-

icant step forward compared to existing symmetry discovery

methods with relatively narrow search space for symmetry.

We also develop pipelines for utilizing the learned symmetry

in downstream prediction tasks through equivariant model

and data augmentation, which proves to improve prediction

performance on a variety of datasets.

This work currently deals with global symmetry of sub-

groups of general linear groups. However, it is also possible

to apply this framework to more general scenario of sym-

metry discovery, such as non-connected Lie group symme-

try, nonlinear symmetry and gauge symmetry, by replacing

the simple linear transformation generator in LieGAN with

more sophisticated structure. For instance, nonlinear sym-

metry could possibly be found by adding layers in generator

to project the input to a space with linear symmetry.

Moreover, LieGAN shows tremendous potential in its appli-

cation to supervised prediction tasks, which suggests that

automatic symmetry discovery methods may eventually re-

place the need of human prior knowledge about symmetry.

However, this ultimate vision can be fully realized only

if equivariant neural network models can be implemented

for more general choices of symmetry groups rather than

a few specific symmetries. We have demonstrated in this

work how to incorporate the discovered symmetry into some

equivariant models including EMLP and EGNN, which we

hope could inspire further exploration in this topic.
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A. Proofs

A.1. Optimizng the GAN loss function

We show in this section how optimizing the GAN loss function can lead to proper symmetry discovery. We assume in the

first place the existence of a symmetry group and derive the properties of loss when the generator learns this group or its

subgroup. We use the definition of perfect symmetry, that is, gf(x) = f(gx) or Pd(gf(x)|gx) = 1 for symmetry group

elements g. We use pd and pgen to denote the original distribution of data and the generated distribution.

Assumption 1. There exists a maximal subgroup of GL(n), denoted as G∗, which y = f(x) is equivariant to. That is,

∀g ∈ G∗, gy = f(gx); ∀g ∈ GL(n)\G∗, pd(gy ̸= f(gx)) > 0.

Theorem 1. The generator can achieve zero JS divergence by learning a maximal subgroup G∗ ⊂ GL(n) with respect to

which y = f(x) is equivariant if pd(x) is distributed proportionally to the volume of inverse group element transformation

along each orbit of G∗-action on X , that is, pd(gx0) ∝ |ρX (g−1)||ρY(g−1)|.

Proof. Revisiting Eq (3), the generated distribution is given by

pgen(x, y) =

∫

G∗

µ(g)pd(g
−1x)pd(g

−1y|g−1x)/|ρX (g)||ρY(g)|dg (12)

If pd(x) is proportionally distributed along each orbit of G∗-action on X , then

pgen(x, y) =

∫

G∗

µ(g)pd(x)pd(g
−1y|g−1x)dg (13)

For any group element g ∈ G∗, pd(y|x) = pd(g
−1y|g−1x). Therefore,

pgen(x, y) =(

∫

G∗

µ(g)dg)pd(x)pd(y|x) (14)

=pd(x, y) (15)

As this equality holds for all (x, y), we have zero divergence between these two distributions, pd and pgen.

While this distribution condition is often not satisfied in practice, we further show that under certain assumptions on data and

an ideal discriminator, a nontrivial Lie subgroup of the true symmetry group corresponds to a local minimum of generator

loss function.

Assumption 2. For each datapoint from the original distribution, transformations outside that maximal subgroup GT on it

would not produce a valid datapoint. Formally, denoting Ḡ∗ = GL(n)\G∗,
∫

Ḡ∗
µ(g)pd(gy|gx)dg = 0. (While there might

be slim chances that gf(x) = f(gx) for some g ∈ Ḡ∗, the integration can still yield zero as long as we parameterize µ(g)
with good properties.)

Assumption 3. For each orbit [x] of G∗ with Pd([x]) > 0, ∃x0 ∈ [x], c > 0,m > 0 s.t. ∀g ∈ δ0(m), pd(gx0) ≥ c,
pd(g

2x0) ≥ c, and V (g) = |ρX (g)||ρY(g)| ∈ (vm, Vm), where δ0(m) is a neighborhood of id with Pµ(δ0(m)) = m and

Vm > vm > 0 are constants depending on m.

This is actually a much more relaxed version of distribution constraint along the group action orbits in Theorem 1, which

may be unrealistic. We assume instead that there exists a continuous neighborhood in each orbit where the density of x is

above some threshold.

Theorem 2. Under assumptions 1, 2 and 3, the GAN loss function under the ideal discriminator L(Φ, D∗) is lower with a

generator that learns a subspace of the true Lie algebra g∗ than a generator with an orthogonal Lie algebra to g∗. That is,

if g1 ∩ g∗ ̸= {0}, g2 ∩ g∗ = {0}, then L(g1, D
∗) < L(g2, D

∗) = 0.

Proof. As an established result in GAN, the optimal discriminator for the loss function (2) is

D∗(x, y) =
pd(x, y)

pd(x, y) + pgen(x, y)
(16)
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Substituting (16) into (2), we get

L(Φ, D∗) =

∫

pd(x, y) log
pd(x, y)

pd(x, y) + pgen(x, y)
+ pgen(x, y) log

pgen(x, y)

pd(x, y) + pgen(x, y)
dxdy (17)

=

∫

pd(x,y) ̸=0

pd(x, y) log
pd(x, y)

pd(x, y) + pgen(x, y)
+ pgen(x, y) log

pgen(x, y)

pd(x, y) + pgen(x, y)
dxdy (18)

where, denoting µ̃(g) = µ(g)/|ρX (g)||ρY(g)|,

pgen(x, y) =

∫

g

µ̃(g)pd(g
−1x)pd(g

−1y|g−1x)dg (19)

Because the Haar measure dg is invariant to inversion, we have

pgen(x, y) =

∫

g

µ̃(g−1)pd(gx)pd(gy|gx)dg (20)

In practice, we use Gaussian distribution for µ(g), which assigns the same probability for a group element and its inverse.

(This is also true for many other common choices of distribution, such as uniform distribution centered at origin.) Therefore,

denoting V (g) = |ρX (g)||ρY(g)|,

pgen(x, y) =

∫

g

µ(g)pd(gx)pd(gy|gx)|ρX (g)||ρY(g)|dg (21)

=

∫

g

µ(g)pd(gx)pd(gy|gx)V (g)dg (22)

It is easy to show that the Lie group generated by the intersection of two Lie algebras coincides with the intersection of Lie

groups generated by these two Lie algebras, respectively. Therefore, as g2 ∩ gT = {0}, G2 ∩GT = {id}. According to

Assumption 2,

pgen(x, y;G2) =

∫

g

µ(g)pd(gx)pd(gy|gx)V (g)dg (23)

=

∫

g∈δ0(1−η)

µ(g)pd(gx)pd(gy|gx)V (g)dg+

∫

g/∈δ0(1−η)

µ(g)pd(gx)pd(gy|gx)V (g)dg (24)

≤
∫

g∈δ0(1−η)

Mµ(g)pd(gy|gx)dg+
∫

g/∈δ0(1−η)

µ(g)pd(gx)V (g)dg (25)

=0 +

∫

g/∈δ0(1−η)

µ(g)pd(gx)V (g)dg (26)

where, following the notations in Assumption 3, δ0(1 − η) is the neighborhood of id, Pµ(δ0(1 − η)) = 1 − η, and

V (g) ≤ V1−η . Therefore, there exists an upper bound M = maxg∈δ0(1−η) pd(gx)V (g).

For the integral on g /∈ δ0(1− η), as the Gaussian density µ(g) decays exponentially with V (g) and pd(gx) has an upper

bound, ∀ϵ > 0, ∃η s.t.
∫

g/∈δ0(1−η)
µ(g)pd(gx)V (g)dg < ϵ.

Therefore, pgen(x, y;G2) = 0 and L(g2, D
∗) = 0.

On the other hand, g1 ∩ g∗ ̸= {0} ⇒ G1 ∩ G∗ ̸= {id}. We consider the integral (18) along each possible orbit of G∗.

According to Assumption 3, there exists an x-neighborhood X = δ0(m)x0 s.t. ∀x ∈ X, pd(x, f(x)) > c. For the generated
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distribution on this neighborhood, we have

pgen(x, f(x)) =

∫

g

µ(g)pd(gx)V (g)dg (27)

≥
∫

g∈δ0(m)

µ(g)pd(gx)V (g)dg (28)

≥
∫

g∈δ0(m)

µ(g)cvmdg (29)

=mcvm > 0 (30)

As the supports of pd and pgen overlap on this neighborhood, we have L(g1, D
∗) < 0 = L(g2, D

∗).

A.2. Experiment Result on 2-Body Trajectory Dataset

In Figure 3c, we observe an unfamiliar symmetry representation. In fact, this is another possible representation for rotation

symmetry. The learned Lie algebra basis L can be expressed in the following form after discarding the noise:

R =

[

0 −1
1 0

]

L =









R −R
R −R

−R R
−R R









Computing the matrix exponential gives

exp(θL) =









L(θ) −L(θ)
L(θ) −L(θ)

−L(θ) L(θ)
−L(θ) L(θ)









+ I

L(θ) =

+∞
∑

k=0

22k(−1)kθ2k+1

(2k + 1)!
R+

+∞
∑

k=1

22k−1(−1)kθ2k

(2k)!
I

As the origin for this dataset is at the center of mass and m1 = m2, we have q1 = −q2 and p1 = −p2. Therefore,

exp(θL)









q1

p1

q2

p2









= diag(I + 2L(θ))









q1

p1

q2

p2









I + 2L(θ) =

+∞
∑

k=0

22k+1(−1)kθ2k+1

(2k + 1)!
R+

+∞
∑

k=0

22k(−1)kθ2k

(2k)!
I

=

[

cos 2θ − sin 2θ
sin 2θ cos 2θ

]

which indicates that this is another representation for rotation specific to this dataset.

A.3. Computing Group Invariant Metric Tensor

Proposition 1. Given a Lie algebra basis {Li ∈ R
k×k}ci=1, η(u, v) = uTJv (u, v ∈ R

k, J ∈ R
k×k) is invariant to

infinitesimal transformations in the Lie group G generated by {Li}ci=1 if and only if LT
i J + JLi = 0 for i = 1, 2, ..., c.

Proof. An infinitesimal transformation in group G generated by the given Lie algebra basis can be written as the matrix
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representation g = I +
∑

i ϵiLi.

η(u, v) = η(gu, gv) (31)

⇐⇒uTJv = uT gTJgv (32)

⇐⇒uT (I +
∑

i

ϵiL
T
i )J(I +

∑

i

ϵiLi)v = uTJv (33)

⇐⇒uTJv + uT (
∑

i

ϵi(L
T
i J + JLi))v +O(ϵ2) = uTJv (34)

⇐⇒uT (
∑

i

ϵi(L
T
i J + JLi))v = 0, ∀u, v ∈ R

n (35)

As this holds for any infinitesimal transformation g, we can set ϵ−i = 0 to get

ϵi(L
T
i J + JLi) = 0, i = 1, 2, ..., c (36)

Therefore, LT
i J + JLi = 0, i = 1, 2, ..., c.

On the other hand, if LT
i J + JLi = 0, i = 1, 2, ..., c, then

∑

i

ϵi(L
T
i J + JLi) = 0, ∀ϵ ∈ R

c (37)
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B. Experiment Details

This section provides detailed explanation on the experiment settings, including the dataset generating procedure, the

hyperparameters used in training, etc.

B.1. N-Body Trajectory

We use the code from Hamiltonian Neural Networks 1 (Greydanus et al., 2019) to generate the dataset for this task. We

construct the train and test sets with different distributions to test the generalization ability of the models. Specifically, we

sort the samples in terms of the polar angle of the position of the first particle at the starting timestep of trajectory, and divide

the sorted dataset into train and test sets.

The task for this dataset is to predict K future timesteps of 2-body movement based on P past timesteps of observa-

tion, where the feature for each timestep has 8 dimensions, consisting of the positions and momentums of two bodies:

[q1x, q1y, p1x, p1y, q2x, q2y, p2x, p2y]. In our experiment, we set P = K = 5. When discovering symmetry, the Lie-

GAN generator takes both the past observations and future predictions as input, yielding an input dimension of 80. The

generator transforms each timestep at the same time, which means that it is learning a group representation of R8×8 that acts

simultaneously on each of the past input and future output timesteps. On the other hand, we use a 3-layer MLP as with

discriminator, with input dimension 80, hidden dimension 512, and leaky ReLU activation with negative slope 0.2. We

use only the regularization against identical transformations, i.e. lreg(x, y) in (5), with the regularization coefficient λ = 1.

but not the between-channel regularization in (6), because the generator only has a single channel and there is no need for

it. The learning rates for the discriminator and the generator are set to 0.0002 and 0.001, respectively. LieGAN is trained

adversarially for 100 epochs.

In the prediction task with equivariant model, we use EMLP with 3 hidden layers and a hidden representation of 5V , where

V stands for an 8-dimensional vector just as the feature for each timestep. We train all EMLPs constructed with different

equivariances with lr=0.0001 for 5000 epochs.

Figure 7. Singular values of the EMLP constraint matrices derived from different equivariances under the representation of group actions

on weight matrices mapping from V1 → V2, where V1 and V2 are both 8-dimensional vector spaces. The y axis is log-scaled for

better visualization. It can be observed that the singular values of the constraint matrix corresponding to the symmetry discovered by

LieGAN have a sharp decrease at the same position as the matrix for ground truth symmetry. This suggests that we can slightly relax the

singular value threshold to obtain a higher dimensional equivariant subspace.

As is mentioned in Section 5.2, we slightly modified the EMLP implementation to adapt to the noised discovery result

from LieGAN. EMLP projects the network weight to an equivariant subspace, which is the null space of the constraint

1https://github.com/greydanus/hamiltonian-nn
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matrix derived from the provided equivariance and input and output representations. The null space is computed with

SVD. This method usually works for common handpicked symmetries, such as Euclidean group and Lorentz group, which

typically have sparse and clean matrix representations. However, the symmetry discovered by LieGAN inevitably has some

numerical error. While such error could be largely negligible when we visualize the discovered symmetry or use it for data

augmentation, it will cause problem in the SVD procedure in the EMLP implementation. Even a small noise that changes a

matrix representation entry from zero to small nonzero values could result in a constraint matrix with higher rank, which

then leads to a lower dimensional equivariant subspace and a lower rank weight matrix. However, we can raise the singular

value threshold to larger values to calculate an approximate null space, which has higher dimensions. Figure 7 shows how

we modify the singular value threshold. The original EMLP implementation sets a threshold of 1e-5. With this threshold,

the symmetries discovered by LieGAN lead to a weight matrix that maps each input vector to each hidden vector with a rank

of 8, significantly lower than 32, which is the case for ground truth rotation symmetry. However, it can also be observed that

the singular values of the constraint matrix corresponding to LieGAN symmetry have a sudden fall at the same position as

the matrix for ground truth symmetry. Therefore, we can raise the singular value threshold to 5e-3, which is still reasonably

small, and obtain a 32-dimensional approximately equivariant subspace for the discovered symmetry. This procedure proves

to significantly improve prediction performance for EMLP constructed with the discovered symmetry.

B.2. Synthetic Regression

This is a regression problem given by f(x, y, z) = z/(1 + arctan y
x mod 2π

k ). This function is invariant to rotations

of a multiple of 2π/k in xy plane, which form a discrete cyclic subgroup of SO(2) with a size of k. In our experiment,

we construct the dataset with k = 7. We randomly sample 20000 inputs (x, y, z) from a standard multivariate Gaussian

distribution and calculates the output analytically. For symmetry discovery, we use a generator with a single channel of R3×3

matrix representation and a 3-layer MLP discriminator with input dimension 4 (which is (x, y, z, f)), hidden dimension

512, and leaky ReLU activation with negative slope 0.2. The coefficient distribution in the generator is set to a uniform

distribution on integer grid between [−10, 10]. We use regularization term lreg with coefficient λ = 0.01. The learning rates

for the discriminator and the generator are set to 0.0002 and 0.001, respectively. LieGAN is trained for 100 epochs.

B.3. Top Quark Tagging

For symmetry discovery, we use a generator with 7 channels of R4×4 matrix representations acting on the input 4-momenta

(E/c, px, py, pz). The input consists of the momenta of up to 200 constituents for each sample, sorted by the transverse

momentum of each constituents. We truncate the input to the momenta of the two leading constituents, which gives an

input dimension of 8. As this classification task is invariant, the generator does not change the category label associated

with each sample. The discriminator takes both the transformed input momenta gx and the output label gy = y as its input.

It first transforms y to a real-valued vector with an embedding layer, and then concatenates the embedding with gx, and

passes them through a 3-layer MLP with hidden dimension 512 and leaky ReLU activation with negative slope 0.2. We use

regularizations lreg with coefficient λ = 1 and lchreg with coefficient η = 0.1. The learning rates for the discriminator and

the generator are set to 0.0002 and 0.001, respectively. LieGAN is trained for 100 epochs.

For prediction with LieGNN, we first calculate the invariant metric tensor based on the discovered symmetry according to

Equation (10). We optimize the objective with a = 0.0005 and matrix max norm using a gradient descent optimizer with

step size of 1× 10−5. Then, we build the LieGNN prediction model based on LorentzNet implementation 2. The model has

6 group equivariant blocks with 72 hidden dimensions. We use a dropout rate of 0.2 and weight decay rate of 0.01. The

model is trained for 35 epochs with a learning rate of 0.0003. These settings are the same for LorentzNet and LieGNN.

2https://github.com/sdogsq/LorentzNet-release
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C. Additional Experiments

C.1. N-Body Trajectory

We extend the 2-body setting in Section 6.2 to 3-body movements. Despite the increased complexity, LieGAN is still able to

discover the rotation symmetry in this case, as is shown in Figure 8.

Figure 8. Symmetry discovery result on 3-body trajectory prediction dataset. LieGAN can also learn an accurate representation of rotation

symmetry as in the case of 2-body dataset.

C.2. Synthetic Regression

Consider the function f(x, y, z) = z/(1 + arctan y
x mod 2π

k ) introduced in Section 6.3. We use different values of k
to construct functions that are invariant to different groups. Table 4 shows the results for k = 6, 7, 8, corresponding to

the cyclic groups C6,C7,C8. LieGAN successfully captures these discrete rotation groups. SymmetryGAN works fine in

some cases, but its convergence heavily depends on random initialization. For example, it does not converge for k = 8 and

converges to a non-generator element R(4π/3) for k = 6.

k 6 7 8

LieGAN 0.012 0.003 0.011

SymmetryGAN 0.024* 0.034 N/A

Table 4. Mean absolute error between the discovered symmetry representations and ground truths.

C.3. More Synthetic Tasks

Partial permutation symmetry. Consider the function f(x) = x1+x2+x3+x2
4−x2

5, x ∈ R
5. It has partial permutation

symmetry, i.e. the output stays the same if we permute the first 3 dimensions of x, but it will change if we also permute the

last 2 dimensions. As permutation is a discrete symmetry, we set the coefficient distribution to a uniform distribution on an

integer grid, similar to the setting in Section 6.3.

Figure 9. Discovered partial permutation symmetry.
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Figure 9 shows the discovery result. The LieGAN generator exactly matches the ground truth,

Ltruth = log(













0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1













) ≈ 1.21×













0 1 −1 0 0
−1 0 1 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0













,

with MAE = 0.003. The figure also shows that when we compute the exponential of L, 2L and 3L, we get the permutations

(123), (132) and id.

SU(2) symmetry. In this example, we show that LieGAN can also work on complex-valued tasks. Consider the function

f(x, y) = 1
2 (x1y2 − x2y1)

2 + (x1y2 − x2y1), x, y ∈ C
2. Such holomorphic functions are referred to as superpotentials

which are relevant to supersymmetric field theories (Krippendorf & Syvaeri, 2020). We want to find a complex Lie algebra

representation, i.e. {Li ∈ C
2×2}ci=1, that acts on the inputs, x and y, simultaneously. The true underlying invariance here is

the special unitary group, SU(2).

Figure 10. The complex Lie algebra discovered by LieGAN.

We set the number of generator channels to c = 3. Figure 10 shows the discovered complex Lie algebra. It can be

approximately written in the following numerical form:

L1 =

[

0 1
−1 0

]

, L2 =

[

1 + c1i 0
0 −1− c1i

]

, L3 =

[

−1 c2i
c2i 1

]

A more familiar form of su(2) representation is given by

u1 =

[

0 −1
1 0

]

, u2 =

[

i 0
0 −i

]

, u3 =

[

0 i
i 0

]

It can be easily checked that our discovery result is equivalent to this representation upon a change of basis:





u1

u2

u3



 =





−1
i

1+c1i
1

c2(1+c1i)
1
c2









L1

L2

L3





Thus, we may conclude that LieGAN can identify the SU(2) invariance in this function.
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C.4. Rotated MNIST

We consider the classic example of image classification on the MNIST (Deng, 2012) dataset. The original dataset is

transformed by rotations by up to 45 degrees so that it has SE(2) symmetry which includes the rotations and translations on

2D grids. We set the number of generator channels to c = 1. We set the search space to all affine transformations on 2D

space, which is 6-dimensional. The discovery result is

L =





0.01 −0.66 0.08
0.66 −0.01 −0.01
0 0 0





This can be interpreted as a mixture of rotation (L[1, 0] = −L[0, 1] = 0.66) and translation (L[0, 2] = 0.08), where the

magnitude of rotations is larger than the magnitude of translations. Figure 11 visualizes the original and transformed MNIST

digits.

Figure 11. MNIST samples transformed by LieGAN. The first column shows the original samples from RotMNIST. For each image, we

sample 15 group elements from LieGAN and plot the transformed images.

C.5. Molecular Property Prediction

We are also interested in whether LieGAN can recover SE(3) symmetry (the rotations and translations in 3D space), which

has wide applications in computer vision, molecular dynamics, etc. Thus, we experiment on QM9 (Blum & Reymond, 2009;

Rupp et al., 2012), where the task is to predict molecular properties based on the 3D coordinates and charges of the atoms.

We set the number of generator channels to c = 6, which matches the dimension of SE(3). Figure 12 shows the discovered

Figure 12. Discovery result for QM9 dataset.

Lie algebra representations, which produce group representations that act on the affine coordinates (x, y, z, 1). LieGAN can

discover an approximate SE(3) symmetry, where the skew-symmetric entries in the first three dimensions indicate rotations

along different axes, and the non-zero entries in the last column indicate translations along different directions.
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We can also use the discovered LieGAN symmetry to perform data augmentation during training. The discovered symmetry

proves to increase the prediction accuracy on different QM9 tasks compared to a model with no symmetry, as is shown in

table 5.

Task No symmetry LieGAN SE(3)
HOMO 52.7 43.5 36.5

LUMO 43.5 36.4 29.8

Table 5. Test MAE (in meV) on QM9 tasks. The results for no symmetry and SE(3) symmetry are referred from Benton et al. (2020).
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