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Abstract

We propose a method that achieves near-optimal rates for smooth stochastic convex optimization

and requires essentially no prior knowledge of problem parameters. This improves on prior work

which requires knowing at least the initial distance to optimality d0. Our method, U-DOG, com-

bines UniXGrad (Kavis et al. [30]) and DoG (Ivgi et al. [27]) with novel iterate stabilization tech-

niques. It requires only loose bounds on d0 and the noise magnitude, provides high probability

guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our ex-

periments show consistent, strong performance on convex problems and mixed results on neural

network training.

Keywords: Parameter-free, Adaptive, Stochastic convex optimization, Smooth optimization.

1. Introduction

We consider the problem of minimizing a smooth convex function using access to an unbiased

stochastic gradient oracle. This is a fundamental problem in machine learning, including many im-

portant special cases such as logistic and linear regression. Moreover, the smoothness assumption is

crucial for developing one of the most widely used improvements for the classical gradient method:

Nesterov acceleration [44].

Nesterov acceleration obtains the optimal rate of convergence for this problem but is strongly

reliant on knowing the problem parameters. Specifically, Lan [35], who first demonstrated the the-

oretical value of Nesterov acceleration on smooth stochastic convex functions, requires knowledge

of the smoothness parameter β, the distance d0 from the initial point to the optimum, and a value

σ for which the noise is σ-sub-Gaussian. Accelerated adaptive methods [14, 30] do not require

knowledge of β and σ, but assume knowledge of d0. For non-smooth stochastic convex optimiza-

tion, parameter-free methods [e.g., 7, 9, 16, 27, 28, 41, 49] require only loose knowledge of problem

parameters to obtain near-optimal rates. Finding such parameter-free methods for smooth stochastic

optimization is a longstanding open problem.

Our contribution. We solve this open problem, designing an accelerated parameter-free method

which we call UNIXGRAD-DOG, or U-DOG for short. U-DOG combines the ªuniversal extra-

gradientº (UNIXGRAD) framework [30] with the ªdistance over gradientº (DOG) technique [27].

More specifically, we replace the domain diameter D in the UNIXGRAD step size numerator with

the maximum distance from the initial point, similar to the DoG step size numerator. Furthermore,

we use this maximum distance to automatically tune the ªmomentumº parameter αt of UNIXGRAD.
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Algorithm

name

Unbounded

domain?

Insensitive to... Rate of

convergence

High

probability?d0/D β σ

U-DOG (this work)
✓ ✓ ✓ ✓ Õ

(
βd2

0

T 2 + σd0√
T
+ σ̂d0

T

)
✓

✗ ✓ ✓ ✓ Õ
(
βD2

T 2 + σD√
T

)
✓

UNIXGRAD [30] ✗ ✗ ✓ ✓ O
(
βD2

T 2 + σD√
T

)
✗

Cutkosky [14] ✓ ✗ ✓ ✓ Õ
(
βd2

0

T 2 + σd0√
T

)
✗

Lan [35] ✓ ✗ ✗ ✗ O
(
βd2

0

T 2 + σd0√
T

)
✓

DOG [27] / CO [16] ✓ ✓ ✓ ✓✗ Õ
(
βd2

0

T + σd0√
T
+ L̂d0

T

)
✓ / ✗

Table 1: Comparison of U-DOG and prior work on β-smooth stochastic optimization with σ-sub-

Gaussian noise. ªUnbounded domainº indicates if the algorithm is defined over the whole Euclidean

space or a bounded subspace. In the former case we express rates in terms of the initial distance to

optimality d0 and in the latter case we use the domain diameter D. Under ªInsensitive to...º we mark

✗ if the suboptimality bound grows polynomially with error in the parameter, ✓ if it only affects

logarithmic factors or low order terms, and ✓ if there is no dependence on the parameter at all. The

marker ✓✗ indicates algorithms that require an upper bound L̂ on gradient norm, which may be much

larger the the upper bound σ̂ on the noise. The notation Õ (·) hides polylogarithmic factors.

Finally, we modify the UNIXGRAD step size denominator to ensure the stability of the iterate se-

quence. U-DOG only requires a loose upper bound σ̂ on σ and lower bound rϵ on D.1 As long as

σ̂ is loose by at most a
√
T factor and rϵ is loose by any poly(T ) factor, we obtain a near-optimal,

high-probability rate of convergence; Table 1 states U-DOG’s guarantees and compares it to prior

work. Moreover, U-DOG simultaneously enjoys a near-optimal, parameter-free rate of convergence

for non-smooth problems.

We conduct preliminary experiments with U-DOG as well as another algorithm, A-DOG,

which combines ACCELEGRAD [36] and DoG. On convex optimization problems, both U-DOG

and A-DOG often substantially improve over DOG, especially at large batch sizes, with A-DOG

outperforming U-DOG, likely due to not requiring an extra-gradient computation at each step. On

several problems, A-DOG matches the performance of carefully tuned SGD with Nesterov mo-

mentum. On neural network optimization problems, however, we observe that both U-DOG and

A-DOG do not consistently improve over DOG.

1.1. Related work

Non-smooth stochastic optimization. The majority of tuning-insensitive stochastic optimization

methods are developed for online convex optimization. Online regret bounds immediately translate

to suboptimality guarantees for non-smooth stochastic optimization using online-to-batch conver-

sion [48, Section 3]. Proposed methods divide roughly into adaptive algorithms such as adap-

tive SGD [22, 38], AdaGrad [21, 40] and variants [e.g., 33, 55, 58], and parameter-free methods

[7, 15, 16, 28, 39, 41, 47, 49, 59]. Adaptive methods typically require no knowledge of the stochastic

gradient bound but need to know the initial distance to optimality (or the domain diameter), while

1. In fact, we only require local upper bounds of the form σ̂(x) on the noise sub-Gaussianity.
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parameter-free methods are robust to uncertainty in the distance but require some (loose) bound on

the stochastic gradient norms.

Recent work [9, 27] develops parameter-free methods that hew closer to SGD and eschew

online-to-batch conversion for high-probability guarantees in the stochastic setting; U-DOG con-

tinues this line. In particular, it extends the core mechanism of DOG [27] wherein iterate movement

serves as a proxy for the distance to optimality. D-Adaptation [17], DoWG [32], and Prodigy [42]

use a similar mechanism, but only provide guarantees for the non-stochastic setting. Ensuring the

validity of the mechanism (i.e., that iterates never move too far away from the optimum) is a key

challenge in its analysis. This challenge becomes greater in the smooth setting, where selecting too

small of a step size nullifies the benefit of acceleration. Much of our algorithmic and analytical

innovation addresses this challenge.

Non-stochastic smooth optimization. Without noise, Nesterov acceleration requires knowledge

of the smoothness constant β but not the distance to optimality [44, 45]. The methods [30, 36]

reverse this tradeoff, requiring the distance but not β. Line search techniques such as [6, 11] provide

much stronger adaptivity, attaining the optimal gradient evaluation complexity up to an additive term

that depends logarithmically on the uncertainty in β. However, line search can be challenging to

employ efficiently in the stochastic setting as we can no longer accurately evaluate the function.

Indeed, there are many works that analyze stochastic line search techniques [e.g., 50, 60] but none

have obtained convergence guarantees close to that of Lan [35].

Smooth stochastic optimization. Several adaptive and parameter-free methods [9, 16, 22, 27, 32]

converge faster on smooth functions. However, they do not improve all the way to the optimal rate

(see Table 1) due to a missing ªmomentumº component. Cutkosky [14] gives an improved online-

to-batch conversion framework that endows adaptive SGD with momentum and accelerated rates

in the smooth case, but requires a bound on the distance to optimality. Kavis et al. [30] propose

UNIXGRAD, combining ideas from [14] with the mirror-prox/extragradient algorithm [19, 43] and

online learning [38, 54] to obtain optimal rates assuming bounded domains of known diameter

D and assuming that d0 is of the order of D. U-DOG modifies UNIXGRAD and removes both

assumptions, yielding the first parameter-free accelerated method.

2. Preliminaries and algorithmic framework

In this section, we set up our notation and terminology, and use them to present the general U-DOG

template (Algorithm 1) defining the algorithm up to the choice of adaptive step sizes, which we

gradually develop in the following sections.

Basic notation and conventions. Throughout, ∥·∥ denotes the Euclidean norm, log is base e and

log+(x) := 1 + log(x). The function ProjX (·) denotes Euclidean projection onto set X . We say

that f : K → R is β-smooth if ∇f is β-Lipschitz, i.e., ∥∇f(u) − ∇f(v)∥ ≤ β∥u − v∥ for all

u, v ∈ K. We write [·]+ := max{·, 0}.

In this work, we minimize an objective function f via queries to a stochastic gradient estimator

G. We make the following assumption in all of our theoretical analyses.
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Assumption 1 (Made throughout) The objective function f : K → R is convex, L-Lipschitz, β-

smooth,2 has closed convex domain K, and its minimum is attained at some x⋆ ∈ argminx∈K f(x).
For all x ∈ K, the gradient estimator G satisfies EG(x) = ∇f(x).

Algorithm 1: U-DOG (UNIXGRAD-DOG) template

Input: Initial x0 ∈ K, iteration budget T , initial movement rϵ, step sizes {ηx,t, ηy,t}
1 Set y0 = x0

2 for t = 0, 1, 2, . . . , T − 1 do

3 Set αt =
∑t

k=0 r̄k/r̄t and ωt = αtr̄t for r̄t = max
k≤t

max{∥yk − x0∥, ∥xk − x0∥, rϵ}

4 xt+1 = ProjK(yt − αtηx,tmt) for mt ∼ G(ẑt) and ẑt =
ωtyt+

∑t−1

k=0
ωkxk+1

∑t
k=0

ωk

5 yt+1 = ProjK(yt − αtηy,tgt) for gt ∼ G(x̂t) and x̂t =
ωtxt+1+

∑t−1

k=0
ωkxk+1

∑t
k=0

ωk

6 end

7 return x̂T

Presenting U-DOG. Algorithm 1 provides the general template of U-DOG. As in UNIXGRAD

[30], each iteration of the algorithm consists of two stochastic gradient steps, with each stochastic

gradient queried at a moving average of iterates. Unlike UNIXGRAD, the moving average weights

ωt and the step size multipliers αt are not fixed in advance, but are instead dynamically set based

on the maximum distance moved from the origin, denoted

r̄t := max
k≤t

max{∥yk − x0∥, ∥xk − x0∥, rϵ}.

The parameter rϵ serves as a (loose) lower bound on ∥x0 − x⋆∥; typically, r̄t grows rapidly and

then plateaus at a level roughly approximating ∥x0 − x⋆∥. When that happens, the sequence αt =∑
k≤t r̄k/r̄t grows linearly in t, similar to αt = t+ 1 in UNIXGRAD.

To complete the specification of U-DOG we must set the step size sequence. UNIXGRAD

assumes K the domain has Euclidean diameter D and picks step sizes of the form ηx,t = ηy,t =√
2D√

1+Qt−1

where

Qt :=
t∑

k=0

qk and qt := α2
t ∥gt −mt∥2. (1)

To handle unknown domain size and unbounded domains, U-DOG follows DOG in using r̄t as the

step size numerator in lieu of D. Thus, the U-DOG step size admits the general form

ηx,t =
r̄t√
Gx,t

and ηy,t =
r̄t√
Gy,t

, where Gx,0 ≤ Gy,0 ≤ Gx,1 ≤ · · · . (2)

2. Our results hold in the non-Lipschitz or non-smooth cases by setting L = ∞ or β = ∞, respectively. In the

non-smooth case, we define ∇f(x) := EG(x) and assume it is a subgradient of f .

4
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In the appendix, we also use the notation

η̃x,t =
1√
Gx,t

and η̃y,t =
1√
Gy,t

. (3)

For bounded domains, setting Gx,t = Gy,t = 1 +Qt−1 recovers the UNIXGRAD guarantees up to

logarithmic factors. However, for unbounded domains, ensuring the stability of U-DOG (i.e., that

r̄t never grows much larger than ∥x0−x⋆∥) requires more careful selection of Gx,t, Gy,t. Enforcing

iterate stability without compromising the rate of convergence is the main challenge we overcome.

To that end, we define a few frequently appearing quantities:

rt := max{∥yk − x0∥, ∥xk − x0∥} , dt := ∥yt − x⋆∥ , d̄t := max
k≤t

dk ,

Mt := max
k≤t

{
α2
k∥mk∥2

}
and θt,δ := log

60 log(6t)

δ
.

UNIXGRAD as a special case. For a domain with Euclidean diameter D, setting rϵ = D
√
2

and Gx,t = Gy,t = 1 + Qt−1 recovers UNIXGRAD (with Euclidean distance generating function)

exactly, as it implies r̄t = D
√
2 for all t and hence αt = t+ 1.

3. Analysis in the noiseless case

We begin our analysis under the simplifying assumption that gradients are computed exactly.

Assumption 2 In addition to Assumption 1, we assume that G(x) = ∇f(x) with probability 1.

This noiseless setting allows us to isolate and address the key challenges of exploiting smoothness

and stabilizing the iterates.

3.1. General suboptimally bound

Our first result is a bound on the suboptimality of U-DOG for general step sizes; see Section A.1

for complete proof. To interpret Proposition 3 recall that d0 is the initial distance to the optimum

and the definition of Qt given in (1).

Proposition 3 In the noiseless setting (Assumption 2), suppose the U-DOG step sizes (2) satisfy

Gx,t ≥ Qt−1 for all t ≥ 0. Then for every t ≥ 0 and for any number s ≥ 0, we have

f(x̂t)− f(x⋆) ≤ O

(
s3/2β(r̄t+1 + d0)

2 + (r̄t+1 + d0)
[√

max{Gy,t, Qt} − s
√
Qt

]
+(∑t

k=0 r̄k/r̄t+1

)2

)
. (4)

Before sketching the proof of Proposition 3, let us explain how it yields the desired rates of

convergence if we momentarily set aside iterate stability and assume r̄t ≤ D for all t, e.g., be-

cause the domain has diameter D. In this case, we may choose Gx,t = Gy,t = Qt−1 similarly

to UNIXGRAD. Substituting s = 1 in eq. (4) guarantees suboptimality O
(

βD2

(
∑t

k=0
r̄k/r̄t+1)

2

)
. As

shown in [27, Lemma 3], we have maxt<T
∑t

k=0 r̄k/r̄t+1 = Ω
(
T log−1(r̄T /rϵ)

)
, meaning that for

some t < T we obtain the near-optimal rate O
(
βD2

T 2 log2 D
rϵ

)
. Moreover, since αt ≤ t+ 1 for all t,
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when all gradients are bounded by L we have Qt = O(L2
∑

k≤t α
2
k) = O(L2t3). Substituting s = 0

in eq. (4) and reusing our bound on the denominator gives the near-optimal rate O
(
LD√
T
log2 D

rϵ

)
in

the non-smooth setting. We also see that setting rϵ = Ω(D) recovers the UNIXGRAD guarantees

in the noiseless setting, which is to be expected since rϵ = D
√
2 recovers UNIXGRAD itself as

explained in the previous section.

Our proof of Proposition 3 combines ideas from the analyses of UNIXGRAD and DOG. It

centers on the weighted ªregretº Rt :=
∑t

k=0 ωk ⟨gk, xk+1 − x⋆⟩ where ωk = αkr̄k. This is

similar to the weighted regret considered for UNIXGRAD with additional weighting by r̄t used in

the DOG analysis. Algebraic manipulation of Rt gives (recall that dt = ∥yt − x⋆∥),

Rt ≤ O

(
r̄2t+1

√
Qt +

t∑

k=0

(
d2k − d2k+1

)√
Gy,k −

t∑

k=0

∥xk+1 − yk∥2
√
Qk

)
.

We use a telescoping argument from DOG in order to bound
∑t

k=0

(
d2k − d2k+1

)√
Gy,k by

O
(
r̄t+1(r̄t+1 + d0)

√
Gy,t

)
. Next, following UNIXGRAD we leverage smoothness to write

∥xk+1−yk∥2 =
(∑k

i=0 ωi

ωk

)2

∥x̂k−ẑk∥2
Lem. 25

≥ α2
k

4
∥x̂k−ẑk∥2 ≥

α2
k

4β2
∥∇f(x̂k)−∇f(ẑk)∥2 =

q2k
4β2

,

where the last equality is the first time we assumed exact G. We then show that, for all S ≥ 0,

t∑

k=0

∥xk+1 − yk∥2
√
Qk ≥

t∑

k=0

q2k
β2

√
Qk ≥ Ω

(
S
√

Qt − S3/2β
)
; (5)

this is a streamlined version of key arguments in [30, 36] where the authors carefully split the sum

above based on the value of the adaptive step size. Taking S = s · r̄t+1(r̄t+1 + d0) and substituting

back, we get

Rt ≤ O

(
s3/2βr̄t+1(r̄t+1 + d0)

2 + r̄t+1(r̄t+1 + d0)

[√
max{Gy,t, Qt} − s

√
Qt

]

+

)
. (6)

To conclude the proof, we use the following UNIXGRAD ªanytime online-to-batch conversionº [14]

bound:

f(x̂t)− f(x⋆) ≤
t∑

k=0

ωk∑t
i=0 ωi

⟨∇f(x̂k), xk+1 − x⋆⟩ =
Rt∑t
k=0 ωk

, (7)

where the last equality is the second and final time the proof uses the noiseless gradient assumption.

Dividing eq. (6) by

t∑

k=0

ωk

Lem. 25

≥ 1

2
r̄tα

2
t =

1

2
r̄t

(
t∑

k=0

r̄k/r̄t

)2

≥ 1

2
r̄t+1

(
t∑

k=0

r̄k/r̄t+1

)2

, (8)

and employing (7) yields the suboptimality bound (4).
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3.2. Iterate stability

In the discussion following Proposition 3 above, we provisionally imagined that the iterates were

bounded (r̄t ≤ D for all t) and argued that in this case simply setting Gx,t = Qt−1 and Gy,t = Qt

suffices for obtaining optimal rates whenever D = O(d0). However, in unconstrained settings this

choice of step size is hopeless, as it makes ηx,0 infinite, implying divergence at the first step!3

In the following proposition, we identify two conditions that together guarantee the iterates

remain appropriately bounded. The complete proof appears in Section A.2.

Proposition 4 In the noiseless setting (Assumption 2), let s > 0 and define ct = 12 log2+

(
s+Qt

s

)
.

If rϵ ≤ d0 and the U-DOG step sizes (2) satisfy (i) Gy,t ≥ c2t (s+Qt) (with Gx,0 ≥ 144s), and (ii)
max{∥xt+1 − yt∥, ∥yt+1 − xt+1∥} ≤ 2r̄t

ct−1
for all t ≥ 0, then we have

d̄t ≤ 2d0 and r̄t ≤ 4d0 for all t ≥ 0.

Let us briefly explain the two requirements in Proposition 4. Requirement (i) folds two condi-

tions into one. The first is that we increase the UNIXGRAD denominator by a logarithmic factorÐ

this is analogous to the step size attenuation necessary to ensure the stability of DOG (i.e., the

T-DOG step size [27, Section 3.3]). The second is more subtle, requiring that Gy,t upper bound Qt

(rather than Qt−1 as in UNIXGRAD and Proposition 3) and hence depend on ∥gt − mt∥. This is

essential for guaranteeing stability but is also the cause of considerable technical difficulty in the

noisy setting. Requirement (ii) simply asks that U-DOG iterates at time t move by no more than a

fraction of the estimated distance to optimality r̄t; a reasonable requirement if the estimate is good.

The proof of Proposition 4 is a careful application of the T-DOG stability proof [27, Proposi-

tion 2] to the U-DOG template. The key to the proof is the following modification of the UNIX-

GRAD online-to-batch conversion bound (7), which states that for any optimum x⋆ we have

R′
t :=

t∑

k=0

ηy,kαk ⟨gk, xk+1 − x⋆⟩
(⋆)
=

t∑

k=0

ηy,kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ ≥ 0, (9)

where (⋆) holds only in the noiseless setting. We algebraically manipulate R′
t similarly to the

weighted regret in the proof of Proposition 3. Writing Q′
t = c2t−1(s+Qt), we obtain

0 ≤ R′
t ≤

t∑

k=0

(
d2k − d2k+1 +

qkr̄
2
k√

Gy,kQ
′
k

+

√
Q′

k −
√

Gx,k√
Gy,k

(
∥xk+1 − yk∥2 + ∥xk+1 − yk+1∥2

)
)
.

Our requirements Gy,k ≥ c2t (s + Qt) (which entails Gx,k ≥ Gy,k−1 ≥ c2t−1(s + Qt−1)) and

∥xk+1 − yk∥2 + ∥xk+1 − yk+1∥2 ≤ 8r̄2k
c2k−1

, allow us, with some more algebra, to bound the last

two summands by
9qk r̄

2
k

ck(s+Qk)
. From here, the proof proceeds identically to the T-DOG analysis [27,

Section 3.3]: we get that
∑t

k=0
9q2k r̄k

ck(s+Qk)
≤ r̄2t

16 by the choice of ct, and substituting back obtain that

d2t+1 ≤ d20 +
r̄2t
16 , which by straightforward induction implies the desired bounds on d̄t and r̄t.

3. For constrained domains, however, this choice results in a valid scheme where the first step jumps to the domain

boundary. Indeed, UNIXGRAD also behaves this way for sufficiently scaled-up instances since it uses a fixed, arbi-

trary value for ηx,0. This underscores UNIXGRAD’s strong reliance on the bounded domain assumption.

7
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3.3. Rate of convergence in the noiseless case

With the conditional stability guarantee of Proposition 8 in place, we are ready to face a cen-

tral challenge: finding step sizes ηx,t, ηy,t that satisfy the proposition’s conditions but still lead

to good rates of convergence in the smooth case. Our solution is (recalling the notation Mt =
maxk≤t{α2

k∥mk∥2}):

ηx,t =
r̄t

12 log2+

(
∥m0∥2+Qt−1

∥m0∥2
)√

max{∥m0∥2 +Qt−1,Mt}

ηy,t =
r̄t

12 log2+

(
∥m0∥2+Qt

∥m0∥2
)√

max{∥m0∥2 +Qt,Mt}
.

(10)

Clearly, the step sizes (10) satisfy the first condition in Proposition 4 with s = ∥m0∥2. To see

why the second condition holds, note that, since
√
Mt ≥ αt∥mt∥, we have ηx,t ≤ r̄t

ctαt∥mt∥ . By the

contractive property of projections, we therefore have

∥xt+1 − yt∥ ≤ ηx,tαt∥mt∥ ≤ r̄t
ct

≤ 2r̄t
ct

.

A similar argument also shows that ∥xt+1 − yt+1∥ ≤ 2r̄t
ct

, fulfilling the conditions of Proposition 4

(see Lemma 19).

Now the question becomes: how does the introduction of Mt into the step size affect subopti-

mality? In the non-smooth case the effect is minimal, as we anyway bound Qt with O(L2t3), and

Mt = O(L2t2) is of a lower order. In the smooth case, however, Mt is potentially more harmful,

since while Proposition 3 allows us to cancel the dependence on Qt by setting s = ct, it leaves Mt

hanging in the numerator, yielding f(x̂t)− f(x⋆) ≤ O
(

1
α2
t

(
c
3/2
t βd20 + ctd0

√
Mt

))
.

Fortunately, smoothness allows us to relate Mt back to the optimality gap f(x̂t) − f(x⋆). In

particular, in the unconstrained setting K = R
n we have

∥mt∥2 ≤ 2∥gt −mt∥2 + 2∥gt∥2 ≤ 2Qt/α
2
t + 4β[f(x̂t)− f(x⋆)],

where the last transition used that gt = ∇f(x̂t) in the noiseless setting. Combining this bound with

Proposition 3, we obtain

f(x̂t)− f(x⋆) ≤ O



c
3/2
t βd20 +

√
c2tβd

2
0maxk≤t α

2
k[f(x̂k)− f(x⋆)]

α2
t


 ,

from which f(x̂t)−f(x⋆) ≤ O
(
c2tβd

2
0

α2
t

)
follows by induction. Thus we arrive at our final guarantee

in the noiseless case: Theorem 5 (see full proof in Section A.3).

Theorem 5 In the noiseless setting (Assumption 2) with K = R
n and rϵ ≤ d0, using the step sizes

eq. (10), we get that d̄T ≤ 2d0, r̄T ≤ 4d0 and, for τ = argmaxt<T

∑
i≤t

r̄i
r̄t+1

, the suboptimality is

f(x̂τ )− f(x⋆) ≤ O

(
crϵ,T min

{
βd20
T 2

,
Ld0√
T

})
,

where crϵ,T = log4+

(
1 +

T min{βd20,Ld0}
f(x0)−f(x⋆)

)
log2+

(
d0
rϵ

)
.
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4. Analysis in the stochastic case

In this section, we extend the U-DOG guarantees to the noisy case. We start by assuming that the

gradient noise is bounded, a setting that captures most of the remaining technical challenges. We

then generalize our results to sub-Gaussian noise by means of a black-box reduction [3]. Finally, we

specialize the U-DOG guarantee for mini-batches of bounded gradient estimates and conclude with

a discussion of the (weak) dependence of our result on problem parameter bounds. Throughout this

section, we denote the empirical variance at time t by

Vt :=
1

t+ 1

t∑

k=0

(
∥gt −∇f(x̂t)∥2 + ∥mt −∇f(ẑt)∥2

)
. (11)

We also recall the notation

θt,δ := log
60 log(6t)

δ
.

4.1. Analysis with bounded noise

We formalize the bounded noise assumption as follows.

Assumption 6 In addition to Assumption 1, we assume that ∥G(x)−∇f(x)∥ ≤ b(x) with proba-

bility 1 for all x ∈ K, for some (known4) function b : K → R+.

For the iterates of U-DOG we define

bt := b(x̂t) and b̄t := max
{
max
i≤t

bi, b(ẑ0)
}
. (12)

With the assumption and notation in place, we state the stochastic equivalent of Proposition 3 in the

following (see proof in Section B.1).

Proposition 7 In the bounded noise setting (Assumption 6), suppose the U-DOG step sizes (2)

satisfy Gx,t ≥ Qt−1 for every t ≥ 0. Then for any B > 0, T ∈ N, and δ ∈ (0, 1), with probability

at least 1− δ − P[b̄T−1 > B] we have, for all t < T and s ≥ 0,

f(x̂t)− f(x⋆) ≤ O


RHSeq. (4) +

(1 + s)(r̄t+1 + d0)
√
t3θt+1,δVt + (tθt+1,δB)2

(∑t
k=0 r̄k/r̄t+1

)2




where RHSeq. (4) =
s3/2β(r̄t+1+d0)

2+(r̄t+1+d0)
[√

max{Gy,t,Qt}−s
√
Qt

]

+

(
∑t

k=0
r̄k/r̄t+1)

2 as in Proposition 3.

Proposition 7 is a fairly straightforward extension of its noiseless counterpart. The bound (5)

continues to hold if we replace Qt with Q̂t =
∑t

k=0 α
2
k min{∥gk −mk∥2, ∥∇f(x̂k)−∇f(ẑk)∥2}.

Proceeding as in the proof of Proposition 3, we conclude that

f(x̂t)− f(x⋆) ≤ O

(
RHSeq. (4) +

s(r̄t+1+d0)
(

Q
1/2
t −2Q̂

1/2
t

)

+
∑t

k=0
ωk⟨∇f(x̂k)−gk,xk+1−x⋆⟩

(
∑t

k=0
r̄k/r̄t+1)

2

)
.

4. We may view b as a coarse upper bound on the true noise magnitude, as it only affects low order terms in our bounds.

9
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We show that Q
1/2
t − 2Q̂

1/2
t ≤ O

(√
t3Vt

)
by straightforward manipulation. Furthermore, using a

time-uniform empirical-Bernstein-type concentration bound [26, 27] (Lemma 21) to show that (with

the appropriate high probability) the martingale difference sum
∑t

k=0 ωk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩
is bounded by O

(
r̄td̄t+1

√
t3θt+1,δVt + (tθt+1,δB)2

)
.

Next, we extend our iterate stability guarantee to the stochastic setting (see proof in section B.2).

Proposition 8 In the bounded noise setting Assumption 6, let s > 0, T ∈ N and δ ∈ (0, 1), and

define ct = 400θT,δ log
2
+

(
s+Qt

s

)
. Suppose that rϵ ≤ d0 and the U-DOG step sizes (2) satisfy, with

probability 1, for all t ≥ 0: (i) Gy,t ≥ c2t (s + Qt) (with Gx,0 ≥ 4002θ2T,δs), (ii) max{∥xt+1 −
yt∥, ∥yt+1 − xt+1∥} ≤ 2r̄t

ct−1
, (iii)

√
Gy,t ≥ ctαtmax{∥∇f(x̂t)− gt∥, ∥∇f(x̂t)−mt∥}, and (iv)

ηy,t is independent of gt given x0, . . . , xt. Then, we have with probability of at least 1− δ,

d̄t ≤ 2d0 and r̄t ≤ 4d0 for all t < T.

Conditions (i) and (ii) of Proposition 8 are identical to their noiseless counterparts in Propo-

sition 4, while conditions (iii) and (iv) are new and facilitate the application of a concentration

bound to the weighed regret R′
t defined in eq. (9). In particular, the condition (iv) ensures that∑t

k=0 ηy,kαk ⟨gk −∇f(x̂k), xk+1 − x⋆⟩ is a martingale difference sequence, and condition (iii)
guarantees boundedness required by our concentration bound (Lemma 22). With this high proba-

bility bound in place, the proof continues in the same vein as the noiseless case.

When searching for step sizes meeting the conditions of Proposition 8 we encounter two chal-

lenges. First, condition (iii) asks Gy,t to be large compared to a quantity depending on the exact

gradient ∇f(x̂t), which we cannot access directly. We solve it using the bounds given in (12). Sim-

ply adding c2t (t+1)2b̄2t ≥ c2tα
2
t b

2
t to Gy,t guarantees that

√
Gy,t ≥ ctαt∥∇f(x̂t)− gt∥. Moreover,

using ∥u∥2 + ∥v∥2 ≥ 1
2∥v + u∥2, we have

∥gt −mt∥2 + b̄
2
t ≥ ∥gt −mt∥2 + ∥∇f(x̂t)− gt∥2 ≥

1

2
∥∇f(x̂t)−mt∥2.

Therefore, taking Gy,t = c2t (s + 2Qt + 2(t + 1)2b̄2t ) fulfills condition (iii). However, it violates

condition (iv) which leads us to the second challenge: how to avoid dependence on gt? To address

this challenge, we employ the somewhat unusual trick of drawing a fresh stochastic gradient g̃t ∼
G(x̂t) which is, by construction, independent of gt given x̂t. We can now replace the forbidden

∥gt − mt∥ with the valid upper bound 2∥g̃t − mt∥ + 8b̄t and thus satisfy conditions (i) and (iii)
without violating condition (iv).

To satisfy condition (ii) we introduce Mt to Gy,t as done in the noiseless setting and make

another modification to ensure the monotonicity required in (2). Writing,

q̃t := 2α2
t ∥g̃t −mt∥2 , Q̄t :=

t∑

k=0

max{qk, q̃k} and pt := 8(t+ 1)2b̄2t , (13)

our final step sizes are:

ηx,t =
r̄t

400θT,δ log
2
+

(
1 + pt−1+Q̄t−1

∥m0∥2+p0

)√
max

{
∥m0∥2 + p0 + pt−1 + Q̄t−1,Mt

}

ηy,t =
r̄t

400θT,δ log
2
+

(
1 + pt+q̃t+Q̄t−1

∥m0∥2+p0

)√
max

{
∥m0∥2 + p0 + pt + q̃t + Q̄t−1,Mt

} .
(14)

10
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Similar to the T-DOG step sizes [27, Section 3.3], our step sizes depend logarithmically on the

desired confidence level δ and double-logarithmically on the maximum iteration budget T .

With all the pieces in place, we now state our main result (see proof in Section B.3).

Theorem 9 In the bounded noise setting (Assumption 6) with K = R
n, for any T ∈ N and

δ ∈ (0, 15), consider U-DOG with step sizes (14). With probability at least 1−5δ, we have d̄T ≤ 2d0,

r̄T ≤ 4d0 and for τ = argmaxt<T

∑
i≤t

r̄i
r̄t+1

and b⋆ := maxx:∥x−x⋆∥≤2d0{b(x)} we have

f(x̂τ )− f(x⋆) ≤ O

(
cδ,rϵ,T

(
min

{
βd20
T 2

,
Ld0√
T

}
+

d0
√
VT√
T

+
d0b⋆
T

))
, (15)

where cδ,rϵ,T = log2
(
log+(T )

δ

)
log4+

(
1 + T

b⋆+min{βd20,Ld0}
f(x0)−f(x⋆)

)
log2+

(
d0
rϵ

)
and Vt, defined in eq. (11),

is the empirical noise variance.

We remark that under our assumptions it is straightforward to replace the empirical variance Vt

in eq. (15) with its expectation without altering other non-logarithmic terms in the bound, e.g., via

Hoeffding’s inequality.

4.2. From bounded to sub-Gaussian noise

The bounded noise assumption makes analysis convenient but is not entirely satisfactory since av-

eraging independent bounded-noise estimators does not reduce the probability 1 noise bound, pre-

venting us from making statements about mini-batch scaling. To address this issue, we consider the

following standard assumption.

Assumption 10 In addition to Assumption 1, we assume that ∥G(x) − ∇f(x)∥ is σ2(x)-sub-

Gaussian for all x ∈ K, for some (known) σ : K → R+. That is,

P(∥G(x)−∇f(x)∥ ≥ z) ≤ 2 exp
(
−z2/σ2(x)

)

for all z ≥ 0 and x ∈ K.

To move from bounded to sub-Gaussian we utilize a reduction due to Attia and Koren [3]

that allows us to essentially replace b(·) with σ(·) in Theorem 9 at the cost of additional log-

arithmic factors. To that end, we define σ̄t := max{maxi≤t σ(x̂k), σ(ẑ0)}, as well as σ⋆ :=

maxx:∥x−x⋆∥≤2d0 σ(x) and ςt,δ := 3log1/2
(15(t+1)2

δ

)
. With this notation in hand, we state our

guarantee for the sub-Gaussian setting (see proof in Section B.4).

Corollary 11 Consider the sub-Gaussian noise setting (Assumption 10) with K = R
n and δ ∈

(0, 16), using the step sizes (14) with b̄t = σ̄tςt,δ, then with probability at least 1 − 6δ we get that

d̄T ≤ 2d0, r̄T ≤ 4d0, and the suboptimality bound (15) holds for b⋆ = σ⋆ςT−1,δ.

4.3. Corollary: mini-batch of bounded noise

Finally, we leverage our result for sub-Gaussian noise to demonstrate that U-DOG automatically

benefits from increasing mini-batch size (see proof in Section B.5).
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Assumption 12 In addition to Assumption 1, we assume that G(x) is the average of B unbiased

estimates of ∇f(x), each bounded by L with a known upper bound L̂ ≥ L.

Corollary 13 In the mini-batch setting (Assumption 12) with K = R
n, for any T ∈ N and δ ∈

(0, 16), consider U-DOG with step sizes (14) where b̄t =
√
2 L̂√

B
ςt,δ. With probability at least 1−6δ

we have d̄T ≤ 2d0, r̄T ≤ 4d0 and, for τ = argmaxt<T

∑
i≤t

r̄i
r̄t+1

,

f(x̂τ )− f(x⋆) ≤ O


cδ,rϵ,T


βd20

T 2
+

(
L+ L̂/

√
T
)
d0

√
TB




 ,

where cδ,rϵ,T =
√

log+
(
T
δ

)
log2

(
log+(T )

δ

)
log4+

(
1 + T

L̂+min{βd20,Ld0}
f(x0)−f(x⋆)

)
log2+

(
d0
rϵ

)
.

4.4. Discussion: how parameter-free is our algorithm?

With our results established, we now discuss in more detail the extent to which our algorithms and

complexity bounds are free of a-priori knowledge of problem parameters. U-DOG requires a lower

bound rϵ on the initial distance to the optimum d0, and pointwise upper bounds bt on the noise mag-

nitude at each iteration. Theorem 9 provides suboptimality bounds that depend poly-logarithmically

on d0
rϵ

which quantifies how rϵ underestimates d0. Many works [e.g., 7, 9, 15, 16, 27, 28, 39, 41, 49]

treat such logarithmic dependence as the definition of a parameter-free algorithm, and in that strict

sense our method is certainly parameter-free. The noise bounds impact our suboptimality guar-

antees polynomially via the additive term b⋆/T where b⋆ := maxx:∥x−x⋆∥≤2d0{b(x)}, potentially

implying greater sensitivity to problem parameters. Neverthless, we argue that our method fully

deserve the title ªparameter-freeº for the following reasons.

1. The noise bound only contributes a low-order error term. To see why b⋆/T is low-order, let

b̂T be the largest stochastic gradient error in the first T iterations of U-DOG. Then the empirical

variance satisfies VT = O
(
b̂
2
T

)
and the noise-dependent part of Theorem 9 is Õ

(
d0b̂T√

T
+ d0b⋆

T

)
.

Therefore, as long as b⋆/b̂T = O(
√
T ) (i.e. the noise bound is loose by

√
T or less) we get the

near-optimal dependence on the unknown, true noise magnitude b̂T .

2. The low-order term and noise bound assumption are unavoidable. Recent work [4, Theorem

6] proves that any algorithm with logarithmic dependence on uncertainty in distance to optimal-

ity must suffer the low-order error term b⋆/T , and hence also require an a-priori noise bound

(concurrent work [10, 31] also shows similar results). Moreover, prior parameter-free algorithms

assume known bounds on stochastic gradient magnitude, which is stronger than assuming noise

bounds. In this sense, our method is as parameter-free as it gets.

3. The noise bound is often easy to obtain and vanishes as batch size grows. Corollary 13 and

Assumption 12 give a general setting where a noise bound is readily available. For a concrete

instantiation, consider logistic regression with normalized covariates. In this case L̂ = 1 and the

noise bound at batch size B is Õ (1/B), which decreases as the batch size grows.

12
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of ASGD is very sensitive to the tuning of both step size and momentum, with only the very best

values matching the performance of A-DOG. When using logarithmic instead of least-squares loss,

the test accuracy becomes more robust to large step size choices (see Figure 2 in the appendix). This

is partly because the log loss is Lispchitz which prevents complete divergence at any fixed step size.

In our preliminary non-convex experiments on neural network models (reported in detail in Sec-

tions G.3 and G.4), we find that U-DOG often fails to converge to competitive results, while A-DOG

is competitive with DOG on most VTAB tasks, but under-performs it for CIFAR-10 and ImageNet

fine-tuning, indicating that it is not a yet a viable general-purpose neural network optimizer.
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Appendix A. Proof for Section 3 (the noiseless setting)

A.1. Proof of Proposition 3

Proof Define

ρt :=
1√
Qt

and

Q̂t :=
t∑

k=0

α2
k min

{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}
.

Note that in the noiseless setting Q̂T = QT . However, most of the proof carries over to the noisy

setting as well. Therefore, until a later stage of the proof, we do not use that mt = ∇f(ẑt),
gt = ∇f(x̂t) and Q̂t = Qt in the noiseless setting.

Recall the notation η̃x,t =
1√
Gx,t

and η̃y,t =
1√
Gy,t

. Algebraic manipulation gives us that for

all k ≥ 0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤
r̄2kα

2
kρk
2

∥gk −mk∥2 −
t∑

k=0

1

2ρk
∥xk+1 − yk∥2

+

(
1

2ρk
− 1

2η̃x,k

)(
∥xk+1 − yk∥2 + ∥xk+1 − yk+1∥2

)

+
1

2η̃y,k

(
∥x⋆ − yk∥2 − ∥x⋆ − yk+1∥2

)
;

see Lemma 16 for a proof. Therefore, by summing over both sides of the inequality we get that for

all t ≥ 0

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤
r̄2t
2

t∑

k=0

α2
k∥gk −mk∥2√∑k
j=0 α

2
j∥gj −mj∥2

︸ ︷︷ ︸
(A)

−
t∑

k=0

1

2ρk
∥xk+1 − yk∥2

︸ ︷︷ ︸
(B)

+ 4r̄2t+1

t∑

k=0

[
1

ρk
− 1

η̃x,k

]

+︸ ︷︷ ︸
(C)

+
1

2

t∑

k=0

1

η̃y,k

(
d2k − d2k+1

)

︸ ︷︷ ︸
(D)

.

Bounding (A): We have
∑t

k=0
α2
k∥gk−mk∥2

√

∑k
j=0

α2
j∥gj−mj∥2

≤ 2
√∑t

k=0 α
2
k∥gk −mk∥2; see Lemma 28

with sk = α2
k∥gk −mk∥2, and therefore

r̄2t
2

t∑

k=0

α2
k∥gk −mk∥2√∑k
j=0 α

2
j∥gj −mj∥2

=
r̄2t
ρt
.
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Bounding (B): We have that for all k ≥ 0

∥∇f(x̂k)−∇f(ẑk)∥2
(1)

≤ β2∥x̂k − ẑk∥2

=
β2r̄2kα

2
k(∑k

0=1 r̄iαi

)2 ∥xk+1 − yk∥2

(2)

≤ 4β2

α2
k

∥xk+1 − yk∥2,

where (1) is from the β-smoothness of f , and (2) is because r̄kα
2
k ≤ 2

∑k
0=1 r̄iαi by Lemma 25 .

Therefore,

−∥xk+1 − yk∥2 ≤ −α2
k∥∇f(x̂k)−∇f(ẑk)∥2

4β2
.

Thus,

−
t∑

k=0

1

2ρk
∥xk+1 − yk∥2 ≤ −

t∑

k=0

α2
k∥∇f(x̂k)−∇f(ẑk)∥2

8β2ρk

Bounding (C): As 1
ρk

− 1
η̃x,k

is not necessarily non-negative for all k ∈ {0, . . . , t} we define the

set of indices for which it is non-negative as

I ≜

{
k ∈ {0, 1, . . . , t} :

1

ρt
− 1

η̃x,t
≥ 0

}
.

Define ik as the k-th smallest index in I , and define i|I|+1 := t+ 1. We note that for all k ∈ I then

ik ≤ ik+1 − 1 ≤ t. Therefore,

(C) = 4r̄2t+1

|I|∑

k=1

(
1

ρik
− 1

η̃x,ik

)
≤ 4r̄2t+1

|I|∑

k=1

(
1

ρ[ik+1−1]
− 1

η̃x,ik

)

≤ 4r̄2t+1

ρt
+ 4r̄2t+1

|I|∑

k=2

(
1

ρ[ik−1]
− 1

η̃x,ik

)
≤ 4r̄2t+1

ρt
+ 4r̄2t+1

t−1∑

k=0

[
1

ρk
− 1

η̃x,k+1

]

+

.

Bounding (D):

1

2

t∑

k=0

1

η̃y,t

(
d2k − d2k+1

)
=

d20
2η̃y,0

− d2t+1

2η̃y,t
+

1

2

t∑

k=0

(
1

η̃y,k
− 1

η̃y,k−1

)
d2k

≤ d20
2η̃y,0

− d2t+1

2η̃y,t
+

d̄2t
2

t∑

k=0

(
1

η̃y,k
− 1

η̃y,k−1

)
.

By performing telescopic summation we obtain

(D) ≤ d̄2t+1 − d2t+1

2η̃y,t
.
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Let s ∈ argmaxk≤t+1 dk, we have that d̄2t+1 − d2t+1 = d̄2s − d2t+1 =
(
d̄s − dt+1

)(
d̄s + dt+1

)
≤

∥ys − yt+1∥
(
d̄s + dt+1

)
≤ (r̄s + rt+1)

(
d̄s + dt+1

)
≤ 4r̄t+1d̄t+1. Thus,

(D) ≤ 2r̄t+1d̄t+1

η̃y,t
.

Bounding (A) + (B) + (C) + (D): Combining all of the above, we obtain that

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 5r̄t+1

(
r̄t+1 + d̄t+1

)
max

{
1

ρt
,

1

η̃y,t

}

+ 4r̄2t+1

t−1∑

k=0

[
1

ρk
− 1

η̃x,k+1

]

+

−
t∑

k=0

α2
k∥∇f(x̂k)−∇f(ẑk)∥2

8β2ρk
.

Therefore, as for any we have that Gx,k ≥ Qk−1,

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 5r̄t+1

(
r̄t+1 + d̄t+1

)√
max{Gy,t, Qt} −

t∑

k=0

α2
k∥∇f(x̂k)−∇f(ẑk)∥2

8β2ρk
.

Let s ≥ 0 and recall that 1
ρk

=
√
Qk. We get that

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 10sr̄t+1

(
r̄t+1 + d̄t+1

)√
Q̂t −

t∑

k=0

α2
k∥∇f(x̂k)−∇f(ẑk)∥2

8β2

√
Qk

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(
s
√
Qt − 2s

√
Q̂t

)

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)
. (16)

We have that

10sr̄t+1

(
r̄t+1 + d̄t+1

)√
Q̂t −

t∑

k=0

α2
t ∥∇f(x̂t)−∇f(ẑt)∥2

8β2

√
Qk

≤ 10sr̄t+1

(
r̄t+1 + d̄t+1

)√
Q̂t −

t∑

k=0

α2
k min

{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}

8β2

√
Q̂k.

Define B2
k = α2

k min
{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}
, c1 = 10sr̄t+1(r̄t+1 + d̄t+1), and c2 =

8β2. Lemma 27 gives us that for all t ≥ 0

c1

√√√√
t∑

k=0

B2
k −

t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j ≤ 2c

3/2
1 c

1/2
2 .

Therefore,

10sr̄t+1

(
r̄t+1 + d̄t+1

)√
Q̂t −

t∑

k=0

α2
t ∥∇f(x̂t)−∇f(ẑt)∥2

8β2

√
Qk

≤ 2
(
10sr̄t+1

(
r̄t+1 + d̄t+1

))3/2
(8β)1/2 ≤ 180s3/2r̄t+1

(
r̄t+1 + d̄t+1

)2
β.
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Combining this result with eq. (16) yields that for all t ≥ 0 and s ≥ 0

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 180s3/2r̄t+1

(
r̄t+1 + d̄t+1

)2
β

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(
s
√
Qt − 2s

√
Q̂t

)

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)
. (17)

Lemma 14 gives us that

f(x̂t)− f(x⋆) ≤
1

∑t
k=0 r̄kαk

t∑

k=0

r̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ .

Now, by additionally using the fact that in the noiseless setting

Q̂t = Qt and

t∑

k=0

r̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ =
t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩

we get that

f(x̂t)− f(x⋆) ≤ 180s3/2
r̄t+1∑t

k=0 r̄kαk

β
(
r̄t+1 + d̄t+1

)2

+ 5
r̄t+1∑t

k=0 r̄kαk

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)
.

Finally, by using the fact that d̄t+1 ≤ d0 + r̄t+1 and because r̄kα
2
k ≤ 2

∑k
0=1 r̄iαi for all k ≥ 0

(Lemma 25), we obtain that

f(x̂t)− f(x⋆) ≤ O

(
s3/2β(r̄t+1 + d0)

2 + (r̄t+1 + d0)
[√

max{Gy,t, Qt} − s
√
Qt

]
+(∑t

k=0 r̄k/r̄t+1

)2

)
.

A.2. Proof of Proposition 4

Proof For any h > 0 (in this case h = 12), define

ct := h log2+

(
s+Qt

s

)
and

ρt :=
1

ct−1
√
s+Qt

.
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Lemma 16 gives us that, for all t ≥ 0,

r̄tαt ⟨gt, xt+1 − x⋆⟩ ≤
r̄2tα

2
t ρt
2

∥gt −mt∥2 +
(

1

2ρt
− 1

2η̃x,t

)(
∥xt+1 − yt∥2 + ∥xt+1 − yt+1∥2

)

+
1

2η̃y,t

(
∥x⋆ − yt∥2 − ∥x⋆ − yt+1∥2

)
.

From the definitions of ρt and η̃x,t = 1/
√

Gx,t ≤ 1/
√

Gy,t−1 ≤ 1/ρt−1 we obtain that

1

2ρt
− 1

2η̃x,t
≤ c2t−1

2
ρt(Qt −Qt−1);

See proof in Lemma 26. Now, because we also have that max{∥xt+1−yt∥, ∥yt+1−xt+1∥} ≤ 2r̄t
ct−1

,

we get

r̄tαt ⟨gt, xt+1 − x⋆⟩ ≤
9

2
r̄2t ρtα

2
t ∥gt −mt∥2 +

1

2η̃y,t

(
d2t − d2t+1

)
.

Thus,

2η̃y,tr̄tαt ⟨gt, xt+1 − x⋆⟩ ≤ 9r̄2t η̃y,tρtα
2
t ∥gt −mt∥2 +

(
d2t − d2t+1

)
.

Consequentially, by summing the two sides of the inequality, we get that for all t ≥ 0

2

t∑

k=0

η̃y,kr̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 9

t∑

k=0

r̄2kη̃y,kρkα
2
k∥gk −mk∥2 +

t∑

k=0

(
d2k − d2k+1

)

≤ 9r̄2t
h2

t∑

k=0

Qk −Qk−1

(s+Qk) log
2
+

(
s+Qk

s

) +
t∑

k=0

(
d2k − d2k+1

)
.

Lemma 30 gives us that

t∑

k=0

Qk −Qk−1

(s+Qk) log
2
+

(
s+Qk

s

) ≤ 1.

Therefore, we obtain that

2

t∑

k=0

η̃y,kr̄kαk ⟨gk, xk+1 − x⋆⟩ ≤
9r̄2t
h2

+

t∑

k=0

(
d2k − d2k+1

)
.

Thus,

2
t∑

k=0

η̃y,kr̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ ≤
9r̄2t
h2

+ 2
t∑

k=0

η̃y,kr̄kαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩

+

t∑

k=0

(
d2k − d2k+1

)
.
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Consequentially, as Lemma 17 gives us that

t∑

k=0

η̃y,kr̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ ≥ 0,

we get that

0 ≤ 9r̄2t
h2

+ 2

t∑

k=0

ηy,kαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩+
t∑

k=0

(
d2k − d2k+1

)
.

Therefore, we get that for all t ≥ 0

d2t+1 ≤
9r̄2t
h2

+ 2

t∑

k=0

ηy,kαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩+ d20. (18)

As we are in the noiseless case, and h = 12, we get that for all t ≥ 0

d2t+1 ≤
r̄2t
16

+ d20

≤
(
d0 +

1

4
r̄t

)2

.

Finally, Lemma 18 now gives us that for all t ≥ 0

dt ≤ 2d0 and rt ≤ 4d0.

A.3. Proof of Theorem 5

Proof Define

ct = 12 log2+

(∥m0∥2 +Qt

∥m0∥2
)
.

From Lemma 19, we get that for all t ≥ 0 the distance between iterates is not large:

max{∥xt+1 − yt∥, ∥xt+1 − yt+1∥} ≤ 2r̄t
ct−1

.

Now, we fulfill all the conditions for Proposition 4 and therefore, for all t ≥ 0

d̄t ≤ 2d0 and r̄t ≤ 4d0.

Proposition 3 gives that for all t ≥ 0 and for all s ≥ 0

f(x̂t)− f(x⋆) ≤ O

(
s3/2β(r̄t+1 + d0)

2 + (r̄t+1 + d0)
[√

Gy,t − s
√
Qt

]
+(∑t

k=0 r̄k/r̄t+1

)2

)
.

27



KREISLER IVGI HINDER CARMON

By using the fact that r̄t ≤ 4d0, we get that for all t ≥ 0

f(x̂t)− f(x⋆) ≤ O

(
s3/2βd20 + d0

[√
Gy,t − s

√
Qt

]
+(∑t

k=0 r̄k/r̄t+1

)2

)
. (19)

Recall that

τ = argmax
t<T

∑

i≤t

r̄i
r̄t+1

.

To show the non-smooth rate, we set s = 0 and obtain

√
Gy,τ ≤ cT

√√√√ max
k≤T−1

{
α2
k∥mk∥2

}
+

T−1∑

k=0

α2
k∥gk −mk∥2 ≤ cT

√
T 2L2 + T 3L2 ≤ 2LT 3/2cT .

This result, with eq. (19), gives us that

f(x̂τ )− f(x⋆) ≤ O

(
Ld0T

3/2

(
∑τ

k=0 r̄k/r̄t+1)
2 cT

)
. (20)

To show the smooth rate, setting s = 2ct+1 yields

√
Gy,t − s

√
Qt ≤ ct+1

(√
Qt +Mt − 2

√
Qt

)
≤ ct+1

(√
Mt −

√
Qt

)
.

For some κt ≤ t we have that
√
Mt = ακt∥mκt∥. In addition, the smoothness of f implies that

∥∇f(z)∥2 ≤ 2β[f(z)−f(x⋆)] for all z ∈ X . Combining this fact with the triangle inequality gives

us that, in the noiseless setting,

ακt∥mκt∥ = ακt∥∇f(ẑκt)∥ ≤ ακt∥∇f(x̂κt)−∇f(ẑκt)∥+ ακt

√
2β
√
f(x̂κt)− f(x⋆).

Thus,

√
Mt ≤

√
Qt + ακt

√
2β
√

f(x̂κt)− f(x⋆).

Therefore,

√
Gy,t − s

√
Qt ≤ ακt

√
2c2t+1β

√
f(x̂κt)− f(x⋆).

This result, together with eq. (19), give us that for all t ≥ 0, there exist κt ≤ t such as

f(x̂t)− f(x⋆) ≤ O



c
3/2
t+1βd

2
0 + ακt

√
c2t+1βd

2
0

√
f(x̂κt)− f(x⋆)

(∑t
k=0 r̄k/r̄t+1

)2


 .

Using the previous inequality and Lemma 15 we obtain that for all t ≥ 0 that

f(x̂t)− f(x⋆) ≤ O

(
βd20(∑t

k=0 r̄k/r̄t+1

)2 c
2
t+1

)
. (21)
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Combining the result from eq. (20) and eq. (21) gives

f(x̂τ )− f(x⋆) ≤ O

(
min

{
βd20, Ld0T

3/2
}

(
∑τ

k=0 r̄k/r̄t+1)
2 c2T

)
. (22)

Lemma 29 gives us that

τ∑

k=0

r̄k/r̄t+1 ≥
1

e

(
T

log+(r̄T /rϵ)
− 1

)
.

Thus, if T ≥ 2 log+(r̄T /rϵ) then

1∑τ
k=0 r̄k/r̄t+1

≤ O

(
1

T
log+

(
r̄T
rϵ

))
.

Therefore, from eq. (22), we obtain

f(x̂τ )− f(x⋆) ≤ O

(
min

{
βd20, Ld0T

3/2
}

T 2
c2T log2+

(
r̄T
rϵ

))
. (23)

We have that

cT ≤ O

(
log2+

(∥m0∥2 +QT−1

∥m0∥2
))

(i)

≤ O

(
log2+

(
1 +

T 3min{βd0, L}
∥∇f(ẑ0)∥2

))
≤ O

(
log2+

(
1 + T

min
{
βd20, Ld0

}

f(x0)− f(x⋆)

))
,

due to (i) the noiseless setting and f being β-smooth and L-Lipschitz, and (ii) convexity, which

implies f(x0)− f(x⋆) ≤ d0∥∇f(ẑ0)∥ Finally, from eq. (23), we obtain

f(x̂τ )− f(x⋆) ≤ O

(
min

{
βd20, Ld0T

3/2
}

T 2
log4+

(
1 + T

min
{
βd20, Ld0

}

f(x0)− f(x⋆)

)
log2+

(
d0
rϵ

))
. (24)

Finally, for T ≤ 2 log+(r̄T /rϵ) the theorem holds trivially since f(x̂τ )−f(x⋆) ≤ min
{
βd̄2τ , Ld̄τ

}

and d̄τ ≤ 2d0 by Proposition 8. Therefore,

f(x̂τ )− f(x⋆) ≤ O
(
min

{
βd20, Ld0

})
≤ O

(
min

{
βd̄20, Ld̄0

}

T 2
log2+(r̄T /rϵ)

)
,

and so the bound Equation (24) holds in all cases, concluding the proof.
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Appendix B. Proofs for Section 4 (the stochastic setting)

B.1. Proof of Proposition 7

Proof Define

Q̂t :=

t∑

k=0

α2
k min

{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}
.

Our proof continues from eq. (17) in the proof Proposition 3, which also holds for stochastic

gradients.

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 180s3/2r̄t+1

(
r̄t+1 + d̄t+1

)2
β

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(
s
√

Qt − 2s

√
Q̂t

)

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)
.

For all k ≥ 0

∥gk −mk∥2 ≤ 2∥∇f(x̂k)−∇f(ẑk)∥2 + 2∥(gk −∇f(x̂k))− (mk −∇f(ẑk))∥2

≤ 2min
{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}
+ 4∥mt −∇f(ẑt)∥2 + 4∥gt −∇f(x̂t)∥2.

Thus, for all k ≥ 0

∥gk −mk∥2 ≤ 2min
{
∥∇f(x̂k)−∇f(ẑk)∥2, ∥gk −mk∥2

}
+ 4∥mt −∇f(ẑt)∥2 + 4∥gt −∇f(x̂t)∥2.

Multiplying by α2
k, summing and recalling that αk ≤ k+1 implies Qt ≤ 2Q̂t+4(t+1)3Vt, where

Vt =
1

t+1

∑t
k=0

(
∥gt −∇f(x̂t)∥2 + ∥mt −∇f(ẑt)∥2

)
is the empirical variance. Substituting into

eq. (17), we get that

t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩ ≤ 180s3/2r̄t+1

(
r̄t+1 + d̄t+1

)2
β

+ 5r̄t+1

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)

+ 10sr̄t+1

(
r̄t+1 + d̄t+1

)√
(t+ 1)3Vt. (25)

Lemma 21 gives us that with probability of at least 1−δ−P
[
b̄T−1 > B

]
, for all t ∈ {0, 1, . . . , T − 1},

∣∣∣∣∣

t∑

k=0

r̄tαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩
∣∣∣∣∣ ≤ 8αtr̄t(r̄t+1 + d0)

√√√√θt+1,δ

t∑

k=0

∥∇f(x̂k)− gk∥2 + (θt+1,δB)2.
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Using the previous equality and the definition of Vt we obtain that

t∑

k=0

r̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩

=
t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩+
t∑

k=0

r̄kαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩

≤
t∑

k=0

r̄kαk ⟨gk, xk+1 − x⋆⟩+ 8αtr̄t(r̄t+1 + d0)

√
(t+ 1)θt+1,δVt + (θt+1,δB)2. (26)

Lemma 14 gives us that

f(x̂t)− f(x⋆) ≤
1

∑t
k=0 r̄kαk

t∑

k=0

r̄kαk ⟨∇f(x̂k), xk+1 − x⋆⟩ .

By combining the above inequality with eq. (25) and eq. (26), we obtain

f(x̂t)− f(x⋆) ≤ 180s3/2
r̄t+1∑t

k=0 r̄kαk

β
(
r̄t+1 + d̄t+1

)2

+ 5
r̄t+1∑t

k=0 r̄kαk

(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)

+ 10(1 + s)
r̄t+1∑t

k=0 r̄kαk

(
r̄t+1 + d̄t+1

)√
(t+ 1)3Vt + (θt+1,δB)2.

Now, as Lemma 25 gives us that r̄tα
2
t ≤ 2

∑t
k=0 r̄kαk, we obtain that

f(x̂t)− f(x⋆) ≤ 360s3/2
1

(∑t
k=0 r̄k/r̄t+1

)2β
(
r̄t+1 + d̄t+1

)2

+ 10
1

(∑t
k=0 r̄k/r̄t+1

)2
(
r̄t+1 + d̄t+1

)(√
max{Gy,t, Qt} − s

√
Qt

)

+ 20
1

(∑t
k=0 r̄k/r̄t+1

)2
(
r̄t+1 + d̄t+1

)√
(t+ 1)3Vt + (θt+1,δB)2.

Finally, because that d̄t+1 ≤ d0 + r̄t+1, we get that for any B > 0 with probability of at least

1− δ − P[b̄T−1 > B] we have that for all t < T and for any number s ≥ 0

f(x̂t)− f(x⋆) ≤ O


RHSeq. (4) +

(1 + s)(r̄t+1 + d0)
√
t3θt,δVt + (tθt,δB)2

(∑t
k=0 r̄k/r̄t+1

)2




where RHSeq. (4) =
s3/2β(r̄t+1+d0)

2+(r̄t+1+d0)
[√

max{Gy,t,Qt}−s
√
Qt

]

+

(
∑t

k=0
r̄k/r̄t+1)

2 is the error term appearing in

Proposition 3.
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B.2. Proof of Proposition 8

Proof The proof continues from eq. (18) in the proof of Proposition 4, which also holds for stochas-

tic gradients. Substituting h = 400 in eq. (18) gives, for all t ≥ 0,

d2t+1 ≤
9r̄2t
4002

+ 2
t∑

k=0

ηy,kαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩+ d20.

Now, Lemma 22 gives us that with probability at least 1− δ, for all t < T
∣∣∣∣∣

t∑

k=0

αkηy,k ⟨gk −∇f(x̂k), xk+1 − x⋆⟩
∣∣∣∣∣ ≤

12θt+1,δ

400θT,δ
r̄t(r̄t+1 + d0)

≤ 12θt+1,δ

400θT,δ
(r̄tr̄t+1 + r̄td0) ≤

12

400

(
1 +

3

400

)
r̄2t +

12

400
r̄td0.

Therefore,

d2t+1 ≤
81r̄2t
4002

+
24

400
r̄2t +

24

400
r̄td0 + d20 ≤

r̄2t
16

+
r̄td0
2

+ d0.

Thus, with probability of at least 1− δ, for all t < T

d2t+1 ≤
(
d0 +

1

4
r̄t

)2

.

Finally, Lemma 18 gives us that with probability of at least 1− δ for all t < T

dt ≤ 2d0 and rt ≤ 4d0.

B.3. Proof of Theorem 9

Proof Recall the notation

q̃t := 2α2
t ∥g̃t −mt∥2 , Q̄t :=

t∑

k=0

max{qk, q̃k} and pt := 8(t+ 1)2b̄2t ,

and that our step sizes are of the form (2) with

Gy,t = ĉ2t max
{
∥m0∥2 + p0 + pt + q̃t + Q̄t−1,Mt

}
,

where

ĉt = 400θT,δ log
2
+

(
1 +

pt + q̃t + Q̄t−1

∥m0∥2 + p0

)
.

We begin by verifying the conditions of Proposition 8 with s = ∥m0∥2 + p0, where condition

(iv) holds by construction. By Assumption 6 we have

∥gt − g̃t∥2 ≤ 2∥gt −∇f(x̂t)∥2 + 2∥g̃t −∇f(x̂t)∥2 ≤ 4b̄2t .
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Therefore, since t+ 1 ≥ αt, we have

q̃t + pt ≥ α2
t

(
2∥g̃t −mt∥2 + 2∥gt − g̃t∥2

)
≥ α2

t ∥gt −mt∥2 = qt,

and consequently

q̃t + pt + Q̄t−1 ≥ Qt.

Defining

ct = 400θT,δ log
2
+

(
1 +

Qt

∥m0∥2 + p0

)
,

we conclude that

Gy,t ≥ c2t max
{
∥m0∥2 + p0 +Qt,Mt

}
≥ c2t (∥m0∥2 + p0 +Qt)

so that condition (i) of Proposition 8 holds. Next, since

Gy,t ≥ c2t max{Qt,Mt} ≥ c2tα
2
t max{∥gt −mt∥2, ∥mt∥2},

Lemma 19 guarantees condition (ii) of Proposition 8. Finally, we note that

pt ≥ 8α2
t max{∥gt −∇f(x̂t)∥2, ∥g̃t −∇f(x̂t)∥2}

and

pt + q̃t ≥ α2
t

(
2∥mt − g̃t∥2 + 2∥g̃t −∇f(x̂t)∥2

)
≥ α2

t ∥mt −∇f(x̂t)∥2.

Therefore, as
√
Gy,t ≥ ct

√
pt + q̃t, condition (iii) of Proposition 8 holds.

As all the conditions for Proposition 8 hold, with probability of at least 1− δ, for all t ≥ 0

d̄t ≤ 2d0 and r̄t ≤ 4d0.

Recalling that b⋆ := maxx:∥x−x⋆∥≤2d0{b(x)}, this also implies that P[b̄T−1 > b⋆] ≤ δ.

We now combine the conclusions of Proposition 8 with Proposition 3 to obtain a suboptimality

bound for U-DOG. Substituting P(r̄T ≤ 4d0) ≤ δ and P[b̄T−1 > b⋆] ≤ δ into Proposition 7 we get

that, with probability at least 1− 3δ, for all t < T and s ≥ 0,

f(x̂t)− f(x⋆) ≤ O


s3/2βd20 + d0

[√
Gy,t − s

√
Qt

]
+
+ (1 + s)d0

√
t3θt+1,δVt + (tθt+1,δb⋆)

2

(∑t
k=0 r̄k/r̄t+1

)2


 .

(27)

To simplify Gy,t in the bound above, we invoke Lemma 23 which gives that, with probability at

least 1− δ − P[b̄T−1 > b⋆] ≥ 1− 2δ, for all t < T ,

Q̄t ≤ 5Qt + 80(t+ 1)3
√
θt+1,δVt + 2(t+ 1)2θt+1,δb

2
⋆,

and hence

√
Gy,t ≤ ĉt

√
Q̄t + 2Mt + 2pt = O

(
ĉt
√
Qt + ĉt

√
Mt + ĉtθT,δ

√
t3Vt + t2b2⋆

)
.
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Combining this with the bound (27) and replacing s with sĉt
√
3, we get that with probability at least

1− 5δ, for all t < T and s ≥ 0,

f(x̂t)− f(x⋆) ≤ O



s3/2ĉ

3/2
t βd20 + ĉtd0

([
(1− s)

√
Qt +

√
Mt

]
+
+ (1 + s)θT,δ

√
t3Vt + t2b2⋆

)

(∑t
k=0 r̄k/r̄t+1

)2


 .

(28)

The remainder of the proof parallels the proof of Theorem 5, where we specialize our bound to

the Lipschitz and smooth cases by choosing different values of s. For the Lipschitz case, we use the

facts that

Qt ≤ 4
∑

k≤T

α2
t

(
∥∇f(x̂k)∥2 + ∥∇f(ẑk)∥2 + ∥gk −∇f(x̂k)∥2 + ∥mk −∇f(ẑk)∥2

)
= O(L2T 3+VTT

3)

Qt = O(L2T 3) and Mt ≤ O(L2T 2) and (under the event d̄T ≤ 2d0)

Mt ≤ max
k≤T

{
2α2

t

(
∥∇f(ẑk)∥2 + ∥mk −∇f(ẑk)∥2

)}
= O(L2T 2 + b

2
⋆T

2),

giving the suboptimality bound. Substituting these expression and s = 0 into (28) we get, for all

t < T ,

f(x̂t)− f(x⋆) ≤ O

(
ĉt
Ld0T

3/2 + d0θT,δ
√

T 3VT + T 2b2⋆(∑t
k=0 r̄k/r̄t+1

)2

)
. (29)

For the smooth case and any t < T , let κt ≤ t be such that For some κt ≤ t we have that

√
Mt = ακt∥mκt∥.

The smoothness of f implies that ∥∇f(z)∥2 ≤ 2β[f(z) − f(x⋆)] for all z ∈ X . Combining this

fact with the triangle inequality gives us that

ακt∥mκt∥ ≤ ακt∥∇f(x̂κt)−∇f(ẑκt)∥+ ακt∥mκt −∇f(ẑκt)∥+ ακt

√
2β
√

f(x̂κt)− f(x⋆)

and therefore,

√
Mt ≤

√
Qt +

√
(t+ 1)3Vt + ακt

√
2β
√

f(x̂κt)− f(x⋆).

Substituting into eq. (28) and taking s = 2, we get, for all t < T ,

f(x̂t)− f(x⋆) ≤ O



ĉ
3/2
t βd20 + ĉtd0θT,δ

√
T 3VT + T 2b2⋆ + ακt

√
ĉ2t+1βd

2
0

√
f(x̂κt)− f(x⋆)

(∑t
k=0 r̄k/r̄t+1

)2


 .

Applying Lemma 15 and noting that θT,δ ≤ ĉt simplifies the bound to

f(x̂t)− f(x⋆) ≤ O

(
ĉ2Tβd

2
0 + ĉT θT,δd0

√
T 3VT + T 2b2⋆(∑t

k=0 r̄k/r̄t+1

)2

)
. (30)

34



ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Combining the bounds eq. (29) and eq. (30) and noting that θT,δ ≤ ĉT , we conclude that, with

probability at least 1− 5δ, for all t < T ,

f(x̂t)− f(x⋆) ≤ O

(
ĉ2T · min

{
βd20, Ld0T

3/2
}
+ d0

√
T 3VT−1 + T 2b2⋆

(
∑τ

k=0 r̄k/r̄t+1)
2

)
.

For τ = argmaxt<T

∑
i≤t

r̄i
r̄t+1

, Lemma 29 gives us that

τ∑

k=0

r̄k/r̄t+1 ≥
1

e

(
T

log+(r̄T /rϵ)
− 1

)
.

Thus, for T ≥ 2 log+(r̄T /rϵ) we get (under the event r̄T ≤ 4d0)

f(x̂τ )− f(x⋆) ≤ O

(
ĉ2T log2+

(
d0
rϵ

)
· min

{
βd20, Ld0T

3/2
}
+ d0

√
T 3VT−1 + T 2b2⋆

T 2

)
,

which establishes the theorem, since

ĉT
(i)

≤ O

(
log2+

(
1 +

T 2
b
2
⋆ + Q̄T−1

∥∇f(ẑ0)∥2
))

≤ O

(
log2+

(
1 +

T 3
b
2
⋆ + T 3

∑T−1
k=0 ∥∇f(x̂k)−∇f(ẑk)∥2
∥∇f(ẑ0)∥2

))

≤ O

(
log2+

(
1 +

T 3
b
2
⋆ + T 3min{βd0, L}

∥∇f(ẑ0)∥2
))

(ii)

≤ O

(
log2+

(
1 +

T 3
b
2
⋆d

2
0 + T 3min

{
βd30, Ld

2
0

}

f(x0)− f(x⋆)

))

= O

(
log2+

(
1 + T

b⋆d0 +min
{
βd20, Ld0

}

f(x0)− f(x⋆)

))
,

where (i) is because ∥∇f(ẑ0)∥2 ≤ ∥∇f(ẑ0) − m0 + m0∥2 ≤ 2∥m0∥2 + p0, and (ii) is from

convexity: f(x0)− f(x⋆) ≤ d0∥∇f(ẑ0)∥.

Finally, when T ≤ 2 log+(r̄T /rϵ) the required bound is immediate from problem geometry, as

explained at the end of the proof of Theorem 5.

B.4. Proof of Corollary 11

Proof Define

δ′t =
δ

5(t+ 1)2
.

A black-box reduction from sub-Gaussian to bounded stochastic gradient (Lemma 31) shows that

at each iteration t, with probability at least 1 − δ′t, a call to a σ2-sub-Gaussian subgradient ora-

cle produces an identical result to a call to an alternative stochastic gradient that is bounded by

3σ
√

log(3/δ′t).
We apply Theorem 9 to U-DOG with the alternative, bounded stochastic gradient oracle. Thus,

for this setting, with probability at least 1−5δ, we have d̄T ≤ 2d0, r̄T ≤ 4d0, and the suboptimality

bound (15) holds for b⋆ = σ⋆ςT−1,δ. To conclude the proof we use Lemma 31 to show that the
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algorithm described above produces output different than U-DOG with the original sub-Gaussian

oracle as at most

3

∞∑

t=0

δ′t ≤
3δ

5

∞∑

t=1

1

t2
≤ 3 · π2

5 · 6 δ ≤ δ,

where the factor of 3 comes from the fact that every U-DOG iteration involves 3 stochastic gradient

queries.

B.5. Proof of Corollary 13

Proof A mini-batch of B gradient oracle results, each with noise bounded by L, is a 2L2

B -sub-

Gaussian (see Lemma 24), and we can therefore apply Corollary 11 with σ2
t = 2L2

B . Moreover,

reusing the sub-Gaussian-to-bounded reduction in the proof of Corollary 11 (Section B.4) we get

that, with probability at least 1− 6δ,

√
VT ≤

√
2L√
B

ςT,δ

holds in addition to the suboptimality bound given by Corollary 11. Substituting the above bound

on
√
VT along with b⋆ ≤

√
2 L√

B
ζT,δ concludes the proof.

Appendix C. Suboptimality lemmas

C.1. Weighted regret to suboptimality conversion (Lemma 14)

The following lemma is a straightforward reproduction of Lemma 1 from Kavis et al. [30] with

minor changes. In addition, we use the proof of the following lemma as a starting point for the

proof of Lemma 17.

Lemma 14 (Kavis et al. [30]) For any sequence of positive numbers ω0, ω1, ω2, . . . , define

x̂t :=

∑t
k=0 ωkxk+1∑t

k=0 ωk

.

We have that for any T > 0

f(x̂T−1)− f(x⋆) ≤
1

∑T−1
t=0 ωt

T−1∑

t=0

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ .
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Proof For any t ≥ 0 we have that

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ = ωt

〈
∇f(x̂t),

∑t
k=0 ωk

ωt
x̂t −

∑t−1
k=0 ωk

ωt
x̂t−1 − x⋆

〉

= ωt

〈
∇f(x̂t),

∑t
k=0 ωk

ωt
(x̂t − x⋆)−

∑t−1
k=0 ωk

ωt
(x̂t−1 − x⋆)

〉

=

t∑

k=0

ωk ⟨∇f(x̂t), x̂t − x⋆⟩ −
t−1∑

k=0

ωk ⟨∇f(x̂t), x̂t−1 − x⋆⟩

= ωt ⟨∇f(x̂t), x̂t − x⋆⟩+
t−1∑

k=0

ωk ⟨∇f(x̂t), x̂t − x̂t−1⟩ .

By using the convexity of f , we get

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥ ωt(f(x̂t)− f(x⋆)) +
t−1∑

k=0

ωk(f(x̂t)− f(x̂t−1)). (31)

Therefore, for any T > 0

T−1∑

t=0

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥
T−1∑

t=0

ωt(f(x̂t)− f(x⋆)) +

T−1∑

t=0

t−1∑

k=0

ωk(f(x̂t)− f(x̂t−1))

=
T−1∑

t=0

ωt(f(x̂t)− f(x⋆)) +
T−2∑

k=0

T−1∑

t=k+1

ωk(f(x̂t)− f(x̂t−1)).

By performing a telescopic summation, we obtain

T−1∑

t=0

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥
T−1∑

t=0

ωt(f(x̂t)− f(x⋆)) +

T−2∑

t=0

ωt(f(x̂T−1)− f(x̂t))

= ωT−1(f(x̂T−1)− f(x⋆)) +

T−2∑

t=0

ωt(f(x̂t)− f(x⋆) + f(x̂T−1)− f(x̂t))

=

T−1∑

t=0

ωt(f(x̂T−1)− f(x⋆)).

Dividing both sides by
∑T−1

t=0 ωt concludes the proof.

C.2. Inductive suboptimality bound (Lemma 15)

Lemma 15 Let s0, s1, . . . , sT−1 and h0, h1, . . . , hT−1 be non-negative non-decreasing sequences.

Let b > 1 such that r̄t+1/r̄t ≤ b for any t ∈ {0, 1, 2 . . . , T − 1}. If for all t ∈ {0, 1, 2 . . . , T − 1}
there exist κt ∈ {0, 1, 2 . . . , t} such that

f(x̂t)− f(x⋆) ≤
ακt

√
st
√

f(x̂κt)− f(x⋆) + ht
(∑t

k=0 r̄k/r̄t+1

)2 ,
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then for all t ∈ {0, 1, 2 . . . , T − 1} we have that

f(x̂t)− f(x⋆) ≤
4b2(st + ht)(∑t
k=0 r̄k/r̄t+1

)2 .

Proof We prove by induction that

f(x̂t)− f(x⋆) ≤
4b2(st + ht)(∑t
k=0 r̄k/r̄t+1

)2 .

We will only use the induction assumption for the case where κt < t.

If κt = t: We have that

f(x̂t)− f(x⋆) ≤
ακt

√
st
√

f(x̂κt)− f(x⋆) + ht
(∑t

k=0 r̄k/r̄t+1

)2

≤
r̄t+1

r̄t

√
st
√

f(x̂κt)− f(x⋆)
∑t

k=0 r̄k/r̄t+1

+
ht(∑t

k=0 r̄k/r̄t+1

)2

≤ b
√
st
√

f(x̂κt)− f(x⋆)∑t
k=0 r̄k/r̄t+1

+
ht(∑t

k=0 r̄k/r̄t+1

)2 .

Thus,

f(x̂t)− f(x⋆)−
b
√
st
√
f(x̂κt)− f(x⋆)∑t
k=0 r̄k/r̄t+1

≤ ht(∑t
k=0 r̄k/r̄t+1

)2 .

If

f(x̂t)− f(x⋆)

2
≤ f(x̂t)− f(x⋆)−

b
√
st
√

f(x̂κt)− f(x⋆)∑t
k=0 r̄k/r̄t+1

,

then

f(x̂t)− f(x⋆) ≤
2ht(∑t

k=0 r̄k/r̄t+1

)2 .

Otherwise,

f(x̂t)− f(x⋆)

2
≤ b

√
st
√
f(x̂κt)− f(x⋆)∑t
k=0 r̄k/r̄t+1

.

Therefore,

√
f(x̂t)− f(x⋆) ≤

2b
√
st∑t

k=0 r̄k/r̄t+1

.

Consequentially,

f(x̂t)− f(x⋆) ≤
4b2st(∑t

k=0 r̄k/r̄t+1

)2 .

In either case, we obtain that

f(x̂t)− f(x⋆) ≤
4b2(st + ht)(∑t
k=0 r̄k/r̄t+1

)2 .
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If κt < t: We assume by induction that

f(x̂κt)− f(x⋆) ≤
4b2(sκt + hκt)

(
∑κt

k=0 r̄k/r̄κt+1)
2 .

Therefore,

ακt

√
st
√

f(x̂κt)− f(x⋆) ≤ 2b
√
st
√

sκt + hκt

ακt∑κt
k=0 r̄k/r̄κt+1

≤ 2b
r̄t+1

r̄t

√
st
√
st + ht

≤ 2b2(st + ht).

Thus,

f(x̂t)− f(x⋆) ≤
2b2(st + ht) + ht(∑t

k=0 r̄k/r̄t+1

)2

≤ 4b2(st + ht)(∑t
k=0 r̄k/r̄t+1

)2 .

Finalizing the induction: For t = 0 we have κt = 0 = t. For the case κt = t we did not use the

induction assumption, and therefore we have the base of the induction:

f(x̂0)− f(x⋆) ≤
4b2(s0 + h0)

(r̄0/r̄1)
2 .

Thus, by induction we get that for all t ∈ {0, 1, 2, . . . , T − 1},

f(x̂t)− f(x⋆) ≤
4b2(st + ht)(∑t
k=0 r̄k/r̄t+1

)2 .

C.3. General regret bound (Lemma 16)

The following lemma is inspired by the regret analysis of UNIXGRAD [30].

Lemma 16 Using Algorithm 1, eq. (2) and eq. (3), for any t ≥ 0, ρt > 0, we have that

r̄tαt ⟨gt, xt+1 − x⋆⟩ ≤
r̄2tα

2
t ρt
2

∥gt −mt∥2 −
1

2ρt
∥xt+1 − yt∥2

+

(
1

2ρt
− 1

2η̃x,t

)(
∥xt+1 − yt∥2 + ∥xt+1 − yt+1∥2

)

+
1

2η̃y,t

(
∥yt − x⋆∥2 − ∥yt+1 − x⋆∥2

)
.
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Proof We have

r̄tαt ⟨gt, xt+1 − x⋆⟩
= r̄tαt ⟨gt −mt, xt+1 − yt+1⟩+ r̄tαt ⟨mt, xt+1 − yt+1⟩+ r̄tαt ⟨gt, yt+1 − x⋆⟩ . (32)

In addition

r̄tαt ⟨gt −mt, xt+1 − yt+1⟩
(i)

≤ r̄tαt∥gt −mt∥∥xt+1 − yt+1∥
(ii)

≤ ρtr̄tα
2
t

2
∥gt −mt∥2 +

1

2ρt
∥xt+1 − yt+1∥, (33)

where (i) is from Holder’s Inequality and (ii) is due to Young’s Inequality.

For the Euclidean Bregman divergence DR(x, y) = 1
2∥x − y∥2 we have that the update rule

xt+1 = ProjK(yt − αtηx,tmt) = ProjK(yt − r̄tαtη̃x,tmt) is equivalent to the update rule xt+1 =

argminx∈K
{
r̄tαt ⟨x,mt⟩+ 1

η̃x,t
DR(x, yt)

}
. Therefore, from the optimality of xt+1 we get

r̄tαt ⟨mt, xt+1 − yt+1⟩ ≤
1

η̃x,t
⟨∇xDR(xt+1, yt), xt+1 − yt+1⟩

=
1

η̃x,t
(DR(yt+1, yt)−DR(xt+1, yt)−DR(yt+1, xt+1)). (34)

Similarly, yt+1 = argminy∈K
{
r̄tαt ⟨y, gt⟩+ 1

η̃y,t
DR(y, yt)

}
. Therefore, from the optimality

of yt+1 we get

r̄tαt ⟨gt, yt+1 − x⋆⟩ ≤
1

η̃y,t
⟨∇xDR(yt+1, yt), x⋆ − yt+1⟩

=
1

η̃y,t
(DR(x⋆, yt)−DR(yt+1, yt)−DR(x⋆, yt+1)). (35)

By combining eqs. (34), (35) and (33) into eq. (32) we obtain that

r̄tαt ⟨gt, xt+1 − x⋆⟩ ≤
r̄2tα

2
t ρt
2

∥gt −mt∥2 +
1

2ρt
∥xt+1 − yt+1∥2

+
1

2η̃x,t

(
∥yt+1 − yt∥2 − ∥xt+1 − yt∥2 − ∥yt+1 − xt+1∥2

)

+
1

2η̃y,t

(
∥x⋆ − yt∥2 − ∥yt+1 − yt∥2 − ∥x⋆ − yt+1∥2

)

=
r̄2tα

2
t ρt
2

∥gt −mt∥2 −
1

2ρt
∥xt+1 − yt∥2

+

(
1

2ρt
− 1

2η̃x,t

)(
∥xt+1 − yt∥2 + ∥xt+1 − yt+1∥2

)

+
1

2η̃y,t

(
∥x⋆ − yt∥2 − ∥x⋆ − yt+1∥2

)
+

(
1

2η̃x,t
− 1

2η̃y,t

)
∥yt+1 − yt∥2.

Since η̃y,t ≤ η̃x,t, we may drop the final term in the above display, completing the proof.
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Appendix D. Iterate stability lemmas

D.1. A weighted regret bound (Lemma 17)

Lemma 17 For any sequence of positive numbers ω0, ω1, ω2, . . . , define

x̂t :=

∑t
k=0 ωkxk+1∑t

k=0 ωk

.

Let η̃0, η̃1, η̃2, . . . be a non-increasing sequence of positive numbers. We have that for any T > 0,

T−1∑

t=0

ωtη̃t ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥ 0.

Proof Define

f̃(x) = f(x)− f(x⋆).

We start from eq. (31) inside the proof of Lemma 14, which says that for all t ≥ 0

ωt ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥ ωt(f(x̂t)− f(x⋆)) +

t−1∑

k=0

ωk(f(x̂t)− f(x̂t−1)).

Multiplying each side by η̃t and summing, we obtain

T−1∑

t=0

ωtη̃t ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥
T−1∑

t=0

ωtη̃t(f(x̂t)− f(x⋆)) +

T−1∑

t=0

t−1∑

k=0

ωkη̃t(f(x̂t)− f(x̂t−1))

=
T−1∑

t=0

ωtη̃tf̃(x̂t) +
T−1∑

t=0

t−1∑

k=0

ωkη̃t

(
f̃(x̂t)− f̃(x̂t−1)

)

(⋆)

≥
T−1∑

t=0

ωtη̃tf̃(x̂t) +

T−1∑

t=0

t−1∑

k=0

ωk

(
η̃tf̃(x̂t)− η̃t−1f̃(x̂t−1)

)

=
T−1∑

t=0

ωtη̃tf̃(x̂t) +
T−2∑

k=0

T−1∑

t=k+1

ωk

(
η̃tf̃(x̂t)− η̃t−1f̃(x̂t−1)

)
,

where (⋆) is because that f̃(x̂t−1) ≥ 0 and η̃t−1 ≥ η̃t > 0.

We can now perform a telescopic summation and obtain

T−1∑

t=0

ωtη̃t ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥
T−1∑

t=0

ωtη̃tf̃(x̂t) +
T−2∑

t=0

ωt

(
η̃T−1f̃(x̂T−1)− η̃tf̃(x̂t)

)

= ωT−1η̃T−1f̃(x̂T−1) +
T−2∑

t=0

ωt

(
η̃tf̃(x̂t) + η̃T−1f̃(x̂T−1)− η̃tf̃(x̂t)

)

= ωT−1η̃T−1f̃(x̂T−1) +

T−1∑

t=1

ωtη̃T−1f̃(x̂T−1).
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Thus, because f̃(x̂T−1) ≥ 0, we obtain that

T−1∑

t=0

ωtη̃t ⟨∇f(x̂t), xt+1 − x⋆⟩ ≥ 0.

D.2. Inductive stability bound (Lemma 18)

Lemma 18 If rϵ = r0 ≤ d0, and for all t ≥ 1 we have that

∥yt − xt∥ ≤ r̄t−1

4
and

d2t ≤
(
d0 +

1

4
r̄t−1

)2

,

then for all t ≥ 0 we get that

dt ≤ 2d0 and rt ≤ 4d0.

Proof We prove this lemma by induction. The basis of the induction is that for t = 0 we get that

d0 ≤ 2d0 and r0 ≤ d0 ≤ 4d0.

For any t ≥ 1, we assume that d̄t−1 ≤ 2d0 and r̄t−1 ≤ 4d0. Thus,

dt ≤ d0 +
1

4
r̄t−1 ≤ 2d0.

Also,

∥yt − x0∥ ≤ ∥yt − x⋆∥+ ∥x0 − x⋆∥ = dt + d0 ≤ 3d0.

In addition,

∥xt − x0∥ ≤ ∥yt − x0∥+ ∥xt − yt∥
(⋆)

≤ 3d0 +
r̄t−1

4
≤ 4d0.

where (⋆) is because ∥xt − yt∥ ≤ r̄t−1

4 . As a result,

dt ≤ 2d0 and rt ≤ 4d0.

Finally, by induction, we get that for all t ≥ 0

dt ≤ 2d0 and rt ≤ 4d0.
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D.3. Single-step iterate stability (Lemma 19)

Lemma 19 Let c be a positve number. Using Algorithm 1, for any t ≥ 0, if ηx,t ≤ r̄t
cαt∥mt∥ ,

ηy,t ≤ r̄t
cαt∥gt−mt∥ and ηy,t ≤ ηx,t then

∥xt+1 − yt∥ ≤ r̄t
c

∥yt+1 − yt∥ ≤ 2r̄t
c

∥xt+1 − yt+1∥ ≤ 2r̄t
c

r̄t+1 ≤ r̄t

(
1 +

2

c

)
.

Proof First, by definition of the iterates and the fact that K is convex (and projection onto a closed

convex set is nonexpansive) we have

∥xt+1 − yt∥ = ∥ProjK(yt − αtηx,tmt)− yt∥ ≤ αtηx,t∥mt∥ ≤ r̄t
c
. (36)

Second, by definition of the iterates and the fact that K is convex, we also have

∥yt+1 − yt∥ = ∥ProjK(yt − αtηy,tgt)− yt∥ ≤ αtηy,t∥gt∥

≤ αtηy,t∥gt −mt∥+ αtηy,t∥mt∥ ≤ 2r̄t
c
. (37)

Third, by definition of the iterates, the fact that K is convex, the fact ηy,t ≤ ηx,t, and the assumed

upper bounds on ηy,t and ηx,t in the premise of this lemma we have

∥xt+1 − yt+1∥ = ∥ProjK(yt − αtηx,tmt)− ProjK(yt − αtηy,tgt)∥
≤ αt∥ηx,tmt − ηy,tgt∥ ≤ αtηy,t∥gt −mt∥+ αt(ηx,t − ηy,t)∥mt∥

≤ αtηy,t∥gt −mt∥+ αtηx,t∥mt∥ ≤ 2r̄t
c
.

Finally,

rt+1 ≤ rt +max(∥xt+1 − yt∥, ∥yt+1 − yt∥).

Therefore, using eq. (36) and eq. (37) we obtain

r̄t+1 = max(r̄t, rt+1) ≤ r̄t +max(∥xt+1 − yt∥, ∥yt+1 − yt∥) ≤ r̄t

(
1 +

2

c

)
.
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Appendix E. Concentration bounds

E.1. An empirical-Bernstein-type time uniform concentration bound (Lemma 20)

Lemma 20 (From Ivgi et al. [27]) Let S be the set of nonnegative and nondecreasing sequences.

Let Ct ∈ Ft−1 and let Xt be a martingale difference sequence adapted to Ft such that |Xt| ≤ Ct

with probability 1 for all t. Then, for all δ ∈ (0, 1), c > 0, and X̂t ∈ Ft−1 such that |X̂t| ≤ Ct with

probability 1,

P


∃t ≤ T, ∃{yi}∞i=1 ∈ S :

∣∣∣∣∣

t∑

i=1

yiXi

∣∣∣∣∣ ≥ 8yt

√√√√θt,δ

t∑

i=1

(
Xi − X̂i

)2
+ c2θ2t,δ




≤ δ + P(∃t ≤ T : Ct > c).

E.2. Concentration bound for suboptimally proof (Lemma 21)

Lemma 21 Let B > 0 and δ ∈ (0, 1). In the bounded noise setting (Assumption 6), using Al-

gorithm 1 and eq. (12), with probability of at least 1 − δ − P
[
b̄T−1 > B

]
we get that for all

t ∈ {0, 1, . . . , T − 1} then

∣∣∣∣∣

t∑

k=0

r̄tαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩
∣∣∣∣∣ ≤ 8αtr̄t(r̄t+1 + d0)

√√√√θt+1,δ

t∑

k=0

∥∇f(x̂k)− gk∥2 + (θt+1,δB)2.

Proof For k ∈ {0, 1, . . . , T} define

d̃k = max
i≤k

∥xk − x⋆∥.

For k ∈ {0, 1, . . . , T − 1} define the random variables:

Yk = αkr̄kd̃k+1, and Xk =

〈
∇f(x̂k)− gk,

xk+1 − x⋆

d̃k+1

〉
.

From these definitions we get

t∑

k=0

YkXk =
t∑

k=0

r̄tαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩ ,

and that {Yk}T−1
k=0 is a non-decreasing sequence of non-negative numbers. In addition, as xk+1 and

d̃k+1 are independent of the noise of gk then Xk is a martingale difference sequence. Therefore, as

|Xk| ≤ b̄k with probability of 1, Lemma 20 gives us that

P


∃t < T :

∣∣∣∣∣

t∑

k=0

YkXk

∣∣∣∣∣ ≥ 8Yt

√√√√θt+1,δ

t∑

k=0

(Xk − 0)2 + (θt+1,δB)2


 ≤ δ + P

[
b̄T−1 > B

]
.
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Therefore, by using the Cauchy±Schwarz inequality, we obtain that, with a probability of at least

1− δ − P
[
b̄T−1 > B

]
, for all t ∈ {0, 1, . . . , T − 1}

∣∣∣∣∣

t∑

k=0

r̄tαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩
∣∣∣∣∣ ≤ 8αtr̄td̃t+1

√√√√θt+1,δ

t∑

k=0

∥∇f(x̂k)− gk∥2 + (θt+1,δB)2

≤ 8αtr̄t

(
r̄t+1 + d̃0

)
√√√√θt+1,δ

t∑

k=0

∥∇f(x̂k)− gk∥2 + (θt+1,δB)2.

Thus,

∣∣∣∣∣

t∑

k=0

r̄tαk ⟨∇f(x̂k)− gk, xk+1 − x⋆⟩
∣∣∣∣∣ ≤ 8αtr̄t(r̄t+1 + d0)

√√√√θt+1,δ

t∑

k=0

∥∇f(x̂k)− gk∥2 + (θt+1,δB)2.

E.3. Concentration bound for iterate stability proof (Lemma 22)

Lemma 22 Let η̃y,t be such that, for some c, s > 0 we have

1

η̃y,t
≥ cmax

{√
s+Qt log+

(
s+Qt

s

)
, αt∥∇f(x̂t)−mt∥, αt∥∇f(x̂t)− gt∥

}
.

If for all t ≥ 0 we have that ηy,t = r̄tη̃y,t is independent of gt given x0, . . . , xt, then, with probability

of at least 1− δ, for all t ≥ 0,
∣∣∣∣∣

t∑

k=0

αkηy,k ⟨gk −∇f(x̂k), xk+1 − x⋆⟩
∣∣∣∣∣ ≤

12θt+1,δ

c
r̄t(r̄t+1 + d0).

Proof For t ∈ {0, 1, . . . , T} define

d̃t = max
k≤t

∥xt − x⋆∥.

For t ∈ {0, 1, . . . , T − 1} define

Xt = αtη̃y,t

〈
gt −∇f(x̂t),

xt+1 − x⋆

d̃t+1

〉
,

X̂t = αtη̃y,t

〈
∇f(x̂t)−mt,

xt+1 − x⋆

d̃t+1

〉
and

Yt = r̄td̃t+1.

The assumption 1
η̃y,t

≥ cαtmax{∥∇f(x̂t)−mt∥, ∥gt −∇f(x̂t)∥} implies that max
{
|Xt|, |X̂t|

}
≤

1
c . In addition, as mt ,xt+1 and d̃t+1 are independent of the noise of gt then X̂t is independent of

the noise of gt and Xt is a martingale difference sequence. Thus, Lemma 20 gives us that

P


∀t ∈ {0, 1, . . .} :

∣∣∣∣∣

t∑

k=0

YkXk

∣∣∣∣∣ < 8r̄td̃t+1

√√√√θt+1,δ

t∑

k=0

(
Xk − X̂k

)2
+

1

c2
θ2t+1,δ


 ≥ 1− δ.
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Furthermore, we have

t∑

k=0

(
Xt − X̂t

)2
=

t∑

k=0

(
αkη̃y,k

〈
gk −mk,

xk+1 − x⋆

d̃t+1

〉)2

≤
t∑

k=0

α2
t η̃

2
y,k∥gk −mk∥2

(i)

≤ 1

c2

t∑

k=0

α2
t ∥gk −mk∥2

(
s+

∑t
k=0 α

2
k∥gk −mk∥2

)
log2+

(
s+

∑t
k=0

α2
k∥gk−mk∥2
s

)
(ii)

≤ 1

c2
,

where (i) follows from the assumption that 1
η̃y,t

≥ c
√
s+Qt log+

(
s+Qt

s

)
and the definition of Qt,

and (ii) is a direct result of Lemma 30 with ak = s +
∑t

k=0 α
2
k∥gk −mk∥2. In addition, we have

that

YtXt = αtηy,t ⟨gt −∇f(x̂t), xt+1 − x⋆⟩ .

Therefore, with probability of at least 1− δ, for all t ≥ 0 we have that

∣∣∣∣∣

t∑

k=0

αkηy,k ⟨gk −∇f(x̂k), xk+1 − x⋆⟩
∣∣∣∣∣ ≤ 8r̄td̃t+1

√
θt+1,δ

c2
+

θ2t+1,δ

c2

≤ 12θt+1,δ

c
r̄t

(
r̄t+1 + d̃0

)

≤ 12θt+1,δ

c
r̄t(r̄t+1 + d0).

E.4. Relating Q̄t to Qt (Lemma 23)

Lemma 23 Let B > 0 and δ ∈ (0, 1). In the bounded noise setting (Assumption 6), using Algo-

rithm 1 and the step sizes (14), with probability of at least 1 − δ − P
[
b̄T−1 > B

]
we get that, for

all t ∈ {0, 1, . . . , T − 1},

Q̄t ≤ 5Qt + 80(t+ 1)3
√
θt+1,δVt + 2(t+ 1)2θt+1,δB

2.

Proof For all k ≥ 0 we have

∥g̃k −mk∥2 ≤ 2∥gk −mk∥2 + 2∥gk − g̃t∥2

≤ 2∥gk −mk∥2 + 4∥gk −∇f(x̂k)∥2 + 4∥g̃k −∇f(x̂k)∥2.

Therefore, since αk ≤ k + 1,

t∑

k=0

α2
k∥g̃k −mk∥2 ≤ 2

t∑

k=0

α2
k∥gk −mk∥2 + 8

t∑

k=0

(k + 1)2∥gk −∇f(x̂k)∥2

+ 4

t∑

k=0

(k + 1)2(∥g̃k −∇f(x̂k)∥2 − ∥gk −∇f(x̂k)∥2). (38)
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We now bound
∑t

k=0(k + 1)2(∥g̃k −∇f(x̂k)∥2 − ∥gk −∇f(x̂k)∥2). Define

Xt = (∥g̃t −∇f(x̂t)∥2 − ∥gt −∇f(x̂t)∥2) ,

X̂t = ∥g̃t −∇f(x̂t)∥2 and

Yt = (t+ 1)2.

We have that for all t ≥ 0 then |Xt| ≤ b̄
2
t and |X̂t| ≤ b̄

2
t with probability 1. Therefore, Lemma 20

gives us that

P


∀t ∈ {0, 1, . . . , T − 1} :

∣∣∣∣∣

t∑

k=0

YkXk

∣∣∣∣∣ < 8Yt

√√√√θt+1,δ

t∑

k=0

(
Xk − X̂k

)2
+ θ2t+1,δB

4




≥ 1− δ − P
(
b̄T−1 > B

)
.

Consequentially, by combining this result with eq. (38), we get that with probability at least

1− δ − P
(
b̄T−1 > B

)
that for all t ∈ {0, 1, . . . , T − 1} we have that

t∑

k=0

α2
k∥g̃k −mk∥2 ≤ 2

t∑

k=0

α2
k∥gk −mk∥2 + 40(t+ 1)2

√
θt+1,δ

t∑

k=0

∥gk −∇f(x̂k)∥2 + (t+ 1)2θt+1,δB
2.

Substituting into the above equation the definition of Qt and Vt given in eq. (1) and eq. (11), respec-

tively, and recalling the definition of Q̄t given in eq. (13)

Q̄t =
t∑

k=0

α2
k max{∥gk −mk∥2, 2∥g̃k −mk∥2} ≤ Qt + 2

t∑

k=0

α2
k∥g̃k −mk∥2

completes the proof.

E.5. Concentration inequality for bounded random vectors (Lemma 24)

Lemma 24 (Howard et al. [25]) For T ∈ N, let {Ut}t∈[T ] be a sequence of mean zero random

vectors in R
d with ∥Ut∥ ≤ c almost surely. Then

P

(∥∥∥∥∥

T∑

t=1

Ut

∥∥∥∥∥ ≥ x

)
≤ 2 exp

(
− x2

2c2T

)
.

Proof This result follows from Howard et al. [25, Corollary 10.a] with Yt =
∑t

k=1 Uk, Ψ(·) = ∥ ·∥,

ct = c and m = c2T . The selection of Ψ(·) = ∥ · ∥ yields D⋆ = 1 (see discussion preceding [25,

Corollary 10.a]). Setting ct = c yields Vt = c2t. Hence
D2

⋆
2m(VT −m) ≤ 0 and Howard et al. [25,

eq. (4.28)] gives the desired result.
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Appendix F. Auxiliary lemmas

F.1. The growth rate of
∑

k r̄kαk (Lemma 25)

We note that in accelerated optimization algorithms we normally have that αt = Θ(t). Even though

this is not the case for U-DOG, αt is roughly similar to t. First, it is easy to see that 1 ≤ αt ≤ t.
Secondly, the running sum of r̄tαt grows roughly quadratically. This is shown in the following

lemma, in which we replace αt and r̄t with at and st, respectively

Lemma 25 Let s0, s1, . . . , st be a non-decreasing sequence of positive numbers. Define ak :=∑k
i=0

si
sk

, then

sta
2
t ≤ 2

t∑

k=0

skak.

Proof We have

t∑

k=0

skak =

t∑

k=0

k∑

i=0

si =

t∑

k=0

(t− k + 1)sk.

And,

sta
2
t =

1

st

t∑

k=0

t∑

i=0

sksi =
2

st

t∑

k=0

sk

t∑

i=k

si −
1

st

t∑

k=0

s2k ≤ 2
t∑

k=0

sk

t∑

i=k

si
st

≤ 2
t∑

k=0

(t− k + 1)sk.

Thus,

sta
2
t ≤ 2

t∑

k=0

skak.

F.2. Discrete derivative lemma (Lemma 26)

Lemma 26 Let c be a positive number, and let s0, s1, s2, . . . be a sequence of positive numbers.

For every t ≥ 0 define

ρt =
1

c
√∑t

k=0 sk

.

We have that for every t ≥ 0

1

ρt+1
− 1

ρt
≤ c2ρt+1st+1.
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Proof For every t ≥ 0 we have that

st+1 =
t+1∑

k=0

sk −
t∑

k=0

sk ≥

√√√√
t+1∑

k=0

sk




√√√√
t+1∑

k=0

sk −

√√√√
t∑

k=0

sk


 =

1

c2ρt+1

(
1

ρt+1
− 1

ρt

)
.

Thus,

1

ρt+1
− 1

ρt
≤ c2ρt+1st+1.

F.3. Discrete integral lemma (Lemma 27)

Lemma 27 For any positive numbers c1, c2, for any t ≥ 0, and for any sequence of non-negative

numbers B0, B1, B2, . . . , Bt we have that

c1

√√√√
t∑

k=0

B2
k −

t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j ≤ 2c

3/2
1 c

1/2
2 .

Proof Define

ηB,k =
1√∑k
j=1B

2
j

.

Lemma 28 gives us that

√√√√
t∑

k=0

B2
k ≤

t∑

k=0

B2
k√∑k

j=0B
2
j

.

Therefore, we obtain

c1

√√√√
t∑

k=0

B2
k −

t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j ≤ c1

t∑

k=0

B2
k√∑k

j=0B
2
j

−
t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j

=

t∑

k=0

(
c1ηB,k −

1

c2ηB,k

)
B2

k.

Define

κ = max

[{
t ∈ {0, 1, . . . , t} : 2c1ηB,t −

1

c2ηB,t
> 0

}
∪ {−1}

]
.

We have,

c1

√√√√
t∑

k=0

B2
k −

t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j ≤

κ∑

k=0

c1ηB,kB
2
k = c1

κ∑

k=0

B2
k√∑k

j=0B
2
j

(⋆)

≤ 2c1

√√√√
κ∑

k=0

B2
k =

2c1
ηB,κ

✶{κ≥0},
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where (⋆) is because of Lemma 28. From the definition of κ, we obtain that

c1ηB,κ >
1

c2ηB,κ
.

Thus,

c1

√√√√
t∑

k=0

B2
k −

t∑

k=0

B2
k

c2

√√√√
k∑

j=0

B2
j ≤ 2c1

ηB,κ
✶{κ≥0} ≤ 2c

3/2
1 c

1/2
2 .

F.4. Additional lemmas from prior work

Lemma 28 (e.g., Levy et al. [36]) For any k ≥ 0 and for any sequence on non-negative numbers

s0, s1, s2, . . . , sk the following holds:

√√√√
k∑

i=0

si ≤
k∑

i=0

si√∑i
j=0 sj

≤ 2

√√√√
k∑

i=0

si.

Lemma 29 (Ivgi et al. [27, Lemma 3]) Let s0, s1, . . . , sT be a positive nondecreasing sequence.

Then

max
t≤T

∑

i<t

si
st

≥ 1

e

(
T

log+(sT /s0)
− 1

)
.

Lemma 30 (Ivgi et al. [27, Lemma 6]) Let a−1, a0, a1, . . . , at be a non-decreasing sequence of

non-negative numbers, then
t∑

k=0

ak − ak−1

ak log
2
+(ak/a−1)

≤ 1.

Lemma 31 (Attia and Koren [3, Lemma 15]) Let X be a σ2(x)-sub-Gaussian. For and δ ∈
(0, 1) here exist a random variable X̄ such that:

1. X̄ is zero-mean: EX̄ = 0.

2. X̄ is equal to X w.h.p: P
(
X̄ = X

)
≥ 1− δ.

3. X̄ is bounded with probability 1: P
(
∥X̄∥ = 3σ

√
log(4/δ)

)
= 1.

Appendix G. Experimental details

G.1. U-DOG step sizes

In the experiments, we use the following step sizes for U-DOG

ηx,t =
r̄t√

max{Qt−1,Mt}
and ηy,t =

r̄t√
max{Qt,Mt}

,
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with r̄t, Qt, and Mt as defined in Section 2. This step size is similar to the choice in eq. (10),

which enjoys proven stability in the noiseless case, except we replace the logarithmic factor in

the denominator with 1; preliminary experiments indicated 1 was the smallest value for which the

algorithm was stable in practice. This difference between practical and theoretical algorithms is

analogous to the difference between DOG and its theoretically stable variant T-DOG [27]. However,

we maintain the maximization with Mt in the denominator, mainly in order to ensure that ηx,t
and ηy,t are not too large early in the training. As with DOG, the additional step size adjustments

necessary for the stochastic setting (given in eq. (14)) do not appear to be useful in practical settings.

G.2. ACCELEGRAD-DOG (A-DOG)

While U-DOG enjoys strong theoretical guarantees, it requires an extra-gradient computation at

each step, which can be expensive in practice. To address this, we propose an alternative algorithm,

A-DOG, which combines ACCELEGRAD [36] and DOG. To complete the combination we set αt

in the same way as it is calculated in U-DOG (algorithm 1). A-DOG is a simple algorithm that does

not require an extra-gradient computation at each step and is presented in Algorithm 2. While we do

not provide theoretical guarantees for A-DOG, our experiments demonstrate its efficacy in practice.

The main challenge in proving guarantees for A-DOG appears to lie in deriving a suboptimality

bound akin to Proposition 3, whose proof strongly leverages U-DOG’s extra-gradient structure.

Algorithm 2: ACCELEGRAD-DOG (A-DOG)

Input: Initialization z(0) ∈ K, positive constant rϵ and number of iterations T .

1 Set y0 = x0 = z0 and r̄0 = rϵ
2 for t = 0, 1, , . . . , T − 1 do

3 αt =
∑t

k=0 r̄k/r̄t
4 gt ∼ G(xt+1)

5 ηt = r̄t√
∑t

k=0
α2
k∥gk∥2

6 xt+1 =
αt

∑t
k=0

αk
zt +

(
1− αt

∑t
k=0

αk

)
yt

7 yt+1 = xt+1 − ηtgt
8 zt+1 = ΠK(zt − αtηtgt)

9 r̄t+1 = max{r̄t, ∥zt+1 − z0∥}
10 end

11 return xT ▷ returning yT gives similar results in practice

G.3. Convex experiments

The bulk of our experiments focus on smooth stochastic convex optimization problems, matching

our theoretical assumptions.

Multiclass logistic regression. We experiment with multi-class logistic regression on multiple

tasks from the VTAB benchmark and the LIBSVM [12] suite (a full list is given in Section G.5). For

VTAB tasks we use features obtained from a pretrained ViT-B/32 [20] model (i.e., perform linear

probes), and for LIBSVM tasks we use apply logistic regression directly on the features provided.
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Figures 2, 4, 6, 8, 10, 12, 14 and 16 show a view of the results for different datasets analogous to

Figure 1. Figures 3, 5, 7, 9, 11, 13, 15 and 17 give a complementary view by providing training

curves at different batch sizes. As discussed in Section 5, we find that both U-DOG and A-DOG

are competitive with well-tuned accelerated SGD (ASGD) and often significantly outperform DOG

and tuned SGD. This is especially true for the training loss (for which our theory directly holds)

and at large batch sizes, with A-DOG outperforming U-DOG in most cases, as both algorithms

take advantage of the reduced variance in the gradient estimates to scale effectively with the batch

size, as the theory suggests. In most experiments A-DOG attain and tuned ASGD attain superior

convergence rate in terms of test accuracy as well as train loss; the only exception is CIFAR-100

(Figures 4 and 5, bottom rows) where the test accuracy does not closely track the train loss.

Least-squares. We modify the loss on a subset of the previous experiments to least squares,

learned over a one-hot encoding of the features. We use features obtained from a pretrained ViT-

B/32, similar to what we used for the multiclass logistic regression. We find that our algorithms

perform well in this setting as well. In comparison, while SGD and ASGD can perform well when

tuned correctly, they become more sensitive to the choice of step size and momentum, performing

poorly when not properly tuned and sometimes diverging completely. Similar to the other experi-

ments, the results are given in Figures 18 to 21.

Noiseless quadratic experiments. As a final experiment, we compare the performance of the

different algorithms on the quadratic function f(x) =
∑n

i=1

(
i
2nx

2
i + xi

)
with n = 104. The results

agree with the theoretical analysis, with all algorithms reaching the optimal solution or very close

to it, barring GD and AGD with excessively high momentum and learning rate. Results are depicted

in Figure 22.

G.4. Non-convex experiments

While we mainly focus on demonstrating the effectiveness of U-DOG and A-DOG in settings that

match our theoretical analysis, we also perform preliminary experimentation in practical scenarios,

namely training neural networks on datasets of moderate scales. In particular, we train a ResNet-50

[24] from scratch on a subset of the VTAB benchmark (Figures 23 to 27). Additionally, we repeat

two experiments from [27]: fine-tuning a CLIP model [53] on ImageNet (Figure 28), and training

a WideResnet-28-10 [66] model from scratch on CIFAR-10 (Figure 29). We observe that U-DOG

often fails to converge to competitive results, while A-DOG is quite competitive with DOG on the

VTAB tasks, but under-performs it for CIFAR-10 and ImageNet fine-tuning, indicating that it is not

a yet a viable general-purpose neural network optimizer.

G.5. Implementation details

Environment settings. All of our experiments were based on PyTorch [51] (version 1.12.0). For

DOG and the implementation of polynomial-decay model averaging [57], we used the dog-optimizer

package (version 1.0.3) [27]. For ASGD, we used the native PyTorch SGD5 with the Nesterov

option enabled.

VTAB experiments were based on the PyTorch Image Models (timm, version0.7.0dev0) repos-

itory [63], with TensorFlow datasets (version 4.6.0) as a dataset backend [1]. LIBSVM [12]

experiments were based on the libsvmdata (version 0.4.1) package.

5. https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
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To support the training and analysis of the results, we used numpy [23], scipy [61], pandas [62]

and scikit-learn [52].

As much as possible, we leveraged existing recipes as provided by timm to train the models.

Datasets. The subset of datasets used in our VTAB experiments are: CIFAR-100 [34], CLEVR-

Dist [29], DMLab [5], Resisc45 [13], Sun397 [64, 65], and SVHN [46]. From LIBSVM, we used

the Pendigits [2] and Covertype [8] datasets, where cover covertype we used the scaled features

version (i.e., covtype.scale). We also experiment with CIFAR-10 [34] and ImageNet [18].

Models. The computer vision pre-trained models were accessed via timm. The strings used to

load the models were: ‘resnet50’, ‘vit base patch32 224 in21k’.

Complexity measure. To fairly compare all algorithms, we measure complexity by the number

of batches evaluated, i.e., the number of stochastic gradient queries performed by the algorithm.

U-DOG requires two batches per iteration while the rest of the algorithms we consider require

only one. We note that the algorithms we compare also have different memory footprints and

runtimes per iteration (by constant factors). We focus on the number of batches as our complexity

metric since it is most relevant to our theory. Memory and per-iteration runtime optimizations are

potentially possible for U-DOG and A-DOG; we leave investigating those to future work.

ASGD model selection. In the convex optimization experiments, we run (A)SGD over a wide

range of momentum and learning rate parameters. For the batch size scaling figures (e.g., the left

panels in Figure 1), we pick the parameters that reach the target metric in the smallest number of

batches, providing a conservative upper bound on the performance obtainable with a very care-

fully tuned algorithm. The learning curve figures adjacent to the batch size scaling figures (e.g.,

the middle panels in Figure 1) show the learning curve for the (A)SGD run attaining the best tar-

get performance at the batch size indicated. For plots of learning curves at different batch sizes

(e.g., Figure 19), we select the (A)SGD parameters that are the first to reach 95% of the best met-

ric attained by A-DOG. If no such parameters exist, we take the parameters that reach the best

performance within the iteration budget.

Iterate averaging. When evaluating test accuracy, we follow Ivgi et al. [27] and apply polynomial-

decay weight averaging [57] with parameter 8. We did not tune this parameter or comprehensively

check how beneficial the averaging is. Nevertheless, a cursory examination of our data suggests

that averaging is mostly helpful across the board, but much more so for DOG and SGD than their

accelerated counterparts. This is in line with the theory, which provides guarantees on (essentially)

the last iterate of U-DOG, but only the averaged iterate of DOG.

Learning rate schedule. We use a constant learning rate schedule for (A)SGD. We do not use a

decaying schedule such as cosine decay [37] as it would complicate comparing the smallest number

of steps required to reach a target metric, since a decaying schedule requires knowing the number

of steps in advance. Preliminary experiments indicate that, in the settings we study, cosine decay is

not significantly better than a constant schedule combined with iterate averaging.

Setting rϵ. Similarly to Ivgi et al. [27] we set rϵ = γ(1 + ∥x0∥) with γ = 10−6. Our theoretical

analysis suggests that the particular choice of rϵ does not matter as long as it is sufficiently small

relative to the distance between the weight initialization x0 and the optimum.
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Weight decay. We do not use weight decay in most experiments, except for training from scratch

on CIFAR-10 (Figure 29), where we use a weight decay of 5 · 10−4. For DOG we decay the

parameters toward zero, while for U-DOG and A-DOG we decay the parameters toward the initial

point x0. That is, for DOG we add 5 · 10−4x to the stochastic gradient evaluated at x, while for

U-DOG and A-DOG we add 5 · 10−4(x− x0).

Gradient accumulation. Due to GPU memory limitations, in the non-convex experiments, for

large batch sizes we divide each batch into smaller sub-batches of size of either 128 or 256 samples.

We calculate the gradient for each sub-batch and average those into a single gradient which we then

use to perform a single step. When batch normalization is used (that is, for ResNet50), this is not

mathematically identical to computing the gradient in one large batch.
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