Anticipating
Oblivious Opponents in Stochastic Games

Shadi Tasdighi Kalat, Sriram Sankaranarayanan and Ashutosh Trivedi

University of Colorado Boulder, USA
Email: {Shadi.TasdighiKalat,srirams,Ashutosh.Trivedi}@colorado.edu

Abstract. We present an approach for systematically anticipating the ac-
tions and policies employed by oblivious environments in concurrent stochastic
games, while maximizing a reward function. Our main contribution lies in
the synthesis of a finite information state machine (ISM) whose alphabet
ranges over the actions of the environment. Each state of the ISM is mapped
to a belief state about the policy used by the environment. We introduce a
notion of consistency that guarantees that the belief states tracked by the
ISM stays within a fixed distance of the precise belief state obtained by
knowledge of the full history. We provide methods for checking consistency of
an automaton and a synthesis approach which, upon successful termination,
yields an ISM. We construct a Markov Decision Process (MDP) that serves
as the starting point for computing optimal policies for maximizing a reward
function defined over plays. We present an experimental evaluation over
benchmark examples including human activity data for tasks such as cataract
surgery and furniture assembly, wherein our approach successfully anticipates
the policies and actions of the environment in order to maximize the reward.

1 Introduction

Concurrent stochastic games [17,15,16,13,27,41] offer a natural abstraction for mod-
eling conservative decision-making in the presence of multiple agents in a shared
and uncertain environment. In this scenario, the objective of the Ego agent—player
P1—is to maximize their desired outcome irrespective of the decisions taken by other
agents, represented here as a single agent that we term player P [7]. In a zero-sum
game, the objective of player P; is deemed to be in direct conflict with player Ps. The
opposite scenario assumes cooperation, wherein Ps’s actions are aimed to maximize
the reward for P;. In this paper, we study another “extreme”, wherein Ps is assumed
to be oblivious. Their actions are chosen from a predefined set of policies or objectives
that are not affected by the actions of P;. We will show that in such a setting, player
Py needs to anticipate Ps’s moves to maximize their own reward.

Consider a game of Rock-paper-scissors (RPS) against an oblivious adversary.
Recall that at each turn, players P; and P» simultaneously reveal their choice with a
show of hands, and both players receive values (Cf. Figure 1) based on straightforward
circular-dominance rules (rock defeats scissors, scissors defeats paper, paper defeats
rock). The repeated, oblivious RPS can be modeled as a single state concurrent
stochastic game, where the goal of player P; is to maximize the sequence of rewards
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Fig. 1. Rock-paper-scissors (RPS) game arena. Here actions r;, p;, and s; correspond to the
choices of “rock”, “paper” and “scissors” by player P;; (left) Reward table; (mid) player Ps
policies; and (right) Markov chain modeling policy change for P>. The dashed red edges
have probability 0.15 whereas the solid edges have probability 0.12.

over a given, potentially infinite, horizon. Considering the conventional interpretation
of an adversarial opponent, the expected value of the game remains at 0.

The oblivious RPS “game” is illustrated in Figure 1, where the set of policies
(7r1,m2,m3, and 74) used by player P, is presented in the table to the right. In the
proposed scenario, we assume the following: (a) player P; observes the past actions
of player P, but the current action of one player is not observable by the other;
(b) player Ps is restricted to playing one of the policies {m1,m2,m3,m4} but this choice
is not observable by P1; and (c) policy change: at each step, player P may shift
from the current policy to a new one. This shift is modeled by a Markov chain
wherein each state of the chain is labeled by a policy. From player P;’s perspective,
although the policies of player P are known, they are unobservable. Consequently,
the problem can be framed as a partially observable MDP (POMDP). This POMDP
is the result of merging the original arena with player Ps’s policy set. Framing this
as a POMDP permits the use of standard POMDP solution approaches [9]. However,
“exact” POMDP planning is undecidable [29]. Furthermore, translating from oblivious
games to POMDPs obscures the specialized structure of the problem.

Action/Tool Anticipation in Human-Robot Cooperative Tasks: In scenarios involving
humans working with autonomous agents, the ability to “guess” the intent of the
human can be critical in ensuring the success of the overall task. Consider a scenario
where Ps is engaged in a complex task involving a sequence of steps such as assembling
a piece of furniture [5] or performing a cataract surgery [1].

The task execution is captured by a task graph whose nodes model different
states encountered during task execution and edges are labeled with the tool/action
that is needed to move from one stage to another. Fig. 2 shows such a graph: the
states S1={to,...,ts} represent assembly stages for the corresponding component,
while A={ay,...,a5} represents the actions taken. Multiple edges from the same node
represent possible choices that can be made by Ps. The policies of P5 dictate the
choices made by P, for each non-terminal state. For some of the states with just
one outgoing edge, there is just one choice to be made. However, for states with
multiple outgoing edges, the policy dictates the probability distribution of the choice.
The policies allow us to model “correlations” in Ps’s action: For instance, policy m;
models the rule: Ps chooses tool a; at state ty and they will choose as at state tq
with 90% probability. The goal of P; is to accurately anticipate Ps’s choice of the
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Fig. 2. States of a furniture assembly task and policies for task completion.

next tool in order to perform a cooperative action (eg., pre-fetch the tool to help P
or automatically take steps to protect Ps against a known hazard). We model this
using the reward structure: if P; correctly predicts the next action of P, they obtain
a positive reward. However, failure to do so incurs a negative reward. By assuming a
set of policies for Ps, our approach moves the prediction problem from one of simply
predicting action sequences to first predicting the policy (or the internal logic behind
P2’s actions) and then predicting the action given the policy. Section 8 demonstrates
how we can use actual observation data from real-life cataract surgeries and furniture
assembly tasks to not just learn the task graph model but also infer policies. In doing so,
our approach can produce policies for P; that predict the next action with upto 40%
accuracy even when there are more than 30 tools/actions to choose from at each step.

Contributions. We introduce the framework of anticipation games (Section 3) and
make the following contributions.

1. Consistent Information State Machines: We define the notion of a finite in-
formation state machine (ISM) over an alphabet consisting of states and P,
actions (Section 4). We introduce the concept of A—consistency that is similar
to an approximate bisimuation relation and show how to check if a given state
machine is A consistent using linear arithmetic SAT-Modulo Theory (SMT)
solvers. Next, we provide a semi-algorithm that upon success can synthesize such
a machine (Section 5). We provide simple conditions that guarantee the successful
termination of our algorithm with a finite state consistent ISM (Section 7).

2. Policy Synthesis for P1: Next we show that a composition of a finite state ISM
with the game yields a MDP that forms the basis of finding a policy for P (Sec-
tion 6). We bound the distances between the transition probabilities and reward
functions of the infinite state belief MDP and the finite state approximation. By
leveraging a recent result by Subramanian et al. [45], we bound the gap between
the optimal belief MDP value function and that of our finite approximation.

3. Robustness: In Section 7, we establish bounds on the performance degradation,
if Py deviates from the assumptions.

4. Empirical Evaluation: Finally, we present an empirical evaluation of our work
against some challenging benchmarks (Section 8). We show that our approach can
clearly anticipate the policies and actions of the other player to maximize the over-
all reward. In particular, we use two datasets — an IKEA furniture assembly dataset
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consisting of sequence of actions taken by human assemblers for different furniture
models [5] and a sequence of tools used in 25 different cataract surgeries [1]. We use
an automata learning tool flexfringe [47] to learn the task model and a simple edge
set based clustering to learn policies. We demonstrate how our approach computes
policies for P; that maximize the ability to predict the next tool choice of Ps.

Proofs and details of benchmarks used in our empirical evaluation have been
omitted due to lack of space. These are available in an extended version [24].

2 Related Work

Partially observable stochastic games (POSGs) are a subset of stochastic games
where agents have partial information about the state of the environment. Within
this paradigm, agents are allowed to have conflicting, or similar objectives, reward
structures, and strategies [9, 8, 6]. Solution techniques developed for POSGs are build
upon approaches to solve POMDPs such as value iteration and policy iteration [4].
Solving finite-horizon POMDP is PSPACE-complete [37], and solving infinite-horizon
POMDPs have been shown to be undecidable [30]. A variety of approximate solution
techniques have been introduced for general POMDPs including Point-Based Value
iteration [38,40, 43, 26, 39|, grid-based belief MDP approximations [19], semi-MDP
approximations [46,44] and compressing belief states using features [22]. In addition,
methods such as POMCP (Partially Observable Monte Carlo Planning [42, 28]), lever-
age sampling-based approaches to estimate belief states and approximate the value
function. These approaches are not easy to compare to the approach in this paper since
our approach is tailored explicitly to POMDPs derived from anticipation games for
oblivious adversaries. Our approach is closely related to those that group belief states
together using bisimulation quotients [10, 11,20]. A key distinction is that the approach
presented here is an approximate notion of bisimulation wherein we guarantee that our
information state machines track the precise belief state within a distance of A in a suit-
able norm. Thus, we exploit the special structure of the games studied here and prove
that finite approximate bisimulations always exist for suitable choice of the parameters.
While traditional POMDP solvers often work with the belief space, there have
been approaches that leverage historical information to make decisions, either by
directly maintaining a history or by approximating it. The complexity of solving this
problem grows exponentially with the length of history [25]. The results in [3] discuss
this issue and address the trade-offs between memory usage and solution quality.
To overcome this issue, [23], introduces the concept of finite-memory controllers. In
another work, [31] investigates an instance-based learning approach for POMDPs,
maintaining a set of histories to guide action selection. Similarly, [21, 14] use looping
suffix trees to represent the hidden state in deterministic finite POMDPs. This work is
later extended to [32], which fixes the size of the policy graph to find the best policy of
this size, and [33], that performs stochastic gradient descent on finite-state controller
parameters, which guarantees local optimality of the solution. However, note that
none of these techniques provide guarantees on the quality of the approximation or
the solution so obtained. In this paper, we obtain such guarantees but for the limited
case of POMDPs arising from the anticipation games and oblivious adversaries.
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Our approach is an instance of the approximate information state introduced by
Subramanian et al [45], as a compression of history which is sufficient to evaluate ap-
proximate performance, and predict itself. Yang et al [49] specialize this framework to
discrete approximate information states but their work learns the automaton from fi-
nite samples by solving an expensive nonlinear optimization problem. In this paper, we
assume knowledge of the underlying game and opponent policies to construct a finite
state machine that is guaranteed to be an approximation information state generator.

The problem of anticipating moves of an oblivious opponent has similarities to the
well-studied problem of intent inference or goal recognition [2, 12, 50]. Our approach
models the other player’s policies which makes the intent inference problem quite
simple. On the other hand, our approach allows intents to change in a stochastic
manner and more significantly, it folds in the intent inference with planning in a
single algorithm.

3 Problem Definition

A probability distribution d: X—[0,1] over a finite set X satisfies ) __d(s)=1. Let
D(X) represent the set of all probability distributions over X. The distribution d
over X ={x1,29, T } is written {x1:p1,....Tp :pm } where p;=d(x;) for i€ [m]. For
a natural number n>1, let [n]={1,2,...,n}. Bold case letters denote vectors beR"™.
The i*" component of b is denoted as b;.

A Markov decision process (MDP) M is a tuple (S,A,P,R) where S is a finite set
of states, A is a finite set of actions, P:Sx A—D(S) is the probabilistic transition
function, and R:Sx A—R is a scalar valued reward function. We write P(s'|s,a) for
the probability of state s’ if action a is applied to state s. In a two player concurrent
game, the set of actions are partitioned between player PP; and Ps. Transitions of the
game are determined by joint actions of both players.

Definition 1 (Concurrent Stochastic Game Arena: Syntax). A concurrent
stochastic game arena G is a tuple (S,AM), A®) P R) wherein S is a finite set of
states, AV and A® are disjoint sets of actions for players P1 and Pa, respectively,
P:Sx AW x A® — D(S) is the joint probabilistic transition function, and R :
Sx AN x A® SR is a reward function for Py.

We assume that player P, selects their policy from one of n different stochastic
policies from the set IT={my,...,;r,, }, wherein each 7;: S—D(A?) represents a map
from states to probability distributions over actions in A®). Let 7;(s,a) denote the
probability that action a is chosen from state s for policy ;.

Example 1. Consider the RPS example discussed in the introduction (Figure 1).
The state set is a singleton: S = {t}. We have three actions each for players 1,2:
AD = {1 p1,s1} and A® = {ry,ps,55}, corresponding to choices of “rock”, “paper”
and “scissors”, respectively. The transition probabilities are simply P(t|t,a,b) =1
for all a € AW be A®). The reward for P, is the familiar one from the game of
rock-paper-scissors, and is shown in Figure 1 (left) Py plays one of four possible
policies shown in the middle table of Figure 1.
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Assumption 1 (Observation and Obliviousness) We assume that: (a) Py 0b-
serves the past actions of P but the current action is not observable. (b) Pz is re-
stricted to playing one of the policies {my,...,m, } but this choice is not observable by P;.

Policy Change Model: We assume that P, can change policies at each step depending
on their current policies according to a Markov chain with n states labeled by the
corresponding policies my,...,m,. Let T represent the transition matrix of this Markov
chain such that the entry T;; = P(;|m;) represents the probability of P, switching their
policy to 7; given that their current policy is ;. Returning to Example 1, the Markov
chain for switching between the four policies 7y,...,m4 is shown in Figure 1 (right).

Our goal is to compute a finite memory policy 7(1) : S x M+ AM) that maximizes
the expected discounted reward for P; with given discount factor 0 <~y < 1. The
structure and construction of the required memory M over the states and actions
of Ps is discussed in subsequent sections.

4 Information State Machine and Consistency

The main approach is to use a sequence of observations of states and P» actions to
infer a belief state b over the player’s policies.

Definition 2 (Belief State). A belief state b: (by,...,b,) ER™ is a vector wherein
the it" component b; represents Py ’s belief that P is employing policy m; € IT. Note
that b; >0 for alli€[n] and > b;=1.

Let B,={beR™ | (Vi€ [n]) b; >0 A Y. ;b =1} denote the set of all belief
state vectors in R™. The uniform belief state b, is given by (%,,%) We define two
operations over a belief state: (a) conditioning a belief state given some observation
and (b) capturing the effect of policy change on a belief state.

Let b be a belief state and (s,az) represent an observation where s € S and as € A®)
represent states of the game and actions for Ps. The belief state b’ = condition(b,s,as)

is obtained by conditioning b on the observation (s,as):

mi(s,a2)b;
Z?:IWJ(S’GQ)bj.

This expression is obtained as a direct application of Bayes’ rule.

1)

b, =condition(b,s,az) =

Remark 1. The denominator in Eq. (1) needs to be non-zero for condition(b,s,as) to
be defined. The denominator being zero means that the current belief states rule out
the observation ay as having zero probability.

At each step, P, switches to a different policy from the one they are currently
utilizing according to the Markov chain with transition probabilities given by T'. This
modifies a belief state b to a new one b’ =T"b, wherein 7% denotes the transpose of the
matrix T. Le, b, = Z;-l:lbjTji.OveralL given a sequence (t1,a1)(ta,a2) - (t,ax) of obser-
vations and starting from some initial belief state by, we define the sequence of belief
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State Belief

(0.25, 0.25, 0.25, 0.25)
(0.29, 0.17, 0.29, 0.25)
(0.29, 0.29, 0.17, 0.25)
(0.17, 0.29, 0.29, 0.25)
(0.25, 0.17, 0.32, 0.26)
( )
( )
( )

[=}

0.26, 0.32, 0.17, 0.25
0.31, 0.17, 0.26, 0.26
0.33, 0.25, 0.17, 0.25
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Fig. 3. Example ISM for the rock-paper-scissors game. Thick blue edges correspond to the
observation (0,p2), dashed edges (0,s2) and solid red edges (0,r2).

(t1,a1) (t2,a2) by (tk,ax)

states: by by by, such that b, 1 =T condition(b;,; 11,a;11),
for i€ [k—1]. Recall the total variation (tv) distance between two belief states b and
b’, denoted |[b—b/|[s, =D, [b; —b|.

We now discuss our model of history in terms of a finite state machine over the
states and alphabets of Py called the information state machine.

Definition 3 (Information State Machine). An information state machine (ISM)
is a deterministic finite state machine that consists of a finite set of states M, alphabet
Y =5x AP initial state myg, transition function 6 : M x X — M and a map that
associates state me M with a belief state b(m) with b(mg)=b,,.

Recall that 3* denotes a finite sequence of elements from Y. The transition function
can be extended to §: M x X* — M as?

d(m,{empty)) =m, and é(m,o0o(t,a))=3(d(m,0),(t,a)) for c€X* and (t,a)eX.

The definition requires the state-machine to be deterministic. However, we can
relax this requirement to make ¢ a partial function. We require that for any sequence
of observations o: (to,a0)-(t;,a1), if o can occur with non-zero probability (i.e, there
exist actions af,...,a, , € A, such that P(tj1ltj,a},a;) >0 for all j € [I-1]), then
(a unique state) d(mg,0) must exist.

Example 2. Figure 3 shows an example of an ISM for the rock-paper-scissors problem.
Since .S has just one state, we do not include the label of this state in our alphabet,
but simply label the edges with the actions of P,. The initial state is 0 and the
automaton is deterministic.

We now define the notion of consistency of an ISM. For any sequence of obser-
vations o : (tg,aq)-(tg,ax) that can occur with positive probability, and a belief
state b € B,,, let 7(b,o) denote the result of transforming b successively based on
the observations in o.

7(b,{empty)) =b, and 7(b,o0(t;,a;)) =T"condition(7(b,o),(t;,a;)).

! We write (empty) for an empty sequence and use o for sequence concatenation.
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Definition 4 (Consistent Information State Machine). An ISM M is A-
consistent for A>0 iff for every finite, positive probability sequence of Py state/action
observations o : (to,ag) - (tk,ax) such that myy1 = §(mo,0), then the belief state
b(my41) remains sufficiently close to T(by,,0), the belief state obtained from the full
history: |[b(mg41) —7(04,0)||t0 < A.

The concept of A-consistency implies that for any history of observations of Ps’s ac-
tions, the belief state associated with the information state m reached, remains within
total-variation distance A of the belief state obtained by remembering the entire history.

4.1 Consistency Checking

In this subsection, we describe how to check whether a given ISM M is consistent
for some limit A\ using the sufficient condition of edge consistency.

Definition 5 (Edge Consistency). An edge e:m->m’ of the automaton M (i.e,
m,m’ €M and §(m,0)=m') is consistent for limit A iff

VbeB,: Zbﬂrj(o)>0 A |b=b(m)|ltw <A | = ||7(b,0)=b(m/)||t <A (2)
j=1

Le, any belief state b that is within a total variation distance A of b(m) must, upon

updating with observation o, yield a belief state T(b,0) that is within A distance of
b(m/).

Notice that we require > 7, b;m;(0) = P(o[b) to be positive. Failing this condition, the
observation o would be zero probability under the belief state b and thus ruled out.

Theorem 1. If every edge in an ISM M is edge consistent for limit \ then the state
machine is \-consistent.

Proof is by induction on the size of the observation sequences, and is given in the
extended version of this paper [24]. We now provide an approach to check if a given
edge in an automaton e: m—»m/ is consistent for a limit A by checking a formula
in linear arithmetic. We will attempt to find a belief state b that refutes (2). Le,
b€ B, that satisfies conditions: (a) [[b—b(m)l[;, <A; (b) >27_;7m(0)b; >0 and (c)
[|7(b,0)—b(m/)]|t, > A. Note that b(m) and b(m’) are known belief-vectors while b is
the unknown vector we seek. We will construct a formula ¥, in linear arithmetic such
that edge e is consistent iff ¥, is unsatisfiable. The formula ¥, is encoded using variables
b:(b1,...,b,) representing the unknown belief state and extra variables x: (z1,...,2,,) and
Vi (Y1,-sYn). Let a; =7;(0) represents the probability of observation o under policy ;.
(1) Observation o occurs with non-zero probability:

Wo(e): zn:ajbj >0 A zn:bi:L
j=1 i=1
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(2) [[b—b(m)[|s < must hold.

Llfl(e): xiZO A /\—xlg(bz—b(m)z)gxz A szg)\
1

i=1 ~ i=1
=|bi—b(m);|<z;

3

%

(3) l|7(b,0) — b(m/)||t» > A. Recall that 7(b,0) = T* x (condition(b,0)) = T"* x
bhia bia
E}L=I1bljaj"“’zy=l1bljaj ’

n

[[7(b,0)=b(m )=

Jj=1

Do Tijeubs
doiaib

Let e; denote the expression > ;" Tyjoub; —(b(m'); 3 aib;). Since 377 by >0,
the condition ||7(b,0) —b(m/)||s > A is equivalent to

—b(m')j .

Uy(e):

<.
L=

n n
yi>0 A (yy=e;Vy;=—e;) A [ Dy >N asb
j=1 j=1
= yj=lej
Theorem 2. An edge e is consistent iff W(e): Yo(e) A Wi(e) A Ws(e) is infeasible.

Satisfiability Modulo Theory (SMT) solvers such as Z3 can be used to check
satisfiability [36]. Alternatively, linear complementarity problem (LCP) solvers [35]
be used: the disjunction y;=e; \Vy;=—e; is equivalent to a complementarity constraint
(yi—ei) L (yit+ei)

Example 3. We check the consistency of the automaton from Example 2 for A=0.25.
For the edge e: 426 in the automaton. The formula ¥ (e) is satisfiable with b=
(0.125,0.17,0.445,0.26): ||b—b(4)||t, =0.25, whereas ||7(b,0) —b(6)]]+, 220.337 >0.25.
The automaton in Figure 3 fails to be consistent.

5 Information State Machine Synthesis Algorithm

Algorithm 1 attempts to synthesize a consistent finite state machine for P, given
a concurrent game G: (S,AM A P R) policies IT: {ry,...,m,}, transition matrix
T and A>0 by exploring belief states starting from the initial belief state my. Line 2
restricts the alphabet to the set X’ that has non-zero probability under at least one
policy. The algorithm maintains a worklist W that is initialized to contain the initial
state mg at start. At each iteration, it pops a state from the worklist and adds it to
the automaton. Next, the algorithm iterates through all the observations o€ X" (line
number 7). After computing the next belief state b’ (line 9), it finds the closest state
to b’ in the total variation norm and checks that it is closer than the limit A (line 12).
If such a state 72 is found and the edge from m to 1 is consistent (line 13), then the
edge is added. Consistency is checked using a SMT or MILP solver as described in
Section 4. Otherwise, the algorithm has already checked consistency of the new state
and edge that it is about to create (line 10). This is an important operation since
a failure of consistency here can result in an overall failure to find a state machine.
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Algorithm 1: CONSTRUCTCONSISTENTINFORMATIONSTATEM ACHINE()

Data: G,II,T' A

Result: A finite state machine M.
1 mo < newState(by,) // create initial state
2 X' ={(s,a2) €Sx A® | (3w ) 7(s,a2) >0} // non-zero prob. observ.
3 (MW) <+ (0,[mo]) // initialize set of states and worklist
4 while W#0 do
5 m <— pop(W) // pop a state from the worklist
6 Add state m to M
7 for oc ¥’ // iterate through observations
8 do
9 b’ +7(b(m),0) // compute next belief state
10 if not isConsistent(b(m),0,b’) then FAIL // check consistency
11
12 m < findClosestState(b’,\) // search for nearby state
13 if M+ Nil A\ isConsistent(b(m),0,b(1h)) // existing state found
14 then
15 ‘ Add edge m 27 to M
16 else
17 m’ =newState(b’) // Create new state
18 Add edge mZm’ to M
19 push(m/,W) // push new state to worklist
20 return M

Theorem 3. Any automaton M returned by Algorithm 1 is A-consistent.
Proof. Every edge added to the automaton is consistent, by construction.

Figure 4 shows a consistent ISM with 11 states for the RPS example from Figure 1.
Note that Algorithm 1 is not guaranteed to terminate and return a finite ISM. In
section 7, we establish a simple condition on the transition matrix 7" for which the
algorithm terminates and yields a finite ISM.

6 Policy Synthesis

Given an ISM M, we will now describe the policy synthesis for P; and prove bounds on
the optimality of the policy thus obtained w.r.t discounted rewards. We first compose a
two player game graph G: (S,AM) A®) P, R) with the ISM M : (M,%",5) wherein X’ C
Sx A This MDP serves as a starting point for optimal policy synthesis. Next, for a
A—consistent information state machine, we show that this MDP is “close” to an infinite
state MDP obtained from unbounded histories. We invoke a result on approximate
information states (AIS) by Subramanian et al [45] to bound the difference between the
optimal value function obtained from finite state histories and that from full histories.

The MDP is given by (Sx M,A®") P R) with states (s,m) for s€S and me M.
Let b(m)=(by,...,b,). For a; € AY, the probability of transitioning to (s',m’) from



Anticipating Oblivious Opponents in Stochastic Games 11

State Belief

(0.25, 0.25, 0.25, 0.25 )
(0.13, 0.28, 0.33, 0.26 )
(0.23, 0.33, 0.14, 0.30 )
(0.13, 0.33, 0.24, 0.29 )
(0.21, 0.13, 0.39, 0.27 )
(0.13, 0.20, 0.42, 0.26 )
( )
( )
( )
( )
( )

o

0.30, 0.13, 0.26, 0.31
0.13, 0.21, 0.35, 0.31
0.30, 0.24, 0.14, 0.32
0.22, 0.13, 0.35, 0.30
0.28, 0.13, 0.33, 0.26

© 0~y O Uk Wi

— =
= o

Fig. 4. (Left) Consistent ISM for A=0.25 the RPS example from Figure 1 obtained by
running Algorithm 1. Thick blue edges correspond to the observation (0,p2), dashed edges
(0,s2) and solid red edges (0,r2); (Right) Beliefs associated with states.

(s,m) is given by

P((s'm)|(s;m).a1)= Y 1{6(m,(s,a2))—m’}(Zbiﬂ—i(san))P(5/|S,a,a2). 3)
—_—

(2) =1
az€A indicator function !

—P(az[b(m))

Note that 174 =1 if ¢ holds and 0 otherwise. The reward function is

E((57m)7a1): Z P(a2|b(m)) R(S7alva’2)' (4)
a2€A® see eq. (3) from G

The composition of a finite ISM with the game yields a finite-state MDP for
P;1 that can be solved to yield a policy for P;. However, since the ISM tracks the
belief state approximately, we cannot expect the resulting policy to be optimal when
compared to a situation wherein we track the precise belief state. We will bound the
loss in value resulting from the belief state approximation in an ISM.

We construct a belief state MDP using the “exact” history of observations up to
some time t. The “exact” MDP has as its states S x,, wherein each state is a pair
(5,b®) for s€ S and b =7(b,,0;) for observation sequence oy : (s1,a1),...,(s¢,az).
The expected reward obtained for action a € A" in current state s,41=s is given by

R*((va(t))aa): Z P(QQ‘b(t)) R(SvaﬂG'Q)' (5)

as€A?2)

We define the transition probability P* as

P((s/ b)) (5,69),0,111) =10 2 (o) (5,001 P (@41 D) P (S [5,0,041).
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Let m; = 8(mg,0:) be the unique information state from M. Since M is A-
consistent, we know that |[b(1m;)—b{")[|, <A. We establish bounds on the discrep-
ancies between the rewards obtained and the next state probabilities. Let us define

Rinax(8) =max, ¢ 40) g,e a@ | R(5,01,02)| and cumax(s) :ZQQGA@) max’_, 7;(s,a2).
Lemma 1. For any history o, |R*((s,b®),a)— R((s;m4),0)| < Rimaz ($)maz ().

Next, we prove that the next-state distributions P and P* are “close” in the total-
variation distance dy,(0¢,s,a) given by the formula:

~

> [P DD b)) P e (sme) o)
ai41€EAR)S'ES

Lemma 2. For any history oy and action a€ AW | dy,(04,5,0) < amax ().

For some discount factor v, let V* be the optimal value for the (infinite state) “exact”
MDP with state-space S x By, actions A%, transition relation P* and expected
reward R*. Let V be the optimal value function for the MDP with state space S x M,
transition map P and reward R.

Theorem 4. There exists K such that for each history o leading to belief b, ISM
state my and for every game state s, we have |V*(s,b®) =V (s;m;)| < K.

This follows from Theorem 27 of Subramanian et al [45] where the constant K equals
|Rmax(s) |amax(8) +’7p
I—y
conclude that a A—consistent information state machine can be used in lieu of an

exact belief state with a loss in value proportional to .

, where p is the “Lipschitz constant” for the function V. We

7 Completeness and Robustness

In this section, we first provide a sufficient condition on the transition matrix T’
that governs how P, switches between policies so that Algorithm 1 is guaranteed to
terminate successfully and yield a finite ISM. Let t* be such that for all 4,5 € [n], T;; > t*.
Le, t* is the smallest entry in the matrix 7. We assume that ¢* >0: i.e, the transition
matrix T is strictly positive. Note that the entries for each row of 7" sum up to 1.
Therefore, t* < % Let b=7(bg,0) be the exact belief state obtained starting from the
uniform initial belief state by and a sequence of non-zero probability observations o.

Lemma 3. Fach entry of b satisfies b; >t*.

Proof. Proof is by induction on the length of the sequence o. The base case holds
for b=by since by ; =1 >t*. Let b=7(bg,0) for |o|=n. Let 0 be an observation
such that b’ =7(b,0). By induction hypothesis, b; > t*. We have b’ = T'b where
b = condition(b,0) is a belief vector. v =S Tybi >t b >t

n

For observation o, let a; =7;(0), Qtmax(0) =max]_;a; and asum(0) = E?Zlozj.

Qmax (0
We define x(0)= WM Let Kmax =MaxX, ¢y 4 K(0).
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Theorem 5. If t* > Kmax, then for any parameter A >0, Algorithm 1 terminates
successfully to yield a finite state consistent ISM.

We first provide a sketch of the proof. (a) We first establish that the function b 7(b,0)
is contractive in the total variation norm whenever t* > k(o). Therefore, the consistency
check in line 10 will always succeed, or equivalently, Algorithm 1 will not return FAIL.
It remains to show that the Algorithm will terminate. (b) Next, we show that whenever
the call to findClosestState(b’,A) in line 12 yields a state /2 such that b(rn) is within
distance (1—#kmax ) of b/, then the edge m 2 77 will be consistent. Therefore, we show
that for any new state created by Algorithm 1 line 17, the total variation distance from
any previously created state is at least (1—fmax)A. (¢) The number of states in the
ISM is therefore bounded by the packing number of the compact set B,, with L; norm
balls of radius (1—Kmax)A [34]. The full proof is provided in the extended version.

Ezample 4. For all observations o in the RPS example from Figure 1, cax(0)=0.5,
sum(0)= 3. We have Kyax=Fr(0)= % = 2-=0.15. Using Theorem 5, for any
matrix T all of whose entries exceed 0.15, we are guaranteed a finite state ISM for
any A>0. Interestingly, the matrix in Figure 1 does not satisfy this condition and

nevertheless yields finite ISM for A=0.25 (Figure 4).

Robustness: Suppose we designed an ISM M that is consistent for A >0 assuming
matrix T'=Tp, whereas in reality P, switches policies according to T'=T 4, wherein
Ta#Tp. We will prove that the ISM M which is consistent for T'=Tp and A>0 will
remain consistent for T=T, for a different value A=X\. Let ty=min; je(nTp,i,; and
t; =min; jepnTa,i,; be the minimum entries in the matrices Tp and T4 respectively.
Let us define the function

1—- th %)) Omax
L(TA,TD,Q,H)ZHI&X( n.max( a’ d))a a (O)
00 min(t;,th)sum(0)

Theorem 6. Ift} >0, t;>0 and L(T4,Tp,G,IT) <1 then the ISM M is consistent
under the matriz Tp with the consistency parameter A= %

Here ||T||; refers to the induced 1—norm of matrix T [48]. Proof is provided in
the extended version.

8 Experimental Evaluation

We present an experimental evaluation based on an implementation of the ideas men-
tioned thus far. Our implementation uses the Python programming language and in-
puts a user-defined game structure, n policies for player Ps, values for parameters A > 0.
For each case, the policy design Markov chain whose transition system is given by T'(e),
such that T'(¢); , =e and T'(€); ; = i:i when i=£j. In other words, player Ps plays the
same policy as previous step with probability € and switches to a different policy uni-
formly with probability (1—e)/(n—1). Our implementation uses the Gurobi optimiza-
tion solver [18] to implement the consistency checks described in Section 4 and uses it to

implement the consistent information state machine synthesis as described in Section 5.
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Benchmark Size A=0.1 A=0.05

€ |M| Tag IMDP| Tpr € |M| Tug IMDP| Tpr

RPS (1,3,3,4) ||05 6 034 6 <001/05 10 04 10 <0.01
04 20 092 20 <0.01{j]04 29 1.1 29 <0.01
0.3 80 4.6 80 0.01 ||0.3 115 49 115  0.02

02 x 002 -Alg. 1Fail-||0.2 x 04 -Alg. 1Fail-

RPS-MEM | (9,3,3,9) ||0.6 77 28.7 244 0.1 ||0.6 176 55 526 0.1
0.55 228 117 688 1.3 [|0.55 448 215 1342 0.34
0.5 834 743 2500 4.6 |/ 0.5 1516 1101 4546 1.8
045 x 14.2 - Alg. 1 Fail - |0.45 - Timeout > 1hr-

ANT.-AVD. |(625, 3, 3, 4)[|0.55 7 1.5 1701 1.8 ||0.55 17 2.6 3526 4.2
05 43 12 2726 32 [|0.5 28 6.9 5226 129
045 88 26 4926 11.5 ||0.45 61 14.5 8326 19.5
0.4 19.7 66 10042 26.5 ||0.4 137 34.6 16882 50.5
0.3568.5 194 24592 84 |0.35 366 77.6 37770 112.1
03 x 4 -Alg 1Fail-|0.3 1289 305.4 126395 431.1

Table 1. Performance results of our approach on various benchmarks and different values
of the parameters \,e. “Size” is a four-tuple consisting of (|S|,| AN |,|A@|,|[IT|), Tuig1 is time
taken (seconds) to run Algorithm 1 and Tp; is time taken (seconds) for policy iteration to
converge (discount factor y=0.95). Experiments were run on Linux server with four 2.4
GHz Intel Xeon CPUs and 64GB RAM.

Performance Fvaluation on Benchmark Problems. We consider benchmarks for eval-
uating our approaches in terms of the ability to construct finite information state
machines, the sizes of these machines and the performance of the resulting policies
synthesized by our approach.
1. rPS: The rock-paper-scissors game and P5 policies as described in Example 1.
2. RPS-MEM: The rock-paper-scissors game but with “memory” of the previous move
by each player. This game has 9 states that remember the previous move of each
player, and the policies for P, model behaviors such as “play action now that
would have beaten P; in the previous turn” or “repeat the previous action of P;”.
3. ANTICIPATE-N-AvVOID(N) consists of a circular corridor with N rooms numbered

1,...,N with four designated rooms marked as meeting zones. Py chooses one of

four policies that navigate them to one of the meeting rooms whereas the rewards

for P, are negative if they happen to be in the same cell as P5 or in an adjacent
cell while the rewards are positive if they happen to be farther away. The game
has N2 states for N rooms.

The game structures and the policies for P, are given in the appendix.

Table 1 shows the performance over these benchmarks. We have four benchmarks
as described briefly above and in detail in the Appendices A, and B. For these
benchmarks the number of states ranges from 1 for the rock-paper-scissors game to
2080 states for the ANTICIPATE-ACTION game. Similarly, the number of actions of
each player and the number of policies employed by Ps are reported. For each game,
we choose various values of (\,T'(€)) and report the overall performance in terms of
number of states of the information state machine, the time taken to construct it, the
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Ikea-Shelf-Drawer (|G|=18,|II|=7) || Ikea-TV-Bench (|G|=18,|II|=13)
(Ae) |IM| Tm |ravg apayg (Ae) |IM] Tum |ravg apavg
(0.01, 0.5)| 344 97.7 ]0.137 0.407 ||(0.01, 0.5)| 846 245.5 [0.203 0.389
(0.01, 0.6)| 917 291 |0.137 0.418 ||(0.01, 0.6)|2852 1006 | 0.21 0.404
(0.01, 0.7)|3547 1324.5[0.137 0.43 {|(0.01, 0.7)| - timeout >3600s
(0.02, 0.5)| 189 65.4 |0.137 0.407 ||(0.02, 0.5)| 425 142.8 |0.198 0.389
(0.02, 0.6)| 472 168.5]0.137 0.418 ||(0.02, 0.6)|1263 486.32| 0.21 0.404
(0.02, 0.7)|1566 615.2 |0.137 0.43 |[(0.02, 0.7) - Algo. 1 fail -
Ikea-Coffee-Table (|G| =15,|II|=12)||Cataract-Surgery (|G|=36,/1I|=14)

(Ae) |IM| Tu |ravg APavg (Ae) |IM| Tu |ravg APavg
(0.01, 0.5)| 521 150 |0.181 0.408 {|(0.01, 0.4)| 399 236.8 |0.287 0.512
(0.01, 0.6)|1441 494 ]0.181 0.420 ||(0.01, 0.5)|1360 846.7 |0.287 0.518
(0.01, 0.7)| - timeout >3600s (0.01, 0.6)| - timeout >3600s
(0.02, 0.5)| 279 115 | 0.18 0.409 [|(0.02, 0.4)| 207 138 |0.287 0.512
(0.02, 0.6)| 705 292 ]0.178 0.420 ||(0.02, 0.5)| 626 371 |0.287 0.518
(0.02, 0.7) - Algo. 1 fail - (0.02, 0.6)|2404 1642 |0.287 0.525

Table 2. Performance data on tool prediction problem for various task sequences. |G|
denotes size of automaton , |II]: number of policies for Pz, |M]: ISM size, Ths: time taken
by Algo. 1, ravg: average reward per move, apayg : average probability of P2’s action at
each step using ISM belief state.

size of the MDP and the time taken to compute an optimal policy using policy iteration.
Since the transition matrix T=T/e), we note that min(T} ;)= —<; provided e< %=1,
We ran two series of experiments for each benchmark by fixing A and decreasing e for
the matrix T'(e) until Algorithm 1 reports a failure or times out after one hour. The first
observation is that our approach works for values of t* = —5 that are smaller than the
limit suggested by Theorem 5. At the same time, we note that as e decreases, the size
of the automaton M and the corresponding size of the MDP obtained by composing
the automaton with the game all increase, as does the time taken to construct. Also,
if Algorithm 1 fails, it happens very quickly, allowing us to increase € until we succeed.

Next Tool Usage Prediction. We study the performance of our approach on two
datasets involving human task performance: (a) the IKEA ASM dataset that consists
of 371 individual furniture assemblies of four distinct furniture models, wherein the
actions performed by the human assembler are labeled using a neural network (CNN)
to yield sequences of actions performed by the human [5]; and (b) the CATARACTS
dataset consisting of 25 cataract surgery videos, wherein a CNN is used to identify
the sequence of tools employed by the surgeon [1].

We first used automata learning tool flexfringe to construct a DFA model from
a training set consisting of 75% of the sequences in each dataset [47]. Flexfringe
successfully constructed a DFA that includes the sequences of actions/tools used (Cf.
Appendix C ). The game graph G consists of the automata states and edges. The
transitions between states are governed by the actions of P5. The actions of P; are
the same as that of P: A =A®), The goal of P; is to predict the next action/tool
usage by P2 based on knowledge of the current state. The reward R(s,a1,a2)=1 if
a; =ay (i.e, Py’s action matches that of P2) and R(s,a1,a2) =—1 otherwise. The
policies of Ps are also constructed from the training data as well. For each sequence o
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in the training data we collect the set of edges (states and actions) in the automaton
that are traversed by o. Each such edge set describes a policy m wherein the player
upon reaching a state chooses the action on one of the outgoing edges from the set
uniformly at random, or alternatively, if no outgoing edge from the set is present,
the player chooses any action uniformly at random. Note that multiple sequences
from the training data map can onto the same policy.

Once the game and the policy are constructed from the training data, we use
Algorithm 1 to construct an ISM given T'=T'(¢) and A. This is used to construct an
MDP, and thus, a policy m; for P;. The policy is tested by using the held out test
sequences consisting of the 25% of the sequences not used in learning the task model
or the policies. Using each sequence as the set of actions chosen by the oblivious P,
we measure the average reward for each episode and the average action prediction
score for P, for various values of € and \.

Table 2 shows the size of the ISM, running time of Algo. 1 and the performance of
the policy for P; on the held out test sequences. First, we note that the performance
in terms of running time and size of the ISM shows trends that are similar to the
previous benchmarks reported in Table 1. In terms of the held out sequences, we
note that our approach is successful in terms of predicting the actions of P,. Given
that the cataract data has 41 actions and Ikea dataset has 32 actions, our approach
performs much better than a random guess. At the same time, the action probability
score (the average probability ascribed by the ISM belief’s state to Ps action in the
current move) is also high given the large space of possible actions. Interestingly,
however, we note that changing A,e has an enormous impact on the running time and
size of the ISM but very little impact on the performance on the unseen test sequence.
The average probability score shows a small variations across different values of A,e.
We believe that this is a function of the rather small values of A used since it assures
us that the ISM tracks the belief state very precisely.

9 Conclusion

We study concurrent stochastic games against oblivious opponents where the oppo-
nent (environment) is not necessarily defined as adversarial or cooperative, but rather
oblivious that is bounded to choose from a finite set of policies. We introduce the
notion of information state machine (ISM) whose states are mapped to a belief state
on the environment policy, and provide the guarantee that the belief states tracked
by this automaton stay within a fixed distance of the precise belief state obtained
by tracking the entire history for the environment. An interesting direction for future
work would be to better characterize the relationship between the various parameters
involved in Algorithm 1, providing a more precise condition for its termination.
Moreover, exploring the applicability of these ideas in the broader context of partially
observable Markov decision processes could further extend their practical utility.
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