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Abstract

Equivariant neural networks have shown
great success in reinforcement learning, im-
proving sample efficiency and generalization
when there is symmetry in the task. How-
ever, in many problems, only approximate
symmetry is present, which makes imposing
exact symmetry inappropriate. Recently, ap-
proximately equivariant networks have been
proposed for supervised classification and
modeling physical systems. In this work,
we develop approximately equivariant algo-
rithms in reinforcement learning (RL). We
define approximately equivariant MDPs and
theoretically characterize the effect of ap-
proximate equivariance on the optimal Q
function. We propose novel RL architec-
tures using relaxed group convolutions and
experiment on several continuous control do-
mains and stock trading with real financial
data. Our results demonstrate that approxi-
mate equivariance matches prior work when
exact symmetries are present, and outper-
forms them when domains exhibit approx-
imate symmetry. As an added byproduct
of these techniques, we observe increased ro-
bustness to noise at test time.

1 Introduction

Symmetry is a powerful inductive bias that can be
used to improve generalization and data efficiency
in deep learning. One way to leverage symmetry
is through equivariant neural networks, which are
model classes constrained to respect the symmetry of

*Work done during internship at J.P. Morgan AI Research.

Figure 1: An approximately equivariant policy π on
a Reacher domain, where the goal is to determine the
torques (green, magenta) to apply on each joint for the
fingertip to reach the target (red). Due to wear, the
first joint is more responsive to positive torques. When
the state is flipped, the policy also flips the actions but
can learn to adjust for symmetry breaking factors.

a known ground truth. Equivariant neural networks
have successfully been applied to image classification
(Cohen and Welling, 2016; Worrall et al., 2017), par-
ticle physics (Bogatskiy et al., 2020), molecular biol-
ogy (Satorras et al., 2021; Thomas et al., 2018), and
robotic manipulation (Wang et al., 2022b). Empirical
studies have demonstrated that equivariant networks
require much less data than their standard neural net-
work counterparts (Winkels and Cohen, 2018; Wang
et al., 2022b) and can generalize better to unseen data
(Wang et al., 2020; Fuchs et al., 2020).

However, equivariant neural networks crucially assume
that the data is perfectly symmetric in both the inputs
and outputs, which may not be true in real-world data
such as fluid dynamics (Wang et al., 2022c) or finan-
cial data (Black, 1986). By relaxing the strict equivari-
ance constraints, approximately equivariant networks
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can outperform exactly equivariant and unconstrained
networks in the presence of asymmetry. While various
approaches to achieve approximate equivariance have
been proposed (Wang et al., 2022c; van der Ouderaa
et al., 2022; McNeela, 2023; Kim et al., 2023), they
focused on vision-based tasks or dynamics modeling.

One area where symmetry has been especially useful is
in reinforcement learning (RL), where equivariant net-
works greatly improve sample efficiency (Wang et al.,
2022b; Zhu et al., 2022), a key challenge in RL. How-
ever, most works consider exact symmetry and use ex-
act equivariant networks, which cannot address sym-
metry breaking in the reward or transition functions
or noise in the observations. In this work, we em-
ploy relaxed group convolutional neural networks to
RL (Wang et al., 2022c), which are flexible enough to
adapt to approximate equivariance but also have im-
proved efficiency and robustness.

In this paper, we theoretically and empirically inves-
tigate approximately equivariant reinforcement learn-
ing. Our key contributions are to:

• formalize the notion of approximately equivariant
MDPs and prove that the (optimal) value function
in such MDPs exhibits approximate equivariance,
motivating the use of approximately equivariant
RL,

• introduce a novel approximately equivariant RL
architecture using relaxed group convolutions,

• demonstrate improved sample efficiency and ro-
bustness to noise for our approximately equivari-
ant RL compared to other baselines with or with-
out symmetry biases,

• successfully apply approximate equivariant RL to
real-world financial data.

2 Related Work

Equivariant Reinforcement Learning Early
works explored equivalence classes in reinforcement
learning from the lens of abstractions by defining
MDP homomorphisms (Ravindran and Barto, 2002;
Zinkevich and Balch, 2001). More recently, several
approaches have combined function approximation
with RL with equivariant neural networks (Van der
Pol et al., 2020; Wang et al., 2022b; Mondal et al.,
2020) with significantly improved sample efficiency.
However, all of these works considered perfectly
symmetric domains where the policy is constrained
to be exactly equivariant. This paper considers do-
mains with symmetry breaking factors where exactly
equivariant networks can be suboptimal.

Approximate Equivariant Architectures There
has been recent interest in exploring approximate
equivariance and approximately equivariant neural
networks (Finzi et al., 2021; Wang et al., 2022c;
Romero and Lohit, 2022; van der Ouderaa et al., 2022;
McNeela, 2023; Petrache and Trivedi, 2024; Samudre
et al., 2024). Wang et al. (2022c, 2024b) express the
exactly equivariant group convolution kernel as a lin-
ear combination of kernels to achieve relaxed equivari-
ance and discover symmetry breaking factors. van der
Ouderaa et al. (2022) define a nonstationary kernel and
a tunable frequency parameter to control the amount
of approximate equivariance. McNeela (2023) propose
using a neural network to approximate the exponen-
tial map from the Lie algebra to the group. Petrache
and Trivedi (2024) give theoretical bounds on when
approximate equivariance can improve generalization.
However, none of these works studied approximate
equivariance in RL, the main focus of this work.

Closest to our setting is Residual Pathway Priors
(Finzi et al., 2021), which considered soft equivari-
ance constraints in model-free RL. They construct a
neural network layer as the sum of an exactly equiv-
ariant layer and a non-equivariant layer, deriving in-
tuition from residual connections. We take a different
approach in this work and use relaxed group convolu-
tions Wang et al. (2022c), which are flexible enough to
learn different outputs for each transformation.

Learning with Latent Symmetry Other works
also apply equivariant neural networks to domains
with latent symmetry. These are cases where the full
state has exact symmetry but only partial observa-
tions with an unknown group action are available to
the model. Park et al. (2022) learn the out-of-plane
rotations from 2D images using a symmetric embed-
ding network while others have learned 3D rotational
features from images using manifold latent variables
(Falorsi et al., 2018) or disentanglement (Quessard
et al., 2020). Wang et al. (2022a) find that equivariant
models where the group acts directly on observation
space perform well in RL even with camera skew or
occlusions. They define extrinsic equivariance (trans-
formed samples are outside the data distribution) and
show that it can benefit in some scenarios but can also
be harmful in certain cases (Wang et al., 2024a). Un-
like these works where the observation is partial and
does not contain full information about the state, we
assume that the domains are fully observable and con-
sider various symmetry breaking factors.

3 Background

In this section, we provide some background on sym-
metry groups and equivariant functions. As building
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blocks of exactly and approximately equivariant net-
works, we also describe exact and relaxed group con-
volutions, respectively.

A symmetry group G is a set equipped with a binary
operation that satisfies associativity, existence of an
identity, and existence of inverses. A group can act on
vector space X via a group representation ρX which
homomorphically assigns each element g ∈ G an in-
vertible matrix ρX(g) ∈ GL(X). For example, for
a finite group G, the regular representation acts on
R|G| by permuting basis elements {eg : g ∈ G} as
ρreg(h)eg = ehg. A function f : X → Y , x 7→ y
is G-equivariant if f(ρX(g)(x)) = ρY (g)f(x). That
is, transformations of the input x by g correspond to
transformations of the output by the same group el-
ement. We can enforce this constraint in equivariant
neural networks to learn only over the space of equiv-
ariant functions by replacing linear layers with group
convolutional layers. One benefit of enforcing equiv-
ariance constraints is lower sample complexity as the
network searches over a reduced function class.

3.1 Group Convolution

One method to construct equivariant network layers
is by group convolutions (Cohen and Welling, 2016),
which we briefly describe here. Group convolutions
map between features which are signals over the group
f : G→ R. For inputs not natively of this form, a lift
operation must first be performed. Let ψθ : G → R
be the convolutional kernel parameterized by θ. A G-
equivariant group convolutional layer is defined as

(f ⋆ ψθ)(g) =
∑
h∈G

ψθ(g
−1h)f(h). (1)

Equivariance follows from the fact that the kernel de-
pends only on the product g−1h and not the specific el-
ements (g, h). For example, if we consider equivariance
across translations, we obtain the standard convolu-
tion where h, g ∈ Z2 and g−1h = h− g. Another pos-
sible approach to construct equivariant network layers
is with G-steerable convolutions (Cohen and Welling,
2017), which can generalize to continuous groups.

3.2 Relaxed Group Convolution

A key component of our method is the relaxed version
of the group convolution (Wang et al., 2022c). The
kernel ψ is replaced with several kernels {ψl}Ll=1 and
the output is composed as a linear combination. The
relaxed group convolution is defined as

(f⋆̃ψθ)(g) =
∑
h∈G

f(h)

L∑
l=1

wl(h)ψl
θ(g

−1h), (2)

where wl are the relaxed weights and each ψl
θ are

constrained to be exactly equivariant. Note that as
wl(h) depends on the specific element h, this breaks
the strict equivariance of the group convolution. Wang
et al. (2022c) also introduce relaxed versions of steer-
able convolutions.

3.3 Approximate Equivariance

There have been several different definitions of approx-
imate, relaxed, or partial equivariance. In this paper,
we use the definition given by Petrache and Trivedi
(2024) and first give some background to build up to
its definition. Let G be a group and f : X → Y, x 7→ y
be the task function.

Definition 1 (Equivariance Error). For g ∈ G and
x ∈ X, the equivariance error ee(f, g, x) is defined as

ee(f, g, x) = ∥f(g(x))− g(f(x))∥, (3)

Equivariance error measures exactly how far a function
is from perfect equivariance with respect to G for a
particular x. For an exactly G-equivariant function,
ee(f, g, x) = 0 for all g ∈ G and x ∈ X.

Definition 2. (ε-stabilizer) The ε-stabilizer of f and
G is defined as

Stabε(f,G) = {g ∈ G | ee(f, g, x) ≤ ε}. (4)

The ε-stabilizer gives the set of group elements for
which the equivariance error is under some threshold.

Definition 3 (Approximate G-Equivariance). Given
a function f : X → Y and a group G, f is approxi-
mately G-equivariant if Stabε(f,G) = G.

We adopt the definition of approximate equivari-
ance where f has bounded equivariance error for all
g ∈ G, in contrast to partial equivariance, where
Stabε(f,G) < G.

4 Method: Approximately
Equivariant Reinforcement Learning

We first theoretically characterize the problem by
defining approximately equivariant Markov Decision
Processes (MDP). We then prove that environments
with approximate symmetry admit approximately in-
variant Q functions. This motivates our method of us-
ing approximately equivariant neural networks to learn
the policy and Q function.

4.1 Approximately Equivariant MDP

Let a Markov Decision Process (MDP) be represented
by a tuple M = (S,A, P,R, γ) with state space S,
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action space A, instantaneous reward function R : S×
A → R, a transition function P : S×A×S → [0, 1] and
discount factor γ ∈ (0, 1). The goal of solving an MDP
is to find a policy π ∈ Π, π : S × A → [0, 1] (denoted
as π(a|s)) that maximizes the expected return from

any state V π
t (s) = Eπ

[∑∞
k=t γ

k−tRk

∣∣∣st = s
]
. The

expected return from a state s after taking action a
under a policy π is given by the Q function,

Qπ
t (s, a) := Eπ

[ ∞∑
k=t

γk−tRk

∣∣∣st = s, at = a
]
.

Let Vt(st) := supπ V
π
t (st) and

Qt(st, at) = E
[
Rt + γVt+1(st+1)

∣∣∣st, at]
denote the policy independent expected return. Let G
be a group acting on S and A. Denote the action of an
element g ∈ G on s and a by gs and ga, respectively.
We now extend the definition of Equivariant MDPs
(Van der Pol et al., 2020) to cases where the symmetry
is approximate.

Definition 4. An MDP is (G, ϵR, ϵP )-invariant if

|R(gs, ga)−R(s, a)| ≤ ϵR,∀g ∈ G

dF

(
P (gs′ | gs, ga), P (s′ | s, a)

)
≤ ϵP ,∀g ∈ G,

where dF (µ, ν) := supf∈F

∣∣∣ ∫S fdµ− ∫
S fdν

∣∣∣ is an in-

tegral probability metric (IPM) between two distribu-
tions µ, ν ∈ ∆(X ).

Some well known examples of IPM include (Sriperum-
budur et al., 2009): total variation distance (F =
{f : ∥f∥∞ ≤ 1}) and Kantorovich metric (F = {f :
∥f∥Lip ≤ 1}). A useful property of IPMs is, given a
function class F and a function f (Müller, 1997)∣∣∣ ∫

S
fdµ−

∫
S
fdν

∣∣∣ ≤ ρF (f) · dF (µ, ν),

where the Minkowski functional w.r.t F is

ρF (f) = inf{ρ ∈ R≥0 : ρ−1f ∈ F}.

For the total variation distance ρF (f) := 1
2 (max f −

min f) and for Kantorovich metric ρF (f) := ∥f∥Lip.

For any uniformly bounded function V , consider the
Bellman equation

V (gs) = max
a∈A

{
r(gs, ga) + γ

∫
S
V (gs′)P (gs′|gs, ga)

}
.

(5)
Let V ∗ denote the fixed point1 of (5) and Q∗ denote
the corresponding action-value function.

1Fixed point exists by Banach fixed point theorem.

Theorem 1. Let the rewards R ∈ [Rmin, Rmax] be
bounded and let g ∈ G be an onto mapping. For any
state st and action at at arbitrary time t, we have

|Qt(st, at)−Q∗(gst, gat)| ≤ α,

|Vt(st)− V ∗(gst)| ≤ α,

where α = ϵR+γρF (V ∗)ϵP
1−γ .

The proof is provided in Appendix A. When the Kan-
torovich metric is used for uncertainty characteriza-
tion, ρF (V ∗) = ∥V ∗∥Lip, where ∥ · ∥Lip is the Lips-
chitz norm of the value function (Gelada et al., 2019).
For total variation distance, ρF (V ∗) = |Rmax−Rmin|.
Theorem 1 provides a gap-quantification between the
Q-function on the original and symmetry transformed
domain in terms of the mismatch in the reward and
transition invariance. This implies that when the in-
variance mismatch is small – i.e., when the domain
has only minor symmetry violations – the Q-function
is approximately group-invariant. This motivates us to
use approximately equivariant neural networks for the
policy and critic in domains with inexact symmetry.

4.2 Approximately Equivariant Actor-Critic

We propose approximately equivariant versions of two
commonly used actor-critic algorithms, DrQv2 (Yarats
et al., 2021) and SAC (Haarnoja et al., 2018). In doing
so, we generalize exactly equivariant versions of SAC
(Wang et al., 2022b) and DrQv2 (Wang et al., 2022a)
from previous works by replacing strictly equivariant
layers with relaxed equivariant layers.

Encoder, Policy, and Critic We replace each
group convolution with relaxed group convolutions
(see Appendix B for a version using relaxed steer-
able convolutions) for the encoder, policy, and critics.
Practically, each relaxed group convolution layer con-
tains L exactly equivariant kernels ψl and the output
is a linear combination of the outputs of these con-
volutions and relaxed weights wl(g). The wl(g) also
transform as the regular representation of G.

The encoder E and the policy π are approximately
equivariant. The latent state z output by E is defined
to transform as the regular representation of G. The
action representation is domain-specific. The critics
are approximately invariant and output scalars q(s,a)
that are fixed by G, i.e. transform via the trivial rep-
resentation. For more details, please see Section 5 and
Appendix B.

Illustrative Example We illustrate how to apply
our proposed approximately equivariant actor-critic
architecture on the Reacher domain; see Figure 2. The
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Figure 2: Illustration of the approximately D2-equivariant encoder and policy (critic is not shown for space).
The D2 group consists of vertical reflections and π rotations. Both the encoder and policy consist of relaxed
group convolution layers.

state is a stack of consecutive images s ∈ RC×H×W

and the action a ∈ R2 corresponds to torques for the
first and second arms. As in the example in Fig-
ure 1, the first joint is more responsive to positive
torques. For this domain, we implement approximate
equivariance with respect to the group D2 of verti-
cal reflections and π rotations. The group D2 trans-
forms the input states by image transformations. La-
tent representations are images z : R2 → RC where
g ∈ D2 acts on the pixel axes by image transforma-
tion and on the channel axis by permutations cor-
responding to the regular representation of D2, i.e.
(gz)(x, y) = ρreg(g)z(g

−1 · (x, y)). For the output, the
torques a1 and a2 are scalars that change sign under
reflection but are invariant under rotations.

5 Experiments

We experiment on how approximately equivariant RL
compares to methods with exact equivariance and no
equivariance in domains with both exact symmetry
and various symmetry breaking factors, and to elu-
cidate when approximate equivariance should be pre-
ferred. We consider standard continuous control do-
mains and stock trading with real-world data.

5.1 Continuous Control

We first experiment on four continuous control do-
mains in DeepMind Control Suite (Tassa et al., 2018).
Similar to Wang et al. (2022a), we consider a sub-
set of the domains which have symmetry: Acrobot,
Cartpole, BallInCup have reflectional symmetry de-
scribed by the group D1 and Reacher has D2 symme-
try. For all domains, the observations are a stack of 3
consecutive RGB images.

We modify the domains to carefully control the type
and degree of symmetry breaking present. We first re-
move fixed background features such as random stars
in the sky and checkered floors (see Figure 4). These

features break symmetry to some extent since they
do not transform with the underlying state, but give
a form of mild symmetry breaking termed extrin-
sic equivariance which has an inconsistent impact on
equivariant models (Wang et al., 2022a). We then in-
troduce several different symmetry breaking factors
for each domain: 1) repeat action - the action is
repeated twice in a certain region of the domain, 2)
gravity - gravity is modified from [0, 0,−9.81] to
[a,−a,−9.81] where a ̸= 0, 3) reflect action - the
action direction is flipped in certain regions of the do-
main. repeat action and reflect action test lo-
cal symmetry breaking factors, while gravity tests a
global symmetry breaking factor. See Appendix C.1
for more details.

Models For the continuous control tasks, we im-
plement an approximately equivariant(ApproxEquiv)
version of a SOTA image-based RL algorithm DrQv2
(Yarats et al., 2021). We compare with exactly equiv-
ariant (ExactEquiv) and non equivariant (NonEquiv)
versions of the same architecture. We largely use the
hyperparameters from Yarats et al. (2021), but reduce
the latent dimension for more tractable computation
for all methods. We also compare against a approx-
imately equivariant model, Residual Pathway Priors
(RPP) (Finzi et al., 2021), and extend it to the DrQv2
architecture. As mentioned in the original paper, we
find that RPP is somewhat sensitive to the speed τ of
the critic moving average, and had to reduce its value
for Acrobot and BallInCup for stability.

Results Figure 3 show the total episode reward over
training. As expected, we confirm that NonEquiv

has much lower sample efficiency than the models
with a symmetry bias. In the repeat action and
reflect action variants of Acrobot, ApproxEquiv

significantly outperforms ExactEquiv and RPP. It does
slightly worse than ExactEquiv on the Reacher do-
main but beats RPP, suggesting that our domain mod-
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Figure 3: Total episode reward on selected domains in the DeepMind Control Suite, shaded regions indicate
95% confidence intervals (CI). Our approximately equivariant agent performs similarly to an exactly equivariant
agent in the original domains due to exact symmetry and outperforms it on some modified domains with inexact
symmetry as it can adjust for symmetry breaking. Both methods outperform a non-equivariant agent.

Figure 4: Selected domains in DeepMind Control
Suite. The domains were modified to remove extrinsic
symmetry and to include several types of symmetry
breaking factors such as repeating or reflecting actions
in certain states, or by artificially modifying gravity.

ifications were not “severe” enough to achieve incor-
rect equivariance. It is also possible that ExactEquiv
can infer the symmetry breaking factors from the 3
frames of input, making the task a case of extrinsic
equivariance where an equivariant model can succeed
Wang et al. (2022a). In CartPole and BallInCup,
all methods perform similarly and learn an optimal
policy quickly. In domains with exact symmetry
(original), our method ApproxEquiv performs simi-
larly to ExactEquiv, showing there is no cost in per-
formance by giving the model the ability to adapt to
symmetry breaking in cases where it is not needed.

This result supports Proposition 3.1 from Wang et al.
(2024b), which proves that relaxed group convolutions
initialized to be exactly equivariant stay exactly equiv-
ariant when trained with exact data symmetry.

We visualize the relaxed weights of the first layers of
the encoder and policy over all runs in Figure 5. If
these weights are equal, the model is equivariant; the
more they differ the more the model has relaxed the
symmetry constraint. For Acrobot and CartPole, the
weights differ more for the modified domains than the
original symmetric domain, especially for the encoder,
while the policy weights vary more for the modified do-
mains of BallInCup. This indicates the relaxed equiv-
ariant models have adapted to the symmetry breaking
in the domains.

To quantitatively evaluate the models, we select the
best-performing policy from all runs and measure the
total reward over 50 episodes. The results echo the
training curves in Figure 3, where ApproxEquiv per-
forms well, particularly in the domains with symme-
try breaking factors (see Table 1). To test whether
approximately equivariant models are robust to noisy
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Table 1: Total episode reward on 50 rollouts for the best policy in the original and noisy domains. Gray values
indicate 95% CI. ApproxEquiv learns a better policy than baselines on the modified domains and is more robust
to noisy inputs.

No Noise Noisy
ApproxEquiv ExactEquiv NonEquiv ApproxEquiv ExactEquiv NonEquiv

Acrobot
Original 389±11 522±21 309±22 344±14 402±22 190±14

Gravity 471±17 382±15 358±23 369±15 218±10 202±12

Cartpole
Original 876±0.2 881±0.1 881±0.1 778±22 855±0.6 572.5±25

Repeat Action 859±0.4 749±13 855±0.6 624±6.0 523±21 192±5.0

Ball in Cup
Original 961±0.0 958±0.0 970±0.0 882±7.7 783±24 0±0.0

Gravity 969±0.0 966±0.0 959±0.0 888±13.2 0±0.0 1.8±1.8

Reacher
Original 903±33 950±15 519±68 778±41 745±44 247±52

Reflect Action 757±55 707±59 243±58 659±42 217±41 82±29

Figure 5: Visualization of relaxed weights for the first layer of the encoder and policy over all runs. Similar
weights for each g indicate perfect equivariance while differing values indicate symmetry breaking. The modified
variants of most domains exhibit larger differences and/or increased variance in the relaxed weights compared
to the original variant.

observations, we also consider variants of the domains
where Gaussian noise are added to the input images
(σ = 0.02 for Acrobot and Reacher, σ = 0.06 for
CartPole and BallInCup). Interestingly, we find that
our approach is more robust to noisy inputs than
ExactEquiv or NonEquiv, especially on the BallInCup
and Reacher domains.

5.2 Stock Trading

We also consider a stock trading task using real world
price data, formulated as as an MDP (Liu et al., 2018).
Given a fixed amount of initial cash, the objective is
to learn the optimal number of stocks to buy and sell
(once daily) to maximize the portfolio value. The state
consists of the current cash balance, the stock prices,
the number of shares in the current portfolio, and other
technical indicators of each stock. The actions are the
number of stocks to buy and sell for each stock. The
reward is the scaled difference in portfolio values be-

tween consecutive timesteps. We assume that the mar-
ket dynamics are not affected by our trading. There is
a small 0.1% transaction cost for every trade. We use
real financial data scraped from Yahoo Finance (yfi,
1997) and consider the stocks in the Dow Jones in-
dex from 2001-01-01 to 2024-07-01 (see Appendix C.2
for sample data). Unlike Liu et al. (2018) who used
only the current timestep, we use a sliding window ap-
proach and use the previous 9 timesteps for the state.
See Appendix C.2 for a more detailed description.

Models For this domain, we use SAC (Haarnoja
et al., 2018) as our RL algorithm and consider equiv-
ariance to both the translation group and scale-
translation group across the time dimension. As our
actions do not affect stock prices, which in turn is
directly correlated with the reward, we learn an ap-
proximately invariant policy and invariant critic for
both symmetry groups. As before we compare ap-
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Table 2: Test results on the stock trading dataset.
Gray values indicate 95% CI over 5 runs. The approx-
imately equivariant agents for both scale-translation
(ST) and translation (T) outperform the exactly
equivariant and non equivariant methods.

Final Portfolio
Value ($mm)

Annualized
Return (%)

Sharpe Ratio

ApproxEquiv
ST 1.489±0.16 12.0±3.4 0.63±0.1

T 1.428±0.04 10.6±3.8 0.60±0.1

ExactEquiv
ST 1.411±0.15 10.3±3.4 0.62±0.2

T 1.307±0.18 7.8±4.3 0.50±0.3

NonEquiv 1.378±0.05 9.6±1.3 0.62±0.1

Uniform 1.412 10.4 0.71
ˆDJI 1.293 7.7 0.53

proximately equivariant, strictly equivariant, and un-
constrained models. We evaluate each method on the
final portfolio value (equivalent to the total episode
reward), annualized return, and the Sharpe ratio
(Sharpe, 1994), which is a standard financial metric
that measures an asset’s risk-adjusted performance.
We also include as baselines a uniform holding strat-
egy Uniform, where we initially buy equal values of
each stock and hold, and the Dow Jones index ^DJI.

Results Table 2 lists the average test results of the
learned policies on the stock trading domain. The
ApproxEquivmodel for both translation (T) and scale-
translation (ST) outperform all baselines, with annu-
alized returns of 10.6% and 12.0% respectively. The
Exact ST-Equiv model outperforms NonEquiv, while
the Exact T-Equiv model does worse. These observa-
tions suggest that temporal scale and translation sym-
metries can be good biases in analyzing financial data
and that translation symmetry may be more approxi-
mate than scale. We also visualize 10 episode rollouts
of the best-performing policies in Figure 6, with the
portfolio values on the left and transaction costs on
the right. The Approx ST-Equiv method achieves the
highest portfolio value for most timesteps and incurs
lower transaction costs than the exactly equivariant
policies. We note that overall the annualized returns
are fairly low, as the test dataset from 2021-01-01 to
2024-07-01 includes both the COVID-19 pandemic and
2022 stock market decline.

We visualize the relaxed weights of the first layer of
the encoder across translation (left) and scale (right)
in Figure 7. For translation, our model places higher
weights on the very last timestep. This matches our
intuition as the most recent stock prices and portfolio
holdings would be most informative in determining the
optimal action. For scale, we find that the relaxed
weights do not differ greatly, but there is increased
variance with increasing scale.

Figure 6: 10 episode rollouts from the best perform-
ing policy for each method. Approx ST-Equiv often
achieves the highest portfolio value for each time step
and incurs minimal transaction costs.

Figure 7: Visualization of relaxed weights for transla-
tion (left) and scale (right) over all runs. The relaxed
weights for translation differ for each timestep and are
similar for scale.

6 Discussion

In this work, we propose a novel approximately equiv-
ariant architecture using relaxed group convolutions
for model-free reinforcement learning. We first de-
fine an approximately equivariant MDP and provide
a bound on the optimal Q function. We then apply
our architecture to two commonly used model-free al-
gorithms, DrQv2 and SAC, and experiment on con-
tinuous control domains and a stock trading problem
with real-world data. Our results demonstrate that
the approximately equivariant model performs simi-
larly to an exactly equivariant model in domains with
perfect symmetry but outperforms it in most domains
with symmetry breaking factors. This suggests that
our method can act as a much more flexible alterna-
tive that can boost sample efficiency in a wider variety
of settings and is also more robust to perturbations.

Limitations and Future Work While we did con-
sider real-world data in the stock trading domain, our
continuous control domains used simplified observa-
tions and synthetic symmetry breaking. Furthermore,
exactly equivariant networks perform better in some
modified domains than others (Reacher vs. Acrobot).
Another limitation is that, as with all equivariant net-
works, the symmetry group and how it acts on the
state and action spaces need to be known in advance.
An interesting future direction could be to quantify ex-
actly what types of symmetry breaking factors could
lead to higher performance for approximately equiv-
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ariant RL, possibly by measuring equivariance error.
Other future work includes proving bounds on the op-
timal policy π(s) and π(gs) or applying approximately
equivariant RL in robotic manipulation, where kine-
matic constraints or obstacles can break symmetry.
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APPENDIX

A PROOF OF THEOREM 1

For a given stochastic policy π = (π1, π2 · · · , πT−1), let

Vπ
t (s) = Eπ

[ T−1∑
k=t

γk−tRk

∣∣∣st = s
]
,

Qπ
t (s, a) = Eπ

[
Rt + γVπ

t+1(st+1)
∣∣∣st = a, at = a

]
,

be the finite-horizon counterparts of the expected return and action-value. Recursively define the policy inde-
pendent counterparts as follows:

VT (sT ) = 0, VT (gsT ) = 0,

Qt(st, at) = R(st, at) + γ

∫
S
Vt+1(st+1)P (st+1|st, gt),

Qt(gst, gat) = R(gst, gat) + γ

∫
S
Vt+1(gst+1)P (gst+1|gst, gat),

Vt(st) = max
at∈A

Qt(st, at), Vt(gst) = max
at∈A

Qt(gst, gat).

Theorem 1. Let the rewards R ∈ [Rmin, Rmax] be bounded and let g ∈ G be an onto mapping. For any state st
and action at at arbitrary time t, we have

|Qt(st, at)−Q∗(gst, gat)| ≤ α,

|Vt(st)− V ∗(gst)| ≤ α,

where α = ϵR+γρF (V ∗)ϵP
1−γ .

The proof is established by first deriving the deviation for an (arbitrary) finite-horizon discounted problem and
then using this to derive the bounds for the infinite horizon case. All intermediate results are collected as
propositions.

Proposition 1. For a (G, ϵR, ϵP )-invariant MDP, the following holds at any t,

|Qt(st, at)−Qt(gst, gat)| ≤ αt, and |Vt(st)− Vt(gst)| ≤ αt,

where αt is given by the following recursion: αT+1 = 0 and

αt = ϵR + γ
{
ρF (Vt+1)ϵP + αt+1

}
.

Proof. We will prove the results using induction. First, note that the result is true for T by definition. Suppose
the result is true for t+ 1, and consider the differential at time t,

|Qt(st, at)−Qt(gst, gat)| ≤ |R(st, at)−R(gst, gat)|

+ γ
∣∣∣ ∫

S
Vt+1(st+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (gst+1|gst, gat)

∣∣∣
≤ ϵR + γ

∣∣∣ ∫
S
Vt+1(st+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (st+1|st, at)

∣∣∣
+ γ

∣∣∣ ∫
S
Vt+1(gst+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (gst+1|gst, gat)

∣∣∣
≤ ϵR + γρF (Vt+1)ϵP + γ

∫
S

∣∣∣Vt+1(st+1)− Vt+1(gst+1)
∣∣∣P (st+1|st, at).
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The last inequality follows by using the decomposition using Minkowski’s functional. Further, note that∣∣∣Vt+1(st+1)− Vt+1(gst+1)
∣∣∣ ≤ max

at+1∈A
|Qt+1(st+1, at+1)−Qt+1(gst+1, gat+1)| ≤ αt+1,

by induction assumption and the fact that when g is onto

max
a′∈gA

Qt+1(gst, a
′) = max

a∈A
Qt+1(gst, ga).

The result follows.

Proposition 2. Let the rewards R ∈ [Rmin, Rmax]. For an arbitrary, but finite, horizon T

Qt(st, at) +
γT−t

1− γ
Rmin ≤ Qt(st, at) ≤ Qt(st, at) +

γT−t

1− γ
Rmax

Proof. We have by definition,

Qt(st, at) = E
[ ∞∑
k=t

γk−tRk

∣∣∣st = s, at = a
]

= E

[
Rt + γE

[ ∞∑
k=t+1

γk−(t+1)Rk

∣∣∣st+1

]∣∣∣∣∣st = s, at = a

]

≤ E

[
Rt + γE

[
Vt+1(st+1) +

γT−(t+1)Rmax

1− γ

]∣∣∣st+1

]∣∣∣∣∣st = s, at = a

]

= Qt(st, at) +
γT−t

1− γ
Rmax.

Similarly, we have

Qt(st, at) = E
[ ∞∑
k=t

γk−tRk

∣∣∣st = s, at = a
]

≥ E

[
T−1∑
k=t

γk−tRk +

∞∑
k=T

γk−tRmin

∣∣∣st, at]

= E

[
Rt + γ

T−1∑
k=t+1

γk−(t+1)Rk

∣∣∣st, at]+
γT−t

1− γ
Rmin

= Qt(st, at) +
γT−t

1− γ
Rmin.

We now prove Theorem 1.

Proof of Theorem 1:

Defining B to be the Bellman operator, we know that (5) can be written as V = BV . Consider a sequence of
value functions V(n) on the symmetry transformed domain as follows: V(0)(gs) = 0 and V(n+1) = BV(n). For an
arbitrary T , we have using Proposition 1 for any t ∈ {1, · · · , T},

|Vt(st)− V(T−t)
t (gst)| ≤ αt,

where

αt = ϵR +

T−1∑
τ=t+1

γτ−t[ρF (V(T−τ))ϵP + ϵR].
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From Proposition 2, we have, noting that V(s) = maxa Q(s, a), that

V(T−t)
t (gst)− αt +

γT−t

1− γ
Rmin ≤ Vt(st) ≤ V(T−t)

t (gst) + αt +
γT−t

1− γ
Rmax

By Banach fixed point theorem, we know that limT→∞ V(T−t)
t = V ∗. By continuity of ρF (·), we have that

limT→∞ ρF (V(T−τ)) = ρF (V ∗) whence limT→∞ αt = α := ϵR+γρF (V ∗)ϵP
1−γ . Therefore, taking the limit, we have

V ∗(gst)− α ≤ Vt(st) ≤ V ∗(gst) + α.

Similar argument establishes the result for Q using the onto function g. The result holds.

B BACKGROUND AND METHOD

B.1 Equivariance with Group Convolutions

Group convolutions (Cohen and Welling, 2016) generalize standard convolutions, which are translation-
equivariant, to be equivariant to a group G. Group convolutions act on signals over the group f : G → R.
As many data samples are not natively of this form (e.g. an image), the input must first be lifted onto a function
in G. For example, let f0 : Z2 → R be the input signal, a grayscale image, and H = D2 be the group. The lifting
convolution lifts f0 from Z2 to G = D2 ⋉ Z2 by

(f0 ⋆ ψ)(x, h) =
∑
y∈Z2

f0(y)ψ(h
−1(y − x)), (6)

where h ∈ H. Practically, the lift operation creates |H|, the order of group H, images by acting on x by
h−1. Typically the lift operation is the first layer of the network, followed by subsequent group convolutions,
nonlinearities, or other equivariant layers. We use relaxed versions of the lift and group convolutions as described
in Wang et al. (2022c) and the main paper.

B.2 Steerable Convolutions

As an alternative to group convolutions, one can use steerable convolutions (Weiler et al., 2018) that use weight
tying to generalize to continuous groups and are more parameter-efficient. Let H < O(2) be the subgroup
which acts on R2 by matrix multiplication on the input and output channel spaces Rc and Rd by ρin and ρout,
respectively. Then G = H ⋉R2. Given input signal f : R2 → Rc, then standard convolution over R2 with kernel
ψ : R2 → Rd×c is G-equivariant if ψ satisfies

ψ(hx) = ρout(g)ψ(x)ρin(h
−1), (7)

for all h ∈ H. Intuitively, this kernel constraint ensures that the output features transform by ρout when the
input features are transformed by ρin. Kernels that satisfy this constraint have been solved for many common
subgroups of E(2), see Weiler and Cesa (2019) for more details.

Using the example of grayscale images as in Section B.1, let the input feature be f : Z2 → R and {ψk}Kk=1 be
a precomputed, nontrainable equivariant kernel basis of K kernels that satisfy Eq. (7). Assume that both the
number of input and output channels is 1 and let w ∈ RK be the trainable coefficients of the kernels. Then a
G-steerable convolution is defined as

(f ⋆ ψ)(x) =
∑
y∈Z2

K∑
k=1

(wkψk(y))f(x+ y), (8)

where x ∈ Z2 is the spatial position and wk is the weight associated with kernel ψk.

Relaxed Steerable Convolution As described in Wang et al. (2022c), one can also use relaxed versions of
steerable convolutions by letting the trainable weights w also depend on y. A relaxed G-steerable convolution is
defined as

(f⋆̃ψ)(x) =
∑
y∈Z2

K∑
k=1

(wk(y)ψk(y))f(x+ y). (9)
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Figure 8: Illustration of an approximately D2-equivariant encoder and policy using relaxed steerable convolution
layers. The critic is not shown and is approximately invariant.

Allowing the trainable weights wk to also depend on the absolute spatial position y breaks the equivariance
constraint in Eq. (7).

By replacing relaxed group convolutions with relaxed steerable convolutions, we can also design a variant of our
proposed approximately equivariant RL architecture (Figure 8).

C EXPERIMENTS

C.1 Continuous Control

Acrobot We use the swingup task. The domain consists of two joints where the goal is to apply torque to
the inner joint so that both joints are near vertical. We use D1 as the symmetry group, i.e. vertical reflection,
and the action a ∈ R transforms via the sign representation ρsign, where ρsign(flip)(a) = −a. For variants, we
consider 1) repeat action - the action is repeated when the inner joint is in the fourth quadrant and 2) gravity
- gravity g⃗ = [0, 0,−9.81] is modified to [−2, 2,−9.81].

CartPole We consider the swingup task. The domain consists of a pole swinging on a cart and the goal is to
move the cart left or right (a ∈ R) to make the pole upright. The symmetry group and action representation are
the same as in Acrobot, D1 and ρsign. For variants, we consider 1) repeat action - the action is repeated when
the pole is in the first quadrant, 2) gravity - gravity is modified to [0.2,−0.2,−9.81], and 3) reflect action

- the pole angle is in [0, π4 ]. Gravity is modified less than in Acrobot as too high values forced the cart out of
frame.

Cup Catch The domain consists of a ball attached to the bottom of the cup and the goal is to move the cup
to catch the ball inside the cup. The action (x, z) ∈ R2 is the cup’s spatial position. The symmetry group is D1

and the action representation is ρsign ⊕ ρ0, where the x position transforms via the sign representation and the
z transforms via the trivial representation ρ0. For variants, we consider 1) repeat action - the ball x position
greater than 0.0 and z position is greater than 0.3, 2) gravity - gravity is modified to [−2, 2,−9.81], and 3)
reflect action - same as repeat action.

Reacher We consider the hard task. The domain consists of two joints and the goal is to apply torques to
make the end effector reach the target. The action a ∈ R2. The symmetry group is D2, i.e. vertical reflections
and π rotations, and the action transforms via the quotient representation 2ρquot, where the torques for both
joints are invariant to rotations and flip signs for vertical reflections. For variants, we consider 1) repeat action

- the inner joint angle is in [0, π2 ] and 2) reflect action - the inner joint angle is in [π2 , π].

C.1.1 Training Details

For all DeepMind Control Suite (DMC) domains, we fix the episode length to 1000 and use RGB image of size
85 × 85. We considered four domains of varying difficulty, of which Acrobot is the hardest. In the original
DrQv2 implementation (Yarats et al., 2021), the encoder reduces the spatial dimensions to 35 × 35, which is
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then flattened to be input to the policy and critic. We follow Wang et al. (2022a) and further reduce the spatial
dimensions to 7× 7 for faster training for all models. We reduce the replay buffer size from 1,000,000 to 500,000
to slightly reduce the memory footprint. All other hyperparameters are kept the same as in Yarats et al. (2021).

For the exactly equivariant and approximately equivariant models, we reduce the number of channels by
√
|G|

where |G| is the order of the group to preserve roughly the same number of parameters as the non-equivariant
model. We use L = 1 filters for the approximately equivariant model in all experiments.

RPP contains both the non-equivariant layers and exactly equivariant layers and thus has roughly twice as many
parameters as ExactEquiv. For the critic moving average speed τ , we use the default τ = 0.01 for CartPole and
Reacher and τ = 0.009 for Acrobot and Ball in Cup.

The plots in Figure 3 show the mean reward of 10 episodes, evaluated every 20,000 environment steps. For the
results in Table 1, we use σ = 0.02 for Acrobot and Reacher and σ = 0.06 for CartPole and Ball in Cup.

The continuous control experiments were run on single GPUs of different types. Acrobot was run on an Nvidia
RTX 4090 and all other experiments were run on an Nvidia RTX 2080 Ti. We note that the wall clock time
for training both exactly and approximately equivariant models is longer than that for a non equivariant model,
even though they are generally more sample efficient. This is because equivariant neural networks often incur
more overhead in implementation - for group convolutions, the kernel must be transformed and the outputs must
be stacked and for steerable convolutions, the basis must be projected onto matrices at every forward pass.

C.2 Stock Trading

We formulate the stock trading problem as an MDP as described in Liu et al. (2018). The state consists of
the cash balance ct, the stock prices pnt , the number of shares in the current portfolio hnt , and other technical
indicators int for time t stock n ∈ {1, . . . , N}. The actions xnt are the number of stocks to buy and sell for each
stock n and are bounded to [−M,M ] where M was set to 100. The reward rt is the scaled difference in portfolio
values between consecutive timesteps and we assume that the market dynamics are not affected by our trading.
There is a small transaction cost ϵn = 0.001 for every trade. Initially, the portfolio contains 0 shares and the
cash balance is 1,000,000. This can be formulated as a constrained program as follows

max
∑
t

rt

s.t. −M ≤ ant ≤M, ∀n, t
ant ≥ −hnt , ∀n, t
ant ≤ ⌊ct/(pnt (2 + ϵn))⌋ ∀n, t
ct ≥ 0 ∀t

ct+1 = ct −
∑
n

ant p
n
t (1 + ϵn) ∀t

hnt+1 = hnt + ant ∀n, t

rt+1 = (ct+1 − ct) +
∑
n

(pnt+1h
n
t+1 − pnt h

n
t ) ∀t

c0 = 1,000,000

hn0 = 0 ∀n
hnt ∈ Z+, ant ∈ Z, ct ∈ R+.

The financial data was pulled from Yahoo Finance (yfi, 1997) for the time period 2001-01-01 to 2024-07-01 (see
Figure 9 for sample stock prices). We split the train, validation, and test data into time periods 2001-01-01-2019-
01-01, 2019-01-01 - 2021-01-01, and 2021-01-01-2024-07-01, respectively. As historical stock prices and portfolio
can be important for determining the action, we use the previous H = 9 timesteps for the state, unlike Liu et al.
(2018).
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Figure 9: Sample stock trading data. We use a sliding window of the stock prices, current portfolio, cash balance,
and other indicators as the state. The dataset is split into train/val/test as shown.

C.2.1 Training Details

or all models, we use 4 layers for the shared encoder, 1 layer for the actor, and 2 layers for the critic. The non
equivariant model uses linear layers after flattening the input, while the exactly equivariant and approximately
equivariant models use group convolutions and relaxed group convolutions with a kernel size of 5, respectively.
We consider both temporal translations and temporal scale-translations. For scale-translation, we use separable
group convolutions (Knigge et al., 2022) and use 3 scale factors 0.8, 0.98, 1.2. We control the number of channels
so that the total number of parameters is roughly equal to the non equivariant model. We use L = 1 filters for
the approximately equivariant model in all experiments.

The stock trading experiments were run on a single Nvidia RTX 2080 Ti. All other hyperparameters are given
in Table 3.

Table 3: Hyperparameters used for stock trading experiments

Hyperparameter ApproxEquiv ExactEquiv NonEquiv

Batch size 64
Learning rate 1e-4
α 0.05
τ 0.005
Discount factor 0.99
Hidden dim/channels 64 64 128
Encoder output dim/channels 256


	Introduction
	Related Work
	Background
	Group Convolution
	Relaxed Group Convolution
	Approximate Equivariance

	Method: Approximately Equivariant Reinforcement Learning
	Approximately Equivariant MDP
	Approximately Equivariant Actor-Critic

	Experiments
	Continuous Control
	Stock Trading

	Discussion
	PROOF OF THEOREM 1
	BACKGROUND AND METHOD
	Equivariance with Group Convolutions
	Steerable Convolutions

	EXPERIMENTS
	Continuous Control
	Training Details

	Stock Trading
	Training Details



