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Abstract. We study the problem of inferring the discount factor of an
agent optimizing a discounted reward objective in a finite state Markov
Decision Process (MDP). Discounted reward objectives are common in
sequential optimization, reinforcement learning, and algorithmic game
theory. The discount factor is an important parameter used in formulat-
ing the discounted reward. It captures the “time value” of the reward
- i.e., how much reward at hand would equal a promised reward at a
future time. Knowing an agent’s discount factor can provide valuable
insights into their decision-making, and help predict their preferences in
previously unseen environments. However, pinpointing the exact value of
the discount factor used by the agent is a challenging problem. Ad-hoc
guesses are often incorrect.

This paper focuses on the problem of computing the range of possible
discount factors for a rational agent given their policy. A naive solution
to this problem can be quite expensive. A classic result by Smallwood
shows that the interval [0, 1) of possible discount factor can be partitioned
into finitely many sub-intervals, such that the optimal policy remains the
same for each such sub-interval. Furthermore, optimal policies for neigh-
boring sub-intervals differ for a single state. We show how Smallwood’s
result can be exploited to search for discount factor intervals for which
a given policy is optimal by reducing it to polynomial root isolation.
We extend the result to situations where the policy is suboptimal, but
with a value function that is close to optimal. We develop numerical
approaches to solve the discount factor elicitation problem and demon-
strate the effectiveness of our algorithms through some case studies.
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1 Introduction

The recent success of Reinforcement Learning (RL) algorithms [24] in discov-
ering creative solutions with superhuman performance [18,26] has contributed
to the popularity of the discounted-sum as a canonical optimization objec-
tive. Discounted-sum aggregators over Markov decision processes (MDP) [20]
o!er several theoretical advantages, including the existence of stationary opti-
mal policies, a contractive improvement operator, and an e!ective formalism
to approximate other aggregators such as limiting-average and total-sum. The
discounted-sum aggregator formalizes the notion of time preference (or rate of
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impatience) [8] that rational agents exhibit when weighing immediate small
rewards against larger rewards later.

However, characterizing this preference is challenging because it is subjective
and depends on the agent’s ability to delay gratification. This paper aims to
develop algorithms that identify both exact and approximate ranges of discount
factors to which an agent might subscribe by observing their behavior in a finite-
state MDP.
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The Need for Discount Factor Elicitation. The
need for discount factor elicitation arises in several
situations. In single-agent optimization scenarios, it
is helpful for an agent to know its discount fac-
tor in order to select among di!erent behaviors. For
instance, in the decision-making scenario shown on the right, the decision maker
has to choose between sequences σ1 : 01ω and σ2 : 10ω with resulting discounted
sums of γ/(1− γ) and 1, respectively. Thus, if the agent’s discount factor lies in
the range [0, 1/2), σ2 is optimal; for discount factor of 1/2 both sequences have
the same discounted reward, and for discount factors in the interval (1/2, 1), the
sequence σ1 is optimal. Moreover, in situations where one can assume a subjec-
tive and constant discount factor, elicitation of the discount factor can be the
canonical “inverse-RL” problem and may characterize a key hyperparameter for
transfer learning. In other words, we focus on uncovering characteristics of the
agent which are a!ecting their decision making dynamics in order to be able to
predict their behavior in unfamiliar situations.
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In multi-agent interaction scenarios, the
assumption that adversarial agents sub-
scribe to the same discount factor as the
ego agent may not hold. Consider a strate-
gic interaction as a two-player turn-based
discounted game depicted in the figure
wrapped to the left of this text, with cir-
cular nodes controlled by Player Min and
a box node controlled by Player Max.
Let’s consider two extreme situations with
respect to Player Min’s choice of discount
factors: myopic (discount factor close to 0)

and foresight (discount factor close to 1). Also, assume that Player Max is fore-
sighted, i.e., subscribes to a discount factor close to 1. Intuitively, a myopic player
will select a locally-optimal action, while a foresighted player will play for the
average reward. Hence, in this case, against a myopic Player Min, Player Max
will select action down, while against a foresighted Player Min, Player Max will
select action up. This example demonstrates that knowing the discount factor of
the other agent may allow the ego agent to achieve a better payo!.

The Landscape of Discount Factors. For finite-state MDPs, Blackwell [3]
introduced the notion of discount-optimal policies that are optimal for all suffi-
ciently large discount factors. A policy is called Blackwell-optimal if there exists a
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discount factor γ∗ such that for all γ ∈ [γ∗, 1), it is also discount-optimal. Gurvich
and Miltersen [11] bound γ∗ from above by 1−1/((n!)222n+3M2n2

) where n is the
number of states in the MDP and M is a bound for the absolute values of proba-
bilities and rewards. Puterman [20, Section 10.1.2] presents an accessible proof for
the existence of Blackwell-optimal policies based on a rational characterization
of discount-factor parameterized value function and finiteness of the stationary
policies. The proof can easily be extended to show that, for every finite MDP,
there exists a finite sequence L = 〈a0(= 0) ≤ a1 ≤ a2 ≤ · · · ≤ aN = γ∗ ≤ 1〉 such
that within each region [ai, ai+1], for 0 ≤ i < N , the discount optimal policies
remain invariant.

From Policies to Discount-Factors. Smallwood [23] refined the understand-
ing of this landscape L by observing a remarkable fact: for every discount factor
ai in this landscape, the optimal policies on either side di!er in only a single
state. Using this observation, Smallwood developed a procedure to determine
the value of discount factors for which one is indi!erent between two optimal
policies. Given an optimal policy, this observation can be leveraged to compute
a range of discount factors for which the given policy is optimal. However, as
discussed in the paper, a straightforward approach of this kind is computation-
ally expensive. To address this challenge, we propose algorithms to compute
such ranges for optimal, and sub-optimal policies. We also present experimental
results to demonstrate the e!ectiveness of the proposed approach.

Organization. We begin the technical exposition with prior work in Sect. 2.
We formalize the problem of discount factor elicitation in Sect. 3. Our approach
builds upon Smallwood’s work that is presented in Sect. 4. The key algorithm is
developed in Sect. 5 and its extension to accommodate sub-optimal policies in
Sect. 6. In Sect. 7 we discuss a case study for elicitation of discount factors for
varying environment before concluding in Sect. 8.

2 Related Work

Discounted Optimization. Puterman [20] and Filar & Vrieze [7] provide
comprehensive collections of technical results on optimization over MDPs and
stochastic games. Discounted, total, and average reward are among the most
studied optimization objectives. Among these, the discounted-sum objective
is the best understood, theoretically elegant, and allows e!ective optimiza-
tion [20] and reinforcement learning [24] algorithms. The notion of Blackwell-
optimality [3] allows us to reduce average optimization to discounted-sum opti-
mization.

Discount Factor. Starting from the work of Fisher [8], the discount factor
has received several interpretations, including rate of impatience [8], delayed
gratification [9,17], geometrically distributed horizon [16], system failure [20],
timing of consumption & expenditure of resources [13], and stochastic shortest
path with proper-policy assumption [19]. Given their importance in optimization
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and games, it is surprising that the problem of selecting the discount factor has
not received sufficient attention, and there is no consensus among practitioners
on how to select a discount factor [2,9,12,25]. Smallwood’s work [23] is perhaps
closest to our problem; however, his goal is to find the discount factors under
which two optimal policies are equally profitable. Giwa et al. [10] present an
approach to inverse reinforcement learning that simultaneously optimizes the
rewards and the discount factor of the agent from observations of the agent’s
behavior. The key di!erences between our work and Giwa et al. include: (a) we
assume that the entire policy is given for a given MDP whose rewards are given
and learn a discount factor, whereas Giwa et al. do not assume that the rewards
are known; and (b) we identify all discount factors for which the input policy
is optimal whereas Giwa et al. minimize a log-likelihood using gradient-based
optimization that yields a local minimum.

Mismatching Discount Factors. In the context of strategic games, the need
for strategic agents to have di!erent planning horizons and consequently di!erent
discount factors is well documented [1,4,14]. The issue of di!erent discounting
was studied extensively by Lehrer et al. [14], and they showed that in the case of
complete information zero-sum game, the equilibrium payo! is zero-sum. They
also demonstrated that despite the purely competitive nature of the games,
di!erent discounting can give rise to some cooperation, known as inter-temporal
trades [1].

3 Problem Definition

We focus on inferring the unknown discount factor for a single agent based on
their policy in a finite MDP. We assume that the agent’s policy selects actions
to maximize the discounted sum of rewards over an infinite time horizon.

Definition 1. An MDP M is a tuple (S,A, (Pa)a∈A, (Ra)a∈A), where:

– S = {1, . . . , N} is a finite set of states,
– A is a finite set of actions,
– for each action a ∈ A, Pa is the transition probability matrix of size |S|× |S|,

wherein Pa(i, j) represents the probability of moving from state i to state j
upon action a, and

– for each action a ∈ A, the reward Ra(i, j) is the reward obtained by applying
action a at state i and reaching state j.

Assumption 1. We will assume that for any state i ∈ S and any two actions
a1, a2 ∈ A such that a1 '= a2, the next state distributions Pa1(i, j) '= Pa2(i, j) for
some j ∈ S. Although this assumption is not strictly necessary for our approach
but will be useful in avoiding checking for special cases.

The agent is interested in maximizing a discounted-sum of reward signals. It
is well known [3,20] that for discounted-sum objective, deterministic and memo-
ryless policies suffice for optimality. Thus, we restrict our focus to such policies.
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A deterministic, memoryless policy π : S → A for M is a mapping from the
set of states S to the set of actions A. We write Π for the set of all possible policies
of the observed agent. We represent every policy as a |S|-vector that maps each
state to an action. Given a policy π, we define the transition matrix Pπ as
Pπ(i, j) = Pπ(i)(i, j). In other words, Pπ(i, j) is the probability of moving from
i to j upon the action π(i). Similarly, let Rπ(i, j) denote the reward Rπ(i)(i, j).

The value associated with policy π ∈ Π, denoted vπ, maps every s ∈ S to
the discounted sum of rewards gained by following policy π starting from s. The
value function is characterized by the following equations:

vπ(i) =
N∑

j=1

Pπ(i, j) (Rπ(i, j) + γvπ(j)) (1)

wherein γ ∈ [0, 1) is the discount factor. The discount factor controls the e!ect
of immediate versus future rewards on the decisions made by the agent.

Problem 1 (Discount Factor Elicitation). Assume that the agent plays
according to a given policy π ∈ Π, which is an optimal policy corresponding
to some unknown discount factor γ. We seek to find a (or union of) closed inter-
val I of the form [γl, γu] for 0 ≤ γl ≤ γu < 1 or a half-open interval of the form
I : [γl, 1) such that for all γ ∈ I, the given policy π is optimal for the value of
γ provided. I.e., for each γ ∈ I, and for any policy ξ ∈ Π and for all states i:

vπ(i) =
N∑

j=1

Pπ(i, j) (Rπ(i, j) + γvπ(j)) ≥ vξ(i). (2)

This problem can be reduced to a decision problem involving univariate ratio-
nal functions through a standard linear-programming (LP) based approach. The
value function for a given discount factor γ is obtained as a vector v, wherein
v(i) is the value associated with state i, via the following LP [20]:

min
∑n

i=1 v(i)

s.t. v(i) − γ
∑n

j=1 Pa(i, j)v(j) ≥ qa(i) ∀a ∈ A, i ∈ {1, . . . , N}

where qa(i) =
∑n

j=1 Ra(i, j)Pa(i, j) for a ∈ A is the vector of expected immedi-
ate rewards. Given the value function, the policy π is extracted from the optimal
solution of the LP by noting that whenever π(i) = a, the constraint correspond-
ing to state i and action π(i) in the LP above is saturated, i.e., satisfied with an
equality. Note that if there are multiple optimal policies π,π′ for a given discount
factor, then the constraints corresponding to the actions chosen by each of the
policies are saturated by the optimal solution to the LP above.

Lemma 1. A policy π is optimal for a given discount factor γ ∈ [0, 1) if and
only if the following constraints hold for each action a ∈ A:

(I − γPa)(I − γPπ)−1qπ ≥ qa,

wherein qπ(i) = qπ(i)(i).



What is Your Discount Factor? 327

Proof. Let π be the optimal policy and v∗ be the corresponding value function.
It holds that v∗ must be a feasible solution to the LP above that satisfies:

v∗(i) − γ
n∑

j=1

Pπ(i, j)v∗(j) = qπ(i) ∀i ∈ {1, . . . , N}.

In other words, v∗ − γPπv∗ = qπ. Since I − γPπ is an invertible matrix for
γ ∈ [0, 1) and Pπ being a stochastic matrix, we have v∗ = (I − γPπ)−1qπ. Also,
v∗ must be primal feasible as well, yielding (I − γPa)v∗ ≥ qa for every a ∈ A.
Therefore, we may eliminate v∗ to obtain

(I − γPa)(I − γPπ)−1qπ ≥ qa ,∀a ∈ A.

This completes the proof. +,

As a result, a policy π is optimal for some discount factor γ ∈ [0, 1) i! the
following assertion over the reals is valid.

∃γ ∈ [0, 1)
∧

a∈A

(I − γPa)(I − γPπ)−1qπ ≥ qa. (3)

Note that each (I − γPπ)−1 is a N × N matrix whose entries are rational
functions (ratio of two polynomials in γ), wherein the degrees of the numerator
and denominator are at most N . The denominators are all given by det(I−γPπ),
which is positive over γ ∈ [0, 1).

Lemma 2. The polynomial det(I − γPπ) > 0 for γ ∈ [0, 1).

Proof. Since Pπ is a stochastic matrix, its eigenvalues λ are such that |λ| ≤ 1.
The real roots of det(I−γPπ) are in fact 1

λ where λ is a non-zero real eigenvalue
of Pπ. Since |λ| ≤ 1, we conclude that det(I − γPπ) has no real roots in [0, 1)
and is thus sign invariant. Thus, det(I−γPπ)>0 since it is positive for γ = 0. +,

The problem of checking if a given policy π is optimal for some discount
factor γ can be reduced to checking whether for some γ ∈ [0, 1), a given list of
N |A| polynomials involving γ of degree at most N +1 are all non-negative. The
roots of a given polynomial delineate intervals where the sign of the polynomial
does not change. Therefore, to find intervals where the polynomials are all non-
negative, we first identify their roots. In practice, this can be solved using real-
root isolation for the polynomials using Sturm sequences or the Descartes rule
of signs to count the number of real roots in an interval and bisection to refine
these intervals [21,27]. Having identified all such sign invariant intervals, the
procedure checks if the intervals corresponding to the polynomials have a non-
empty intersection. In what follows, we will provide a more elegant approach
using a result from Smallwood [23].
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4 Optimal Policy Regions

Our approach to Problem 1 builds upon the result of Smallwood [23], which
shows that as we vary the discount factor γ over the interval [0, 1), we e!ectively
partition the interval [0, 1) into finitely many intervals I1, . . . , IK such that for
each interval Il, there is an associated policy πl which is optimal for any discount
factor γ ∈ Il. Furthermore, two neighboring intervals Il, Il+1 that share an end-
point have associated policies πl,πl+1 that di!er only at a single state.

Theorem 1 (Smallwood [23]). For a given MDP M, there exists finitely many
points 0 = a0 ≤ a1 ≤ a2 · · · ≤ aN < 1 and policies π0,π1, . . . ,πN such that

(a) for i < N , πi is an optimal policy for any discount factor γ ∈ [ai, ai+1],
(b) πN is an optimal policy for [aN , 1),
(c) “neighboring” policies πi,πi+1 differ only at a single state, and
(d) the optimal values associated with πi,πi+1 are the same for all states at

discount factor ai+1.

Following Smallwood, we call an interval of the form [ai, ai+1] (or [aN , 1)) an
optimal policy region. For any two neighboring optimal policies πi−1,πi for i ≥ 1,
the point ai that is common to their respective optimal policy regions is called an
indifference point. Note that a policy π can be optimal for two separate intervals.
Therefore, there could be multiple indi!erence points between two policies. At an
indi!erence point, the optimal action for one state of the MDP changes, resulting
in a change from a policy πi to πi+1. Note that at the indi!erence point, the
value functions associated with πi and πi+1 are the same.

Based on Smallwood’s Theorem, we propose the following simple strategy
for identifying the optimal policy intervals corresponding to a given policy π:

1. Iterate through all policies π′ that di!er from π at just a single state. There
are N(|A| − 1) such policies.

2. For each such policy π′ find if an indi!erence point exists between π,π′.
3. If π,π′ have an indi!erence point γ for which they are optimal, then we have

discovered one of the end points of an interval for which π is optimal.

The key observation [23] is that we can check if two policies π,π′ have an indif-
ference point in common using polynomial root solving. Let π,π′ be two policies
that di!er in just one state. The value function v for π satisfies the equation:
v−γPπv = qπ. Likewise, π′ must have the same value function that also satisfies:
v − γPπ′v = qπ′ . Subtracting, we obtain:

qπ − qπ′ + γ(Pπ − Pπ′)v = 0

Since, π and π′ di!er from each other in one state, qπ, and qπ′ di!er in just one
entry corresponding to the state where the policies diverge. Similarly, Pπ, and
Pπ′ also di!er just in a single row where the two policies diverge. Therefore, we
obtain a single equation pertaining to just the row where the two policies di!er:

∆q + γ∆P (I − γPπ)−1qπ = 0. (4)
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Here ∆q is a scalar value that represents the di!erence between immediate
expected rewards obtained by the two policies, and ∆P = (Pπ − Pπ′) is a row
vector. Assumption 1 ensures that ∆P '= 0. Otherwise, note that π,π′ cannot
share an indi!erence point. From Cramer’s rule, the function γ → (I − γP )−1 is
a rational function whose denominator is det(I−γP ) [15]. Therefore, solving for
γ in Eq. (4) is equivalent to finding the roots of the resulting rational function
in γ within the interval [0, 1).

The numerators and common denominator for the entries of (I − γPπ)−1

can be computed efficiently by computing the characteristic polynomial of Pπ

and noting that Pπ satisfies its own characteristic polynomial using the Cayley-
Hamilton theorem. The details are explained in Smallwood’s paper [23] wherein
the method of [6] is employed. Computing the polynomial in Eq. (4) will require
O(N3) additions and multiplications involving entries of ∆q,∆P, Pπ and qπ.

Example 1. Consider an MDP with states S = {0, 1, 2, 3} and actions A = {0, 1}
where transition probabilities and expected immediate rewards are the following:

Action 0:P0 =





1/2 1/4 1/8 1/8
1/2 0 1/2 0
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4



 , q0 =
[
8, 20, 2, 3

]
,

Action 1:P1 =





1/16 3/8 3/16 3/8
1/16 7/16 1/16 7/16
1/8 3/8 1/8 3/8
1/8 3/8 1/8 3/8



 , q1 =
[
3, 15, 4, 40

]

As we change the value of γ for this MDP, we observe that the optimum policy
changes at certain values of γ. This partitions the whole range of discount factor
[0, 1) to sub-intervals where the optimum policy is the same. For this example,
the optimum policy is [0, 0, 1, 1] for γ ∈ [0, 0.38), is [0, 1, 0, 1] for γ ∈ [0.38, 0.91),
and is [1, 1, 1, 1] for γ ∈ [0.91, 1). So, in order to find these intervals, we can focus
on their boundary points where the value of two di!erent policies (optimum
policies for two neighboring intervals) are the same. From Eq. 4, for two policies
π1 : [0, 1, 1, 1], and π2 : [0, 0, 1, 1] we have:

dπ1 = [0, 1, 1, 1], Pπ1 =





1/2 1/4 1/8 1/8
1/16 7/16 1/16 7/16
1/8 3/8 1/8 3/8
1/8 3/8 1/8 3/8



 , qπ1 =
[
8, 15, 4, 40

]
,

and dπ2 = [0, 0, 1, 1], ∆P =
[
−7/16, 7/16, −7/16, 7/16

]
, ∆q = −5. This equa-

tion has a root γ0 = 0.38 in the interval [0, 1), which is the indi!erence point
between d and d′. Figure 1(a) depicts these intervals and the plot of the optimum
value function versus γ.
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5 Computing Discount Factor Ranges

Algorithm 1 returns a union of intervals of the discount factor γ for which a
given policy π̂ is optimal for a given MDP M = (S,A, (Pa)a∈A, (Ra)a∈A) with
|S| = N states and |A| = M actions. Let H1(π̂) denote the set of all policies that
di!er from π̂ at precisely one state. Line 2 iterates through all the policies πn in
H1(π̂). For each policy, it computes the intervals of discount factors where it is
optimal by solving a polynomial equation as explained in Sect. 4. We will assume
for now that we are able to find a precise root of the polynomial. However, we
can adapt the algorithm for the more realistic case when we can isolate the root
of the polynomial within an interval γ ± δ for some tolerance δ > 0. Section 5.1
delves into the details of this approach.

Fig. 1. (a) Optimum policy regions for the MDP in Example 1 (b) Range of discount
factor for which policy [1, 1, 1, 1] is near optimal for ε = 0.1 is [0.09, 1).

Next, we check if the policy π̂ is optimal for γn using the isOptimal subroutine.
If yes, we add γn to the list of indi!erence points Γ . Next, we sort the list of points
in Γ in ascending order. We consider two consecutive elements in Γ (line 11)
and check if π̂ is optimal at the midpoint of the interval [γi, γi+1]. If yes, we add
this interval to our list of intervals. Finally, we consider the interval [γmax, 1),
wherein γm is the largest number in Γ . This checks if π̂ is a Blackwell-optimal
policy [3].

The subroutine isOptimal for checking of the policy π̂ is optimal for a given
discount factor γ is as follows:

1. Compute the value function v = (I − γPπ̂)−1qπ̂.
2. For each a ∈ A, check if (I − γPa)v ≥ qa.

The complexity of isOptimal procedure is O(N3+N2M) for N states and M
actions. Algorithm 1 computes isOptimal at most O(N2M) times in the worst
case and computeIndifferencePoint at most NM times. The overall complexity of
Algorithm 1 is therefore O(NM × Poly(N) + N5M + N3M2), wherein Poly(d)
is the complexity of finding the roots of a univariate polynomial of degree d.

Theorem 2. For a given MDP M and policy π̂, the result I obtained by running
Algorithm 1 yields all optimal policy intervals for which π̂ is the optimal policy.
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Algorithm 1: Compute discount factor range(s) for which π̂ is optimum
Data: MDP: M and policy: π̂.
Result: Union of intervals I =

⋃
j [γ

(j)
l , γ(u)

u ] for which π̂ is optimal.

1 Γ ← [0]
2 for πn ∈ H1(π̂) do
3 Rn ← computeIndifferencePoint(π̂,πn) /* Rn is a set of numbers in

[0, 1) */
4 for γn ∈ Rn do
5 if isOptimal(π̂, γn) then append γn to Γ
6 end

7 end
8 sort Γ in ascending order
9 I ← ∅

10 for i = 1, . . . |Γ | − 1 do
11 γi, γi+1 ← Γ [i],Γ [i+ 1]

12 γm =
γi+γi+1

2
13 if isOptimal(π̂, γm) then I ← I ∪ {[γi, γi+1]}
14 end
15 γmax ← Γ [|Γ |] /* Last element of Γ */

16 γb =
γmax+1

2 /* Check if π̂ is a Blackwell optimal policy. */
17 if isOptimal(π̂, γb) then I ← I ∪ {[γmax, 1)}
18 return I

Proof. Let [*, u] for 0 < * ≤ u < 1 be any maximal interval wherein π̂ is optimal
for all values of the discount factor in the interval. By the results from Sect. 4,
the end points *, u are indi!erence points between π̂ and a policy in H1(π̂).
Therefore, *, u will belong to the list of indi!erence points Γ . Suppose there
are other indi!erence points * < *1 < *2 < . . . < *k < u in the interval [*, u]
discovered by our algorithm. This is possible since there could be other policies
in H1(π̂) whose value intersects with the value of π̂ is just a single point. As a
result, the for-loop in Line 10 will iterate through *, *1, . . . , *k, u and for each
successive pair of points, it will discover that π̂ is optimal for the mid-point.
Therefore, the intervals [*, *1], . . . , [*k, u] will be part of I. A similar argument
holds if π̂ is optimal over an interval of the form [0, u] or [*, 1). +,

5.1 Approach Using Root Isolation

Thus far, Algorithm 1 assumes that we can compute the roots of a polyno-
mial precisely. This requires working with algebraic numbers and furthermore,
finding roots of a polynomial precisely is hard, when its degree exceeds 5. We
modify Algorithm 1 to work with a polynomial root isolation procedure. Given
a polynomial p(γ) of degree N and tolerance factor δ, the root isolation yields
approximate roots {γ1, . . . , γk} such that the interval [γ−δ, γ+δ] contains a root
of p(γ). We will assume that δ is small enough that any two roots of the poly-
nomial are separated by at least δ. Such a procedure can be implemented using
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an algorithm similar to that of Collins and Akritas [5] that uses the Descartes
rule of signs to check if an interval has no real-roots, one real root or multiple
roots. The approach uses bisection by splitting the interval in half if it contains a
root until the size of the interval is smaller than a desired bound. This approach
has been improved substantially in the recent past. The ANewDsc algorithm
of Sagralof and Mehlhorn combines the bisection method based on the rule of
signs with Newton’s method for iterative computation of polynomial roots in
time Õ(N(N2 +Nτ + log(δ))) where τ is the maximum number of bits needed
to store the coefficients of the polynomial and Õ denotes that terms that are
logarithmic in the polynomial size and coefficients are omitted [22].

Suppose computeIndifferencePoints called from Algorithm 1 returns intervals
of the form (γ − δ, γ + δ) guaranteed to find a single indi!erence point, we will
modify our approach as follows: Line 5 checks the optimality of both end points
γ − δ, γ + δ and inserts the ones for which π̂ is optimal into the list Γ .

Let us assume Algorithm 1 was executed and the indi!erence points γ ∈ Γ
were found precisely. Let δ be chosen so that 2δ < minγ1,γ2∈Γ,γ1 &=γ2 |γ2 − γ1|.
In other words, no two indi!erence points discovered by the exact version of
Algorithm 1 are closer than 2δ.

Theorem 3. Let interval [*, u] be a maximal interval wherein * < u and π̂ is
optimal over the interval. The result I obtained by running Algorithm 1 modified
with interval based root isolation for interval width δ will contain the interval
[* + δ, u − δ].

Proof. Since [*, u] is maximal, we note that the end points *, u are indi!erence
points. By our assumption on the minimum separation between indi!erence
points, we have u − l > 2δ. Therefore, * + δ, u − δ are added to the set Γ in
the modified version of Algorithm 1. Consider if there are indi!erence points
* < *1 < *2 < · · · < *k < u. Due to the separation assumptions, note that we
will find π̂ to be optimal for *j ± δ for j = 1, . . . , k. As a result, the intervals
[* + δ, *1 − δ], [*1 − δ, *1 + δ], · · · , [*i + δ, *i+1 − δ], · · · , [*k + δ, u − δ] are all part
of the result I. Thus, I will contain the interval [* + δ, u − δ]. +,

6 Near-Optimal Policy Regions

In previous sections, we formulated the problem of finding the range of discount
factors for which a given policy is optimal. Here, we extend the problem to find
,-optimal regions for a given policy π̂. Assume that π̂ is a policy that is ,-far
away from being optimal. We say that for a discount factor γ, π̂ is , optimal if
the value function vπ̂ and the optimal value function v∗ satisfy the inequality
for some given , ∈ [0, 1): vπ̂ ≥ (1 − ,)v∗.

Problem 2. Assume the agent plays according to known policy π̂, find all dis-
count factors such that π̂ is , optimal.
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Clearly, π̂ is , optimal for all regions where it is optimal. However, (a) it
need not be optimal anywhere and (b) it can be ,-optimal for discount factors
that are “far away” from regions where π̂ is optimal. From results in Sect. 4, we
can compute all regions of discount factors as well as their respective optimum
policies for a given MDP. Suppose π is an optimal policy over some region [γ1, γ2].
Let P̂ = Pπ̂, q̂ = qπ̂, P = Pπ and q = qπ. Our goal is to compute a subset of
the interval [γ1, γ2] where π̂ is ,-optimal. We seek to find γ such that

(I − γP̂ )−1q̂ ≥ (1 − ,)(I − γP )−1q

or equivalently by defining ∆q = q − q̂, and ∆P = P − P̂ , Eq. 5 below can be
solved for γ:

∆q + (1 − ,)(I − γP )−1q − γ∆P (I − γP̂ )−1q̂ ≥ 0. (5)

However, we must note that π̂ and π are not necessarily neighboring policies.
Therefore, ∆P and ∆q may have multiple non-zero entries, and Eq. (5) involves
multiple polynomials of degree 2N that need to be non-negative for the value of
γ. This can be solved through univariate polynomial quantifier elimination.

Example 2. Consider the MDP in Example 1 with its optimum policy regions.
Let us assume we want to find the range of discount factor [γ0.1

l , γ0.1
u ] for which

the di!erence between value of policy [1, 1, 1, 1], and the optimum policy stays
within 0.9v∗. Figure 1(b) shows this range.

7 Eliciting Discount Factor for Varying Environments

Thus far, we have seen how a given policy can be optimal for a range of discount
factors. Therefore, it is hard to elicit a fixed value discount factor from a single
policy. However, if the underlying MDPs rewards and transition probabilities
change in time and the player adapts their policy according to each change, we
can use this information to “zero-in” on a small range of discount factors. We
illustrate our approach through a simple illustrative study wherein we consider
an agent making decisions against an environment that changes in time. We will
assume that after each environment change, the agent learns an optimal policy
through a reinforcement learning scheme that converges faster than the rate at
which the environments change. We further assume that we can observe the
optimal policy employed by the agent at each time.

Formally, consider a repeated decision making process for an agent which at
every stage is modeled by a MDP with |S| states and |A| actions. The agent is
considered rational and makes decisions according to a fixed but unknown value
of discount factor throughout the experiment. We assume the number of states
of the MDP graph and the actions remain the same. However, the rewards asso-
ciated with state action pairs, and the transition probabilities between states can
change at each stage. We are interested in zeroing-in on the unknown discount
factor of the agent and therefore predicting the next policy of the agent at every
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Fig. 2. Simulation results of implementing Algorithm 1 in a MDP with (a) 10 states
and 3 actions results in discount factor range (0.90, 0.90), (b) 20 states and 5 actions
results (0.87, 0.90), (c) 50 states and 7 actions results (0.87, 0.91), and (d) 100 states and
10 actions result (0.90, 0.90). The discount factor used by the agent in all experiments
was 0.9.

stage by observing its past policies. We use the methodology in this paper to
compute the optimum range of discount factors for every policy that the agent
adopts at each stage. We compute the intersection of these intervals to narrow
down the discount factor range. This refined range is then used to predict the
policy of agent in the next stage.

Figure 2 shows an illustration of this over four di!erent MDPs with varying
number of states. For each instance, we move through 20 di!erent stages that
consist of varying transition probabilities and rewards. The discount factor is
unknown but is assumed to be fixed for all stages. Algorithm 1 was used with
a numerical root finding procedure based on Newton-Raphson method to find
ranges of the discount factor. In each case, we identified a single range of discount
factors for which the given policy was optimal. In all simulations, the agent’s
actual discount factor was fixed to 0.9. The estimated range for every simula-
tion is reported in Fig. 2. We note that our approach rapidly converges on the
underlying discount factor by exploiting the information on the discount factor
ranges given from varying environments.
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8 Conclusion

This paper studies the problem of inferring the discount factor of an agent
by observing their behavior given as a policy on a finite MDP. We employed
the notion of optimum policy regions for discount factors and characterized the
intervals where the optimum policies remain invariant. The boundaries of such
intervals are points at which two neighboring optimum policies have the same
value. Therefore, the range of discount factors for which a given policy is optimal
is identified by points where its value intersects with the value of neighboring
optimum policies. We develop numerical approaches to compute these boundary
points under di!erent assumptions on the optimality of the policy. We demon-
strate the e!ectiveness of our algorithms through some case studies.

As future directions for this study, we plan to investigate how the discount
factor can be inferred by observing partial policies, where the actions for some
states are not known. Another possible application of this study is in inverse
reinforcement learning and transfer learning, where knowing the discount factor
of an agent provides high-quality information regarding their preferences in pre-
viously unseen environments. While this paper considers the discount rate to be
constant, the need for stateful discounting has been well-argued. For instance,
following a sequence of winning streaks, an agent may change its outlook on
the horizon. Similarly, institutions may change interest rates based on historical
transactions. Similar to the notion of reward machines, our approach can be
extended to learn a so-called discount machine to supply discount factors based
on the history of an interaction. These discounted machines can be learned
by combining ideas presented in this work with active or passive learning of
automata.
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