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ABSTRACT

With the proliferation of mobile sensing techniques, huge amounts

of time series data are generated and accumulated in various do-

mains, fueling plenty of real-world applications. In this setting, time

series anomaly detection is practically important. It endeavors to

identify deviant samples from the normal sample distribution in

time series. Existing approaches generally assume that all the time

series is available at a central location. However, we are witnessing

the decentralized collection of time series due to the deployment of

various edge devices. To bridge the gap between the decentralized

time series data and the centralized anomaly detection algorithms,

we propose a Parameter-e�cient Federated Anomaly Detection

framework named PeFAD with the increasing privacy concerns.

PeFAD for the �rst time employs the pre-trained language model

(PLM) as the body of the client’s local model, which can bene�t from

its cross-modality knowledge transfer capability. To reduce the com-

munication overhead and local model adaptation cost, we propose

a parameter-e�cient federated training module such that clients

only need to �ne-tune small-scale parameters and transmit them to

the server for update. PeFAD utilizes a novel anomaly-driven mask

selection strategy to mitigate the impact of neglected anomalies

during training. A knowledge distillation operation on a synthetic

privacy-preserving dataset that is shared by all the clients is also

proposed to address the data heterogeneity issue across clients. We

conduct extensive evaluations on four real datasets, where PeFAD

outperforms existing state-of-the-art baselines by up to 28.74%.

CCS CONCEPTS

• Information systems→ Data mining; • Computing method-

ologies → Distributed algorithms; Anomaly detection.
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Figure 1: Illustration of decentralized time series anomaly detection.

"Red circles" denote anomaly points or anomalous patterns. In each

scenario, data sharing between institutions is not allowed, and col-

laborative training is facilitated through server coordination.
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1 INTRODUCTION

With the increase of various sensors and mobile devices, massive

volumes of time series data are being collected in a decentralized

fashion, enabling various time series applications [18, 19, 31, 34],

such as fault diagnosis [7] and fraud detection [2]. A fundamental

aspect of these applications is time series anomaly detection [38], as

illustrated in Figure 1, which aims to �nd unusual observations or

trends in a time series that may indicate errors, or other abnormal

situations requiring further investigations.

Due to its signi�cance, substantial research has been devoted to

inventing e�ective time series anomaly detection models [2, 38],
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including approaches based on traditional statistics [11, 29] and

neural networks [38]. Due to the di�culty in annotating anomalies,

unsupervised methods become mainstream approaches, which can

primarily be categorized into reconstruction-based [38, 45] and

prediction-based [33, 42] approaches. The former identi�es anom-

alies based on the reconstruction errors while the latter identi�es

anomalies based on the prediction errors. In real-world scenarios,

time series data is often generated by edge devices (e.g., sensors)

that are distributed at di�erent locations. However, most existing

time series anomaly detection models generally require centralized

training data, making them less e�ective in the decentralized sce-

narios. Due to the increasing concern on privacy protection, the

data providers may not be willing to disclose their data. For instance,

the credit agency Equifax experienced a data breach [46] that ex-

posed social security numbers and other sensitive data, signi�cantly

impacting individuals’ �nancial security. Therefore, decentralized

time series anomaly detection has become a critical issue to enable

privacy protection [16] and ensure data access restrictions [17].

Recently, Federated Learning (FL) has provided a solution for

training a model with decentralized data distributed on multiple

clients [16, 39]. FL is a machine learning setting where many clients

collaboratively train a model under the orchestration of a central

server while keeping data decentralized. In this study, we aim to

develop a novel FL framework for unsupervised time series anom-

aly detection for bridging the gap between the decentralized data

processing and the unsupervised time series anomaly detection.

However, developing a federated learning-based time series

anomaly detection model is non-trivial due to the following three

challenges. First, it is challenging to deal with the data scarcity issue

in the context of federated learning. Due to the limitation of data

collection mechanisms (e.g., low sampling rates) and data privacy

concerns, client-side local data can be very sparse, especially for

the minority anomalous data. The performance of existing methods

that rely on su�cient training data may degrade remarkably in the

scenario of decentralized training data. Second, existing unsuper-

vised methods [38, 45] often overlook the presence of anomalies

during training. This may signi�cantly disrupt the training process

of both prediction and reconstruction-based methods, a�ecting

their ability to accurately identify the anomalies [37]. For instance,

in reconstruction-based methods, if the masked time series frag-

ments do not cover anomalous time points in training, the learned

time series reconstruction model will be less sensitive to the anom-

alies [35]. Third, it is also di�cult to obtain a global model that

generalizes well across all clients due to the heterogeneity of the

local data. The time series that are collected across di�erent edge de-

vices are typically heterogeneous and non-identical distributed [41].

It is non-trivial for a FL model to achieve an optimal global model

by simply aggregating local models due to the distribution drift

across di�erent local time series datasets.

To address the above challenges, this paper proposes a Parameter-

e�cient Federated time series AnomalyDetection framework named

PeFAD. PeFAD adopts a horizontal federated learning schema,

where many clients collaboratively train a global model by using

the local training data under the orchestration of a central server.

PeFAD contains two major modules: the PLM-based local training

module and the parameter-e�cient federated training module. The

PLM-based local training module employs the pre-trained language

model (PLM) for each client, which features an anomaly-driven

mask selection strategy and a privacy-preserving shared dataset

synthesis mechanism. We adopt the PLM as the body of the local

model of clients because its cross-modality knowledge transfer

capability [9, 14, 45] can e�ectively address the challenge of data

scarcity. Speci�cally, we aim to leverage the generic knowledge and

the contextual understanding capability of PLM to help discern the

time series patterns and anomalies. To reduce the computation and

communication overhead of PLM, we propose a parameter-e�cient

federated training module. The clients only need to �ne-tune small-

scale parameters and then transfer them to the server. In order

to mitigate the impact of anomalies during training, we propose

a novel anomaly-driven mask selection strategy to �rst identify

anomalies during training, and then assign them larger weights to

be selected for masking. To alleviate the data heterogeneity across

clients, we propose a privacy-preserving shared dataset synthesis

mechanism. To be speci�c, each client �rst utilizes a variational

autoencoder to synthesize privacy-preserving time series, and the

synthesized data are pooled together to form a dataset shared by all

clients. Then knowledge distillation is performed between local and

global models with the shared dataset to achieve a more consistent

model update between the clients.

Our primary contributions are summarized as follows.

• To the best of our knowledge, this is the �rst PLM-based

federated framework for unsupervised time series anomaly

detection. To reduce the computation and communication

costs, we propose a parameter-e�cient federated training

module.

• To alleviate the impact of anomalies during training, an

anomaly-driven mask selection strategy is proposed, which

enhances the model’s adaptability towards change points,

thereby improving the robustness of anomaly detection.

• To deal with the data heterogeneity across clients, a novel

privacy-preserving shared dataset synthesis mechanism and

a knowledge distillation method are both proposed to ensure

a more consistent model updating between clients.

• We conduct extensive evaluations on four popular time series

datasets. The result demonstrates that the proposed PeFAD

signi�cantly outperforms existing SOTA baselines in both

centralized and federated settings.

The remainder of this paper is organized as follows. Section 2

reviews related work and analyzes the limitations of existing work.

Section 3 introduces preliminary concepts and the federated time

series anomaly detection problem. We then present our solutions

in Section 4, followed by the experimental evaluation in Section 5.

Section 6 discuss the results to the motivation of the paper, and

Section 7 concludes the paper.

2 RELATEDWORK

2.1 Time Series Anomaly Detection

Time series anomaly detection aims to identify unusual patterns

or outliers within time series, which plays a crucial role in various

real-world applications [26, 38]. Traditionally, time series anom-

aly detection methods are mostly based on conventional machine

learning models such as support vector machine (SVM) [26] and

isolation forest [11]. The major limitation of the above methods is
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that the complex temporal correlations of time series are hard to be

captured due to their limited learning capability. Recently, with the

advances in deep learning techniques, deep neural network models

have been widely used for time series anomaly detection, which can

be categorized into supervised and unsupervised methods. Super-

vised methods [21] are trained on labeled data to identify deviations

from normal patterns in time series. Unsupervised methods [38, 45]

often calculate an anomaly score to measure the di�erence between

the original time series and the reconstructed or predicted time

series. The unsupervised methods can learn the intrinsic structure

and patterns of time series beyond the labels. Nevertheless, existing

time series anomaly detection methods are mostly trained with

centralized data and are computational heavily, limiting their usage

on resource-constrained edge devices.

2.2 Federated Learning

Federated learning (FL) is a machine learning approach in which

many clients (commonly referred to as edge devices) collaboratively

train a model using decentralized data [5, 12, 13, 16, 24]. Typically,

FL can be categorized into horizontal federated learning, vertical

federated learning, and federated transfer learning based on the

overlap of data features and sample space among clients [16]. Hori-

zontal FL [5] is de�ned as the casewhere datasets on di�erent clients

share the same feature space but have di�erent sample space, while

vertical FL [12] is the opposite case. In federated transfer learn-

ing [24], the sample space and feature space between cross-client

data are virtually non-overlapping. In this study, we consider time

series anomaly detection based on horizontal FL.

Recently, FL has been applied to time series with the concern of

privacy protection, such as time series forecasting [17] and anom-

aly detection [10]. However, existing research lacks an in-depth

exploration on how to use pre-trained language models for time

series anomaly detection in a federated setting, leaving a signi�cant

gap in the existing literature. This gap can be attributed to the in-

herent complexities associated with reconciling domain di�erences

and task variations within the context of federated learning when

applying pre-trained language models.

3 PROBLEM DEFINITION

We �rst present the necessary preliminaries and then de�ne the

problem addressed. To make notations consistent, we use bold

letters to denote matrices and vectors.

De�nition 3.1 (Time Series). A time series Đ = ïĪ1, Ī2, · · · , Īģð is

a time ordered sequence ofģ observations, where each observation

Īğ ∈ R
Ā is a Ā-dimensional vector. If Ā = 1, Đ is univariate, and if

Ā > 1, Đ is multivariate.

Federated Time Series Anomaly Detection. Given a server

S and N clients (e.g., sensors) with their local time series datasets

D = {T1,T2, · · · ,TN}, each dataset Tğ is a set of time series, i.e.,

Tğ =
{

Đ ğ1 ,Đ
ğ
2 , · · · ,Đ

ğ
Ĥ

}

.We aim to learn a shared global functionF (Ă )

that can detect anomalies in time series across di�erent clients. The

optimal global model parameters Ă∗ĝ is obtained as follows:

Ă∗ĝ = argmin
Ăĝ

∑

ğ∈C

|Tğ |
∑

Ġ∈C |TĠ |
ETğ [L(Ăĝ ;Tğ )], (1)

whereL(Ăĝ ;Tğ ) denotes the loss function for client ğ , and Ăĝ denotes

parameters of the global model. C denotes the set of clients.

In client ğ , given a time series Đ ğ = ïĪğ1, Ī
ğ
2, · · · , Ī

ğ
ģð, we aim at

computing an outlier score ċď (ĪğĠ ) for each time point Ġ . A higher

ċď (ĪğĠ ) means it is more likely that ĪğĠ is an outlier. The outlier score

can be formulated as follows:

ċď (ĪğĠ ) = |ĪğĠ − Ī̂ğĠ |; ĩ .Ī .Ī̂
ğ
Ġ = F (Ă∗ĝ , Ī

ğ
Ġ ), (2)

where Ī̂ğĠ is the reconstructed value of Ī
ğ
Ġ . We consider the top Ĩ% of

ċď (ĪğĠ ) as anomalies, where Ĩ is a threshold.

4 METHODOLOGY

Figure 2 shows the framework overview of the proposed PeFAD. As

shown in the �gure, PeFAD consists of two major modules: PLM-

based local training (right part of the �gure) and parameter-e�cient

federated training (left part of the �gure). Speci�cally, in PLM-based

local training module, the client �rst uses a patching mechanism

and the anomaly-driven mask selection strategy (ADMS) to prepro-

cess the local time series, such that the model can better understand

the complex patterns of time series. Then the preprocessed data is

input into the PLM-based local model for training. Speci�cally, the

preprocessed data undergoes embedding layer, the stacked PLM

blocks, and the output projection layers to �nally output the re-

constructed time series. Based on the reconstructed data, the client

identi�es the anomalous points by calculating the reconstruction

error. Furthermore, a privacy-preserving shared dataset synthe-

sis mechanism (PPDS, lower right part of the �gure) is utilized

to alleviate data heterogeneity across clients through knowledge

distillation. To reduce computation and communication cost, we

also propose a parameter-e�cient federated training module. Next,

we will provide the technical details of each module, respectively.

4.1 PLM-based Local Training

To better capture local temporal information, the client divides the

local time series into non-overlapping patches [20]. Speci�cally,

we aggregate adjacent time steps to create patch-based time series.

This application of patching allows for a substantial extension of

the input historical time horizon while keeping the token length

consistent and minimizing information redundancy for transformer

models. Then, we select a certain proportion of these patches for

masking using an anomaly-driven mask selection strategy.

4.1.1 Anomaly-Driven Mask Selection. Existing reconstruc-

tion based methods [32, 38, 45] generally neglect the anomalies

in the training data, which may disrupt mask reconstruction. For

instance, if normal points are masked while anomalous points are

utilized as observations to reconstruct the masked time series frag-

ments, it may result in large reconstruction errors [37]. To address

this issue, we propose the anomaly-driven mask selection strategy

to �rst identify the anomalies, and then assign them larger weights

to be chosen for masking. The module combines the analysis on

intra- and inter-patch variability to calculate the anomaly score of

patches, capturing both patch-speci�c deviations and the contextual

evolution of patterns over time.
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Figure 2: PeFAD framework overview. PeFAD consists of PLM-based local training and parameter-e�cient federated training.

Intra-patch Decomposition. To capture the intrinsic charac-

teristics of the ğ-th patch (denoted as Čğ ), we utilize time series de-

composition technique [6]. Speci�cally, we decompose each patch

intoĉ components, as formulated in Eq. (3), and extract residual

components to calculate the intra-anomaly score of patches.

Čğ =

ĉ
∑

Ġ=1

ė ĠĝĠ + ÿ, ĩ .Ī . ė Ġ g 0, ∀Ġ,

ĉ
∑

Ġ=1

ė Ġ = 1, (3)

where ĝĠ denotes the Ġ-th component, ė Ġ is the coe�cient for Ġ-th

component, and ÿ denotes the noise term.

Speci�cally, we use Singular Spectrum Analysis (SSA) [6] to

decompose patches. In SSA, patch Čğ is �rst transformed into a

Hankel matrix Pğ through embedding, and then Singular Value

Decomposition (SVD) is applied to the matrix, decomposing Pğ

into the product of three matrices: Pğ = đ�ĒĐ , where đ and Ē

denote the left and right singular vector matrices, respectively, and

� denotes the diagonal matrix of singular values. Then, the original

patch is reconstructed by

Pğ =

ć
∑

ġ=1

ÿġīġĬ
Đ
ġ
=

ć
∑

ġ=1

Pğ,ġ , (4)

where ć denotes number of non-zero eigenvalues of Pğ . ÿġ is the

ġ-th singular value, īġ is the ġ-th left singular vector, and Ĭġ is the

ġ-th right singular vector.

Matrix Pğ constitutes the main structure of the original patches.

For instance, the trend, seasonal, and residual components corre-

spond to the low, mid, and high frequency components of matrix

Pğ . We can obtain these components by �ltering. Residuals often

contain anomalies in the time series [25]. Therefore, we extract the

residual component after decomposition, and calculate the mean of

the residual components as the residual value Rğ , as formulated in

Eq. (5). A higher residual value indicates a larger likelihood to be

an anomaly. We then normalize Rğ to calculate the anomaly score

R
′

ğ for the ğ-th patch.

Rğ =ģěėĤ(
∑

ġ∈ćĊ

Pğ,ġ ) =ģěėĤ(
∑

ġ∈ćĊ

ĂġīġĬ
Đ
ġ
), (5)

where subscript ġ denotes the ġ-th value of the matrix, and ćĊ de-

notes the set of singular values associated with residual components

obtained by �ltering.

Inter-patch Similarity Assessment. The inter-patch similarity

assessment provides insights into the dynamic evolution of patterns

patches. Assuming Ağ is the vector of patch ğ , we calculate the

cosine similarity between the ğ-th and (ğ-1)-th patches.

Cğ =
Ağ · Ağ−1

∥Ağ ∥ · ∥Ağ−1∥
. (6)

The cosine similarity ranges from -1 to 1, and a larger value

indicates a higher similarity between patches. Patches with lower

similarity to the previous patches are more likely to be anomalous,

so we alter the monotonicity and normalize ÿğ to calculate the

anomaly score ÿ
′

ğ for the ğ-th patch.

Anomaly Score of Patches.We synthesize the intra-patch time

series decomposition and the inter-patch similarity assessment to

obtain a �nal anomaly score for patch ğ as follows:

ďęĥĨěğ = ÿ ∗ R
′

ğ + (1 − ÿ) ∗ C
′

ğ . (7)

The patches whose anomaly scores surpass a prede�ned thresh-

old are considered as anomalies and are assigned larger weights

to be chosen for masking. Since the masked patches are more em-

phasized by the model, the anomaly-driven mask selection strategy

can enhances the model’s adaptability towards change points, thus

improving the robustness of anomaly detection.

4.1.2 Privacy-Preserving Shared Dataset Synthesis. In fed-

erated learning, clients may have di�erent data distributions and

features, posing a data heterogeneity challenge that makes the gen-

eralization of the aggregated model di�cult. To address this issue,

we propose a privacy-preserving shared dataset synthesis scheme

coupled with knowledge distillation.
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Privacy-Preserving Shared Dataset Synthesis. Recent works

have demonstrated that reducing mutual information can facilitate

privacy protection in dataset generating [40]. Inspired by this idea,

we employ a constrained mutual information approach to obtain

synthetic data for preserving the privacy of local data. Speci�cally,

Client 8 trains a variational autoencoder (VAE) model to synthesize

time series Tĩ,8 from the local time series T8 . The mutual information

� (T8 ;TB,8 ) measures the extent to which TB,8 reveals T8 . Through

constraining � (T8 ;TB,8 ), the likelihood of inferring T8 from TB,8 has

been reduced, thereby better protecting data privacy and facilitating

the synthesis of privacy-preserving time series.

� (T8 ;TB,8 ) =
∑

G∈Tğ

∑

~∈Tĩ,ğ

? (G,~) log

(

? (G,~)

? (G)? (~)

)

, (8)

where ? (G,~) denotes the joint probability distribution, with ? (G)

and ? (~) as the marginal probabilities of G and ~, respectively.

In order to ensure the validity of the synthesized time series, we

introduce a constraint to maintain the distribution similarity be-

tween the synthesized and the original time series. We use Wasser-

stein distance to quantify this distribution similarity [23]. A smaller

Wasserstein distance indicates a lower cost of transforming from

one distribution to another, implying that the two distributions are

more similar. Given two time series - = ïx1, x2, . . . , x<ð and . =

ï~1,~2, . . . ,~=ð, and their cumulative distribution functions �- and

�. , the Wasserstein distance can be obtained as follows,

�- (G) =
1

<

<
∑

8=1

1{xğfG } , �. (~) =
1

=

=
∑

9=1

1{~Ġ f~} ,

, (-,. ) = inf
W ∈� (�Ĕ ,�ĕ )

∫ ∞

−∞
|�- (G) − �. (~) | 3W (G,~),

(9)

where W denotes the joint distributions between �- and �. , and

�(�- , �. ) denotes the set of all joint distributions with the marginal

distributions �- and �. .

We use VAE to synthesize time series, which consists of an en-

coder and a decoder. The encoder �rst encodes the input time series

as a feature representation, and the decoder then attempts to gen-

erate a synthesized time series based on the representation. The

raw data privacy and the synthesized data validity are guaranteed

by constraining mutual information and Wasserstein distance, re-

spectively. The loss function for VAE is given by

min
Tĩ,ğ
LE04 + U1 ·, (T8 ,TB,8 ) + U2 · � (T8 ;TB,8 ),

LE04 = −E@ (z |x ) [log? (x |z)] +  ![@(z |x) | | ? (z)],
(10)

where LE04 denotes the base loss function of VAE. x and z denote

the input and latent vectors, respectively. @(z |x) and ? (x |z) denote

the output distributions of the encoder and decoder, respectively.

 !(·) denotes the Kullback-Leibler divergence [30], which can be

calculated as follows:

 ! (@(z |x) | | ? (z)) =
1

2

∑

8

(

f28 + `
2
8 − log(f

2
8 ) − 1

)

, (11)

where both @(z |x) and ? (z) are assumed to follow multivariate

Gaussian distributions. `8 and f8 are the mean and standard devia-

tion of the Gaussian distribution.

Then, the server integrates the synthesized time series from

clients to form a shared datasetDBℎ . Note that time series synthesis

is a one-time o�ine process before local training.

DBℎ =

⋃

8∈C

TB,8 = ïTB,1,TB,2, ...,TB,Nð. (12)

Knowledge Distillation. We further perform knowledge distil-

lation from the global model to the client models using the shared

dataset to reduce the data heterogeneity across clients. Speci�cally,

we �rst obtain the learned representations of the local and global

models on the shared dataset separately, and then calculate the

di�erence between the two representations. We use the consistency

loss to measure this di�erence. Through reducing this discrepancy,

the model can achieve more consistent client updates, thereby im-

proving the performance and stability of the aggregated global

model. The consistency loss is introduced as a regularization term

to the local loss function as follows,

L(\8 ;T8 ) =
1

=

=
∑

9=1

|)̂ 89 −)
8
9 |
2

︸              ︷︷              ︸

Reconstruction Loss

+ _ · ∥F (\8 ,DBℎ) − F (\6,DBℎ)∥
︸                               ︷︷                               ︸

Consistency Loss

,

(13)

where )̂ 89 and )
8
9 denote the reconstructed and real values of 9-th

time series of client 8 , respectively. \8 and \6 represent the parame-

ters of the 8-th local and global model, respectively. _ is a parameter

to trade o� the two loss terms.

4.2 Parameter-E�cient Federated Training

As a horizontal FL framework, PeFAD comprises a central server

and several clients. The local model of each client consists of an

input embedding layer, the stacked pre-trained language model

(PLM) blocks, and an output projection layer, as illustrated on the

right part of Figure 2. GPT2 is used as the PLM [22]. We �rst adopt

several linear layers to embed the raw time series data into the

feature representations required by the PLM. The output of PLM

undergoes a fully connected layer to convert the output dimen-

sion of GPT2 to the dimension that the data reconstruction model

needs [45].

We divide the model parameters into trainable parameters \4
and frozen parameters \? , i.e. \ = (\4 , \? ). We frozen the majority

of parameters in the PLM, that is, |\4 | j |\ |. Speci�cally, the frozen

parameters include the layer normalization blocks and the �rst =

layers (= g 5). We choose to freeze the majority of the parameters

of the PLM during �ne-tuning as they encapsulate most of the

generic knowledge learned from pre-training phase. To enhance

downstream time series anomaly detection tasks with minimal

e�ort, we �ne-tune the input-output layers and certain parts of the

last one or three layers of the PLM, including the attention layer, the

feed-forward layer, and positional embedding, as they contain task-

speci�c information and adjust them allows the model to adapt to

the nuances of the target domain or task. The process of parameter-

e�cient federated training module is given in Algorithm 1.

Training on Server Side. The server �rst sends trainable pa-

rameters \4 to the clients for initialization (Lines 5). Then, client 8

updates \4,8 through local training (Line 6). Finally, server receives

parameters from all clients and aggregates them to get updated

parameters \4,6 (Lines 7– 8).
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Local Training on Client Side. After the clients receive \4,6
from the server, they assemble the whole PLMmodel with trainable

parameters \4,8 and frozen parameters \? (Line 10). The 8-th local

model updates its parameters \4,8 by gradient descent (Lines 11– 14).

After the local training is completed, client sends \4,8 to the server

for aggregation (Line 15).

The training process described above is repeated until PeFAD

converges according to Eq. (1).

Algorithm 1: Parameter-E�cient Federated Training

Input: model parameters (\4 , \? ); clients set C; global and

local epoch number: )6 and ); ; learning rate [;

weight coe�cient _; dataset D = {T1,T2, ...,TN};

local dataset T8 =
{

) 81 ,)
8
2 , · · · ,)

8
=

}

;

Output: Trained global model \6 .

1: Server Execute:

2: Initialize the trainable parameters \04,6 ;

3: for global round C6 = 1 to )6 do

4: for each client 8 ∈ C in parallel do

5: Initialize client model \
Cĝ−1

4,8 = \
Cĝ−1
4,6 ;

6: Client Update(8 , \
Cĝ−1

4,8 );

7: Receive \
Cĝ
4,8 from all clients in C ;

8: Update \
Cĝ
4,6 by: \

Cĝ
4,6 =

∑

8∈C
| Tğ |

∑

Ġ ∈C | TĠ |
· \

Cĝ
4,8 ;

9: Client Update (8 , \
Cĝ−1

4,8 ):

10: \
Cĝ−1

8 ← (assemble \
Cĝ−1

4,8 and \? );

11: for local round C; = 1 to ); do

12: L =
1
=

∑=
9=1 |)̂

8
9 −)

8
9 |
2 +

13: _ · ∥F (\
(Cĝ−1,CĢ )

8 ,DBℎ) − F (\
Cĝ−1
6 ,DBℎ)∥;

14: \
(Cĝ,CĢ )

4,8 ← \
(Cĝ−1,CĢ )

4,8 − [ · ∇\
(Cĝ−1,CĢ )

4,8 L8 ;

15: Send \
Cĝ
4,8 to the server;

16: return \6

4.3 Overall Objective

In this section, we give the overall objective of the proposed method.

For client 8 , it updates the local trainable model parameters by

optimizing the loss function L, and sends the trainable parameters

to the server.

L(\8 ;T8 ) =
1

=

=
∑

9=1

|)̂ 89 −)
8
9 |
2 +_ · ∥F (\8 ,DBℎ) − F (\6,DBℎ)∥, (13)

where )̂ 89 and )
8
9 denote the reconstructed and real values of 9-th

time series of client 8 , respectively. \8 and \6 represent the parame-

ters of the 8-th local model and global model, respectively, composed

of trainable parameters \4 and frozen parameters \? .

The server aggregates trainable parameters across clients within

the global iteration rounds to obtain the global model.

\C4,6 =

∑

8∈C

|T8 |
∑

9∈C |T9 |
· \C4,8 . (14)

The time series anomaly detection for each client is achieved

by leveraging the aggregated global model. To detect anomalies,

we input the testing time series into the local model to obtain its

reconstructed values at all time points. The anomaly score at time

point : is computed based on the reconstruction error A4 as follows,

A4 = |t: − t̂: |, (15)

where t: and t̂: are the real and reconstructed values at time point

: , respectively.

5 EXPERIMENTS

5.1 Datasets and Experiment Setup

5.1.1 Datasets. We conduct experiments on four real-world time

series anomaly detection datasets: SMD, PSM, SWaT, and MSL. The

4 datasets are widely used by existing studies and are collected

from various real-world domains, covering Internet data, server

operational data, critical infrastructure system data, and spacecraft

monitoring system events.

• SMD. Server Machine Dataset (SMD) [28] is a 5-week-long

dataset collected from a large Internet company with 38 feature

dimensions.

• PSM. Pooled Server Metrics (PSM) dataset [1] is collected from

multiple application servers at eBay with 25 feature dimensions.

• SWaT. Secure Water Treatment (SWaT) dataset [15] is obtained

from 51 sensors of the critical infrastructure system under con-

tinuous operations.

• MSL.Mars Science Laboratory rover (MSL) dataset [8] contains

the telemetry anomaly data derived from the incident surprise

anomaly reports of spacecraft monitoring systems with 55 fea-

ture dimensions.

5.1.2 Baselines. We compare PeFAD with the following 12 base-

lines including classical methods: OCSVM [29], Isolation Forest

(IF) [11] LOF [3], GANF [4],MTGFLOW[43], centralized reconstruction-

basedmethods: Anomaly Transformer (AT) [38], TimesNet [32], and

FPT [45], centralized prediction-based methods: Autoformer [33],

Informer [42], and FEDformer [44]. In addition, we transform cen-

tralized methods with FedAvg [16] into their federated version:

AT5 ; , Autoformer5 ; , Informer [42], and FEDformer [44], TimesNet5 ; ,

and FPT5 ; . We also compare PeFADwith the best performingmodel

(i.e., DeepSVDD) in FedTADBench [10].

5.1.3 Evaluation Metrics. Precision (P), Recall (R), F1-Score (F1),

and AUC-ROC (AUC, the Area Under the Receiver Operating Char-

acteristic curve) are adopted as the evaluation metrics. A higher

value of the metrics means a better performance.

5.1.4 Implementation Details. We implement our model with the

PyTorch framework on NVIDIA RTX 3090 GPU. The pre-trained

language models (i.e., GPT2, BERT, ALBERT, RoBERTa, DeBERTa,

DistillBERT, and Electra) are downloaded from Huggingface. We

�rst split the time series into consecutive non-overlapping segments

by sliding window [27]. The patch length and batch size are set

to 10 and 32, respectively. Adam is adopted for optimization. We

adopt the widely-used point adjustment strategy [27, 28, 36]. We

employ GPT2 as the PLM, where the �rst eight layers of GPT2 are

used for training. _ is set to 141, 240, 243, and 1544 for SMD, PSM,
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Table 1: Quantitative results for various methods on four datasets. P, R, AUC and F1 denote Precision, Recall, AUC-ROC and

F1-Score as % , respectively. "Central." represents centralized.

Methods
SMD PSM SWaT MSL

P R AUC F1 P R AUC F1 P R AUC F1 P R AUC F1

Central.

OCSVM 4.87 23.44 49.02 8.01 24.11 69.49 31.96 35.80 77.91 64.18 19.39 70.38 19.01 19.86 52.25 19.42

IF 9.02 39.00 32.84 14.66 24.25 52.42 42.47 33.16 75.76 62.40 18.78 68.44 9.55 58.57 41.58 16.42

LOF 8.19 19.72 44.93 11.58 34.27 12.35 48.38 18.15 14.01 11.54 49.12 12.66 13.06 12.92 48.37 13.25

MTGFLOW 91.21 67.22 83.47 77.40 99.71 86.66 93.28 92.73 96.61 83.56 91.58 89.61 97.25 63.40 81.59 76.76

GANF 88.31 68.31 84.46 77.67 98.62 82.01 90.79 89.55 96.36 79.01 89.30 86.83 97.15 63.20 81.49 76.58

Autoformer 78.45 65.10 82.16 71.15 99.94 79.06 89.52 88.28 99.90 65.55 82.77 79.16 76.93 76.50 86.90 76.71

Informer 90.28 75.24 87.14 82.08 97.29 80.59 89.86 88.15 99.83 67.87 83.93 80.80 79.79 74.73 86.25 77.18

FEDformer 76.78 59.72 79.47 67.19 99.98 81.69 90.84 89.91 99.94 65.61 82.80 79.22 90.61 69.02 84.09 78.35

TimesNet 88.00 81.44 90.48 84.59 97.32 96.62 97.76 96.97 85.50 93.69 95.75 89.41 88.78 73.61 86.26 80.48

AT 90.34 82.34 90.98 86.16 95.70 95.34 96.85 95.52 76.79 80.02 88.34 78.37 69.14 86.48 90.97 76.85

FPT 87.60 80.79 90.15 84.06 98.36 95.82 97.60 97.07 79.80 97.04 96.09 87.58 81.10 80.35 89.07 80.72

PeFAD2 87.93 94.37 97.00 90.72 97.99 97.47 98.37 97.72 91.19 94.91 96.82 93.01 80.87 82.73 90.22 81.79

FL

Autoformer5 ; 74.92 82.30 90.74 77.23 97.77 78.88 89.12 86.64 95.04 66.68 83.26 77.59 84.09 65.57 82.42 72.66

Informer5 ; 77.44 91.18 95.18 83.08 77.98 59.58 72.20 64.11 39.84 27.20 59.42 30.49 80.34 67.90 83.52 72.12

FEDformer5 ; 76.64 89.58 94.37 81.66 76.69 58.54 71.65 62.64 40.23 29.40 60.52 32.55 79.16 66.95 83.02 71.36

TimesNet5 ; 86.36 85.30 92.44 84.97 98.30 89.84 94.64 93.75 88.19 84.61 91.77 86.22 70.69 73.69 85.80 71.53

AT5 ; 87.02 83.57 91.62 84.63 97.29 80.02 89.62 87.07 49.96 41.77 70.88 45.50 81.77 69.40 83.96 73.93

FPT5 ; 84.93 80.08 89.85 81.49 98.56 91.78 95.66 94.92 88.07 85.66 92.28 86.74 70.90 73.25 85.52 71.85

FedTADBench 86.01 87.02 93.32 85.77 96.57 64.41 82.20 72.36 88.73 64.93 82.28 74.50 77.69 69.37 84.09 72.26

PeFAD 88.77 94.74 97.22 91.34 97.93 97.46 98.35 97.68 87.71 89.78 94.43 88.73 73.42 87.31 92.61 78.94

SWaT, and MSL, respectively. The threshold A for SMD, MSL, PSM,

and SWaT is set to 0.5, 2, 1, and 1, respectively.

5.2 The Main Result

Table 1 shows the performance comparison among di�erent meth-

ods under the federated and centralized settings on four datasets.

In the federated setting, the best performance is marked in bold

and the second-best result is underlined. In the centralized setting,

the best performance is marked in red. We use PeFAD2 to represent

the centralized version of PeFAD.

From Table 1, one can see that PeFAD achieves the best perfor-

mance in terms of F1-Score and AUC compared to all federated

baselines on all four datasets, and even exceeds all centralized base-

lines on SMD and PSM datasets. More speci�cally, PeFAD outper-

forms the federated baselines by an average of 3.83%–28.74% and

3.42%–19.82% in terms of F1-Score and AUC metrics, respectively.

Moreover, one can observe that PeFAD2 shows the best overall

performance under the centralized setup. FPT exhibits sub-optimal

integrated performance in the centralized baselines, which also

utilizes PLM. It demonstrates the e�ectiveness of PLM in the task

of time series anomaly detection. However, the performance of

FPT under the federated setting shows a degradation. For example,

PeFAD outperforms FPT5 ; by 9.85% and 7.37% for F1-Score and

AUC metrics on SMD, respectively. This might be attributed to the

fact that FPT does not employ parameter-e�cient tuning methods

suitable for federated training, and the redundant parameters may

a�ect the model performance.

A decreasing trend of performance is observed when transfer-

ring the baseline models from the centralized setting to federated

SMD
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Figure 3: Ablation study results of PeFAD and its variants

setting, indicating that time series anomaly detection has become

more di�cult in federated environment. This is possibly due to

the data sharing restrictions, which limit clients to use less data

for model training. However, PeFAD demonstrates the best overall

performance in both federated and centralized settings, indicating

its robust adaptability to environmental changes. It can also be

observed that in some cases (i.e. SMD dataset), the performance of

PeFAD surpasses PeFAD2 . This may be attributed to the diversity

of time series data. Through federated learning, models trained on

each local device can better capture the diversity of its local data.

Clients can obtain more adaptive thresholds based on the character-

istics of their local data, whereas a single threshold obtained under

the centralized setup may fail to accommodate the entire data.

5.3 Ablation Study

To gain insight into the e�ects of key aspects of PeFAD, we com-

pare the performance of PeFAD with its four variants as follows.
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Table 2: E�ect of various tuning strategies

Methods
SMD MSL

AUC F1
Comm

Cost (GB)
AUC F1

Comm
Cost (GB)

FPT5 ; 89.85 81.49 3.060 85.52 71.85 6.120

w/o_ft 94.74 88.18 0.000 90.47 76.17 0.000

PeFAD_t1l 96.60 90.28 0.624 92.61 78.94 0.312

PeFAD_t2l 96.88 90.76 1.216 91.82 77.96 0.608

PeFAD_t3l 97.22 91.34 1.800 91.62 77.64 0.900

PeFAD_t4l 97.16 91.37 2.384 90.10 76.30 1.192

PeFAD_t5l 96.93 90.80 2.976 89.63 75.70 1.488

PeFAD_t6l 97.01 90.79 3.560 88.74 74.26 1.780

PeFAD_t7l 97.00 90.74 4.144 87.93 75.32 2.072

PeFAD_�t 97.07 90.91 6.648 87.06 72.38 3.324

F/>_??3B: PeFAD without privacy-preserving shared dataset syn-

thesis (PPDS) mechanism; F/>_03<B: PeFAD without anomaly-

driven mask selection (ADMS) strategy, where ADMS is replaced

with random masking;F/>_?;<: PeFAD without pre-trained lan-

guage model (PLM) and it is replaced by transformer. We conduct

experiments on SMD and MSL, which have the largest and smallest

data volumes, respectively. The results are shown in Figure 3. On

both datasets, PeFAD always outperforms its counterparts without

PPDS, ADMS, and PLM. It shows the three components are all use-

ful for time series anomaly detection since removing any one of

them will remarkably decrease the performance.

5.4 E�ect of Tuning Strategies and PLMs

5.4.1 E�ect of various tuning strategies. To test the e�ect of dif-

ferent tuning strategies of PLM, we compare PeFAD with strate-

gies of �ne-tuning di�erent numbers of PLM layers, including no

�ne-tuning (w/o_ft), tuning the last one to seven layers of PLM

(PeFAD_t1l - PeFAD_t7l), and fully �ne-tuning (PeFAD_�t). The

result is shown in Table 2. We use GPT2-based FPT5 ; as a reference.

One can observe that freezing the �rst layers while �ne-tuning

the last few layers is a reasonable tuning strategy. By freezing the

�rst layers, the model retains the ability to understand general-

ized knowledge, and �ne-tuning the last few layers facilitates the

model’s adaptation to downstream tasks, enabling the transfer of

domain-speci�c knowledge from the pre-trained model to the time

series anomaly detection task. Speci�cally, for the SMD dataset with

more training data, PeFAD remains relatively stable with di�erent

tuning layers, and achieves optimal performance when tuning the

last 3 and 4 layers. For the smaller MSL dataset, the model per-

formance decreases with the increase of tuning layers, reaching

optimal performance when tuning the last layer. The experiments

on other datasets are provided in the appendix due to space limita-

tion. In PeFAD, we choose to �ne-tune the last layer for MSL and

�ne-tune the last three layers for the other datasets.

The result shows that our approach consistently outperforms

FPT regardless of the number of tuning layers. Compared with

FPT, PeFAD achieves the performance improvement of 9.85% and
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Figure 4: E�ect of various PLMs on model performance

7.09% in terms of F1-Score on SMD and MSL, respectively. Pe-

FAD reduces the communication cost by 41.2% and 94.9%, which

shows the e�ciency of PeFAD and the e�ectiveness of the proposed

parameter-e�cient federated training module. Furthermore, PeFAD

without �ne-tuning (w/o_ft) outperforms all federated baselines

on both datasets, which demonstrates the superior cross-modality

knowledge transfer ability of PLM. PeFAD_�t does not achieve the

best performance on both datasets while tuning less, especially last

few layers, works better. This is because the initial layers of PLM

contain generic knowledge and the last layers are better suited to

learn task-speci�c information. However, due to the scarcity of

anomalous data, fully �ne-tuning may increase the risk of over�t-

ting, leading to performance degradation.

5.4.2 E�ect of various PLMs. Next, we study the e�ect of using

di�erent PLMs on the model performance. We compare seven main-

stream pre-trainedmodels, i.e., BERT, ALBERT, RoBERTa, DeBERTa,

DistilBERT, and Electra. The results are presented in Figure 4. One

can see that GPT2 achieves the best performance followed by De-

BERTa. Compared to other PLMs, GPT2 improves the performance

by up to 6.22% and 5.06% on F1-Score and AUC metrics on SMD,

respectively. On the MSL dataset, the F1-Score and AUC values

are improved by up to 8.84% and 6.99%, respectively. This is be-

cause GPT2 has been exposed to a broader range of contexts during

pre-training, enabling it to learn from time series more e�ectively.

5.5 Parameter Sensitivity Analysis

5.5.1 E�ect of various mask ratio A< and patch length ;? . We next

study the sensitivity of the model to the mask ratio A< and patch

length ;? , We only give the result of F1-Score on SMD as an example

due to space limitation, as shown in Figure 5(a). One can observe

that the incorporation of masking or patching mechanisms can

improve the model performance, demonstrating the e�ectiveness

of these two mechanisms. As the A< and ;? increase, the model

performance �rst improves and then declines. The optimal model

performance is achieved when A< is 20% and ;? is 10.

5.5.2 E�ect of synthetic series length. We next investigate the ef-

fect of synthetic data length on model performance, and the result

is shown in Figure 5(b). Speci�cally, we vary the length of the

synthetic time series for each client on the SMD dataset. We ob-

serve that the F1-Score curve �rst increases and then drops slightly.

Generally, the result demonstrates that the model obtains the best

performance when the length of the synthetic time series is set

to 100. With the increase of length from 20 to 100, the synthetic
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Figure 5: Parameter sensitivity analysis on SMD dataset

time series may bring more useful information, which facilitates

the model with more e�ective representation learning. However,

a too large length value will lead to performance decline. This is

because longer synthetic time series may bring redundant or noisy

information, which degrades the model performance.

5.6 Case Study

To intuitively show the e�ectiveness of the proposed PeFAD, we

provide a case study on SMD, as illustrated in Figure 6. Figure 6(a)

shows the distribution of the real and synthesized time series, esti-

mated by Kernel Density Estimation. The blue curve in the �gure

represents the real time series, the orange curve represents the syn-

thesized time series obtained solely through mutual information

(MI) constraint, the red curve represents the synthesized time series

obtained solely through Wasserstein distance (WD) constraint, and

the green curve represents the time series synthesized under the

combined constraints of MI and WD. One can see that the orange

curve exhibits a signi�cant di�erence from the blue curve, while

the red curve closely resemble the real distribution (blue curve).

This is because solely reducing mutual information neglects con-

siderations on the quality of the synthesized data. However, the

green curve both ensures distributional similarity and protects the

privacy of the data through mutual information.

Figure 6(b) shows an example of time series reconstruction and

anomaly detection on the SMD dataset during testing within the

client. One can observe that the estimated values at normal points

closely approximate the true values, while at anomalous points,

the estimates align more closely with reasonable values una�ected

by anomalies. Thus the anomalies in the time series are success-

fully identi�ed by assessing the disparity between estimated and

actual values. This is probably attributed to the proposed ADMS

strategy and the PPDS mechanism, which empower the model to

better adapting to complex patterns, thereby contributing to the

e�ectiveness of time series anomaly detection.

6 DISCUSSION

We conduct comprehensive experiments, showing that PeFAD out-

performs state-of-the-art baselines in terms of both centralized and

federated methods. The results demonstrate the powerful repre-

sentation learning capability of PLM. In addition, the proposed

PPDS module also improves stability under FL. The ablation study

further veri�es the e�ectiveness of the three major components

of PeFAD (i.e., PLM, ADMS, and PPDS). Speci�cally, the ADMS
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Figure 6: The example of data synthesis, time series recon-

struction and anomaly detection within the client from SMD

dataset.

strategy makes the model focus more on changing regions in the

time series by capturing intra- and inter-patch dynamics changes.

As time series often change frequently with time evolving, enhanc-

ing the model’s capability in learning such changes can facilitate

the proposed model to learn representative features. Moreover, the

PPDS mechanism helps the model achieve more consistent client

updates, thereby improving the performance and stability of the

aggregated global model. Moreover, we also verify that the pro-

posed e�cient tuning strategy reduces communication overhead

e�ectively.

7 CONCLUSION

This work presents PeFAD, a federated learning framework for time

series anomaly detection. Di�erent from previous methods, we aim

to leverage the generic knowledge and the contextual understand-

ing capability of the pre-trained language model to address the data

scarcity problem. To alleviate the communication and computa-

tion burden in federated learning brought by PLM, we propose a

parameter-e�cient federated training module, where clients only

need to �ne-tune and transmit small-scale parameters. Moreover,

PeFAD features a novel anomaly-driven mask selection strategy to

re�ne the quality of time series reconstruction, thereby improving

the robustness of anomaly detection. In order to address the issue

of client heterogeneity, a privacy-preserving shared dataset syn-

thesis mechanism is also proposed, enabling clients to learn more

consistent and comprehensive information. Extensive experiments

on four real work datasets show the e�ectiveness and e�ciency of

the proposed PeFAD.
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A APPENDIX

A.1 Evaluation Metrics

We adopt Precision, F1-Score, Recall, and AUC-ROC (AUC) as the

evaluation metrics, which are de�ned as follows.
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where TP represents True Positive, FP denotes False Positive, and FN

is False Negative. FPR (False Positive Rate) represents the proportion

of negative instances that are incorrectly classi�ed as positive. AUC

represents the Area Under the Receiver Operating Characteristic

(ROC) curve.

A.2 Additional Experiments

A.2.1 Ablation Study. The results of the ablation experiments on

the SWaT dataset and PSMdataset are shown in Figure 7. The results

show that PeFAD outperforms the other 3 ablation variants in both

AUC and F1-Score metrics. The variant without PLM performs the
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worst, which demonstrates the e�ectiveness of PLM on the task of

federated anomaly detection.
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Figure 7: Ablation study results of PeFAD and its variants.

To further explore the e�ects of various variants on PeFAD per-

formance, we conducted more detailed ablation experiments.

• F/>_??3B. PeFAD without the shared dataset synthesis scheme.

• F/>_03<B. PeFAD without ADMS strategy replaced by random

masking.

• F/>_?;<. PeFAD without pre-train language model (PLM) re-

placed by transformer.

• F/>_(03<B−8=CA0). PeFAD without intra-patch time series de-

composition when calculating the anomaly score of patches,

which means the hyper-parameter V is equal to 0.

• F/>_(03<B−8=C4A ). PeFAD without inter-patch similarity as-

sessment when calculating the anomaly score of patches, which

means the hyper-parameter V is equal to 1.

• F/>_??3B&03<B. PeFAD without PPDS and ADMS.

The results on the SMD and MSL datasets are shown in Figure 8.

One can see that these four components all improve the anomaly

detection performance of PeFAD. For example, removing these

components decreases the F1-Score and AUC values by up to 6.77%

and 5.72% onMSL, respectively. On both datasets,F/>_??3B&03<B

performs theworst among all variants on both datasets, showing the

bene�t of PPDS mechanism and ADMS strategy. Further, F/>_?;<

performs second-worst in terms of F1-Score, indicating the validity

of the PLM. Speci�cally, on both datasets, F/>_:3&03<B performs

the worst among all variants. PeFAD outperforms F/>_:3&03<B ,

improving the performance by up to 6.15% and 4.95% in terms of

F1-Score and AUC, respectively

A.2.2 E�ect of Various Tuning Strategies. We further investigate

the e�ect of various tuning strategies on PSM and SWaT datasets.

The results are shown in Table 3. It can be seen that the best choice

for the PSM dataset is to �ne-tune the last 3 layers, and for the

SWaT dataset fully �ne-tuning and �ne-tuning the last three layers

achieve similar performance. To reduce computation cost, we �ne-

tune the last three layers in PeFAD in practice for SWaT. In addition,

compared to the FPT5 ; , PeFADwhich �ne-tunes the last three layers

shows better performance and lower communication overhead on

both PSM and SWaT datasets, which demonstrates the e�ectiveness

of the parameter-e�cient federated training module.

A.2.3 E�ect of Di�erent Fine-tuning Parameters. We next study the

e�ect of di�erent �ne-tuning parameters to assess the importance

of di�erent parameters in various layers. GPT2 consists of the
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Figure 8: The ablation study results on SMD and MSL dataset

Table 3: E�ect of various tuning strategies

Methods
PSM SWaT

AUC F1
Comm

Cost (GB)
AUC F1

Comm
Cost (GB)

FPTĜ Ģ 95.66 94.92 6.120 92.28 86.74 6.120

w/o_ft 97.02 96.31 0.000 91.33 84.97 0.000

PeFAD_t1l 98.05 97.36 0.780 92.54 86.54 0.156

PeFAD_t2l 98.08 97.46 1.520 94.15 88.53 0.304

PeFAD_t3l 98.35 97.68 2.250 94.43 88.73 0.450

PeFAD_t4l 98.15 97.49 2.980 94.20 88.63 0.596

PeFAD_t5l 98.23 97.55 3.720 94.05 88.39 0.744

PeFAD_t6l 98.26 97.52 4.450 94.23 88.63 0.89

PeFAD_t7l 98.16 97.39 5.180 94.19 88.56 1.036

PeFAD_�t 98.07 97.23 8.310 94.29 88.75 1.662

following layers: the position embedding layer (pe), the layer norm

(ln), the attention layer (att), and the feedforward layer (�). We

conduct experiments on the SMD dataset, and the result is shown

in Fig 9. We only �ne-tune the last three layers, and it can be

observed that �ne-tuning the blocks of pe, att, and � is the optimal

�ne-tuning solution. It is because these blocks contain task-speci�c

information and adjusting them allows the model to adapt to the

nuances of the target domain or task.

A.2.4 Parameter Sensitivity Analysis.

(1) E�ect of client numbers.We investigate the e�ect of client

numbers on the model performance over SMD, the result is shown

in Figure 10(a). We observe that the model achieves optimal per-

formance when the number of clients is set to 14, and when the

number of clients exceeds 14, the model performance decreases as

the number of clients increases. This is because as the number of

clients increases, the model may become more prone to over�tting

each individual client. This could lead to an overall performance

decline.
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Figure 9: The e�ect of di�erent �ne-tuning parameters
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Figure 10: Parameter sensitivity analysis
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Figure 11: E�ects of hyperparams in ADMS and PPDS.

(2) E�ect of synthetic data length. We investigate the syn-

thetic data length on model performance by varying the length of

the client-synthesis time series on the SMD, the result is shown in

Figure 10(b). One can observe that the model is relatively robust

to the di�erent sizes of the synthesized time series, and the model

performs best when the length of synthesized time series is set to

100.

(3) E�ect of hyperparameters in ADMS and PPDS. We con-

duct experiments on the hyperparameter (i.e., ÿ and Ă2) sensitivity

of ADMS and PPDS on SMD, as shown in Figure 11. The results show

that the �uctuation of the model’s performance is not signi�cant as

the hyperparameters are varied, especially for the hyperparameters

in the PPDS module. For the ADMS module, there is little change

in model performance when ÿ is between 0.2 and 0.8, while there

is a decrease in model performance at ÿ = 0 or 1, suggesting that

both residual and cosine similarity terms are bene�cial for model

training.

A.2.5 Case Study. We visualized two samples from the training

and testing process and their reconstructed time series, respectively.

Figure 12 shows examples of series reconstruction during training
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Figure 12: Examples of time series reconstruction and anomaly de-

tection within the client from SMD dataset.

Table 4: Comparison of Resources Resumption.

Comp Cost

(GFLOPS)

Training

Time (s)

Memory

(Mb)

TimesNet5 ; 319.22 131.63 427.60

FPT5 ; 0.22 114.67 5594.50

AT5 ; 15.43 95.61 7875.00

PeFAD5 ; 0.43 57.22 2569.80

Table 5: Continues Learning.

M1->MSL M1->PSM M2->PSM M2->MSL

AUC 92.6 97.8 98.0 91.3

F1-Score 78.9 97.3 97.4 77.4

and anomaly detection on the test data within the client. During

training, the reconstructed curve almost matches the original time

series. In testing, the estimated values at normal points closely ap-

proximate the true values, while at anomalous points, the estimates

align more closely with reasonable values una�ected by anom-

alies. Thus the anomalies in the series are successfully identi�ed

by assessing the disparity between estimated and actual values.

A.2.6 Resource Consumption. We conduct experiments to com-

pare the clients’ resource consumption with the best performing

baselines. The results on SMD dataset are shown in Table 4. The

results show that PeFAD has low training and computation costs,

while other baselines fail to obtain a good balance between them.

A.2.7 Continuous Learning. We add a continuous learning (CL)

experiment to assess PeFAD’s performance on dynamic time se-

ries. The model is �rst trained on MSL dataset to obtain model M1

and then �ne-tuned on PSM to get M2. We test whether M2 e�ec-

tively learns new data (M2→PSM) while retaining old knowledge

(M1→MSL). The result is shown in Table 5. It can be observed that

PeFAD works well in CL scenarios due to the powerful general-

ization capabilities of PLM. Further, the �ne-tuned PeFAD model

performs well on PSM without forgetting knowledge of MSL, ad-

dressing catastrophic forgetting.
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