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Abstract

Spatial light modulators (SLMs) are devices that are capable of manipulating incident light by passing it through an array of 

phase/intensity altering pixels. A recent alternative design involves creating a phase mask by directing a thin film of fluid with 

thermocapillary forces generated by a controlled temperature map. However, it is difficult to determine the input temperature 

signal necessary to induce a given height profile. The relationship between temperature and height is given by the thin film 

equation, a fourth-order nonlinear PDE, which is difficult to solve numerically. To address this problem, we train deep neural 

networks to directly solve the inverse problem, mapping from the desired height profiles to the needed temperature patterns. 

We design novel equivariant networks incorporating scale and rotation symmetry of the underlying thin film equation. We 

demonstrate the effectiveness of equivariant models for learning the complex relationship between input temperature signals 

and the resulting light patterns, showing they are more accurate than non-equivariant baselines and very computationally 

efficient. This work has implications for a range of applications, including high-power laser systems, and could lead to more 

efficient and effective ways to deploy the process of modulation of light in SLMs in a variety of applications.

Keywords Machine learning · Thin film equation · Spatial light modulator · Equivariant neural networks

Introduction

Deep learning (DL) has emerged as a powerful tool for many 

scientific fields, including material science [1], climate sci-

ence [2], biology [3], and neuroscience [4]. Recent works 

have shown that DL can generate realistic predictions and 

significantly accelerate the simulation of physical systems 

relative to numerical solvers, from turbulence modeling 

to weather prediction [5]. Within materials science, DL 

has demonstrated efficiency in analyzing and understand-

ing intricate material structures, design, and properties [6, 

7]. Traditional methods for predicting changes in material 

properties can be time-consuming due to their reliance on 

extensive experimentation, intricate numerical analyses, and 

the iterative nature of the design-make-test-analyze cycle. 

DL offers a more efficient approach by directly predicting 

material properties based on their chemical composition and 

other factors and bypassing slow numerical methods [8, 9].

In this paper, we employ DL to forecast the temperature 

profile needed to generate a specific reflected light pattern 

using a thermocapillary dewetting-based dynamic spatial 

light modulator (SLM) [10]. SLMs modulate light beams by 

utilizing fluid films whose heights can be adjusted through 

temperature gradients. The relationship between temperature 

and height is governed by the thin film equation [11–13]. 

It is a fundamental equation in the study of thin film lubri-

cation and wetting phenomena, characterizing the spatial 

and temporal behavior of thin fluid films on solid surfaces. 

By numerically solving the equation, one can perform for-

ward modeling of the system, determining the evolution 

of the height profile of the fluid over time in response to 
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temperature. More critical for controlling the SLM is the 

inverse problem, to determine the temperature profile when 

provided a target height profile. Forward modeling is com-

putationally expensive, and the inverse problem is even 

more difficult. Here, we demonstrate that DL models can 

efficiently solve both problems.

Conventional neural networks require a large amount of 

data to correctly capture the correlation between the height 

and corresponding temperature profiles but obtaining sub-

stantial real experimental data is challenging. Thus, we pro-

pose to incorporate the rotational, translational, and scale 

symmetries of the thin film equation into convolutional neu-

ral networks to build equivariant networks. Equivariant mod-

els that preserve desired symmetries not only enjoy favorable 

sample complexity compared with data augmentation but are 

also robust to distributional shifts by symmetry group trans-

formations [14, 15]. Specifically, our contributions include:

• We study the problem of predicting the input tempera-

ture profile required to induce a given height profile in 

dynamic SLMs with DL.

• We generate a two-dimensional simulated dataset by 

numerically solving the thin film lubrication equation.

• We demonstrate that incorporating rotational and scale 

symmetries enhances accuracy, generalization ability, 

and sample efficiency.

• We propose a novel roto-scale-equivariant model that can 

preserve rotation and scale symmetries concurrently.

Application Description

SLMs and Thermocapillary Dewetting

Dynamic SLMs (Fig. 1) are devices that can precisely alter 

incident light by tuning either the phase shift and/or the 

reflectivity/transmission of an array of pixels in parallel. 

They are used in optics to control the behavior of light and 

are used for a number of applications like projectors, laser 

beam shaping, beam front aberration, etc. They can also be 

used to manipulate the properties of microscopic particles 

(i.e., optical tweezing) and materials (i.e., lithography) by 

applying different light patterns to them.

Conventional dynamic SLMs, which employ liquid crys-

tal optics, are normally incompatible with high-powered 

sources due to the heating that invariably results from even 

slight optical absorption. To address this issue, [10] pre-

sents the usage of thermocapillary dewetting to dynamically 

Fig. 1  Schematic of multilayer 

SLM showing forward and 

backward modeling tasks
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control the thickness of a thin viscous, transparent film posi-

tioned on a high-power mirror. This film, when used with 

an SLM, results in the incident beam of light being phase-

shifted and focused based on the height map (pattern) of the 

film. Due to the low thickness and optical absorption, heat 

generation is negligible.

Thin Film Equation

The thin film lubrication equation is a partial differential 

equation that describes the behavior of a thin fluid film on 

a solid surface. It is a fundamental equation in the study of 

thin film lubrication and wetting phenomena.

The thin film lubrication equation is a simplified form 

of the Navier–Stokes equations that govern fluid motion. It 

describes the evolution of the thickness profile of the fluid 

film as a function of time and position. The equation takes 

into account the balance between the viscous forces within 

the fluid and the intermolecular forces between the fluid and 

the solid surface.

Mathematically, the thin film equation can be written as,

where h is the thickness of the film, t is time, and q is the 

flux of fluid in the x and y directions.

The driving force of thermocapillary dewetting [4, 12, 

16] is the thermocapillary shear � = �∇T  . The evolution 

of the height profile of the film is described by the thin film 

lubrication equation,

where � is the fluid viscosity, h is the film thickness, and V 

encapsulates surface interactions. When the film is heated, it 

becomes thin in the heated areas and thick in the surround-

ing areas, which leads to the formation of trench and ridge 

structures. [10] explains the real-world experimental setup 

along with images.

Symmetries of Thin Film Equation

The thin film equation is invariant under the following trans-

formations. Various papers [14, 17, 18] in the past have per-

formed Lie symmetry analysis for the thin film equation and 

have showcased the solutions for different classes of the thin 

film equation. Individually each of these types of transfor-

mations generates a group of symmetries of the system.

• Space Translation:

(1)
�h

�t
= −∇ ⋅ (q)

(2)
dh

dt
= −∇ ⋅

(

h2�∇T

2�
+

h3

3�
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�∇2
h +

dV

dh
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)

• Time Translation:

• Rotation:

• Scaling:

Relevance of AI to Material Science 
Applications

Modeling physical dynamics is crucial not only for our 

application but for diverse fields like physics, epidemiol-

ogy, and molecular dynamics. Traditional methods rely on 

numerical models based on complex differential equations 

representing physical laws. These techniques are computa-

tionally expensive and require manual engineering in each 

application. DL has also shown significant speed up in 

solving PDEs that govern physical processes [19]. This is 

because DL can directly estimate PDE solutions or predict 

system future states, eliminating the need for numerical inte-

gration [20, 21].

Physics-informed DL [1, 2] is a class of approaches that 

integrates mathematical principles or prior physics knowl-

edge into the design of neural nets to develop predictive 

models for complex physical systems. It aims to take the 

best from both types of approaches to better solve scientific 

problems.

For material science, in particular, physics-informed DL 

methods have several advantages over traditional modeling 

approaches, including capturing complex nonlinear relation-

ships between material properties, processing conditions that 

may be difficult to model using traditional methods, incorpo-

rating physical principles into the model, which ensures that 

the predicted results are physically meaningful, and reducing 

the amount of experimental data needed to develop accurate 

models.

Integrating symmetries in neural networks significantly 

enhances their generalizability and sample efficiency. Deep 

models, when designed to be equivariant or invariant to 

group transformations, are more robust to distribution shift 

and require fewer data samples to train. While equivari-

ant DL models have achieved remarkable success in com-

puter vision domain [22–26], the study of equivariant nets 

in learning dynamical systems is newer but is becoming 
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increasingly popular [9, 27–29]. Part of the motivation for 

incorporating symmetries comes from the pivotal role they 

play in physics. Noether’s law, for instance, establishes a 

connection between conservation laws and symmetries. This 

suggests that neural networks that respect symmetries gener-

ate predictions that are more physically accurate [27].

AI Approach and Innovation

Problem Formulation

In this paper, our main objective is the backward task of 

finding the temperature profile (represented as T in Eq. 2) 

required to produce a desired height profile (denoted as H in 

Eq. 2). We also demonstrate our model can learn the forward 

task, predicting the height profile for a given temperature 

profile, to show the model can capture system dynamics. For 

the backward task, we train models using height profiles to 

predict temperature profiles. For the forward task, we use 

temperature profiles to predict height profiles.

Equivariant Convolution Neural Networks

Equivariant neural networks are a class of deep neural net-

works that are designed to preserve geometric symmetries 

and behave in a way that is consistent with the transforma-

tions of the input data, such as rotations, translations, and 

reflections.

Definition 1: A function f ∶ X → Y  can be described as 

respecting the symmetry coming from a group G using the 

notion of equivariance. We say a function f is G-equivariant 

if

for all x ∈ X and g ∈ G . The function f is G-invariant if 

f (gx) = f (x) . For example, G can represent the group SO(2) 

of all possible 2D rotations.

Figure 2 illustrates the concept of rotational equivariance. 

In the setting of our experiments, f approximates the map 

between the temperature profile and height profile. We first 

provide a concise overview of the two types of equivariant 

networks we utilize in our experiments: G-convolution and 

G-steerable CNN.

G-Equivariant Group Convolution

[22] defines a generalization of CNNs to an arbitrary sym-

metry group G. Taking G = Z
2 , the group of discrete trans-

lations, recovers CNNs. Group convolution takes as input a 

c
in

-dimensional feature map f ∶ G → RCin and convolves it 

with kernel Ψ ∶ G → R
C

out
XC

in over a group G,

(3)f (g(x)) = g(f (x)

Steerable CNNs

[15] utilizes steerable filters from signal processing to design 

equivariant convolutional layers. Let f be the input feature 

map f ∶ R2
→ RCin with group H ⊂ O(2) acting on R2 by 

matrix multiplication and on the feature space RC
in.by �

in
 . 

Also fix an H-action �
out

 on RC
out . Let Φ ∶ R

2
→ R

C
out

XC
in be a 

kernel, the standard 2D convolution f⋆R2Φ is H-equivariant 

and R2-translation equivariant when

Solving for a basis of solutions to Eq. 5 gives an equivari-

ant kernel basis {Φ
l
}L

l=1
 . The kernels we use in Steerable 

CNNs are linear combinations of these basis with trainable 

coefficients Φ =

L
∑

l=1

�
l
Φ

l
.

For rotation symmetry, we use the rotational equivariant 

ResNet (RotEq-ResNet) and U-Net (RotEq-U-Net) architec-

tures from [27]. For scale symmetry, we employ the scale-

equivariant steerable network (SESN) from [30]. SESNs use 

the concept of steerable filter parametrization which allows 

for scaling without the need for tensor resizing. They are 

equivariant to scale transformations with arbitrary discrete 

scale factors. They do not rely on any image resampling 

techniques during training. Since we directly learn the 

(4)

[

f⋆GΨ
]

(g) =
∑

h∈G

f (h)Ψ
(

g−1h
)

(5)Φ(hx) = �
out(h)Φ(x)�in

(

h
−1
)

∀h ∈ H

Fig. 2  Backward modeling task of predicting the temperature profile 

required for producing a given height profile. Rotational equivariance 

of this backward task mapping temperature to height with respect to 

g = rot(Π∕2)
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transformation between the temperature profile and height 

profile, we do not need to consider the change of time under 

scaling transformation. Thus, it is only essential to ensure 

the model’s equivariance when scaling spatial dimensions.

Roto-Scale-Equivariant Convolution

Unlike many existing studies that focus on one symmetry 

group, we propose an approach that ensures simultaneous 

rotation, translation, and scale equivariance. To make con-

volution equivariant to both rotation and scaling transfor-

mations, we define a novel architecture RotSc which com-

bines rotation steerable convolution [15] with scaling group 

convolution [23]. Utilizing the ESCNN library [31], we 

can obtain a rotationally equivariant steerable kernel basis 

{Φ
l
}

L

l=1
 for different input and output representations. We 

then replace the unrestricted kernels Ψ in the scale group 

convolution [23] with those that are rotationally equivariant. 

The Φ we use in the following is already

a linear combination of rotational equivariant kernel basis 

with trainable weights Φ =

L
∑

l=1

�
l
Φ

l
.

Lifting Convolution

Since the input height profile is a single-channel image, 

which is a function fin ∶ R2
→ R , we first lift it to functions 

on scaling group G =

(

R>0, .
)

�
(

R
2,+

)

 . Group elements 

g ∈ G can be parametrized using x ∈ R
2 and s ∈

(

R
>0, .

)

 

such thatg = (x, s) . For such groups, lifting convolution has 

form

The input is convolved with rotational steerable filters Φ 

scaled by different factors s. Note that the scaling transfor-

mation for the thin film equation in our case is only a change 

of resolution since the model directly maps the height pro-

file to the temperature profile. This operation is scale-equiv-

ariant due to the scale group convolution and rotationally 

equivariant since the filters Φ are constrained to be steerable.

Group Convolution

After the first lifting layer, both the input and output feature 

map and filters are now function on G. They now have one 

additional group dimension defined over
(

R
>0, .

)

 , besides the 

usual spatial dimensions defined overR2.The group convolu-

tion takes the form,

(6)fout(x, s) =
(

fin⋆Φ
)

(x) =
.

∫
y∈Z2

fin(y)Φ
(

s−1(y − x)
)

Note that the scaling transformation is acting on both 

the spatial dimensions and the s axis, which indicates 

a shift by one level up in the scale space. Please refer to 

[23] for more details. The physical scaling law dictates our 

model should be equivariant to both up and down scal-

ing and by any s ∈
(

R
>0, .

)

 . In practice, the integral over 

s is approximated by the sum of 5 different scales factors 

s ∈ {0.5, 0.75, 1, 1.5, 2} . Similar to above, this operation is 

both scale and rotation equivariant.

Experiments

TFLE Simulation and Synthetic Dataset Generation

The experiments necessary for real-world data are expen-

sive. For our proof-of-concept study, we use finite-difference 

methods to generate a synthetic dataset by simulating the 

thin film lubrication equation (TFLE) depicted in Eq. 2.

The resolution of both temperature and height profiles 

is 200 × 200. The temperature profile consists of peaks of 

temperatures in random patterns across the thin film after a 

sufficient amount of time such that the profile has stabilized. 

(7)

fout(x, s) =
(

fin⋆Φ
)

(x, s) =
.

∫
y∈Z2

.

∫
s�∈(R>0,.)

fin
(

y, s�
)

Φ
(

s−1(y − x), s−1s�
)

Fig. 3  Thin film lubrication equation simulation for a Diag data sam-

ple (data sample from Diag-TFLE dataset)

Fig. 4  Thin film lubrication equation simulation for a MNIST data 

sample (data sample from MNIST-TFLE dataset)
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This results in the ridge and trench pattern in the resulting 

height profile. Temperatures are in Celcius and heights are 

in nanometers.

We consider two different types of temperature maps 

resulting in two datasets, one generated by crossing diago-

nal lines Diag-TFLE (refer Fig. 3) and one generated by 

the MNIST dataset MNIST-TFLE (refer Fig. 4). We con-

sider MNIST for input signal generation in order to show 

our method can generalize to natural and real-world input 

signals. For MNIST, we resize the dataset to 200 × 200. We 

use a base temperature of 300 degrees Celsius, varied up 

to 360 degrees Celsius, and carry out the simulations for a 

sufficient number of iterations (time) until the height profile 

has stabilized.

We train and test our models on both of our synthetic 

datasets. We compare rotationally equivariant versions of 

ResNet and U-Net called RotEq-ResNet and RotEq-U-Net, 

scale-equivariant steerable network called SESN, and rota-

tion + scale-equivariant network called RotSc, with convolu-

tion neural network architectures CNN, U-Net, and ResNet. 

We train and test rotationally equivariant architectures on 

Diag-TFLE, and all the models are trained and tested on 

MNIST-TFLE.

Evaluation Metrics

As a metric, we use root mean square error (RMSE) between 

the predictions and the ground truth over all pixels. We also 

performed spatial statistics on the error maps between the 

ground truth and predicted to get pixel accuracy. Pixel accu-

racy is a metric that quantifies the proportion of correctly 

predicted pixels in an image, calculated as the ratio of pixels 

with predicted values exactly matching the ground truth to 

the total number of pixels.

Experimental Setup

Unless otherwise mentioned, the models are trained for 60 

epochs. We use a training set of size 2000, a validation set of 

size 700, and a test set of size 300. All models were trained 

on a single 16 GB GPU.

Experiments on Synthetic MNIST‑TFLE Dataset

Prediction Performance

Table 1 shows the test set prediction RMSEs and pixel accu-

racies by all the networks. Figure 5 (a) shows the ground 

truth and the predicted temperature profiles by all the models 

for a given height profile (backward modeling). Figure 5 (b) 

shows the ground truth and the predicted height profiles by 

all the models for a given temperature profile (forward mod-

eling). All the equivariant models perform better than the 

non-equivariant models. RotSc achieves the lowest RMSE 

for forward modeling suggesting that incorporating multiple 

symmetries from the underlying system into a deep learning 

model helps it perform better than the models into which 

only a single symmetry is incorporated. SESN, however, 

achieves the lowest RMSE for backward modeling with 

RotSc a close second. RotSc may not outperform due to 

lack of discriminative information, feature redundancy, and 

diminished generalization. Alternatively, it could be there is 

sufficient data such that the rotationally equivariant model 

can learn scale equivariance, a conclusion supported by the 

results in the next section.

Sample Efficiency for Backward Modeling

We train the models on the backward modeling task with 

fewer data samples and test with the same test set as in the 

previous section to demonstrate the sample efficiency of the 

equivariant networks. Table 2 shows the test errors of the 

models for experiments where all.

the models were trained with 80% of the original training 

set (1600 samples) and with 60% of the original training size 

(1200 samples).

As shown in Table 2, RotSc performs better compared 

to the other models when trained with fewer samples. This 

Table 1  RMSE and pixel 

accuracies of CNN, ResNet, 

U-Net and the RotEq-

ResNet, RotEq-U-Net, SESN, 

Rot + Scale ResNet trained and 

tested on the MNIST dataset for 

forward and backward modeling

Bold values indicate the better performance of the models for the tasks when compared to the other models 

that were tested, highlighting the performance of the equivariant neural networks

Config # Params Forward mod-

eling test RMSE

Forward modeling 

pixel accuracy

Backward mod-

eling test RMSE

Backward 

modeling pixel 

accuracy

CNN 3.5 M 0.19 ± 0.03 42.04% ± 2 0.23 ± 0.02 39.83% ± 3

U-Net 3.6 M 0.18 ± 0.02 57.18% ± 3 0.27 ± 0.03 47.51% ± 3

ResNet 3.8 M 0.15 ± 0.03 61.84% ± 2 0.17 ± 0.03 63.02% ± 3

RotEq-U-Net 3.6 M 0.12 ± 0.02 64.27% ± 4 0.14 ± 0.02 67.55% ± 2

RotEq-ResNet 3.9 M 0.09 ± 0.02 71.39% ± 3 0.06 ± 0.03 69.08% ± 4

SESN 3.7 M 0.15 ± 0.02 66.78% ± 2 0.06 ± 0.02 64.48% ± 3

RotSc (Ours) 3.4 M 0.09 ± 0.02 75.63% ± 3 0.07 ± 0.03 72.44% ± 2



863Integrating Materials and Manufacturing Innovation (2024) 13:857–865 

shows that a larger symmetry group results in better sample 

efficiency since learning a given sample means also learn-

ing all transformed versions. Exploiting multiple symmetries 

can enhance the model’s ability to learn meaningful repre-

sentations and generalize well to unseen data.

The mapping from the temperature input to the induced 

height profile is inherently complex due to the nonlinear 

nature of the thin film equation, which governs this inter-

action. Traditional numerical solvers often fail to capture 

the intricacies of this mapping, leading to inefficiencies 

and physically unrealistic solutions. Our preliminary 

attempts with simpler models, including CNN, U-Net, 

and ResNet without equivariant design, produced results 

that were poor. These models struggled to preserve the 

rotational and scale symmetries inherent in the thin film 

dynamics, resulting in distorted predictions that were not 

Fig. 5  a Height profile, ground truth, and predicted temperature pro-

files by CNN, U-Net, ResNet, RotEq-U-Net, RotEq-ResNet, SESN, 

Rot + Scale ResNet (backward modeling). b Temperature profile, 

ground truth, and predicted height profiles by CNN, U-Net, ResNet, 

RotEq-U-Net, RotEq-ResNet, SESN, Rot + Scale ResNet (forward 

modeling)

Table 2  Test errors of the models (backward modeling) for the two 

cases of sampling experiments

Bold values indicate the better performance of the models for the tasks 

when compared to the other models that were tested, highlighting  

the performance of the equivariant neural networks

Config 80% Train samples 60% Train samples

CNN 0.37 ± 0.03 0.92 ± 0.04

U-Net 0.35 ± 0.03 0.49 ± 0.03

ResNet 0.24 ± 0.02 0.37 ± 0.03

RotEq-U-Net 0.17 ± 0.02 0.28 ± 0.04

RotEq-ResNet 0.15 ± 0.02 0.21 ± 0.03

SESN 0.11 ± 0.03 0.17 ± 0.04

RotSc (Ours) 0.09 ± 0.02 0.15 ± 0.03
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physically meaningful. By contrast, our ENNs are spe-

cifically designed to respect these symmetries, allowing 

for more accurate and physically consistent temperature-

to-height mappings. The added complexity of ENNs is 

justified by the significant improvements in prediction 

accuracy and efficiency, as demonstrated in our baseline 

comparisons, where ENNs consistently outperformed tra-

ditional approaches in both accuracy metrics and computa-

tional cost. This highlights the necessity of using ENNs to 

solve such a highly nonlinear inverse problem in a physi-

cally realistic manner.

Time Efficiency

For all the neural networks tested, the inference wall clock 

time is in the range of a few tenths of a second to predict the 

temperature profile that can induce a given height profile 

in the case of backward modeling, and the height profile 

from a given temperature profile in the case of forward mod-

eling. The data used for this experiment here is a single data 

sample chosen at random from the test set. The traditional 

method of solving the partial differential equation takes an 

average of 43 s to do the same task in the case of forward 

modeling. This is the time taken to compute the height pro-

file that achieves a steady state for a given temperature pro-

file. Clearly, the deep models are much more time efficient 

compared to the traditional method of computing. They are 

faster by a scale of ~ 100x. Figure 6 shows the inference time 

comparison between DL models and traditional computing 

methods on a logarithmic scale.

This time efficiency is crucial when integrating these 

models with lasers. This will ensure much less of time being 

utilized in computing the laser pattern required to produce a 

certain pattern on an SLM. More of this is explained in the 

‘Path to Deployment’ section.

Path to Deployment

One key advantage of thermocapillary SLMs is that they 

are compatible with high-power lasers. Laser thermocapil-

lary dewetting (TC) can be applied to a host of nano-man-

ufacturing applications, including the creation of advanced 

optics and the rapid prototyping of electrodes for lab-on-chip 

applications.

When a collimated laser beam is transmitted through a 

lens, the resulting pattern at the focal plane is related to the 

Fourier transform of the original intensity distribution. Our 

AI models help in accelerated prediction of the pattern of 

the laser bean required to produce a certain pattern at the 

focal plane, instead of having to compute it using Fourier 

transforms. When these models are directly integrated for 

usage with the lasers, patterns in the SLM can be cycled 

through without having to exhaust too much of the time and 

computing resources. This can be done by integrating it as 

a computer vision system into automated experimentation 

systems like ARES (autonomous research system) [32]. The 

neural models are small enough to run on single GPU sys-

tems and hence can be integrated into deployed systems to 

provide real-time control. But some engineering challenges 

do exist

before deployment, which includes making sure that the 

training dataset has good enough coverage to ensure good 

generalization to desired patterns at runtime.

Conclusion

We develop methods to improve the performance of deep 

learning models for learning the relationship between a 

height profile and a corresponding temperature profile of 

Fig. 6  Time efficiency of deep 

learning models over traditional 

methods
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a dynamic spatial light modulator. We incorporate various 

symmetries by designing equivariant neural networks and 

demonstrate their superior performance on prediction for 

both forward and backward modeling experimentally. To 

the best of our best knowledge, there does not exist a single 

model with equivariance to the full symmetry group of the 

thin film equation apart from ours.

Funding National Science Foundation, 2107256, Robin Walters, 

2134178, Robin Walters
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