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Abstract. In reinforcement learning, an agent incrementally refines a
behavioral policy through a series of episodic interactions with its envi-
ronment. This process can be characterized as explicit reinforcement
learning, as it deals with explicit states and concrete transitions. Build-
ing upon the concept of symbolic model checking, we propose a symbolic
variant of reinforcement learning, in which sets of states are represented
through predicates and transitions are represented by predicate trans-
formers. Drawing inspiration from regular model checking, we choose
regular languages over the states as our predicates, and rational transduc-
tions as predicate transformations. We refer to this framework as regular
reinforcement learning, and study its utility as a symbolic approach to
reinforcement learning. Theoretically, we establish results around decid-
ability, approximability, and efficient learnability in the context of reg-
ular reinforcement learning. Towards practical applications, we develop
a deep regular reinforcement learning algorithm, enabled by the use of
graph neural networks. We showcase the applicability and effectiveness
of (deep) regular reinforcement learning through empirical evaluation on
a diverse set of case studies.

Keywords: Reinforcement Learning · Regular Model Checking ·
Graph Neural Networks · Symbolic Techniques for Verification and
Synthesis

1 Introduction

Reinforcement learning [51] (RL) is a sampling-based approach to synthesis,
capable of producing solutions with superhuman efficiency [10,44,49]. An RL
agent interacts with its environment through episodic interactions while receiving
scalar rewards as feedback for its performance. Following the explicit/symbolic
dichotomy of model checking approaches, the interactions in classic RL can be
characterized as explicit : each episode consists of a sequence of experiences in
which the agent chooses an action from a concrete state, observes the next con-
crete state, and receives an associated reward for this explicit interaction.

We envision a symbolic approach to RL, where each experience may deal
with a set of states represented by a predicate, and the evolution of the system
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is described by predicate transformers. When the state space is large, symbolic
representations may lead to greater efficiency and better generalization. More-
over, there are systems with naturally succinct representations—such as factored
MDPs [27,32], succinct MDPs [23], and Petri nets [9]—that can benefit from
symbolic manipulation of states.

The concept of symbolic interactions with an environment differs signifi-
cantly from typical approximation methods used in RL, such as linear approx-
imations [51] or deep neural networks [31]. In the context of such techniques,
a learning agent attempts to generalize observations based on perceived simi-
larities between them. In the symbolic setting, however, the generalization of a
given interaction is explicitly provided by the environment itself. As a result,
symbolic interactions facilitate a more direct form of generalization, where the
environment ensures that similar interactions lead to similar outcomes.

This paper presents regular reinforcement learning (RRL), a symbolic app-
roach to RL that employs regular languages and rational transductions, respec-
tively, as models of predicates and their transformations. While natural lan-
guages can be used to encode symbolic interactions, we use regular languages [50]
for the following reasons: (1) Regular languages enable unambiguous represen-
tation of predicates and predicate transformers. (2) Regular languages pos-
sess elegant theoretical properties including the existence of minimal canoni-
cal automata, determinizability, closure under many operations, and decidable
emptiness and containment. (3) Regular languages hold a special position in
machine learning, enjoying numerous efficient learnability results and active
learning algorithms.

Regular languages also form the basis of a class of powerful symbolic model
checking algorithm for infinite-state systems known as regular model checking
(RMC) [2,5,13,18]. The following example introduces the concepts of RRL
though a variation on the canonical token passing protocol used in the RMC
literature [5,18].

Example 1 (Token Passing). The token passing protocol involves an arbitrary
number of processes arranged in a linear topology and indexed by consecutive
natural numbers. At any point in time, each process can be in one of two states:
t if it has a token or n if it does not. The states of the system are then strings
over the alphabet {t, n}. The initial state, in which only the leftmost process has
a token, is the regular language tn∗.

At each time step, an agent chooses an action from the set {a, b, c}, and each
of these actions corresponds to one of the following outcomes.

(a) Each even-indexed process with a token passes it to the right. Each odd-
indexed process with a token passes a copy of it to the right.

(b) Each odd-indexed process with a token passes it to the right. Each even-
indexed process with a token passes a copy of it to the right.

(c) The outcome of a (resp. b) occurs with probability p (resp. (1 − p)).
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Fig. 1. An edge from q0 to q2 labelled by t\n denotes that if the transducer reads the
symbol t from state q0, then it outputs the symbol n and moves to q2. Double-circled
states are accepting. Such a machine is understood to only produces outputs for inputs
that, once completely processed, leave the transducer in an accepting state.

Figure 1 depicts finite state transducers1 corresponding to actions a and b. The
property to be verified is that exactly one process possesses a token at any
given time. The essence of this property may be captured by a reward function2
R : 2{t,n}

∗ → R defined such that

R(L) =

{
0 if L ⊆ n∗tn∗,

−1 otherwise.

From the initial configuration tn∗, action a moves the system to state ntn∗

and incurs a reward of 0, while action b transitions the system to the configura-
tion ttn∗ and incurs a reward of −1. The optimal policy selects action a when
the token is with a process with an even index, and chooses action b otherwise.

In RRL, the agent initially chooses an action that it deems appropriate for
the state tn∗. The environment then returns a language obtained by applying
either transducer Ta or transducer Tb to transform tn∗, depending on the agent’s
choice. From tn∗, the two possible languages are ntn∗ and ttn∗. The environment
also assigns a reward to the agent. Repeated interactions of this type result in
a sequence of states (regular languages) and rewards. The goal of the agent is
to learn a policy (a function from regular languages to actions) that maximizes
the cumulative reward.

Since there are infinitely many regular languages, the system described in
Example 1 gives rise to an infinite-state decision process. As there is no known
convergent RL algorithm for infinite-state environments in general, this prohibits
the direct use of tabular RL algorithms for RRL. In regular model checking,
techniques exist to address the difficulties of dealing with infinite state spaces,
such as widening and acceleration. In regular reinforcement learning, we will
leverage advances in graph neural networks to tackle this challenge.

1 Note that the transducers in Fig. 1 are designed under the implicit assumption that
their input strings will contain at most one t symbol. This is because there is no
way of removing tokens from the system once they have been introduced, and, as a
result, no learning can occur after a second token is introduced.

2 Since containment is decidable for regular languages, R is computable.



Regular Reinforcement Learning 187

Fig. 2. Illustration of the difference between transitions in RMC and RMDPs.

Contributions. As in RMC, the primary application of language-theoretic mod-
eling in RRL is the symbolic representation of states and transitions in the
underlying system. We formalize RL environments that are constructed accord-
ing to this principle under the name regular Markov decision processes (RMDPs).
These environments generalize the systems modeled in RMC by incorporating
controllable dynamics (through the agent selecting actions) and stochastic tran-
sition dynamics. Figure 2 provides a visual depiction of the similarities and dif-
ferences between system transitions in RMC vs. RRL.

We provide a theoretical analysis of various aspects of RMDPs, focussing on
issues related to decidability, finiteness, and approximability of optimal policies.
This clarifies the basic limits of RRL and helps in determining when standard
RL methods can or cannot be adapted to this setting. In particular, we establish
the following results in Sect. 4.

– The optimal expected payoff, known as the value, of a given RMDP under an
arbitrary payoff function is not computable.

– For any RMDP with computable rewards and transition probabilities, the
value under a discounted payoff is approximately computable.

– For any RMDP with computable rewards and transition probabilities, the
value under a discounted payoff is PAC-learnable.

– We identify several conditions under which an RMDP remains finite and
present a Q-learning algorithm for such situations.
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After this, we turn our attention toward practical applications of RRL. In
Sect. 5 we propose a formulation of deep RRL. By representing regular languages
as finite-state automata and viewing automata as labeled directed graphs, we
are able to exploit graph neural networks for approximating optimal values and
policies. Graph neural networks [56] are neural network architectures that pro-
cess graphs as input, typically by performing repeated message passing of vectors
over the graph’s structure. We demonstrate through a collection of experimental
case studies that deep RRL is both natural and effective.

2 Related Work

Regular Model Checking. RMC [3,5,18,55] is a verification framework based
on symbolically encoding system states and transitions as regular languages
and rational transductions, respectively. Despite the relative simplicity of ratio-
nal transductions, allowing their arbitrary iteration produces a Turing-complete
model of computation. Consequently, significant effort has been put into methods
to approximate the transitive closures of rational transductions, and to compute
them exactly in special cases [17,38,52].

In particular, incorporating automata learning techniques into the RMC tool-
box [33,43,45] has shown promise. There is also significant work on improving
the framework’s expressive capabilities by extending RMC to enable the use
of ω-regular languages [13,40,41], regular tree languages [4,6,16,19], and more
powerful types of transductions [26]. RMC and its various extensions have been
successfully applied to verification safety and liveness properties in a variety of
settings related to mutual exclusion protocols, programs operating on unbounded
data structures [14,15], lossy channel systems [8], and additive dynamical sys-
tems over numeric domains [11,12]. To the best of our knowledge, this paper is
the first to combine deep reinforcement learning with regular model checking.

Regular Languages and Reinforcement Learning. The use of regular languages
in RL has become increasingly popular to meet the increasing demand for struc-
tured, principled representations in neuro-symbolic artificial intelligence. The
work closest to our own employs regular languages as a mechanism for mod-
eling aspects of environments with certain kinds of non-Markovian, or history-
dependent, dynamics.

Regular Decision Processes [20,21] are the topic of a recent line of research
at the intersection of language-theoretic regularity and sequential optimization.
A regular decision process is a finite state probabilistic transition system—much
like a traditional Markov decision process (MDP)—except that transition proba-
bilities and rewards are dependent on some regular property of the history. Note
that while regular decision processes provide a succinct modeling framework for
a subclass of non-Markovian optimization problems, they can be converted to
larger, but semantically equivalent, finite-state MDPs. In contrast, the RMDPs
introduced in this paper are not generally equivalent to finite MDPs. Consider-
able work has been done to develop the theory and practice around regular deci-
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sion processes, including design and analysis of inference algorithms [1], learning
efficiency analysis [47], and empirical evaluations of specific modeling tasks [42].

Reward Machines [34–36] are finite state machines used in modeling reward
signals in decision processes with non-Markovian, but regular, reward dynamics
Attention to the topic has resulted in inference algorithms for learning reward
machines in partially observable MDPs [37], methods for jointly learning reward
machines and corresponding optimal policies [57], adaptations of active gram-
matical inference algorithms like L! for reward machine inference [58], gener-
alization to probabilistic machines modeling stochastic reward signals [24,29],
applications to robotics [22], and more [25,59].

3 Preliminaries

Let N and R denote, respectively, the natural numbers and the real numbers.
For a set X, we write 2X to denote its powerset and |X| to denote its cardinality.

3.1 Regular Languages

An alphabet Σ is a finite set of symbols, and a word w over Σ is a finite string of
its symbols. The length |w| of a word w is the number of its constituent symbols.
The empty word, of length 0, is denoted by ε. We write Σn for the set of all
words of length n. Further, let Σ≤n =

⋃n
k=0 Σk be the set of all strings of length

at most n and let Σ∗ =
⋃∞

n=0 X
n be the set of all words over Σ. A subset

L ⊆ Σ∗ is a called a language.

Definition 1 (FSA). A (nondeterministic) finite-state automaton (FSA) A is
given by a tuple 〈Σ, Q, q0, F, δ〉, where Σ is an alphabet, Q is a finite set of
states, q0 ∈ Q is a distinguished initial state, F ⊆ Q is a set of final states, and
δ : Q × Σ → 2Q is a transition function.

The transition function δ may be extended to δ∗ : Q × Σ∗ → 2Q such that
δ∗(q, ε) = {q} and δ∗(q,σw) =

⋃
q′∈δ(q,σ) δ∗(q′, w). The semantics of an FA A

are given by a language

LA = {w ∈ Σ∗ : δ∗ (q0, w) ∩ F )= ∅} ,

and we say that A recognizes LA.

A language is regular if it is recognized by an FSA.

3.2 Rational Transductions

Let Σ and Γ be alphabets. A mapping θ : Σ∗ → 2Γ ∗
, or equivalently a relation

over Σ∗ × Γ ∗, is called a transduction. For a language L and a transduction
θ : Σ∗ → 2Γ ∗

, let θ(L) =
⋃

x∈L θ(x). The domain of θ : Σ∗ → 2Γ ∗
is given as

dom (θ) = {x ∈ Σ∗ : θ(x) )= ∅} and its image is defined as im (θ) =
⋃

x∈Σ∗ θ(x).
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Given a finite set of transductions Θ with type Σ∗ → 2Σ∗
, each finite word

θ1 . . . θn ∈ Θ∗ corresponds to the transduction θn ◦ · · ·◦θ1 where ε represents the
identity mapping, i.e. ε(x) = x for every x ∈ Σ∗. For convenience, we identify the
word θ1 . . . θn with the transduction θn◦· · ·◦θ1 so that θ1 . . . θn(x) = θn◦· · ·◦θ1(x)
holds for every x ∈ Σ∗. The set of languages reachable from a given language L
via elements of Θ∗ is called the orbit of Θ on L and is written as

OrbΘ (L) = {τ(L) : τ ∈ Θ∗} .

Definition 2 (FST). A (nondeterministic) finite-state transducer (FST) T is
given by a tuple 〈Σ,Γ, Q, q0, F, δ〉, where

– Σ and Γ are input and output alphabets, respectively,
– Q is a finite set of states,
– q0 ∈ Q is a distinguished initial state,
– F ⊆ Q is a set of final states, and
– δ : Q × Σ → 2Q×Γ ∗

is a transition function that maps each state-input pair
to a set of state-output pairs.

The transition function δ may be extended to δ∗ : Q×Σ∗ → 2Q×Γ ∗
such that

δ(q, ε) = {〈q, ε〉} and δ∗(q,σx) = {〈q2, yz〉 : 〈q1, y〉 ∈δ(q,σ) ∧ 〈q2, z〉 ∈δ∗(q1, x)}.
The semantics of T are the transduction !T " : Σ∗ → 2Γ ∗

defined by

!T "(x) = {y ∈ Γ ∗ : ∃q ∈ F. 〈q, y〉 ∈ δ∗(q0, x)} .

A rational transduction θ is one for which there exists an FST T such that
θ = !T ". A rational function θ is a rational transduction such that |θ(x)| ≤ 1 for
all x ∈ Σ∗. When discussing rational functions, we write the type as Σ∗ → Γ ∗.

Remark 1. While the title of regular language has become standard terminology,
there is no universally adopted vocabulary for their relational counterparts. The
transductions we qualify here as rational are sometimes qualified alternatively
in related work with terms such as regular, FST-definable, GSM-definable, etc.

3.3 Markov Decision Processes

Let Dist (X) be the family of all probability distributions over a set X.

Definition 3 (MDP). A Markov decision process (MDP) M is presented by a
tuple 〈S, ŝ, A, p, r〉, where

– S is a set of states,
– ŝ ∈ S is a distinguished initial state,
– A is a set of actions,
– p : S × A → Dist (S) is a probabilistic transition function, and
– r : S × A → R is a reward function.
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For any states s, t ∈ S and action a ∈ A, we write p(t | s, a) as a shorthand
for p(s, a)(t). We call an MDP finite if both S and A are finite sets.

A policy over an MDP M = 〈S, ŝ, A, p, r〉 is a history-dependent function
that determines how the next action is stochastically chosen. More formally,
a policy is defined as a mapping π : S (AS)∗ → Dist (A) from the domain of
interaction histories to probability distributions over the action space. Let ΠM

be the set of all policies over the MDP M . Fixing a policy π on M induces a
family of probability distributions {Pn

π : n ∈ N} on histories h = s1a1 . . . snan
with s1 = ŝ, where Pn

π(h) =
∏n−1

k=1 p(sk+1 | sk, ak)π(ak | s1a1 . . . ak−1sk). There
exists a unique extension Pπ ∈ Dist ((SA)ω) of the family {Pn

π : n ∈ N} and a
corresponding expectation Eπ.

An objective over an MDP M with states S and actions A is a real-valued
function J over the domain of infinite real sequences. Whenever the function J◦r
is Pπ-measurable, the expectation Eπ(J) =

∫
J ◦ r dPπ is well-defined and can

be used to evaluate the quality of the policy π with respect to the environment
M . The J-value of M is defined as ValJ (M) = supπ∈ΠM

Eπ(J).
Let J be a fixed objective function.

– The J-value problem asks, given as input (i) an MDP M and (ii) a lower
bound b, to decide whether the inequality b ≤ ValJ (M) holds.

– The J-value is computable if, and only if, there is an algorithm that, given an
MDP M as input, returns ValJ (M).

– The J-value is approximable if, and only if, there exists an algorithm that,
given as input (i) an MDP M and (ii) a tolerance , > 0, returns a value V
such that |ValJ (M) − V | ≤ ,.

4 Regular Markov Decision Processes

Regular Markov decision processes (RMDPs) are MDPs where states have been
provided with a specific structure expressed through a regular language over
some alphabet Σ. An execution of an RMDP starts with an initial regular lan-
guage L0 = I. At each step i ≥ 0, a decision maker or learning agent selects
an action ai from the current state Li. The environment resolves the action by
selecting a transduction θi from the probabilistic distribution over Θ correspond-
ing to the action and returning the next state as Li+1 = θi(Li) and returning
the reward r(Li). The goal of the agent is to learn a policy for selecting actions
in a manner that optimizes the value of a given objective J in expectation.

Definition 4 (RMDP). A regular Markov decision process (RMDP) R is
given by a tuple 〈Σ, I,Θ, A,p, r〉, where

– Σ is an alphabet,
– I ⊆ Σ∗ is an initial regular language,
– Θ is a finite set of rational transductions with type Σ∗ → 2Σ∗

,
– A is a finite set of actions,
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– p : 2Σ∗ × A → Dist (Θ) is a mapping from language-action pairs to distribu-
tions over Θ, and

– r : 2Σ∗ → R is a bounded reward function.

Semantically, R is interpreted as a countable MDP !R" = 〈S, ŝ, A, p, r〉. The
state set is defined as S = OrbΘ (I) with initial state ŝ = I, and the transition
and reward functions are such that the equations

p(θ(L) | L, a) = p(θ | L, a) and r(L, a) = r(L),

hold for all languages L ∈ S, actions a ∈ A, and transductions θ ∈ Θ. The value
of an objective J over a RMDP R is defined as ValJ (R) = ValJ (!R").

An RMDP R is called finite if the orbit OrbΘ (I), is finite. An RMDP is said
to be computable if the transition probability map p and the reward function r
are computable.

4.1 Undecidability of Values

Our first theoretical result establishes that value problems for RMDPs are gen-
erally undecidable.
Theorem 1. Determining whether an arbitrary RMDP satisfies any fixed non-
trivial property is undecidable.

Proof. We construct, as depicted in Fig. 3, a deterministic FST that can simulate
the transition relation of an arbitrary Turing machine (TM). Configurations of
the TM, i.e. combinations of internal state and tape contents, are encoded as
words in the regular language (0 + 1) (0 + 1)∗ Z (0 + 1)∗, where Z is the finite
set of internal states. The index i of the single element of Z occurring in each
such word represents that the tape head of the TM is at position i−1. Assume
that the TM in question includes an arbitrary transition instruction according
to the following pair of rules.

– If 0 is read in state z, then write b0, go to state z0, and move the tape head.
– If 1 is read in state z, then write b1, go to state z1, and move the tape head.

We leave the direction of the tape head shift undetermined and show all possibil-
ities in Fig. 3. The red edges show the construction for the above TM transition
when the tape head shifts left. The blue edges show the construction when the
tape head shifts right.

In combination with Rice’s theorem [46]—which states that no non-trivial3
property is decidable for the class of Turing machines— this construction implies
the desired result. 01

It follows from Theorem 1 that optimal values of RMDPs are not computable
in general.

Corollary 1. Under any objective, the RMDP value problem is undecidable.

3 Using Rice’s terminology, a property is trivial with respect to class of models if it
holds for all models in the class or if it holds for no models in the class.
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Fig. 3. The FST from the proof of Theorem 1, simulating the transition function of a
Turing machine over a binary alphabet.

4.2 Discounted Optimization

We now consider RMDPs under discounted objectives. Let x = x1, x2, . . . be a
bounded infinite sequence of real numbers. Given a discount factor λ ∈ [0, 1),
the λ-discounted objective Dλ is defined as

Dλ(x) =
∞∑

n=1

xnλn−1.

Over computable RMDPs, it is possible to approximate the Dλ-value to an
arbitrary tolerance. This result is facilitated by properties of the discounted
objective, and therefore holds even when the RMDP in question is not finite.
The proof uses the standard technique of finding, given a tolerance , and a
discount factor λ, the least n such that

∣∣∣∣∣Dλ(x) −
n∑

k=1

λk−1xk

∣∣∣∣∣ ≤ ,.

Theorem 2. If R is a computable RMDP, then the Dλ-value is ,-approximable,
for any λ ∈ [0, 1) and any , > 0.

Proof. For a given RMDP R, the Dλ-value can be characterized by the following
Bellman optimality equation:

D(L) = max
a∈A

{
r(L) + λ

∑

θ∈Θ

p(θ | L, a)D(θ(L))

}
.

It follows from the more general result on MDPs with countable state space,
finite action space, and bounded reward [30]. Let b be an upper bound on the
absolute value of the rewards. For a given , > 0, let n be such that

λn+1b

1 − λ
≤ ,.



194 T. Dohmen et al.

Then a solution to the following recurrence characterizes an ε-optimal value and
corresponding memoryful policy for the RMDP:

Dn(L) =





max
a∈A

{
r(L) + λ

∑
θ∈Θ

p(θ | L, a)Dn−1(θ(L))
}

if n > 0

0 otherwise.

The proof is now complete. 01

An RL algorithm is probably approximately correct (PAC) [53], with respect
to parameters , > 0 and δ > 0, if after polynomially many samples of the
environment, it produces an ,-optimal policy with probability 1 − δ. Objective
functions under which PAC algorithms exist are called PAC-learnable.

Theorem 3. For every RMDP, the Dλ-value is PAC-learnable.

Proof. Our approach for calculating ,-optimal policies for the discounted objec-
tive involves computing a policy that is optimal for a fixed number of steps,
denoted by n. Given , > 0, we choose n such that

λn+1b

1 − λ
≤ ,.

This policy can be computed on a finite-state MDP obtained by unfolding the
given RMDP n times. We can then apply existing PAC-MDP algorithms [7]
to compute an

,

2
-optimal policy, which is also an ,-optimal policy for the

RMDP. 01

4.3 Finiteness Conditions

In this section, we provide three sufficient conditions to guarantee finiteness
of the RMDP. Fix an arbitrary RMDP R = (Σ, I,Θ, A,p, r) with semantics
!R" = (S, ŝ, A, p, r).

Word-Based Condition. A transduction θ : Σ∗ → 2Γ ∗
is (i) length-preserving if

|θ(x)| = |x|, (ii) decreasing if |θ(x)| < |x|, (iii) non-increasing if |θ(x)| ≤ |x|, (iv)
non-decreasing if |θ(x)| ≥ |x|, (v) increasing if |θ(x)| > |x|, for all x ∈ Σ∗.

Proposition 1. If I is a finite language, Θ is non-increasing, |Σ| = n, and
maxx∈I |x| = m, then OrbΘ (I) ∈ 2O(nm).

Proof. The statement can be derived from the observation that the longest string
possibly appearing in the image θ(I) of a finite language I under a non-increasing
transformation θ is of length m = maxw∈I |w|. There are nm strings of length
m over an alphabet Σ of size n, so it follows that |θ(I)| ≤ 1 +

∑m
k=1 n

k. More
succinctly, this says that |θ(I)| = O (nm). Since OrbΘ (I) must comprise some
collection of subsets of Σ≤m, we conclude that |OrbΘ (I)| = 2O(nm). 01
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Language-Based Condition. A transduction θ : Σ∗ → 2Σ∗
is (i) specializing if

θ(L) ⊆ L, (ii) non-specializing if θ(L) )⊆ L, (iii) generalizing if L ⊆ θ(L), (iv)
non-generalizing if L )⊆ θ(L), for all L ⊆ Σ∗.

Proposition 2. If |I| = n and Θ is specializing, then OrbΘ (I) ≤ 2n.

Proof. This result can be deduced from the observation that when beginning
with a finite initial language, specializing transformations can only generate
languages with a cardinality that is either equal to or smaller than that of I. 01

Reward-Based Condition. Let ∼R⊆ 2Σ∗ × 2Σ∗
be an equivalence relation over

languages such that L1 ∼R L2 if, and only if,

r(L1) = r(L2) and ∀θ ∈ Θ. θ(L1) ∼R θ(L2).

This relation is often useful as a means of partitioning the state space of an
RMDP into a finite set of equivalence classes that respects the structure of its
dynamics. For instance, it is straightforward to deduce the following proposition.

Proposition 3. If there exists n ∈ N such that r(L) = r
(
L ∩ Σ≤n

)
holds for

every L ⊆ Σ∗, then OrbΘ (I) has finitely many ∼R -equivalence classes.

4.4 Q-Learning in RMDPs

We have discussed some conditions that ensure the finiteness of !M". When
any such condition is satisfied, it becomes feasible to employ off-the-shelf RL
algorithms for discounted optimization. Equation (1)—in which [L]∼ denotes the
equivalence class of ∼R to which the language L belongs—provides an iteration
scheme for a variation on the Q-learning [54] algorithm tailored for RMDPs. If
learning rates (.n)n∈N are such that

∑∞
n=1 .n = ∞ and

∑∞
n=1 .2

n < ∞, and
the trajectory ([Ln]∼ , an, rn)n∈N includes each pair [L]∼, a infinitely often, then
iterating Eq. (1) converges almost surely to an optimal policy.

Qn+1 ([Ln]∼, an) := (1−αn)Qn
(
[Ln]∼ , an

)
+αn

(
rn+max

a∈A
Qn

(
[Ln+1]∼ , a

))
(1)

5 Deep Regular Reinforcement Learning

Generally speaking, RMDPs may have infinite state spaces, so we cannot guar-
antee convergence of Q-learning. In light of this fact and the uncomputability
of exact discounted values—established by Theorem 1—it makes sense to con-
sider approximate learning methods. Accordingly, we propose a deep learning
approach based on using graph neural networks (GNNs). Our key insight in
this context is the observation that we can use automaton representations of the
states of an RMDP directly as inputs to GNNs. Much like standard deep RL uses
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feature vectors as inputs for neural networks, this technique uses automata—
which are essentially finite labeled graphs—as inputs for GNNs. We term this
approach deep regular reinforcement learning.

Before presenting experimental results, we describe the overall architecture
of our learning scheme in the next subsection.

Fig. 4. Deep regular reinforcement learning architecture.

Our graph neural network architecture, is based on the graph convolution
operator proposed by Kipf & Welling [39]. We perform an independent graph
convolution for each letter in the input automaton— only allowing the convolu-
tion to operate over the graph connectivity for that letter—and take the mean
of the resulting vectors for each node, followed by a nonlinearity. We repeat this
for N layers and then concatenate the sum of all node vectors with the element-
wise maximum of all node vectors. Separate multi-layer perceptrons produce the
policy and state value predictions from this representation. We use proximal pol-
icy optimization (PPO) [48] for training. Figure 4 outlines this architecture. The
initial embedding for each node in the automaton is a binary vector of length
two, which encodes whether a node is the initial state and if a node is accepting.
For all experiments, the graph neural network had 3 graph convolution layers
with hidden dimension 256, and the multi-layer perceptron heads had 2 layers
each with hidden dimension 256. We used the LeakyReLU nonlinearity.

In the remainder of this section, we present specific examples of regular RL
problems and provide experimental results to illustrate the effectiveness of deep
regular reinforcement learning.



Regular Reinforcement Learning 197

5.1 Token Passing

We first consider the token passing scenario of Example 1 (cf. Fig. 1). Note
that this example admits a partitioning of the environment via the equivalence
relation defined in Sect. 4.3: there are two equivalence classes, corresponding
to whether there are an even or an odd number of n symbols before the first
t symbol. We compare using the GNN on the original representation (GNN)
and on the representation formed by the two equivalence classes (GNN+EC).
Figure 5 shows the FSA representations used for the two equivalence classes.

Fig. 5. Automata used to represent even and odd equivalence classes.

The hyperparameters we used for PPO in this case study were 1024 steps
per update, a 512 batch size, 4 optimization epochs, a clip range of , = 0.2, and
a discount factor of λ = 0.99. The learning curves4 are shown in Fig. 6.

Fig. 6. Reward curves for the token passing case study.

Note that under the selected network architecture, determining whether the
number of n symbols occurring before the first t symbol is even or odd is largely
determined by the multi-layer perceptron components. Roughly, the number of

4 Here, the dark lines are means and the shaded regions are the 10th to 90th percentiles
over 5 training runs. All subsequent reward curves should be read this way as well.
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n symbols before the first t symbol is encoded in unary in the global sum compo-
nent of the graph representation. The multi-layer perceptrons must then detect
parity on this unary representation, which is challenging. To encourage learning,
we use a denser reward of 1 on every successful step and −1 on failure, up to a
time limit of 30. Although alternative network architectures have the potential
to perform better, the simple two-state equivalence class representation is still
expected to result in faster learning than the unmodified representation. The
learning run is shortened, and the maximum episode length is set to 30 to high-
light the difference between these two setups. We see that forming equivalence
classes leads to an increase in learning speed.

5.2 Duplicating Pebbles

Consider a grid world with multiple pebbles on it. The agent can select two
adjacent directions, e.g., “up” and “right”, and every pebble will be duplicated
and moved in each of these directions. The goal of the agent is to have at least one
pebble reach the goal state, while all pebbles do not accumulate a cost greater
than a threshold t = 2. If a pebble goes over a trap cell, it incurs a cost of 1 for
that pebble.

Although the number of pebbles grows exponentially, doubling after each
action, the set of paths the pebbles take has an FSA representation. Namely,
one can represent the growing paths by adding a state to the FSA with two
transitions to the state corresponding to the two directions selected. This added
state is marked as the only accepting state. The language of this FSA corresponds
to all paths that pebbles have taken. A reward of −1 is given on failure and a
reward of 1 is given on success. The grid layout is shown in Fig. 7, where the
initial pebble begins in the top left. The agent learns the optimal policy “down,
right”, “down, right”, “up, left”, “up, left” in about 10k training steps. Figure 7
shows the execution of this optimal policy, from left to right, top to bottom.
Traps are denoted by red cells and the goal is denoted by a green cell. The
number in a cell counts the number of pebbles it contains.

The hyperparameters we used for PPO in this case study were 512 steps per
update, a 128 batch size, 4 optimization epochs, a clip range of , = 0.2, and a
discount factor of λ = 0.99. The resulting reward curve is shown in Fig. 8.

Since the representation of the state is an FSA of the possible trajectories,
a linear program is solved at each step to find the highest cost path needed for
computing the reward. Note that when “up, left” is first performed, some pebbles
wrap around to the opposite side of the grid. If “down, right” was performed 3
times, instead of twice, then the agent would fail the objective since the 2 pebbles
at (1, 2) on the grid would duplicate and visit the trap state again after having
already visited it once.
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Fig. 7. Execution of the optimal policy for the duplicating pebbles case study.

Fig. 8. Reward curve for the duplicating pebbles case study.

5.3 Shunting Yard Algorithm

To showcase representation of unbounded data structures like stacks and queues
as a strength of RRL, we consider learning the shunting yard algorithm [28]
which transforms an expression in infix notation to postfix notation.

We represent the input as a regular language consisting of a single string
containing the concatenation of the infix notation input, the stack, and the
output, each separated by a special symbol “#”. The agent has three actions:

– moving the first character of the input to the output,
– pushing the first character of the input to the stack, and
– popping the top character on the stack to the output.

We generate random infix notation expressions and give a reward of −1 if the
output is an invalid postfix expression, a reward of 0.5 if the output is a valid
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Fig. 9. Runs produced by the learned policy for the shunting yard algorithm.

Fig. 10. Reward curve for the shunting yard algorithm case study.

postfix expression that evaluates to the wrong value, and a reward 1 if the output
evaluates to the correct value. The agent is able to learn an effective strategy in
about 100k time steps.

Figure 9 shows example runs produced by the learned policy. The represen-
tation used during learning is an FSA accepting a single string, but we print
the string for clarity. Actions are the actions selected upon observing that state.
The last state is the final state at termination.

The hyperparameters we used for PPO in this case study were 1024 steps per
update, a 128 batch size of, 10 optimization epochs, a clip range of , = 0.2, and
a discount factor of λ = 0.99. The resulting reward curve is shown in Fig. 10.

5.4 Modified Tangrams

This case study examines the application of deep RRL to variations of geomet-
ric puzzles known as tangrams, which involve arranging a finite set of polygonal
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Fig. 11. A modified tangram. The goal is to cover the gray shape at the center resem-
bling the symbol “×” by rearranging the colored tiles {U, V,W,X, Y, Z}. (Color figure
online)

tiles on a flat surface to create a picture. The picture is typically a silhouette in
the shape of a common object such as a building or a tree, and the puzzle is com-
pleted once the tiles have been arranged into a configuration that covers the sil-
houette exactly. A standard tangram set includes a collection of target pictures,
5 right triangles (2 large, 1 medium, and 2 small), a square, and a parallelogram.
We consider modified tangrams, which we qualify as such because the pieces do
not coincide with the standard tile set. An example is displayed in Fig. 11.

In order to cast these sorts of puzzles into the RRL framework, we apply stan-
dard notions used in positional numeration systems to connect geometric shapes
and regular languages. More precisely, tiles are considered as sets of points in the
unit square [0, 1] × [0, 1] of the Euclidean plane. Then, sets of points are encoded
by regular languages consisting of digital expansions of these points.

For a numeration base b ∈ N, define a map 〈〈 · 〉〉b : {0, . . . , b − 1}∗ → (0, 1) as

〈〈 w 〉〉b =
|w|∑

k=1

wk

bk

to interpret each string of digits w as a base-b digital expansion (where the left-
most symbol is the most significant bit) of a number 〈〈 w 〉〉b in the unit interval.
Such interpretations extend to languages so that

〈〈 L 〉〉b = {〈〈 w 〉〉b : w ∈ L} .

We fix the base as b = 2, and consider automata over the alphabet the
two-dimensional boolean alphabet B2 to encode points in the plane. We design
automata capturing languages that represent the sets of points included in par-
ticular shapes, as illustrated in Fig. 12.
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Fig. 12. Automata corresponding to some of the starting tiles shown in Fig. 11.1.

Remark 2. Automata AX and AZ may be obtained from the automata AW

(Fig. 12.3) and AY (Fig. 12.4), respectively. This can be done by taking the logi-
cal complement of the x-coordinate on every non-looping transition and exchang-
ing pairs of self loops on a common state labeled by

(
0 0

)
and

(
1 1

)
to ones

labeled by
(
0 1

)
and

(
1 0

)
.

We also design finite-state transducers, as illustrated in Fig. 13, for basic geo-
metric operations such as translation by 1/2, translation by 1/4, and reflection
across x = 1/2 and y = 1/2.

The agent’s goal is to apply these basic transformations to move each shape
from its initial position into the goal region. To reduce the number of actions, the
agent selects transformations for one of the shapes at a time and uses a special
“submit” action to move to the next shape. We treat the collection of automata
as a single nondeterministic FSA, and specially mark the alphabet of the active
automaton in the collection. Rewards are proportional to the overlap with the
remaining exposed target shape when the submit action is used. On all other
steps, a reward of −0.01 is given to encourage promptness.
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Fig. 13. FSTs implementing some rigid transformations on the unit square. Arbitrary
digits are represented by d, while ∗ represents arbitrary pairs of digits.

Fig. 14. Annotated reward curve for the modified tangram example.

The hyperparameters used for PPO in this case study were 256 steps per
update, a 64 batch size, 10 optimization epochs, a clip range of , = 0.1, and a
discount factor of λ = 0.99. The resulting reward curve—which we annotate at
various points to show the agent’s progress—is shown in Fig. 14.

6 Conclusion
This paper introduced a framework for symbolic reinforcement learning, dubbed
regular reinforcement learning, where system states are modeled as regular lan-
guages and transition relations are modeled as rational transductions. We estab-
lished theoretical results about the limitations and capabilities of this framework,
proving that optimal values and policies are approximable and efficiently learnable
under discounted payoffs. Furthermore, we developed an approach to deep regular
reinforcement learning that combines aspects of deep learning and symbolic repre-
sentation via the use of graph neural networks. Through a variety of case studies,
we illustrated the effectiveness of deep regular reinforcement learning.
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