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Abstract

Spatial light modulators (SLMs) are devices that are capable of manipulating incident light by passing it through an array of
phase/intensity altering pixels. A recent alternative design involves creating a phase mask by directing a thin film of fluid with
thermocapillary forces generated by a controlled temperature map. However, it is difficult to determine the input temperature
signal necessary to induce a given height profile. The relationship between temperature and height is given by the thin film
equation, a fourth-order nonlinear PDE, which is difficult to solve numerically. To address this problem, we train deep neural
networks to directly solve the inverse problem, mapping from the desired height profiles to the needed temperature patterns.
We design novel equivariant networks incorporating scale and rotation symmetry of the underlying thin film equation. We
demonstrate the effectiveness of equivariant models for learning the complex relationship between input temperature signals
and the resulting light patterns, showing they are more accurate than non-equivariant baselines and very computationally
efficient. This work has implications for a range of applications, including high-power laser systems, and could lead to more
efficient and effective ways to deploy the process of modulation of light in SLMs in a variety of applications.
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Introduction has demonstrated efficiency in analyzing and understand-

ing intricate material structures, design, and properties [6,

Deep learning (DL) has emerged as a powerful tool for many
scientific fields, including material science [1], climate sci-
ence [2], biology [3], and neuroscience [4]. Recent works
have shown that DL can generate realistic predictions and
significantly accelerate the simulation of physical systems
relative to numerical solvers, from turbulence modeling
to weather prediction [5]. Within materials science, DL

Sumukh Vasisht Shankar and Rui Wang have contributed equally to
this work.

>4 Sumukh Vasisht Shankar
vasishtshankar.s @northeastern.edu

Khoury College of Computer Sciences, Northeastern
University, Boston, MA, USA

Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA,
USA

School of Engineering, Rutgers University, New Brunswick,
NJ, USA

7]. Traditional methods for predicting changes in material
properties can be time-consuming due to their reliance on
extensive experimentation, intricate numerical analyses, and
the iterative nature of the design-make-test-analyze cycle.
DL offers a more efficient approach by directly predicting
material properties based on their chemical composition and
other factors and bypassing slow numerical methods [8, 9].

In this paper, we employ DL to forecast the temperature
profile needed to generate a specific reflected light pattern
using a thermocapillary dewetting-based dynamic spatial
light modulator (SLM) [10]. SLMs modulate light beams by
utilizing fluid films whose heights can be adjusted through
temperature gradients. The relationship between temperature
and height is governed by the thin film equation [11-13].
It is a fundamental equation in the study of thin film lubri-
cation and wetting phenomena, characterizing the spatial
and temporal behavior of thin fluid films on solid surfaces.
By numerically solving the equation, one can perform for-
ward modeling of the system, determining the evolution
of the height profile of the fluid over time in response to
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temperature. More critical for controlling the SLM is the
inverse problem, to determine the temperature profile when
provided a target height profile. Forward modeling is com-
putationally expensive, and the inverse problem is even
more difficult. Here, we demonstrate that DL models can
efficiently solve both problems.

Conventional neural networks require a large amount of
data to correctly capture the correlation between the height
and corresponding temperature profiles but obtaining sub-
stantial real experimental data is challenging. Thus, we pro-
pose to incorporate the rotational, translational, and scale
symmetries of the thin film equation into convolutional neu-
ral networks to build equivariant networks. Equivariant mod-
els that preserve desired symmetries not only enjoy favorable
sample complexity compared with data augmentation but are
also robust to distributional shifts by symmetry group trans-
formations [14, 15]. Specifically, our contributions include:

e We study the problem of predicting the input tempera-
ture profile required to induce a given height profile in
dynamic SLMs with DL.

e We generate a two-dimensional simulated dataset by
numerically solving the thin film lubrication equation.

Fig. 1 Schematic of multilayer
SLM showing forward and
backward modeling tasks

Temperature
Profile
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e We demonstrate that incorporating rotational and scale
symmetries enhances accuracy, generalization ability,
and sample efficiency.

e We propose a novel roto-scale-equivariant model that can
preserve rotation and scale symmetries concurrently.

Application Description
SLMs and Thermocapillary Dewetting

Dynamic SLMs (Fig. 1) are devices that can precisely alter
incident light by tuning either the phase shift and/or the
reflectivity/transmission of an array of pixels in parallel.
They are used in optics to control the behavior of light and
are used for a number of applications like projectors, laser
beam shaping, beam front aberration, etc. They can also be
used to manipulate the properties of microscopic particles
(i.e., optical tweezing) and materials (i.e., lithography) by
applying different light patterns to them.

Conventional dynamic SLMs, which employ liquid crys-
tal optics, are normally incompatible with high-powered
sources due to the heating that invariably results from even
slight optical absorption. To address this issue, [10] pre-
sents the usage of thermocapillary dewetting to dynamically
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control the thickness of a thin viscous, transparent film posi-
tioned on a high-power mirror. This film, when used with
an SLM, results in the incident beam of light being phase-
shifted and focused based on the height map (pattern) of the
film. Due to the low thickness and optical absorption, heat
generation is negligible.

Thin Film Equation

The thin film lubrication equation is a partial differential
equation that describes the behavior of a thin fluid film on
a solid surface. It is a fundamental equation in the study of
thin film lubrication and wetting phenomena.

The thin film lubrication equation is a simplified form
of the Navier—Stokes equations that govern fluid motion. It
describes the evolution of the thickness profile of the fluid
film as a function of time and position. The equation takes
into account the balance between the viscous forces within
the fluid and the intermolecular forces between the fluid and
the solid surface.

Mathematically, the thin film equation can be written as,
oh
- V@ )]
where h is the thickness of the film, t is time, and q is the
flux of fluid in the x and y directions.

The driving force of thermocapillary dewetting [4, 12,
16] is the thermocapillary shear = = fVT. The evolution
of the height profile of the film is described by the thin film
lubrication equation,

dh WAVT K3 5, dV
L o_v. 2 (ov2h+ &£
di < T 3,4<” + dh) @

where y is the fluid viscosity, % is the film thickness, and V
encapsulates surface interactions. When the film is heated, it
becomes thin in the heated areas and thick in the surround-
ing areas, which leads to the formation of trench and ridge
structures. [10] explains the real-world experimental setup
along with images.

Symmetries of Thin Film Equation

The thin film equation is invariant under the following trans-
formations. Various papers [14, 17, 18] in the past have per-
formed Lie symmetry analysis for the thin film equation and
have showcased the solutions for different classes of the thin
film equation. Individually each of these types of transfor-
mations generates a group of symmetries of the system.

e Space Translation:

TP h(x, 1) = h(x = y,1),y € R?
e Time Translation:

T;jmeh(x, ) =h(x,t —s),s €R
e Rotation:

TR'h(x, 1) = h(R™'x,1),R € SO(2)
e Scaling:

TS p(, 1) = h(x,ﬁ', 12! ) 1€ Ry,

Relevance of Al to Material Science
Applications

Modeling physical dynamics is crucial not only for our
application but for diverse fields like physics, epidemiol-
ogy, and molecular dynamics. Traditional methods rely on
numerical models based on complex differential equations
representing physical laws. These techniques are computa-
tionally expensive and require manual engineering in each
application. DL has also shown significant speed up in
solving PDEs that govern physical processes [19]. This is
because DL can directly estimate PDE solutions or predict
system future states, eliminating the need for numerical inte-
gration [20, 21].

Physics-informed DL [1, 2] is a class of approaches that
integrates mathematical principles or prior physics knowl-
edge into the design of neural nets to develop predictive
models for complex physical systems. It aims to take the
best from both types of approaches to better solve scientific
problems.

For material science, in particular, physics-informed DL
methods have several advantages over traditional modeling
approaches, including capturing complex nonlinear relation-
ships between material properties, processing conditions that
may be difficult to model using traditional methods, incorpo-
rating physical principles into the model, which ensures that
the predicted results are physically meaningful, and reducing
the amount of experimental data needed to develop accurate
models.

Integrating symmetries in neural networks significantly
enhances their generalizability and sample efficiency. Deep
models, when designed to be equivariant or invariant to
group transformations, are more robust to distribution shift
and require fewer data samples to train. While equivari-
ant DL models have achieved remarkable success in com-
puter vision domain [22-26], the study of equivariant nets
in learning dynamical systems is newer but is becoming
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increasingly popular [9, 27-29]. Part of the motivation for
incorporating symmetries comes from the pivotal role they
play in physics. Noether’s law, for instance, establishes a
connection between conservation laws and symmetries. This
suggests that neural networks that respect symmetries gener-
ate predictions that are more physically accurate [27].

Al Approach and Innovation
Problem Formulation

In this paper, our main objective is the backward task of
finding the temperature profile (represented as 7 in Eq. 2)
required to produce a desired height profile (denoted as H in
Eq. 2). We also demonstrate our model can learn the forward
task, predicting the height profile for a given temperature
profile, to show the model can capture system dynamics. For
the backward task, we train models using height profiles to
predict temperature profiles. For the forward task, we use
temperature profiles to predict height profiles.

Equivariant Convolution Neural Networks

Equivariant neural networks are a class of deep neural net-
works that are designed to preserve geometric symmetries
and behave in a way that is consistent with the transforma-
tions of the input data, such as rotations, translations, and
reflections.

Definition 1: A function f : X — Y can be described as
respecting the symmetry coming from a group G using the
notion of equivariance. We say a function fis G-equivariant
if

flex) = g(f(x) 3)

for all x € X and g € G. The function f is G-invariant if
f(gx) = f(x). For example, G can represent the group SO(2)
of all possible 2D rotations.

Figure 2 illustrates the concept of rotational equivariance.
In the setting of our experiments, f approximates the map
between the temperature profile and height profile. We first
provide a concise overview of the two types of equivariant
networks we utilize in our experiments: G-convolution and
G-steerable CNN.

G-Equivariant Group Convolution

[22] defines a generalization of CNNs to an arbitrary sym-
metry group G. Taking G = Z2, the group of discrete trans-
lations, recovers CNNs. Group convolution takes as input a
¢,,-dimensional feature map f : G — R and convolves it
with kernel ¥ : G — RC«*Cin over a group G,
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Fig.2 Backward modeling task of predicting the temperature profile
required for producing a given height profile. Rotational equivariance
of this backward task mapping temperature to height with respect to
g = rot(I1/2)

R\

[f*c‘{‘] (&)= };Gf(h)‘l‘(g_lh) )
Steerable CNNs

[15] utilizes steerable filters from signal processing to design
equivariant convolutional layers. Let f be the input feature
map f : R - R% with group H C O(2) acting on R? by
matrix multiplication and on the feature space RCn.by p;,.
Also fix an H-action p,,,, on RCu. Let® : R?> — RCwXCinbe a
kernel, the standard 2D convolution f* g, ® is H-equivariant
and R?-translation equivariant when

O (hx)

= Pou(N®)p;, (W™ )Vh € H 5)

Solving for a basis of solutions to Eq. 5 gives an equivari-
ant kernel basis {®;}/ . The kernels we use in Steerable

CNNis are linear combinations of these basis with trainable
L

coefficients ® = Y, w,®,.
i=1

For rotation symmetry, we use the rotational equivariant
ResNet (RotEq-ResNet) and U-Net (RotEq-U-Net) architec-
tures from [27]. For scale symmetry, we employ the scale-
equivariant steerable network (SESN) from [30]. SESNs use
the concept of steerable filter parametrization which allows
for scaling without the need for tensor resizing. They are
equivariant to scale transformations with arbitrary discrete
scale factors. They do not rely on any image resampling
techniques during training. Since we directly learn the
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transformation between the temperature profile and height
profile, we do not need to consider the change of time under
scaling transformation. Thus, it is only essential to ensure
the model’s equivariance when scaling spatial dimensions.

Roto-Scale-Equivariant Convolution

Unlike many existing studies that focus on one symmetry
group, we propose an approach that ensures simultaneous
rotation, translation, and scale equivariance. To make con-
volution equivariant to both rotation and scaling transfor-
mations, we define a novel architecture RotSc which com-
bines rotation steerable convolution [15] with scaling group
convolution [23]. Utilizing the ESCNN library [31], we
can obtain a rotationally equivariant steerable kernel basis
{(D,}ZL:1 for different input and output representations. We
then replace the unrestricted kernels ¥ in the scale group
convolution [23] with those that are rotationally equivariant.
The @ we use in the following is already

a linear combination of rotational equivariant kernel basis
L

with trainable weights ® = ) w,®,.
i=1

Lifting Convolution

Since the input height profile is a single-channel image,
which is a function f;, : R* — R, we first lift it to functions
on scaling group G = (R,,.) (R* +). Group elements
g € G can be parametrized using x € R? and s € (R,, .)
such thatg = (x, s). For such groups, lifting convolution has
form

fou9) = (@)W = [ 0T 0=0) )
yeZ?

The input is convolved with rotational steerable filters @
scaled by different factors s. Note that the scaling transfor-
mation for the thin film equation in our case is only a change
of resolution since the model directly maps the height pro-
file to the temperature profile. This operation is scale-equiv-
ariant due to the scale group convolution and rotationally
equivariant since the filters @ are constrained to be steerable.

Group Convolution

After the first lifting layer, both the input and output feature
map and filters are now function on G. They now have one
additional group dimension defined over(R,, .), besides the
usual spatial dimensions defined overR?.The group convolu-
tion takes the form,

Temperature
Profile

/ \I 2 TFLE
Simulation
‘ ¥

Simulated
Height Profile

7N
Nl ‘.A‘

Fig. 3 Thin film lubrication equation simulation for a Diag data sam-
ple (data sample from Diag-TFLE dataset)

Temperature Simulated
Profile Height Profile

i TFLE
Simulation ’
. > x

Fig.4 Thin film lubrication equation simulation for a MNIST data
sample (data sample from MNIST-TFLE dataset)

fm(y, s')CD(s_l(y —X), s_]s')

(N
Note that the scaling transformation is acting on both
the spatial dimensions and the s axis, which indicates
a shift by one level up in the scale space. Please refer to
[23] for more details. The physical scaling law dictates our
model should be equivariant to both up and down scal-
ing and by any s € (R,,.). In practice, the integral over
s is approximated by the sum of 5 different scales factors
s € {0.5,0.75,1,1.5,2}. Similar to above, this operation is
both scale and rotation equivariant.

foi®os) = (fux®) 5 8)= [ [

YeZ2 ye(Rogy)

Experiments
TFLE Simulation and Synthetic Dataset Generation

The experiments necessary for real-world data are expen-
sive. For our proof-of-concept study, we use finite-difference
methods to generate a synthetic dataset by simulating the
thin film lubrication equation (TFLE) depicted in Eq. 2.
The resolution of both temperature and height profiles
is 200 x 200. The temperature profile consists of peaks of
temperatures in random patterns across the thin film after a
sufficient amount of time such that the profile has stabilized.
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This results in the ridge and trench pattern in the resulting
height profile. Temperatures are in Celcius and heights are
in nanometers.

We consider two different types of temperature maps
resulting in two datasets, one generated by crossing diago-
nal lines Diag-TFLE (refer Fig. 3) and one generated by
the MNIST dataset MNIST-TFLE (refer Fig. 4). We con-
sider MNIST for input signal generation in order to show
our method can generalize to natural and real-world input
signals. For MNIST, we resize the dataset to 200 x 200. We
use a base temperature of 300 degrees Celsius, varied up
to 360 degrees Celsius, and carry out the simulations for a
sufficient number of iterations (time) until the height profile
has stabilized.

We train and test our models on both of our synthetic
datasets. We compare rotationally equivariant versions of
ResNet and U-Net called RotEq-ResNet and RotEq-U-Net,
scale-equivariant steerable network called SESN, and rota-
tion + scale-equivariant network called RotSc, with convolu-
tion neural network architectures CNN, U-Net, and ResNet.
We train and test rotationally equivariant architectures on
Diag-TFLE, and all the models are trained and tested on
MNIST-TFLE.

Evaluation Metrics

As a metric, we use root mean square error (RMSE) between
the predictions and the ground truth over all pixels. We also
performed spatial statistics on the error maps between the
ground truth and predicted to get pixel accuracy. Pixel accu-
racy is a metric that quantifies the proportion of correctly
predicted pixels in an image, calculated as the ratio of pixels
with predicted values exactly matching the ground truth to
the total number of pixels.

Experimental Setup

Unless otherwise mentioned, the models are trained for 60
epochs. We use a training set of size 2000, a validation set of

size 700, and a test set of size 300. All models were trained
on a single 16 GB GPU.

Experiments on Synthetic MNIST-TFLE Dataset
Prediction Performance

Table 1 shows the test set prediction RMSEs and pixel accu-
racies by all the networks. Figure 5 (a) shows the ground
truth and the predicted temperature profiles by all the models
for a given height profile (backward modeling). Figure 5 (b)
shows the ground truth and the predicted height profiles by
all the models for a given temperature profile (forward mod-
eling). All the equivariant models perform better than the
non-equivariant models. RotSc achieves the lowest RMSE
for forward modeling suggesting that incorporating multiple
symmetries from the underlying system into a deep learning
model helps it perform better than the models into which
only a single symmetry is incorporated. SESN, however,
achieves the lowest RMSE for backward modeling with
RotSc a close second. RotSc may not outperform due to
lack of discriminative information, feature redundancy, and
diminished generalization. Alternatively, it could be there is
sufficient data such that the rotationally equivariant model
can learn scale equivariance, a conclusion supported by the
results in the next section.

Sample Efficiency for Backward Modeling

We train the models on the backward modeling task with
fewer data samples and test with the same test set as in the
previous section to demonstrate the sample efficiency of the
equivariant networks. Table 2 shows the test errors of the
models for experiments where all.

the models were trained with 80% of the original training
set (1600 samples) and with 60% of the original training size
(1200 samples).

As shown in Table 2, RotSc performs better compared
to the other models when trained with fewer samples. This

Table 1 RMSE and pixel

e of Config #Params  Forward mod-  Forward modeling Backward mod-  Backward
accuracies of CNN, ResNet, eling test RMSE pixel accuracy eling test RMSE ~ modeling pixel
U-Net and the RotEq- accuracy
ResNet, RotEq-U-Net, SESN,

Rot +Scale ResNet trained and CNN 35M 0.19+0.03 42.04% +2 0.23+0.02 39.83% +3
tested on the MNIST dataset for = ; ., 36M  0.18+£002  57.18%+3 0.27+0.03 47.51%+3
forward and backward modeling
ResNet 38 M 0.15+0.03 61.84%+2 0.17+0.03 63.02% +3
RotEq-U-Net 3.6 M 0.12+0.02 64.27% +4 0.14+0.02 67.55%+2
RotEq-ResNet  3.9M 0.09+0.02 71.39% +3 0.06+0.03 69.08% +4
SESN 37M 0.15+0.02 66.78% +2 0.06 + 0.02 64.48% +3
RotSc (Ours) 34M 0.09 +0.02 75.63% + 3 0.07+0.03 72.44% + 2

Bold values indicate the better performance of the models for the tasks when compared to the other models
that were tested, highlighting the performance of the equivariant neural networks
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(a) Height Profile CNN

(.

Temperature Profile
(Ground Truth)

RotEq ResNet

(b) Temperature Profile
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(Ground Truth)
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\> i
RotEq ResNet

) 16)

Fig.5 a Height profile, ground truth, and predicted temperature pro-
files by CNN, U-Net, ResNet, RotEq-U-Net, RotEq-ResNet, SESN,
Rot+Scale ResNet (backward modeling). b Temperature profile,

8

Table 2 Test errors of the models (backward modeling) for the two
cases of sampling experiments

Config 80% Train samples 60% Train samples
CNN 0.37+0.03 0.92+0.04
U-Net 0.35+0.03 0.49+0.03
ResNet 0.24+0.02 0.37+0.03
RotEq-U-Net 0.17+0.02 0.28+0.04
RotEqg-ResNet 0.15+0.02 0.21+0.03
SESN 0.11+0.03 0.17+0.04
RotSc (Ours) 0.09 +0.02 0.15+0.03

Bold values indicate the better performance of the models for the tasks
when compared to the other models that were tested, highlighting
the performance of the equivariant neural networks

RotEq U-Net

360

350

340

330

320

310

300

RotEq U-Net

110
100
90
80
70

ground truth, and predicted height profiles by CNN, U-Net, ResNet,
RotEq-U-Net, RotEq-ResNet, SESN, Rot+ Scale ResNet (forward
modeling)

ResNet

8

70

shows that a larger symmetry group results in better sample
efficiency since learning a given sample means also learn-
ing all transformed versions. Exploiting multiple symmetries
can enhance the model’s ability to learn meaningful repre-
sentations and generalize well to unseen data.

The mapping from the temperature input to the induced
height profile is inherently complex due to the nonlinear
nature of the thin film equation, which governs this inter-
action. Traditional numerical solvers often fail to capture
the intricacies of this mapping, leading to inefficiencies
and physically unrealistic solutions. Our preliminary
attempts with simpler models, including CNN, U-Net,
and ResNet without equivariant design, produced results
that were poor. These models struggled to preserve the
rotational and scale symmetries inherent in the thin film
dynamics, resulting in distorted predictions that were not
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Fig.6 Time efficiency of deep
learning models over traditional
methods

Time (log scale)

Traditional CNN

physically meaningful. By contrast, our ENNs are spe-
cifically designed to respect these symmetries, allowing
for more accurate and physically consistent temperature-
to-height mappings. The added complexity of ENNs is
justified by the significant improvements in prediction
accuracy and efficiency, as demonstrated in our baseline
comparisons, where ENNs consistently outperformed tra-
ditional approaches in both accuracy metrics and computa-
tional cost. This highlights the necessity of using ENNs to
solve such a highly nonlinear inverse problem in a physi-
cally realistic manner.

Time Efficiency

For all the neural networks tested, the inference wall clock
time is in the range of a few tenths of a second to predict the
temperature profile that can induce a given height profile
in the case of backward modeling, and the height profile
from a given temperature profile in the case of forward mod-
eling. The data used for this experiment here is a single data
sample chosen at random from the test set. The traditional
method of solving the partial differential equation takes an
average of 43 s to do the same task in the case of forward
modeling. This is the time taken to compute the height pro-
file that achieves a steady state for a given temperature pro-
file. Clearly, the deep models are much more time efficient
compared to the traditional method of computing. They are
faster by a scale of ~ /00x. Figure 6 shows the inference time
comparison between DL models and traditional computing
methods on a logarithmic scale.

This time efficiency is crucial when integrating these
models with lasers. This will ensure much less of time being
utilized in computing the laser pattern required to produce a
certain pattern on an SLM. More of this is explained in the
‘Path to Deployment’ section.

@ Springer
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Path to Deployment

One key advantage of thermocapillary SLMs is that they
are compatible with high-power lasers. Laser thermocapil-
lary dewetting (TC) can be applied to a host of nano-man-
ufacturing applications, including the creation of advanced
optics and the rapid prototyping of electrodes for lab-on-chip
applications.

When a collimated laser beam is transmitted through a
lens, the resulting pattern at the focal plane is related to the
Fourier transform of the original intensity distribution. Our
Al models help in accelerated prediction of the pattern of
the laser bean required to produce a certain pattern at the
focal plane, instead of having to compute it using Fourier
transforms. When these models are directly integrated for
usage with the lasers, patterns in the SLM can be cycled
through without having to exhaust too much of the time and
computing resources. This can be done by integrating it as
a computer vision system into automated experimentation
systems like ARES (autonomous research system) [32]. The
neural models are small enough to run on single GPU sys-
tems and hence can be integrated into deployed systems to
provide real-time control. But some engineering challenges
do exist

before deployment, which includes making sure that the
training dataset has good enough coverage to ensure good
generalization to desired patterns at runtime.

Conclusion

We develop methods to improve the performance of deep
learning models for learning the relationship between a
height profile and a corresponding temperature profile of
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a dynamic spatial light modulator. We incorporate various
symmetries by designing equivariant neural networks and
demonstrate their superior performance on prediction for
both forward and backward modeling experimentally. To
the best of our best knowledge, there does not exist a single
model with equivariance to the full symmetry group of the
thin film equation apart from ours.

Funding National Science Foundation, 2107256, Robin Walters,
2134178, Robin Walters

References

1. Zhang X, Wang L, Helwig J, Luo Y, Fu C, Xie Y et al (2023)
Artificial intelligence for science in quantum, atomistic, and con-
tinuum systems. arXiv preprint arXiv:2307.08423

2. Wang R, Yu R (2021) Physics-guided deep learning for dynamical
systems: a survey. arXiv Preprint arXiv:2107.01272

3. Strogatz SH (2018) Nonlinear dynamics and chaos: with applica-
tions to physics, biology, chemistry, and engineering. CRC press

4. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT
press

5. Bartoldson B, Wang R, Fu Y, Widemann D, Nguyen S, Bao J
et al (2022) Latent space simulation for carbon capture design
optimization. Proceedings of the AAAI conference on artificial
intelligence. pp 12447-12453

6. Wei J, Chu X, Sun X-Y, Xu K, Deng H-X, Chen J et al (2019)
Machine learning in materials science. InfoMat 1:338-358

7. Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R
et al (2022) Recent advances and applications of deep learning
methods in materials science. npj Computational Maters 8:59

8. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017)
Neural message passing for quantum chemistry. In: International
conference on machine learning. PMLR, pp 1263-1272

9. Hoogeboom E, Satorras VG, Vignac C, Welling M (2022) Equiv-
ariant diffusion for molecule generation in 3d. In: International
conference on machine learning. PMLR, pp 8867-8887

10. Kovacevich DA, Ma T, Gamboa AR, Nitzsche MP, Saro-Cortes V,
Davis E et al (2021) Thermocapillary dewetting-based dynamic
spatial light modulator. Opt Lett 46:3721-3724

11. Thomson J (1855) XLII. On certain curious motions observable
at the surfaces of wine and other alcoholic liquors. Lond, Edinb,
Dublin Philos Mag J Sci 10:330-333

12. Bénard H (1900) Les tourbillons cellulaires dans une nappe lig-
uide. Revue Gen Sci Pure Appl 11:1261-1271

13. Bénard H (1901) Les tourbillons cellulaires dans une nappe lig-
uide - Méthodes optiques d’observation et d’enregistrement. J
Phys Theor Appl 10(2):54-66

14. Wang X-B, Tian S-F (2018) Lie symmetry analysis, conservation
laws and analytical solutions of the time-fractional thin-film equa-
tion. Comput Appl Math 37:6270-6282

15. Weiler M, Cesa G (2019) General E(2)-equivariant steerable cnns.
In: Advances in Neural Information Processing Systems, vol 32

16. Darhuber AA, Troian SM (2005) Principles of microfluidic actua-
tion by modulation of surface stresses. Annu Rev Fluid Mech
37:425-455

17. Cherniha R, Myroniuk L (2010) Lie symmetries and exact solu-
tions of a class of thin film equations. J Phys Math 2:1-19

18. Charalambous K, Sophocleous C (2013) Symmetry properties for
a generalised thin film equation. J Eng Math 82:109-124

19. Tompson J, Schlachter K, Sprechmann P, Perlin K (2017) Accel-
erating eulerian fluid simulation with convolutional networks.
In: Proceedings of the 34th international conference on machine
learning. vol 70. JMLR, pp 3424-3233

20. Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J,
Battaglia P (2020) Learning to simulate complex physics with
graph networks. arXiv:2002.09405

21. Wang R, Kashinath K, Mustafa M, Albert A, Yu R (2020) Towards
physics-informed deep learning for turbulent flow prediction. In:
Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pp 1457-1466

22. Cohen T, Welling M (2016) Group equivariant convolutional net-
works. In: International conference on machine learning. PMLR,
pp 2990-2999

23. Worrall D, Welling M (2019) Deep scale-spaces: Equivariance
over scale. In: Advances in Neural Information Processing Sys-
tems, vol 32

24. Worrall DE, Garbin SJ, Turmukhambetov D, Brostow GJ (2017)
Harmonic networks: deep translation and rotation equivariance.
In:Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 5028-5037

25. Weiler M, Hamprecht FA, Storath M (2018) Learning steerable
filters for rotation equivariant CNNs. Computer Vision and Pat-
tern Recognition (CVPR)

26. Sosnovik I, Szmaja M, Smeulders A (2019) Scale-equivariant
steerable networks. arXiv preprint arXiv:1910.11093

27. Wang R, Walters R, Yu R (2020) Incorporating symmetry into
deep dynamics models for improved generalization. arXiv preprint
arXiv:2002.03061

28. Smidt TE (2021) Euclidean symmetry and equivariance in
machine learning. Trends Chem 3:82-85

29. Simm GNC, Pinsler R, Csanyi G, Hernandez-Lobato JM (2021)
Symmetry-aware actor-critic for 3D molecular design. Interna-
tional conference on learning representations [Internet]. https://
openreview.net/forum?id=jEYKjPEIxYN

30. Sosnovik I, Szmaja M, Smeulders A (2020) Scale-equivariant
steerable networks. In: International conference on learning rep-
resentations [Internet]. https://openreview.net/forum?id=HJgpu
arKPS

31. CesaG, Lang L, Weiler M (2022) A program to build E(N)-equiv-
ariant steerable CNNs. In: International conference on learning
representations [Internet]. https://openreview.net/forum?id=
WE4qe9xInQw

32. Stach E, DeCost B, Kusne AG, Hattrick-Simpers J, Brown KA,
Reyes KG et al (2021) Autonomous experimentation systems
for materials development: a community perspective. Matter
4(9):2702-2726

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


http://arxiv.org/abs/2307.08423
http://arxiv.org/abs/2107.01272
http://arxiv.org/abs/2002.09405
http://arxiv.org/abs/1910.11093
http://arxiv.org/abs/2002.03061
https://openreview.net/forum?id=jEYKjPE1xYN
https://openreview.net/forum?id=jEYKjPE1xYN
https://openreview.net/forum?id=HJgpugrKPS
https://openreview.net/forum?id=HJgpugrKPS
https://openreview.net/forum?id=WE4qe9xlnQw
https://openreview.net/forum?id=WE4qe9xlnQw

