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Abstract. Alternating-time temporal logic (ATL) extends branch-
ing time logic by enabling quantification over paths that result from
the strategic choices made by multiple agents in various coalitions
within the system. While classical temporal logics express proper-
ties of “closed” systems, ATL can express properties of “open” sys-
tems resulting from interactions among several agents. Reinforce-
ment learning (RL) is a sampling-based approach to decision-making
where learning agents, guided by a scalar reward function, discover
optimal policies through repeated interactions with the environment.
The challenge of translating high-level objectives into scalar rewards
for RL has garnered increased interest, particularly following the suc-
cess of model-free RL algorithms. This paper presents an approach
for deploying model-free RL to verify multi-agent systems against
ATL specifications. The key contribution of this paper is a verifi-
cation procedure for model-free RL of quantitative and non-nested
classic ATL properties, based on Q-learning, demonstrated on a nat-
ural subclass of non-nested ATL formulas.

1 Introduction
Reinforcement learning (RL) [30] is a sampling-based approach to
optimal decision-making in which a learning agent converges to an
optimal strategy, driven by feedback from its environment in the form
of a reward signal. When multiple adversarial agents interact in an
environment, the resulting dynamics can be represented by Markov
games [22]. Due to the widespread appeal of RL, recent research
has emphasised improving the programmability of RL by express-
ing learning objectives through formal logic [26, 15, 12, 4, 17] or
reward machines [17, 16]. In this work, we study alternating-time
temporal logic (ATL) [2]—an expressive formalism for character-
ising the strategic capabilities of various coalitions of agents—and
introduce an RL approach based on Q-learning, which is tailored for
ATL-based requirements.

Temporal Logic and Reinforcement Learning. The classic setup
of RL requires a reward-based interface between the environment
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and the learning agents. While reward-based specification is straight-
forward in settings with a natural measure of progress, such as video
games [27], board games [28], or robot motion planning, it is tedious
and error-prone in tasks with a complex nesting of subtasks. More-
over, designing an RL-based solution with rewards might lead to
misaligned objectives between the designer and the learning agents,
resulting in reward hacking [10, 29, 34] and specification gam-
ing [24, 3]. In response, logic-based specification formalisms such
as Linear Temporal Logic (LTL) [26, 15, 12, 4, 17], Computation-
Tree Logic (CTL) [33], as well as automata-based characterisa-
tions [12, 17, 16, 14] have recently been proposed to express learning
requirements in RL. In this setting, a key research question is to de-
sign translations from formal requirements to scalar rewards that are
faithful (in that maximising reward means maximising probability of
achieving the objective) and effective (i.e., RL quickly converges to
optimal strategies) [13].

Linear-time logics, like LTL, view a system as one that generates a
set of infinite executions. They express properties that hold true over
single executions of the system using temporal modalities such as
©ϕ (meaning the property ϕ holds in the next step) and ϕUϕ′ (in-
dicating that the property ϕ remains true until property ϕ′ becomes
true). In contrast, branching-time logics, like CTL, interpret the sys-
tem evolution as a branching tree of possibilities. They incorporate
both existential and universal path quantification in addition to the
temporal modalities. The branching-time logic CTL* extends both
LTL and CTL to provide a more permissive nesting of path quantifi-
cations and temporal modalities.

Alternating-Time Temporal Logic. Both LTL and CTL can ex-
press properties of closed systems, where the system’s evolution de-
pends solely on the actions of a single agent. However, when ad-
dressing properties of open systems, in which multiple agents inter-
act within a shared environment, there is often a need to discuss the
capability of a coalition of agents to meet a specific overall specifi-
cation. Alternating-time temporal logic (ATL) [2] adopts the struc-
ture of CTL, but it substitutes path quantifications with quantifica-
tions over strategic choices made by particular coalitions of agents.
The ATL formula 〈〈C〉〉ψ indicates that the agents in coalition C
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Figure 1. Two robots, 0 and 1, push the carriage around the track. If both
push, then the carriage does not move.

can collaborate to ensure ψ is true. Viewed as a game, the agents
in the coalition C would always make their decisions first, and the
remaining agents are in a better position to take this information into
account when making their decisions. Regarding the dual operator
!C"ψ, there have been two versions in the literature: one where the
agents in the coalition C cannot ensure that ψ is false, and one where
the agents in the coalition C can make sure that ψ holds, provided
they move second. The two versions are equally expressive, and we
choose the former version in this paper.

We study a generalisation of ATL (probabilistic ATL or PATL)
with probabilistic quantification suitable for stochastic environments
expressed as probabilistic concurrent games.

Example 1 (Robots and Carriage [5]). Consider two robots push-
ing a carriage in a circular configuration, as depicted in Figure 1.
At each step, both robots can choose to either push or wait. If both
robots decide to push or both decide to wait, the carriage remains
stationary. However, if only robot 0 pushes, the carriage moves clock-
wise. Conversely, it moves counter-clockwise if only robot 1 pushes.
The ability of robot 0 to ensure that the carriage eventually arrives
at position pos1 can be expressed in ATL as

〈〈0〉〉♦pos1. (1)

Similarly, the property that robot 0 can ensure that position pos1
will never be reached can be expressed as

〈〈0〉〉"¬pos1. (2)

Note that property (1) is not valid for the system. Regardless of robot
0’s strategy (push or wait), robot 1 possesses a counter-strategy
(push or wait, respectively) that ensures the carriage remains un-
moved. On the other hand, the second property is valid for the system
when robot 0 chooses to wait in pos0 and push in pos2.

Even in a basic two-agent scenario, as shown above, the applica-
tion of ATL can uncover nuanced details about the system. When
the system is known2, the ATL verification problem is ∆P

3 -complete
[20]. When the system is known, but players have imperfect infor-
mation the same problem becomes undecidable [2, 11], but becomes
decidable when players only have finite memory [31]. No algorithm
has been developed so far for verifying unknown systems against
ATL specifications in the perfect information setting. In this paper,
we develop a Q-learning based framework for this problem.

2 and given as a concurrent game structure (cf. Section 2); there is an alterna-
tive standard model, alternating transition systems, for which the complex-
ity is ∆P

2 -complete [20]. Note that if the number of agents is fixed, this
problem becomes PTIME-complete[2].

Contributions. We enable reinforcement learning for probabilis-
tic ATL. To achieve this, we first introduce an ATL reachability nor-
mal form, which enables a basic ATL formula to be transformed into
a turn-based reachability game with reward maximisation objective.
This transformation guarantees that maximising reward results in op-
timal strategies for the ATL objective, for which the threshold in the
formula can then be checked. We then introduce two simplifications
on the size of the decision space to be learned over. The first is per-
formed by considering transition functions that are decomposed with
outcomes. The second is by finding antichains over subsets of these
outcomes. Finally, we show the effectiveness of our transformation
on a few case studies.

To motivate our approach in considering large action spaces with
few outcomes, consider the following example.

Example 2. In second round of the 2023 Turkish presidential elec-
tions, each voter had three primary choices: 1) supporting the in-
cumbent, 2) backing the challenger, or 3) neither—whether by ab-
staining or submitting a blank/invalid vote. With approximately 64
million voters participating, the overall action space was immense:
364,000,000. Yet, the election had only two possible outcomes.

We show that it is only necessary to consider outcomes, not the
entire action space, when learning. Moreover, it may not be necessary
to consider all outcomes: this is because outcomes are played out
in a short turn-taking game between two coalitions of agents, one
of whom tries to maximise the chance of the path property to be
satisfied, while the other tries to minimise it. This can be envisioned
as the first coalition to move effectively offering a set of outcomes,
while the opposing coalition picks from them. We argue that it is
enough for the coalition who moves first to offer minimal sets, so
that the offering constitutes an antichain3; consequently, only those
outcomes that appear in any set of this antichain are needed.

Related work. Alternating-Time Temporal Logic (ATL) was first
introduced in [2]. Due to its popularity, various extensions of this
logic such as ATL∗[2] and probabilistic ATL (PATL) [8] were pro-
posed. Strategy Logic (SL) [7, 23] added explicit reasoning about
the strategies of all agents, but even the inclusion of strategy con-
text to ATL leads to non-elementary model checking problems [19],
though restricting the way that strategy contexts are introduced and
revoked in Basic Strategy Interaction Logic (BSIL) brings it down
to PSPACE [32]. JMocha [1] was the first model-checking tool to
have support for ATL. The PRISM-games tool [18] allows for model-
checking against specifications given as rPATL which is probabilis-
tic ATL extended with rewards [9]. MCMAS-SLK [6] tool supports
specification language given as Strategy Logic, but due to the un-
decidability of the model-checking problem of multi-agent systems
under perfect recall and incomplete information [2], the tool adopts
imperfect recall semantics instead.

Model-free reinforcement learning approach has so far been
adapted to handle objectives given as Linear Temporal Logic
(LTL) [26, 15, 12, 4, 17], Computation-Tree Logic (CTL) [33], as
well as automata-based characterisations [12, 17, 16, 14].

There has been some work (e.g. [21]) in enabling logic-based
learning objectives in continuous state/action spaces. These works
assume Lipschitz-continuity of the dynamics and provide conver-
gence guarantees based on discretising the system. Since we provide
a direct reduction from specifications to reward machines, extension
to continuous state space is orthogonal to our approach.

3 An antichain is any subset of a partially ordered set such that any two dis-
tinct elements in the subset are incomparable.
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2 Preliminaries
We write D(S) for the set of discrete distributions over S. A Markov
decision process (MDP) M is a tuple (S, s0, A,O, Ta, To, AP, L),
where S is a finite set of states, s0 ∈ S is the initial state, A is a
finite set of actions, O is a finite set of outcomes, Ta : S×A→O is
the outcome function, To : O→D(S) is the probabilistic transition
function, AP is the set of atomic propositions, and L : S → 2AP is
the labelling function. We sometimes use the (combined) transition
function T = To ◦ Ta. For a state s ∈ S, we let A(s) denote the set
of actions that can be selected in s and let O(s) = {Ta(s, a) | a ∈
A(s)} denote their outcomes.

An MDP is a Markov chain if O(s) is singleton for all s ∈ S.
For states s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals Pr(s′|s, a).
A run of M is an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A × S)ω such
that Pr(si+1|si, ai+1)>0 for all i ≥ 0. A finite run is a finite such
sequence. For a run r = 〈s0, a1, s1, . . .〉 we define the corresponding
labelled run as L(r) = 〈L(s0), L(s1), . . .〉 ∈ (2AP )ω . We write
RunsM(FRunsM) for the set of runs (finite runs) of the MDP M
and RunsM(s)(FRunsM(s)) for the set of runs (finite runs) of the
MDP M starting from the state s.

A strategy is a function σ : S → A such that σ(s) ∈ A(s). Let
RunsMσ (s) denote the subset of runs RunsM(s) that correspond to
strategy σ with initial state s. Let ΣM be the set of all strategies.
An MDP M under a strategy σ results in a Markov chain Mσ . The
behaviour of an MDP M under a strategy σ and starting state s ∈ S
is defined on a probability space

(RunsMσ (s),FRunsMσ (s),Pr
M
σ (s))

over the set of infinite runs of σ with starting state s. Given a random
variable f : RunsM → R, we denote by EM

σ (s) {f} the expectation
of f over the runs of M originating at s that follow σ.

For MDPs, it is unusual to include the outcome as a separate
entity—although this is not a restriction: one can always use the
trivial identity outcome function, and treat To as the standard tran-
sition function. What is common is to consider a situation where
two or more actions in the same state lead to the same outcome
(Ta(s, a) = Ta(s

′, a′)); for MDPs, this is normally modelled as
identifying these actions, which is reflected in the set of available
actions being different for different states. Our reason to make the
outcomes primary citizens is that they are useful for the extension
to Probabilistic Concurrent Game Structures (PCGSs), where differ-
ent coalitions effectively play out the outcome, so that identifying
actions is not as powerful as identifying outcomes.

A Probabilistic Concurrent Game Structure (PCGS) P is an ex-
tended MDP (S, s0, A,O, Ta, To, AP, L;D, {Ad | d ∈ D}), where
the tuple (S, s0, A,O, Ta, To, AP, L) is an MDP, D a finite set of
Decision makers or agents, where each agent d has their own set of
actions Ad, and where the set of joint actions is made up of the indi-
vidual actions taken by the agents: A =×d∈D Ad.

A (non-probabilistic) Concurrent Game Structure (CGS) is a
PGCS where To maps to probability distributions with singleton sup-
port, so that it can be viewed as a mapping O → S. In other words,
in a CGS the outcome determines the successor state.

3 Problem Definition
Alternating time logic [2] (ATL) is a specification mechanism to rea-
son about the collaborative power of agents—the decision makers D
in our probabilistic CGS—to enforce temporal properties. The un-
derlying temporal logic is like CTL; indeed, in a non-probabilistic

setting CTL would be the corner case where D = {d} is unary, and
‘for all paths’ relates to ‘the empty set of agents can enforce’ while
‘there is a path’ relates to ‘the single agent d can enforce’.

3.1 ATL and Reachability Normal Form

Our grammar presents ATL in what we refer to as reachability nor-
mal form, in that it only includes path properties that are essentially
reachability properties. In the original definition of ATL, !C"ψ did
not exist, but there were more temporal operators, including opera-
tors like weak until that are essentially safety properties.

We chose a reachability normal form because reinforcement learn-
ing algorithms can readily be used against reachability objectives.
While reachability normal form is a novel contribution, related ideas
have been explored elsewhere. In particular, the negative normal
form of ATL formulas is frequently used, where negation is pushed
to the leaves (literals). This is done by using that the dual temporal
operators are (there) always available, and the new !C" operator is
dual to 〈〈C〉〉. This allows for pushing negations to the leaves, e.g.
using ¬〈〈C〉〉"ϕ = !C"♦¬ϕ.

ATL needs two of the following: (1) negation (not only at leaves),
(2) dual strategy quantifiers, (3) dual temporal operators. We use (1
& 2), as this is closest related to maximising probabilities in RL, the
original definition of ATL used (1 & 3), and negative normal form
uses (2 & 3). The latter is good when translating it to automata (which
we do not need). We have simply created the normal form that is
useful for RL, which is not difficult, but useful and valuable.

Syntax. ATL formulas over atomic propositions AP and agent set
D can be expressed using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈C〉〉ψ | !C"ψ
ψ ::= ©ϕ | ϕUϕ.

Here p ∈ AP is an atomic proposition and C ⊆ D a coalition of
agents in D. One can define the usual syntactic sugar over the afore-
mentioned operators, such as the “eventually” modality ♦, which is
defined as ♦ϕ = trueUϕ.

Semantics. The meaning of 〈〈C〉〉ψ is that the agents in C can
jointly enforce the path property ψ if they move first in every round
(not seeing what the agents in D\C have done), while !D\C"ψ means
that the agents in C can jointly enforce ψ if they move second, i.e.,
after seeing what the agents in D\C have done.4

Formally, the semantics of ATL on a given CGS are defined induc-
tively as follows:

1. For an atomic proposition p ∈ AP and a state s of PCGS, we
have that s |= p iff p ∈ L(s).

2. Boolean connectives are treated as usual.
3. For a path formula ψ = ©ϕ (read: next ϕ), a path r =

〈s0, a1, s1, . . .〉 models ©ϕ (i.e., r |= ψ) if, and only if, s1 |= ϕ.
4. For a path formula ϕUϕ′, a path s0, s1, s2, . . . models ϕUϕ′ if,

and only if, there exists an i ≥ 0 with si |= ϕ′ and sj |= ϕ for all
j < i.

5. For a coalition C ⊆ D, a strategy σ : FRuns →×d∈C Ad, and
a strategy τ : FRuns ××d∈C Ad →×d∈D\C Ad, we denote the
path starting in s ∈ S and created by C choosing their actions
according to σ and D \C choosing theirs in according to τ by
r(s, C,σ, τ). We then have

4 Note this is equivalent to that the agents in the coalition D\C cannot ensure
that ψ is false when they move first in every round.
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• s |= 〈〈C〉〉ψ if, and only if, there exists σ : FRuns →×d∈C Ad

such that, for all τ : FRuns ××d∈C Ad →×d∈D\C Ad, we
have that r(s, C,σ, τ) |= ψ; and

• s |= !D\C"ψ if, and only if, for all σ : FRuns →×d∈C Ad,
there exists τ : FRuns ××d∈C Ad →×d∈D\C Ad such that
we have r(s, C,σ, τ) |= ψ.

3.2 Probabilistic Alternating-Time Logic (PATL)
PATL extends ATL by allowing probabilistic bounds on coalition
quantifications, leading to the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈C〉〉#$qψ | !C"#$qψ
ψ ::= ©ϕ | ϕUϕ.

where q ∈ [0, 1] and &'∈ {>,≥}. Note that this retains the existence
of dual operators, so that a translation of a specification given in a
different variant of PATL to our reachability normal form remains
straightforward.

A PCGS P under a pair of strategies σ and τ for coalitions C (who
move first) and D\C (who move second) results in a Markov chain
Pσ,τ . If σ and τ are finite memory strategies, then Pσ,τ is a finite-
state Markov chain. The behaviour of a PCGS P under strategies σ
and τ from starting state s ∈ S is defined on a probability space
(RunsPσ,τ (s),FRunsP pσ,τ (s),Pr

P
σ,τ (s)) over the set of infinite runs

of σ with starting state s.
The semantics of PATL follows those of ATL with the only

difference that we view a path formula ψ as a random variable
ψ : RunsP → {0, 1}, where we denote by EP

σ,τ (s) {ψ} the expec-
tation of ψ over the runs of P originating at s that follow σ and τ .
We then have

• s |= 〈〈C〉〉#$qψ if, and only if, there exists σ : FRuns →
×d∈C Ad such that for all τ : FRuns × ×d∈C Ad →
×d∈D\C Ad we have

EP
σ,τ (s) {ψ} &' q

• s |= !D\C"ψ if, and only if, for all σ : FRuns →×d∈D\C Ad

there exists τ : FRuns ××d∈D\C Ad →×d∈C Ad such that

EP
σ,τ (s) {ψ} &' q.

for &'∈ {>,≥} and q ∈ [0, 1].

Classic ATL Objectives. We define a (classic) ATL formula as
basic if it contains only one strategy quantifier and this quantifier is
at the root of the formula, such as in 〈〈C〉〉pU p′, where p, p′ ∈ AP
are atomic propositions. In this example, the goal of the coalition
C is to maximise the likelihood of the path formula pU p′ to hold.
This probability then relates to quantitative ATL in that it can simply
be compared with the threshold value. For example, if the maximial
probability with which the coalition C can achieve pU p′ is 0.5, then
〈〈C〉〉>0.2pU p′ and 〈〈C〉〉≥0.5pU p′ hold, while 〈〈C〉〉>0.5pU p′ and
〈〈C〉〉≥0.7pU p′ do not. This framework enables us to simplify the
solution for basic PATL formulas to solving a reachability game.

4 Reward Translation for PATL
In an environment based on a probabilistic concurrent game struc-
ture (PCGS) with a probabilistic ATL specification, our aim is to
leverage model-free reinforcement learning algorithms to assess the

system against a PATL objective. The central challenge here is trans-
lation. From a given PATL specification, we want to derive a reward
function where the expected maximal reward mirrors the expected
probability of meeting the objective. In this section, we first demon-
strate how to devise rewards for classic ATL objectives when viewed
as a goal to maximise the chances that the temporal path formula
holds. Following that, we outline how to broaden this approach to
more general specifications.

4.1 Classic ATL Objectives
Observe that the problem of finding a strategy against a qualitative
ATL (QATL) objective, where one set of agents tries to maximise
the chance that a path formula holds while the remaining agents try
to minimise it, reduces to a turn-based reachability game, where:

1. one coalition of agents decides their respective individual actions;
2. then, the remaining agents, comprising the other coalition, decide

their respective individual actions;
3. then, the outcome of these actions is determined;
4. and finally, the random move determined by this outcome is made

in the probabilistic concurrent game structure.

We have three types of objectives: next-step (©ϕ or one step
reachability), boolean objectives (that stem from next-step objec-
tives), and constrained reachability (until path formulas). Designing
rewards so that the expected maximal reward equals the expected
probability to meet the objective is simple for all three types of ob-
jectives, where the expected payoff reflects the chances of meeting
the objective:

1. For a boolean objective ϕ, the chances of meeting it—and thus
the payoff—from a state s is 1, if ϕ is satisfied by the labels in the
current state s (L(s) |= ϕ), and 0 otherwise.

2. For a path formula ©ϕ, and for an outcome o, the chance of meet-
ing the objective ©ϕ is the likelihood that the selected successor
s satisfies ϕ (i.e.

∑
s′∈S,s′|=ϕ

To(o)(s
′)).

For a state s, the expected likelihood of meeting the objective de-
fined by the path formula ©ϕ is then defined by the outcome of
a two-step game, where one of the players aims for the outcome
that the minimises the expected likelihood to meet the objective,
while the other player aims for the outcome that maximises it (see
below for details).

3. For a path formula ϕUϕ′, the likelihood to meet it, and thus the
payoff, from a state s is:

(a) 1 if ϕ′ is satisfied in s (L(s) |= ϕ′).

(b) Otherwise, it is 0 if ϕ is not satisfied (L(s) ,|= ϕ) in s.

(c) If neither is the case—i.e., if L(s) |= ϕ and L(s) ,|= ϕ′—
then the chance of meeting the objective of the path quantifier
is determined by the outcome o reached. For a given outcome
o, the chance of meeting the objective ϕUϕ′ is the likelihood
that a path starting at the selected successor s′ satisfies ϕUϕ′

(i.e.
∑

s′∈S

To(o)(s
′) · EP(s′)).5

Under this description, we arrive at a turn-based (reachability)
game with payoffs of 0 or 1. We can reduce this into a total reward

5 Strictly speaking, this does not quite define the payoff, as it would not say
what the payoff is on paths that contain only states that satisfy ϕ, but no
state that satisfies ϕ′. As these paths do not satisfy the reachability objec-
tive, they are assigned a payoff of 0.

E.M. Hahn et al. / Multi-Agent Reinforcement Learning for Alternating-Time Logic 1683



pos0

pos1pos2

0, .., 499 500, .., 999

Figure 2. 1,000 robots push a carriage around a track: 500 from one side
and the rest from the other. If the same number of robots push from each side,
the carriage remains stationary; otherwise, it moves in the direction of the
larger pushing team.

problem by giving a reward of 1 when the payoff is 1 and 0 other-
wise. Since we consider finite-state games, selecting a large enough
discount factor will result in discounted reward optimal strategies
being optimal for total reward [25]. With this reduction, any RL al-
gorithm for discounted reward Markov games can then be used. For
example, we utilise minimax-Q learning [22] in our experiments.

4.2 Simplification via Outcomes and Antichains
The reduction so far considers controlling a PCGS by reasoning di-
rectly on its action space. Next, we examine how reasoning about
outcomes, and specifically, antichains of subsets of outcomes, pro-
vides a benefit in reducing the decision space. These are optimisa-
tions that work best when the relevant outcomes are small compared
to the action space.

We begin by describing the correspondence between actions and
outcomes. In the evolution of a PCGS, the selection of an action by
the first coalition restricts the possible outcomes to a particular sub-
set of outcomes. This subset is then offered to the second coalition,
where their choice of action results in a selection of the outcome
from this subset. Thus, reasoning about the first coalition selecting
restricted subsets of outcomes and the second coalition selecting an
outcome from this subset is equivalent to reasoning on the actions.

From this correspondence between actions and outcomes, one can
identify a new sets of actions that correspond to possible subsets of
outcomes for the first coalition and outcomes for the second coali-
tion. As illustrated in the following generalisation of Example 1, dis-
tributed selection of joint actions in PCGSs can result in vast action
spaces with few distinct outcomes. This provides our first potential
simplification of the decision space.

Example 3 (1,000 Robots and Carriage). Consider the following
modification of Example 1. Instead of just two robots, we have now
500 robots pushing the carriage from the left and another 500 from
the right in a circular configuration, as depicted in Figure 2. At each
step, any of the robots can choose to either push or wait. If the num-
ber of robots pushing from each side is the same then the carriage
remains stationary, otherwise it moves in the direction where more
robots pushing.

As each robot has two possible options and there are 1,000 of
them, the size of the overall action space is huge: 21,000. However,
in each round there are only three possible outcomes: the carriage
moves left, right, or stays in place.

Our second simplification comes from noting that not all subsets
of outcomes need to be considered by the first coalition. Specifically,

the first coalition can always offer fewer outcomes to its adversary, if
possible, without diminishing optimality. This follows from the prin-
ciple that the second coalition minimising/maximising over a subset
will result in a value which is greater/less than or equal to the value
over the superset, i.e., giving fewer options potentially moves the
value of the game in favour of the first coalition.

In Example 3, assume that the coalition to choose first consists of
the 500 robots on the left of the carriage. They have three choices in
the abstracted form of offering sets of outcomes: they can offer

1. the two outcomes to move left or to stay;
2. the two outcomes to move right or stay; or
3. all three outcomes, to more left, to move right, or to stay.

The first option is achieved by none of the robots pushing, the second
by all of them pushing, and the third by any number between 1 and
499 of these robots pushing.

We argue that the agents only need to consider those options that
offer the minimial amount of choice, in this case options (1) and
(2), but can discard option (3). This is because the two coalitions are
playing out a 0-sum game, and offering more choice to a rational
opponent in a 0-sum game cannot improve the outcome. Finding the
set of subsets of outcomes that offers the minimal amount of choice
corresponds to finding an antichain as we describe next.

We now formalise our two simplifications. For s ∈ S, an antichain
O ⊆ 2O(s) of outcomes is a non-empty set of non-empty subsets of
O(s), such that no two sets in O contain each other (∀O1, O2 ∈
O. O1 ⊆ O2 ⇒ O1 = O2). The antichain for a coalition C ⊆ D
that chooses first, denoted O(s, C), is an antichain such that

• for all O′ ∈ O(s, C), there is a ∈ ×d∈C Ad such that O′ =⋃
a′∈×d∈D\C Ad

Ta(s, (a, a
′)), and

• for all a ∈×d∈C Ad with O′ =
⋃

a′∈×d∈D\C Ad
Ta(s, (a, a

′))

there is a set O′′ ⊆ O′ in O(s, C) (i.e., O′ ⊇ O′′ ∈ O(s, C)).

We would now like to show that replacing the actions of the first
coalition with O(s, C) and the actions of the second coalition with O
preserves correctness (optimality). To show this, we simply need to
show that the computation of the value functions used in RL remains
the same with this change. We show this in the following theorem.

Theorem 1. For any value function val : O → R on the outcomes,
we have that

min
a∈×d∈C Ad

max
a′∈×d∈D\C Ad

val(Ta(s, (a, a
′)))

= min
O′∈O(s,C)

max
o∈O′

val(o) and

max
a∈×d∈C Ad

min
a′∈×d∈D\C Ad

val(Ta(s, (a, a
′)))

= max
O′∈O(s,C)

min
o∈O′

val(o) hold.

Proof. For the proof, we will only show the first case. The second
case follows symmetrically. Our proof proceeds in two steps. First,
we show the correspondence between actions and subsets of out-
comes. Second, we show that restricting to antichains does not affect
the resulting value.

Let f(s, a, C) denote the subset of outcomes that the coalition C
induces when they select action a ∈×d∈C Ad in state s, defined as:

f(s, a, C) =
⋃

a′∈×d∈D\C Ad

Ta(s, (a, a
′)) .
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Now, let Oall(s, C) = {f(s, a, C)|a ∈×d∈C Ad} be the set of all
subsets of outcomes that the first coalition can induce. By expanding
the definition of f(s, a, C), we get that {val(o)|o ∈ f(s, a, C)} =
{val(Ta(s, (a, a

′)))|a′ ∈×d∈D\C Ad}. In other words, the set of
values over actions of the maximising coalition is the same as the
set of values over the outcomes subset. Thus, their maximum is the
same, and we get that

min
a∈×d∈C Ad

max
a′∈×d∈D\C Ad

val(Ta(s, (a, a
′)))

= min
O′∈Oall(s,C)

max
o∈O′

val(o) .

Finally, we would like to show that

min
O′∈Oall(s,C)

max
o∈O′

val(o) = min
O′∈O(s,C)

max
o∈O′

val(o) .

To show that this is the case, we need to show that, for ev-
ery O′ ∈ Oall(s, (a, a

′)) \ O(s, (a, a′)), there exists an O′′ ∈
O(s, (a, a′)) that was an equally good or better choice for the min-
imisation, i.e. maxo∈O′ val(o) ≥ maxo∈O′′ val(o). By the defini-
tion of O(s, (a, a′)), if O′ ∈ Oall(s, (a, a

′)) \ O(s, (a, a′)) then
there exists a set O′′ ⊂ O′ such that O′′ ∈ O(s, (a, a′)). Since
O′′ ⊂ O′, we get that maxo∈O′ val(o) ≥ maxo∈O′′ val(o).

Minimax-Q Learning. To further illustrate our approach, we will
describe how to instantiate minimax-Q learning with our outcome
centric approach. Minimax-Q learning [22] is a variant of Q-learning
designed for Markov games. After observing a transition from state
s to s′ under action a with reward r, the Q-values are updated by the
following update rule

Q(s, a) ←− (1− α)Q(s, a) + α(r + γ opt
a′∈A(s′)

Q(s′, a′)) ,

where opt is max (min) if s′ is controlled by max (min) player,
γ ∈ [0, 1[ is the discount factor, and α ∈]0, 1[ is the learning rate.
Our QATL formulas take one of two forms:

• a maximin formula for 〈〈C〉〉 QATL formulas, where the first coali-
tion to choose, C, plays as max player

• a minimax formula for !D \C" QATL formulas, where the first
coalition to choose, C, plays as min player.

The form of the formula determines which coalition is assigned max
player and which is assigned min player. The first coalition selects
an action O ∈ O(s, C) and updates the corresponding Q-value as

Q(s,O) ←− (1− α)Q(s,O) + αγ opt
o′∈O

Q((s,O), o′) .

The second coalition then selects an action o ∈ O and updates the
corresponding Q-value as

Q((s,O), o) ←− (1− α)Q((s,O), o) + αγ opt
O′∈O(s′,C)

Q(s′, O′)

if the reachability game has not terminated, where s′ is the observed
next state, and

Q((s,O), o) ←− 1

if the reachability game terminates. This final update for when the
reachability game terminates simply sets the Q-value to the payoff
directly instead of waiting for the standard update rule to converge.

4.3 Extension to full PATL

There are two steps involved in getting from QATL to PATL. A first
step is to consider basic PATL. For the consideration of basic PATL,
we can simply solve the QATL problem as described in the previ-
ous section and determine whether or not the probability is above
the threshold. While this is in principle straightforward, we face the
same problem all probabilistic branching time logics with probability
threshold face for learning: when the real probability we try to find
for a QATL formula is some probability q ∈]0, 1[, then determin-
ing whether the related basic PATL formula 〈〈C〉〉≥q or 〈〈C〉〉>q resp.
!C"≥q or !C">q hold will not be possible even in the limit. Once
the basic PATL is covered, the extension to full PATL is straightfor-
ward: we can simply build the formula tree up from the leaves to
the root, successively replacing the subformulas that start with a path
quantifier (those starting with 〈〈C〉〉≥q , 〈〈C〉〉>q , !C"≥q , or !C">q) by
extending the labelling function, treating the evaluated subformulas
as atomic propositions.

We make note of two points that change in this general setting.
First, the set of antichains of outcomes depend on the coalition C. If
we need to evaluate different coalitions that move first, we will have
different antichains, and thus different sets of relevant outcomes to
expand. Secondly, the direct evaluations—cases (1), (3a), and (3b)
from Section 4.1—can rely on the truth of subformulas that start with
a path quantifier. We have followed the strategy to evaluate them first,
though it would also be possible to allow for their valuation to change
over time, so long as they eventually stabilise.

We also note that, for full PATL, there is the additional step of
comparing the predicted value to a threshold. When the objective
exactly meets the threshold, there cannot be any convergence guar-
antees, and it stands to be expected that the truth value fluctuates, e.g.
where a coalition C can enforce "p when moving first, 〈〈C〉〉≥0.5"p
should be true and 〈〈C〉〉>0.5"p should be false, while the observed
probability will fluctuate around 0.5, so that the truth value of both
formulas are likely to fluctuate. This does not pose a problem for
simple PATL formulas as this is well enough expressed by the truth
value converging towards 0.5, but for nested PATL formulas, chang-
ing truth values from subformulas have a knock-on effect on the sat-
isfaction valuation of the path formula.

5 Experimental Results
We use minimax-Q learning as our reinforcement learning procedure
to learn to satisfy QATL formulas. For our experiments, we use the
discount factor γ = 0.999, a learning rate of α = 0.1, and an ε-
greedy strategy with ε = 0.1. We reset the episode when its length
exceeds 100 steps. To encourage exploration, we initialise the Q-
table values to 0.01 instead of zero. Our learning results are in Ta-
ble 1. We report the example name, whether the QATL property is
satisfied or unsatisfied, the number of states reachable in the resulting
reachability game, the number of training episodes, and the training
walltime averaged over three runs.

Robots and Carriage. The first case study we consider is
the robots and carriage example introduced in Section 1 (see
Figure 1). We consider the two properties 〈〈0〉〉≥0.5♦pos1 and
〈〈0〉〉≥0.5"¬pos1, referred to as robotsF and robotsG, respectively.
After training for 1k episodes, the agent correctly learns the strate-
gies discussed in Section 1. We also consider a variant of this ex-
ample where with probability 0.01, the robots slip when trying to
push, causing the robot to instead behave as if they waited (referred
to as robotsF−slip and robotsG−slip for the two corresponding
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Figure 3. There are three agents denoted 0, 1, and 2. The goal region is
denoted in green and the walls are denoted in grey. We consider the objec-
tives 〈〈0〉〉≥0.5¬cU(g ∧ ¬c) and 〈〈0, 1〉〉≥0.5¬cU(g ∧ ¬c) where c denotes
a collision and g denotes either 0 or 1 have reached the goal region.

Table 1. Learning results. Times are in seconds.

Example result states episodes time
robotsF unsat. 6 1k 0.05
robotsG sat. 6 1k 0.05
robotsF−slip sat. 6 1k 0.07
robotsG−slip unsat. 6 1k 0.05
guardsAlone unsat. 649528 50k 5.65
guards sat. 649528 75k 6.45

properties). Under this configuration, the satisfiability is the opposite
of what is was before. This is because either robot can now force ev-
ery state to be visited by waiting for the other robot to slip. Learning
takes less than 0.1 seconds of wall-time for these examples.

Gridworld Guards. Next, we consider the example shown in Fig-
ure 3. In this example, there are three agents: 0, 1, and 2. Each agent
can move in any of the cardinal directions, but will not move if it
tries to move into a wall (shown in grey). If any two agents occupy
the same cell, we say that they have collided (c is true). If agents
0 or 1 reach the green goal region, then we say that the goal has
been reached (g is true). We consider the property that the goal is
reached and that no collision has occurred at any timestep before and
including the timestep the goal is reached. This is denoted by the path
formula ¬cU(g ∧ ¬c). First, we consider if agent 0 can enforce this
alone, i.e. 〈〈0〉〉≥0.5¬cU(g ∧ ¬c) (referred to as guardsAlone). We
train for 50k training episodes. The learner finds that agents 1 and
2 can collaborate to prevent agent 0 from reaching the green region
without collision by having agent 2 go to the left gap and agent 1 to
the right gap. Next, we consider if agents 0 and 1 can enforce this,
i.e. 〈〈0, 1〉〉≥0.5¬cU(g ∧ ¬c) (referred to as guards). The learned
strategy enforces this, as agent 2 cannot stop both agents 0 and 1 on
its own. All training instances of this case study took less than 10
seconds of wall-time.

6 Conclusion

This paper has developed a reinforcement learning (RL) based ap-
proach for probabilistic alternating-time logic. The reachability nor-
mal form for PATL, introduced in this paper, allows us to transform
basic PATL formulas into a turn-based (reachability) game with a re-
ward maximisation objective, enabling the use of RL. We discussed
how this approach can be extended to arbitrary PATL formula.

The paper also introduced two methods for reducing the decision
space needed for learning. The first method is to formulate the tran-
sition function in terms of outcomes. We showed that there is a direct

correspondence between actions and outcomes, letting us utilise out-
comes directly for learning. As there may be fewer outcomes than
actions, this provides a potential savings in the size of the decision
space. The second method for reducing the decision space is to re-
move subsets of outcomes that are not minimal. In other words, we
show that antichains of subsets of outcomes are all that needs to be
considered for optimality. Finally, we demonstrated the effectiveness
of our approach on a few case studies.
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