Proceedings of Machine Learning Research vol 247:1-68, 2024 37th Annual Conference on Learning Theory

Accelerated Parameter-Free Stochastic Optimization

Itai Kreisler KREISLER @MAIL.TAU.AC.IL
Maor Ivgi MAOR.IVGI@CS.TAU.AC.IL
Oliver Hinder OHINDER @PITT.EDU
Yair Carmon YCARMON @ TAUEX.TAU.AC.IL

Editors: Shipra Agrawal and Aaron Roth

Abstract

We propose a method that achieves near-optimal rates for smooth stochastic convex optimization
and requires essentially no prior knowledge of problem parameters. This improves on prior work
which requires knowing at least the initial distance to optimality dy. Our method, U-DOG, com-
bines UniXGrad (Kavis et al. [30]) and DoG (Ivgi et al. [27]) with novel iterate stabilization tech-
niques. It requires only loose bounds on dj and the noise magnitude, provides high probability
guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our ex-
periments show consistent, strong performance on convex problems and mixed results on neural
network training.

Keywords: Parameter-free, Adaptive, Stochastic convex optimization, Smooth optimization.

1. Introduction

We consider the problem of minimizing a smooth convex function using access to an unbiased
stochastic gradient oracle. This is a fundamental problem in machine learning, including many im-
portant special cases such as logistic and linear regression. Moreover, the smoothness assumption is
crucial for developing one of the most widely used improvements for the classical gradient method:
Nesterov acceleration [44].

Nesterov acceleration obtains the optimal rate of convergence for this problem but is strongly
reliant on knowing the problem parameters. Specifically, Lan [35], who first demonstrated the the-
oretical value of Nesterov acceleration on smooth stochastic convex functions, requires knowledge
of the smoothness parameter (3, the distance dy from the initial point to the optimum, and a value
o for which the noise is o-sub-Gaussian. Accelerated adaptive methods [14, 30] do not require
knowledge of (and o, but assume knowledge of dy. For non-smooth stochastic convex optimiza-
tion, parameter-free methods [e.g., 7,9, 16,27, 28, 41, 49] require only loose knowledge of problem
parameters to obtain near-optimal rates. Finding such parameter-free methods for smooth stochastic
optimization is a longstanding open problem.

Our contribution. We solve this open problem, designing an accelerated parameter-free method
which we call UNIXGRAD-DOG, or U-DOG for short. U-DOG combines the “universal extra-
gradient” (UNIXGRAD) framework [30] with the “distance over gradient” (DOG) technique [27].
More specifically, we replace the domain diameter D in the UNIXGRAD step size numerator with
the maximum distance from the initial point, similar to the DoG step size numerator. Furthermore,
we use this maximum distance to automatically tune the “momentum” parameter orx of UNIXGRAD.

© 2024 1. Kreisler, M. Ivgi, O. Hinder & Y. Carmon.

KREISLER IVGI HINDER CARMON

Algorithm Unbounded Insensitive to... Rate of High
name domain? do/D f o convergence probability?
O (8% | odo bdo
U-DOG (this work) v o000 BT; VT T T) /
oD
X o0 v O(B 4R v
UNIXGRAD [30] X x v v o(F+L) X
Cutkosky [14] v X v v O(fE+ek X
Bd3 od
Lan [35] v x xox o v
A (B | odo | Ld
DoG [27]/CO [16] v oo O(%B+olash) vix

Table 1: Comparison of U-DOG and prior work on 3-smooth stochastic optimization with o-sub-
Gaussian noise. “Unbounded domain” indicates if the algorithm is defined over the whole Euclidean
space or a bounded subspace. In the former case we express rates in terms of the initial distance to
optimality dy and in the latter case we use the domain diameter D. Under “Insensitive to...” we mark
X if the suboptimality bound grows polynomially with error in the parameter, v if it only affects
logarithmic factors or low order terms, and v if there is no dependence on the parameter at all. The

marker indicates algorithms that require an upper bound Lon gradient norm, which may be much
larger the the upper bound & on the noise. The notation O (-) hides polylogarithmic factors.

Finally, we modify the UNIXGRAD step size denominator to ensure the stability of the iterate se-
quence. U-DOG only requires a loose upper bound & on o and lower bound r. on D.! As long as
& is loose by at most a /7T factor and - is loose by any poly(T") factor, we obtain a near-optimal,
high-probability rate of convergence; Table 1 states U-DOG’s guarantees and compares it to prior
work. Moreover, U-DOG simultaneously enjoys a near-optimal, parameter-free rate of convergence
for non-smooth problems.

We conduct preliminary experiments with U-DOG as well as another algorithm, A-DOG,
which combines ACCELEGRAD [36] and DoG. On convex optimization problems, both U-D0G
and A-DoOG often substantially improve over DOG, especially at large batch sizes, with A-DoG
outperforming U-DOG, likely due to not requiring an extra-gradient computation at each step. On
several problems, A-DOG matches the performance of carefully tuned SGD with Nesterov mo-
mentum. On neural network optimization problems, however, we observe that both U-D0OG and
A-DoOG do not consistently improve over DOG.

1.1. Related work

Non-smooth stochastic optimization. The majority of tuning-insensitive stochastic optimization
methods are developed for online convex optimization. Online regret bounds immediately translate
to suboptimality guarantees for non-smooth stochastic optimization using online-to-batch conver-
sion [48, Section 3]. Proposed methods divide roughly into adaptive algorithms such as adap-
tive SGD [22, 38], AdaGrad [21, 40] and variants [e.g., 33, 55, 58], and parameter-free methods
[7,15, 16,28, 39,41, 47,49, 59]. Adaptive methods typically require no knowledge of the stochastic
gradient bound but need to know the initial distance to optimality (or the domain diameter), while

1. In fact, we only require local upper bounds of the form & (z) on the noise sub-Gaussianity.

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

parameter-free methods are robust to uncertainty in the distance but require some (loose) bound on
the stochastic gradient norms.

Recent work [9, 27] develops parameter-free methods that hew closer to SGD and eschew
online-to-batch conversion for high-probability guarantees in the stochastic setting; U-DOG con-
tinues this line. In particular, it extends the core mechanism of DOG [27] wherein iterate movement
serves as a proxy for the distance to optimality. D-Adaptation [17], DoWG [32], and Prodigy [42]
use a similar mechanism, but only provide guarantees for the non-stochastic setting. Ensuring the
validity of the mechanism (i.e., that iterates never move too far away from the optimum) is a key
challenge in its analysis. This challenge becomes greater in the smooth setting, where selecting too
small of a step size nullifies the benefit of acceleration. Much of our algorithmic and analytical
innovation addresses this challenge.

Non-stochastic smooth optimization. Without noise, Nesterov acceleration requires knowledge
of the smoothness constant /3 but not the distance to optimality [44, 45]. The methods [30, 36]
reverse this tradeoff, requiring the distance but not 5. Line search techniques such as [6, 11] provide
much stronger adaptivity, attaining the optimal gradient evaluation complexity up to an additive term
that depends logarithmically on the uncertainty in 8. However, line search can be challenging to
employ efficiently in the stochastic setting as we can no longer accurately evaluate the function.
Indeed, there are many works that analyze stochastic line search techniques [e.g., 50, 60] but none
have obtained convergence guarantees close to that of Lan [35].

Smooth stochastic optimization. Several adaptive and parameter-free methods [9, 16, 22,27, 32]
converge faster on smooth functions. However, they do not improve all the way to the optimal rate
(see Table 1) due to a missing “momentum” component. Cutkosky [14] gives an improved online-
to-batch conversion framework that endows adaptive SGD with momentum and accelerated rates
in the smooth case, but requires a bound on the distance to optimality. Kavis et al. [30] propose
UNIXGRAD, combining ideas from [14] with the mirror-prox/extragradient algorithm [19, 43] and
online learning [38, 54] to obtain optimal rates assuming bounded domains of known diameter
D and assuming that dj is of the order of D. U-DOG modifies UNIXGRAD and removes both
assumptions, yielding the first parameter-free accelerated method.

2. Preliminaries and algorithmic framework

In this section, we set up our notation and terminology, and use them to present the general U-D0OG
template (Algorithm 1) defining the algorithm up to the choice of adaptive step sizes, which we
gradually develop in the following sections.

Basic notation and conventions. Throughout, ||-|| denotes the Euclidean norm, log is base e and
log, (x) :== 1+ log(z). The function Proj(-) denotes Euclidean projection onto set X'. We say
that f : K — R is S-smooth if V f is S-Lipschitz, i.e., |V f(u) — Vf(v)|| < B|lu — v]| for all
u,v € K. We write [-], := max{-,0}.

In this work, we minimize an objective function f via queries to a stochastic gradient estimator
G. We make the following assumption in all of our theoretical analyses.

KREISLER IVGI HINDER CARMON

Assumption 1 (Made throughout) The objective function f : K — R is convex, L-Lipschitz, (-
smooth,? has closed convex domain K, and its minimum is attained at some x, € argmin g f(z).
For all x € K, the gradient estimator G satisfies EG(x) = V f(x).

Algorithm 1: U-DoG (UNIXGRAD-DOG) template
Input: Initial ¢ € K, iteration budget 7', initial movement 7, step sizes {1y ¢, 7.+ }

Set yg = xg
fort=0,1,2,..., T —1do

Set oy = Z};:o Tr/T¢ and wy = auiy for T = rilgi(max{ﬂyk — x|, [|lzx — xol[, e}

Tyy1 = Projic(ye — aunegmy) for my ~ G(%) and 2 = wty#%{“}i:kmﬂ
Yer1r = Projic(ye — cunyeg:) for gr ~G(&;) and & = Mmgizi;:g:kxﬂl
end
return

Presenting U-DOG. Algorithm 1 provides the general template of U-DOG. As in UNIXGRAD
[30], each iteration of the algorithm consists of two stochastic gradient steps, with each stochastic
gradient queried at a moving average of iterates. Unlike UNIXGRAD, the moving average weights
wy and the step size multipliers o are not fixed in advance, but are instead dynamically set based
on the maximum distance moved from the origin, denoted

7o = e max{ g — ol i — ol 7}

The parameter 7. serves as a (loose) lower bound on ||zg — z,||; typically, 7; grows rapidly and
then plateaus at a level roughly approximating ||xo — z,||. When that happens, the sequence oy =
> i<t Tk/T¢ grows linearly in ¢, similar to oy = ¢ + 1 in UNIXGRAD.

To complete the specification of U-DOG we must set the step size sequence. UNIXGRAD

assumes K the domain has Euclidean diameter D and picks step sizes of the form 7, ; = 1, =
V2D
V1+Qi-1

where

t
Q= Z% and ¢, = of||g — mu*. M
k=0

To handle unknown domain size and unbounded domains, U-DOG follows DOG in using 7 as the
step size numerator in lieu of D. Thus, the U-DOG step size admits the general form

Ft ’ft
Net = ——== and ny; = ———=, where G0 < Gyo <Gy <---.)
z,t y,t

2. Our results hold in the non-Lipschitz or non-smooth cases by setting L = oo or f§ = oo, respectively. In the
non-smooth case, we define V f(x) := EG(x) and assume it is a subgradient of f.

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

In the appendix, we also use the notation

- 1 1
nz,t - %Gx,t %Gy,t .

For bounded domains, setting G, ; = Gy = 1 + Q—1 recovers the UNIXGRAD guarantees up to
logarithmic factors. However, for unbounded domains, ensuring the stability of U-DOG (i.e., that
7+ never grows much larger than ||z — .||) requires more careful selection of G ¢, G, ;. Enforcing
iterate stability without compromising the rate of convergence is the main challenge we overcome.
To that end, we define a few frequently appearing quantities:

3)

and 7, =

ry = max{||yx — zol|, |zx — zoll}, dt = ||yt — x|, dt == max d ,

60 log(6t)
)

M, = rilgi({aszkHQ} and 0 5 == log

UNIXGRAD as a special case. For a domain with Euclidean diameter D, setting r. = D2
and G, = Gyt = 1 + Q¢—1 recovers UNIXGRAD (with Euclidean distance generating function)
exactly, as it implies 7y = D+/2 for all ¢ and hence oy =t + 1.

3. Analysis in the noiseless case

We begin our analysis under the simplifying assumption that gradients are computed exactly.
Assumption 2 [n addition to Assumption 1, we assume that G(x) = V f(x) with probability 1.

This noiseless setting allows us to isolate and address the key challenges of exploiting smoothness
and stabilizing the iterates.

3.1. General suboptimally bound

Our first result is a bound on the suboptimality of U-DOG for general step sizes; see Section A.1
for complete proof. To interpret Proposition 3 recall that dj is the initial distance to the optimum
and the definition of); given in (1).

Proposition 3 In the noiseless setting (Assumption 2), suppose the U-DOG step sizes (2) satisfy
Ggt > Qi1 forallt > 0. Then for every t > 0 and for any number s > 0, we have

33/25(@-&-1 + dO)2 + (P41 + do) [\/Tm B S\/@]-i-) 4)
(5o fk/Ft+1)2 |

Before sketching the proof of Proposition 3, let us explain how it yields the desired rates of
convergence if we momentarily set aside iterate stability and assume 7, < D for all ¢, e.g., be-
cause the domain has diameter D. In this case, we may choose G, ; = Gy ; = Q1 similarly
to UNIXGRAD. Substituting s = 1 in eq. (4) guarantees suboptimality O(%). As

(ko r/Tir1)
shown in [27, Lemma 3], we have max; 1 ZZ:O Tr/Tep1 = (T log~! (fT/T'E)), meaning that for

BD?
T2

f(&) = flaz) <O (

some t < T' we obtain the near-optimal rate O(log2 r%) Moreover, since o < t + 1 for all ¢,

KREISLER IVGI HINDER CARMON

when all gradients are bounded by L we have Q; = O(L? }_, , o) = O(L?t*). Substituting s = 0
in eq. (4) and reusing our bound on the denominator gives the near-optimal rate O <% log? T%) in

the non-smooth setting. We also see that setting . = (D) recovers the UNIXGRAD guarantees
in the noiseless setting, which is to be expected since . = D+/2 recovers UNIXGRAD itself as
explained in the previous section.

Our proof of Proposition 3 combines ideas from the analyses of UNIXGRAD and DOG. It
centers on the weighted “regret” R; = 22:0 Wk (G, Th1 — T) Where wy = ag7g. This is
similar to the weighted regret considered for UNIXGRAD with additional weighting by 7; used in
the DOG analysis. Algebraic manipulation of R gives (recall that d; = ||y;

t t
R: <O (ft2+1\/ Qt + Z(di — 1)/ Gyk — Z||$k+1 — yill*v Qk:) .
k=0 k=0

We use a telescoping argument from DOG in order to bound ZZ:O (d% — di +1) Gy by
0 (ft+1(ft+1 + dp)+ /Gy,t). Next, following UNIXGRAD we leverage smoothness to write

2

N 2
o [DimoWi 2 1 ak 2 A2 _ 9k
| @ps1—ye|® = (Wk:) |Zk—2 | 2 =2l _452va(k) — VG = 157

where the last equality is the first time we assumed exact G. We then show that, for all S > 0,

t t 2
D N —ul*vVQr > Fk (5\/> 53/2ﬁ) &)
k=0 k=0

this is a streamlined version of key arguments in [30, 36] where the authors carefully split the sum
above based on the value of the adaptive step size. Taking S = s - 7441 (741 + do) and substituting
back, we get

R: <O (83/2577t+1(77t+1 +do)? 4 Fri1(Fer + do) [\/ max{Gy, Qt} — 8\/@}) . (6)
+

To conclude the proof, we use the following UNIXGRAD “anytime online-to-batch conversion” [14]
bound:

: R
f (& Z (Vf (@), Tt — Ta) = = (7

E— > im0 Wi D ko Wk

where the last equality is the second and final time the proof uses the noiseless gradient assumption.
Dividing eq. (6) by

t t 2 ¢ ?
Lem.25 | 1_ o 1_ _
Wi = 57}04% = 27‘t< E Tk/T‘t> >) t+1 (E Tk/TH-l)) ®)

k=0

and employing (7) yields the suboptimality bound (4).

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

3.2. Iterate stability

In the discussion following Proposition 3 above, we provisionally imagined that the iterates were
bounded (7; < D for all t) and argued that in this case simply setting G, ; = Q¢—1 and Gy ; = Q¢
suffices for obtaining optimal rates whenever D = O(dy). However, in unconstrained settings this
choice of step size is hopeless, as it makes 7, o infinite, implying divergence at the first step!*

In the following proposition, we identify two conditions that together guarantee the iterates
remain appropriately bounded. The complete proof appears in Section A.2.

Proposition 4 In the noiseless setting (Assumption 2), let s > 0 and define ¢; = 12 log?F (#)

If re < do and the U-DOG step sizes (2) satisfy (i) Gyt > ci(s+ Q) (with G, o > 144s), and (i)
max{|[zi11 — yell; |ye+1 — v |} < %for all t > 0, then we have

di < 2dg and 7 < 4dg forall t > 0.

Let us briefly explain the two requirements in Proposition 4. Requirement (7) folds two condi-
tions into one. The first is that we increase the UNIXGRAD denominator by a logarithmic factor—
this is analogous to the step size attenuation necessary to ensure the stability of DOG (i.e., the
T-DoOG step size [27, Section 3.3]). The second is more subtle, requiring that G, ; upper bound Q;
(rather than (Q;—1 as in UNIXGRAD and Proposition 3) and hence depend on ||g: — my||. This is
essential for guaranteeing stability but is also the cause of considerable technical difficulty in the
noisy setting. Requirement (77) simply asks that U-DOG iterates at time ¢ move by no more than a
fraction of the estimated distance to optimality 7; a reasonable requirement if the estimate is good.

The proof of Proposition 4 is a careful application of the T-DOG stability proof [27, Proposi-
tion 2] to the U-DOG template. The key to the proof is the following modification of the UNIX-
GRAD online-to-batch conversion bound (7), which states that for any optimum x, we have

t

t
R = Zﬁy,kak (Ghs Tho1 — Tx) v Zﬁy,kak (VF(®k), Thg1 — ox) >0,)
k=0 k=0

where (%) holds only in the noiseless setting. We algebraically manipulate R} similarly to the
weighted regret in the proof of Proposition 3. Writing Q} = ¢ ;(s + Q;), we obtain

t / /
Q/
0§RQ§Z<d%dk+1+ \/% Nem “E (ks — yll? + lzps1 — yesa))

Our requirements Gy, > cf(s + Q) (Wthh entails ka > Gyr-1 > ci_1(s + Qi-1)) and

k=0

|es1 — ll® + @41 — v [I* <

two summands by - ?qi 5 Ik From here, the proof proceeds identically to the T-DOG analysis [27,

=2
Section 3.3]: we get that Z =0 % < % by the choice of ¢;, and substituting back obtain that

d?,, < d3 + I E’ which by straightforward induction implies the desired bounds on d; and 7.

3. For constrained domains, however, this choice results in a valid scheme where the first step jumps to the domain
boundary. Indeed, UNIXGRAD also behaves this way for sufficiently scaled-up instances since it uses a fixed, arbi-
trary value for 75 0. This underscores UNIXGRAD’s strong reliance on the bounded domain assumption.

KREISLER IVGI HINDER CARMON

3.3. Rate of convergence in the noiseless case

With the conditional stability guarantee of Proposition 8 in place, we are ready to face a cen-
tral challenge: finding step sizes 7).+, that satisfy the proposition’s conditions but still lead
to good rates of convergence in the smooth case. Our solution is (recalling the notation M; =
max,<i{o?[[mi|2}):

Tt

2
121log? (%) Vmax{|[mol||2 + Q¢—1, My}
T
.)
12log? (WTJ\;@) vmax{[[mol[? + Q¢ M}

Net =

(10)

Tyt =

Clearly, the step sizes (10) satisfy the first condition in Proposition 4 with s = ||mg||. To see
why the second condition holds, note that, since v/M; > au||my|, we have 1, ; < m By the
contractive property of projections, we therefore have

27“t
lzeer — gl < Hopeelimel] < 2 < =
Ct ct
A similar argument also shows that ||z441 — yrp1|| < 2” , fulfilling the conditions of Proposition 4
(see Lemma 19).

Now the question becomes: how does the introduction of M; into the step size affect subopti-
mality? In the non-smooth case the effect is minimal, as we anyway bound @Q; with O(L?t3), and
M; = O(L2t2) is of a lower order. In the smooth case, however, M, is potentially more harmful,
since while Proposition 3 allows us to cancel the dependence on); by setting s = ¢, it leaves M,

hanging in the numerator, yielding f(Z;) — f(xx) < O (O}Q (3/2Bd2 + crdo/ M,))
t
Fortunately, smoothness allows us to relate M; back to the optimality gap f(Z;) — f(z4). In
particular, in the unconstrained setting I = R"™ we have

lmell* < 2llge — mell® + 2llge|* < 2Q¢/ 0 +4B[f (20) — f(x)],

where the last transition used that g; = V f(Z;) in the noiseless setting. Combining this bound with
Proposition 3, we obtain

3/2 2 2 2[£ (4
Bdg + /[ci Bdg maxg<¢ ap [f (k) — f(24)]
F(30) — f(z2) <O \/ 0 2k§t k k ’

Qg

from which f (&) — f(zs) < O (ct O) follows by induction. Thus we arrive at our final guarantee
t
in the noiseless case: Theorem 5 (see full proof in Section A.3).

Theorem 5 In the noiseless setting (Assumption 2) with K = R"™ and r. < d(), using the step sizes
eq. (10), we get that dr < 2dy, v < 4dy and, for T = arg max, - qu 7 the suboptimality is

T . Bd% Ldo
o) = fle) < 0 (e rmin{ T8 20 1),
where c —log% [1 T min{Bd3, Ldo } loo? (do
re, I — Og—‘,— + f(xo)_f(x*) Og+ re)

8

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

4. Analysis in the stochastic case

In this section, we extend the U-DOG guarantees to the noisy case. We start by assuming that the
gradient noise is bounded, a setting that captures most of the remaining technical challenges. We
then generalize our results to sub-Gaussian noise by means of a black-box reduction [3]. Finally, we
specialize the U-DOG guarantee for mini-batches of bounded gradient estimates and conclude with
a discussion of the (weak) dependence of our result on problem parameter bounds. Throughout this
section, we denote the empirical variance at time ¢ by

t
Z lge = V£ @I + [lme = Vo). (11)
k:0
We also recall the notation 60 og(61
05 = log o(;g().

4.1. Analysis with bounded noise

We formalize the bounded noise assumption as follows.

Assumption 6 In addition to Assumption 1, we assume that ||G(z) — V f(z)|| < b(x) with proba-
bility 1 for all x € K, for some (known*) function b : K — R_.

For the iterates of U-DOG we define

by = b(#) and b = max{rgggc bs, b(éo)}- (12)

With the assumption and notation in place, we state the stochastic equivalent of Proposition 3 in the
following (see proof in Section B.1).

Proposition 7 In the bounded noise setting (Assumption 6), suppose the U-DOG step sizes (2)
satisfy Ggp > Qt,} foreveryt > 0. Then forany B > 0, T € N, and § € (0, 1), with probability
at least 1 — 6 — P[bp_1 > B| we have, forallt < T and s > 0,

(1+s)(Fe41 + do)\/t39t+1,évt + (t0:11.5B)°
2
(ZZ:O Tk/Tt+1)

$3/2B(Fe 1 14+do) 2 +(Frr14do) [\/ maX{Gy,t,Qt}—S\/@]
(k=0 fk/ft+1)2

f(#) — f(zye) <O RHScq. 4) +

where RHS g, 4) = + as in Proposition 3.

Proposition 7 is a fairly straightforward extension of its noiseless counterpart. The bound (5)
continues to hold if we replace Q; with Q; = >"r_, @2 min{||gx — mx |, |V f () — V£ (Z)]?}.
Proceeding as in the proof of Proposition 3, we conclude that

s(T 1/2 1/2 tw Tr)—0k,T — Ty
F(#) - f2) < O [RHS.y. 1)+ (t+1+d0)(=20, >+Zk:o k(jf(k)= Gk>Tht1—T) ‘
(XCheo Tr/Tes1)

4. We may view b as a coarse upper bound on the true noise magnitude, as it only affects low order terms in our bounds.

KREISLER IVGI HINDER CARMON

We show that Q% 2 2@; /2 <O (\/t3Vt) by straightforward manipulation. Furthermore, using a
time-uniform empirical-Bernstein-type concentration bound [26, 27] (Lemma 21) to show that (with
the appropriate high probability) the martingale difference sum ZZ:O wi (Vf(Zk) — gk Thr1 — T

is bounded by O (FtJtH \/t39t+1,5Vt + (t9t+175%)2>)

Next, we extend our iterate stability guarantee to the stochastic setting (see proof in section B.2).

Proposition 8 In the bounded noise setting Assumption 6, let s > 0, T € Nand 6 € (0,1), and
define c; = 40007 s log%r (%Qﬂ Suppose that r. < dy and the U-DOG step sizes (2) satisfy, with

probability 1, for all t > 0: (i) Gy > ci(s + Q) (with Gy > 400202 ss), (ii) max{||zi11 —

vells s — zenll} < 225 (id0) /Gy > croq max{[|[Vf(@0) — gil, [V f(@0) — mull}, and (iv)
1y,t is independent of g; given xy, . . ., xy. Then, we have with probability of at least 1 — 6,

dy < 2dy and 7 < 4do forallt <T.

Conditions (7) and (77) of Proposition 8 are identical to their noiseless counterparts in Propo-
sition 4, while conditions (7i7) and (iv) are new and facilitate the application of a concentration
bound to the weighed regret R} defined in eq. (9). In particular, the condition (iv) ensures that
S o Mk (gk — Vf (&), Txy1 — 24) is a martingale difference sequence, and condition (447)
guarantees boundedness required by our concentration bound (Lemma 22). With this high proba-
bility bound in place, the proof continues in the same vein as the noiseless case.

When searching for step sizes meeting the conditions of Proposition 8 we encounter two chal-
lenges. First, condition (4i7) asks Gy ¢ to be large compared to a quantity depending on the exact
gradient V f (&), which we cannot access directly. We solve it using the bounds given in (12). Sim-
ply adding c?(t 4+ 1)2b7 > c2a?b? to G+ guarantees that /Gy ¢ > ciau||V f(3+) — g¢||. Moreover,
using [|ul|® + [[v]|* > 3||v + u||?, we have

_ . 1 .
lge — mell* +6F = [lge — me|? + [V f (@) — gell* = S IVF@) ~ me|?.

Therefore, taking G+ = c7(s + 2Q; + 2(¢ + 1)2b?) fulfills condition (iii). However, it violates
condition (iv) which leads us to the second challenge: how to avoid dependence on g;? To address
this challenge, we employ the somewhat unusual trick of drawing a fresh stochastic gradient gy ~
G(z:) which is, by construction, independent of g; given Z;. We can now replace the forbidden
llg+ — my|| with the valid upper bound 2||g; — m|| + 8b; and thus satisfy conditions (i) and (iii)
without violating condition (iv).

To satisfy condition (i7) we introduce M; to G ; as done in the noiseless setting and make
another modification to ensure the monotonicity required in (2). Writing,

t

G =207 g — mu|)® . Qui=") max{qi, G} and p; == 8(t + 1)’b7, (13)
k=0

our final step sizes are:

Nzt = — t =
40007,5 log? (1 + B=LEeL) fmax{ o |2 + po + i1 + Q1. Mi}
. (14)
Nyt = —— = .
400075 log? (1 + PEIELL), Jmac{lmol[2 + po + pu + G + Qi-1, My }

10

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Similar to the T-DOG step sizes [27, Section 3.3], our step sizes depend logarithmically on the
desired confidence level § and double-logarithmically on the maximum iteration budget 7.
With all the pieces in place, we now state our main result (see proof in Section B.3).

Theorem 9 In the bounded noise setting (Assumption 6) with K = R", for any T" € N and
5 € (0, %), consider U-DOG with step sizes7(14). With probability at least 1—50, we have dp < 2dj,

— T3 -—
Tr < 4dg and for T = argmax, Y ;< 7 and by = MaXy.|g—z, | <2d, 1 0(7) } we have

15)

Bd3 Ldo} N do/Vir N dob*>>

) = $(22) < 0 (cspr (minf 52 T | o VT O

min 2
where cs .. T = log? (%) logi (1 + TW) logi (ﬁ—g) and Vi, defined in eq. (11),

is the empirical noise variance.

We remark that under our assumptions it is straightforward to replace the empirical variance V4
in eq. (15) with its expectation without altering other non-logarithmic terms in the bound, e.g., via
Hoeffding’s inequality.

4.2. From bounded to sub-Gaussian noise

The bounded noise assumption makes analysis convenient but is not entirely satisfactory since av-
eraging independent bounded-noise estimators does not reduce the probability 1 noise bound, pre-
venting us from making statements about mini-batch scaling. To address this issue, we consider the
following standard assumption.

Assumption 10 In addition to Assumption 1, we assume that ||G(x) — V f(x)| is o*(z)-sub-
Gaussian for all x € K, for some (known) o : K — R. That is,

P(||G(x) = Vf(@)l| > 2) < 2exp(—2°/o%(x))
forall z> 0and x € K.

To move from bounded to sub-Gaussian we utilize a reduction due to Attia and Koren [3]
that allows us to essentially replace b(-) with o(-) in Theorem 9 at the cost of additional log-
arithmic factors. To that end, we define 6; = max{max;<;o(Zx),0(%0)}, as well as o, =

2
MaXy:||z—z, || <2do o(z) and 5 = Blogl/Q(M). With this notation in hand, we state our
guarantee for the sub-Gaussian setting (see proof in Section B.4).

Corollary 11 Consider the sub-Gaussian noise seiting (Assumption 10) with K = R" and 0 €
(0, %) using the step sizes (14) with by = G4, 5, then with probability at least 1 — 66 we get that

dr < 2do, 77 < 4dy, and the suboptimality bound (15) holds for b, = o.sr—1 6.

4.3. Corollary: mini-batch of bounded noise

Finally, we leverage our result for sub-Gaussian noise to demonstrate that U-DOG automatically
benefits from increasing mini-batch size (see proof in Section B.5).

11

KREISLER IVGI HINDER CARMON

Assumption 12 [In addition to Assumption 1, we assume that G ({L‘)A is the average of B unbiased
estimates of V f (x), each bounded by L with a known upper bound L > L.

Corollary 13 In the mini-batch setting (Assumption 12) with K = R", for any T € N and § €
(0, é) consider U-DOG with step sizes (14) where b, = ffgt s. With probability at least 1 — 60

we have dp < 2do, 71 < 4dg and, for T = arg max, qu m-l

ﬁd% (L—FI:/\/T)CZO
™ JTE ’

f(@7) = f(2s) SO | Csper

log., (T L+min{gd ,Ld,
where c5r. 7 = \/log, (%) log? <7g§()) logi(+ T T 0§ f?r*)°}> log% (f—f)

4.4. Discussion: how parameter-free is our algorithm?

With our results established, we now discuss in more detail the extent to which our algorithms and
complexity bounds are free of a-priori knowledge of problem parameters. U-DOG requires a lower
bound 7 on the initial distance to the optimum dg, and pointwise upper bounds b; on the noise mag-
nitude at each iteration. Theorem 9 provides suboptimality bounds that depend poly-logarithmically

on 0 which quantifies how r, underestimates dy. Many works [e.g., 7,9, 15, 16, 27, 28, 39, 41, 49]
treat “such logarithmic dependence as the definition of a parameter-free algorithm, and in that strict
sense our method is certainly parameter-free. The noise bounds impact our suboptimality guar-
antees polynomially via the additive term b, /7" where b, = maxg.;_s,|<24,10(2)}, potentially
implying greater sensitivity to problem parameters. Neverthless, we argue that our method fully
deserve the title “parameter-free” for the following reasons.

1. The noise bound only contributes a low-order error term. To see why b, /T is low-order, let
br be the largest stochastic gradient error in the first 7" iterations of U-D0OG. Then the empirical

variance satisfies Vpr = O (6%) and the noise-dependent part of Theorem 9 is 9] (% + do%) .

Therefore, as long as b,/ by = O(V/T) (i.e. the noise bound is loose by v/T or less) we get the
near-optimal dependence on the unknown, true noise magnitude brp.

2. The low-order term and noise bound assumption are unavoidable. Recent work [4, Theorem
6] proves that any algorithm with logarithmic dependence on uncertainty in distance to optimal-
ity must suffer the low-order error term b, /7, and hence also require an a-priori noise bound
(concurrent work [10, 31] also shows similar results). Moreover, prior parameter-free algorithms
assume known bounds on stochastic gradient magnitude, which is stronger than assuming noise
bounds. In this sense, our method is as parameter-free as it gets.

3. The noise bound is often easy to obtain and vanishes as batch size grows. Corollary 13 and
Assumption 12 give a general setting where a noise bound is readily available. For a concrete
instantiation, consider logistic regression with normalized covariates. In this case L =1 and the
noise bound at batch size B is O (1/B), which decreases as the batch size grows.

12

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Batches to train loss 0.062 Train loss for BS 4096 Train loss after 400 batches

10% 4 L 0.9999

9x1072 0.9997
0.9990 €
8x 1072 0.9968 2
101 A & 0.9900 é
7x1072 ® oW % 0.9684 5
0.9000 =

> 0.062 = 0.6838

6x10 - ‘ :] am] 0.0000

Batches to test accuracy 0.633 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999

10 06 0.9997

0.9990
0.51 0.9968 3
c
, 0.41 0.9900 g
1034 0.9684 &
0.3 0.9000 =

% . 8 0.6838

: : 21 : - — : e 0.0000

102 104 10?2 103 104 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 1: Training a linear model with ViT-32 features and least-squares loss on SVHN. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance
at all learning rates and momenta, contrasted with DOG variants.

5. Experiments

We test U-DOG on a suite of experiments on convex and non-convex learning problems. We also
heuristically derive and experiment with an algorithm we call A-DOG, which integrates ideas from
ACCELEGRAD [36] and DOG. Namely, it uses the ACCELEGRAD step with DOG numerator and
oy as in U-DOG. The pseudocode for A-DOG is given in Algorithm 2 in Section G.2.

We compare our algorithms to DOG as well as carefully tuned SGD with constant Nesterov
momentum (ASGD for short) across a wide range of batch sizes. Detailed experimental results and
analyses, as well as implementation details, are presented in Appendix G.

Our testbed consists of multiple classification problems based on the VTAB benchmark [67]
and libsvm datasets [12], which we solve with both multiclass log loss and least squares loss, as
well as a synthetic noiseless linear regression problem (see Section G.3). In addition, we perform
preliminary experiments in the non-convex setting, including training neural networks from scratch
on CIFAR-10 and VTAB datasets, and fine-tuning a CLIP model on ImageNet (see Section G.4).

On convex optimization problems, both U-DOG and A-DOG often substantially improve over
DoG, with A-DOG achieving results comparable to well-tuned ASGD and outperforming U-DOG,
likely by avoiding extra-gradient computations. Figure 1 illustrates these results on a particular
dataset and least-squares loss function configuration and Section G.3 repeats this figure for ad-
ditional configurations. The left panels in the figure show the rate of convergence of A-DOG,
U-DoOG and ASGD plateaus at a larger batch size compared to DOG and SGD without momentum.
This is the typical effect of acceleration in stochastic optimization [56], and is also supported by
Corollary 13 which shows that, for sufficiently large batch size, U-DOG converges at rate scaling
as 1/T?. In contrast, non-accelerated methods like DOG and SGD converge with rate scaling as
1/T. The right panels of the figure show that, at a tight computational budget, the performance

13

KREISLER IVGI HINDER CARMON

of ASGD is very sensitive to the tuning of both step size and momentum, with only the very best
values matching the performance of A-DOG. When using logarithmic instead of least-squares loss,
the test accuracy becomes more robust to large step size choices (see Figure 2 in the appendix). This
is partly because the log loss is Lispchitz which prevents complete divergence at any fixed step size.
In our preliminary non-convex experiments on neural network models (reported in detail in Sec-
tions G.3 and G.4), we find that U-DOG often fails to converge to competitive results, while A-D0OG
is competitive with DOG on most VTAB tasks, but under-performs it for CIFAR-10 and ImageNet
fine-tuning, indicating that it is not a yet a viable general-purpose neural network optimizer.

Acknowledgments

We thank Konstantin Mishchenko for helpful discussion. This work was supported by the NSF-BSF
program, under NSF grant #2239527 and BSF grant #2022663. MI acknowledges support from the
Israeli Council of Higher Education. OH acknowledges support from Pitt Momentum Funds, and
AFOSR grant #FA955023-1-0242. YC acknowledges support from the Israeli Science Foundation
(ISF) grant no. 2486/21 and the Alon Fellowship.

14

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

References

[1]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

E. Alpaydin and Fevzi. Alimoglu. Pen-Based Recognition of Handwritten Digits. UCI Ma-
chine Learning Repository, 1998. DOI: https://doi.org/10.24432/C5SMG6K.

Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: Full adaptivity with high prob-
ability to unknown parameters, unbounded gradients and affine variance. In Infernational
Conference on Machine Learning (ICML), 2023.

Amit Attia and Tomer Koren. How free is parameter-free stochastic optimization? In Interna-
tional Conference on Machine Learning (ICML), 2024.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab.
arXiv:1612.03801, 2016.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with
imperfect hints. In International Conference on Machine Learning (ICML), 2020.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Conference on Learning
Theory (COLT), 2022.

Yair Carmon and Oliver Hinder. The price of adaptivity in stochastic convex optimization. In
Conference on Learning Theory (COLT), 2024.

Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
adaptive monteiro-svaiter acceleration. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2011.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

15

KREISLER IVGI HINDER CARMON

[14] Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Con-
ference on Machine Learning (ICML), pages 1446-1454, 2019.

[15] Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Conference
on Learning Theory (COLT), 2019.

[16] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in Banach spaces. In Conference on Learning Theory (COLT), 2018.

[17] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In
International Conference on Machine Learning (ICML), 2023.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[19] Jelena Diakonikolas and Lorenzo Orecchia. Accelerated extra-gradient descent: A novel ac-
celerated first-order method. In Innovations in Theoretical Computer Science (ITCS), 2018.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations (ICLR), 2021.

[21] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[22] Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization
in online and stochastic optimization. arXiv:1706.06569, 2017.

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357-362, 2020.

[24] Kaiming He, X. Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image recog-
nition. Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform cher-
noff bounds via nonnegative supermartingales. Probability Surveys, 17:257-317, 2020.

[26] Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, non-
parametric, nonasymptotic confidence sequences. The Annals of Statistics, 49(2):1055-1080,
2021.

[27] Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free
dynamic step size schedule. In International Conference on Machine Learning (ICML), 2023.
We refer to the latest arXiv version: https://arxiv.org/abs/2302.12022.

16

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

[28] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Conference on
Learning Theory (COLT), 2022.

[29] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[30] Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. UniXGrad: A universal, adaptive
algorithm with optimal guarantees for constrained optimization. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019.

[31] Ahmed Khaled and Chi Jin. Tuning-free stochastic optimization. In International Conference
on Machine Learning (ICML), 2024.

[32] Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. DoWG unleashed: An efficient univer-
sal parameter-free gradient descent method. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[33] Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

[34] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[35] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1):365-397, 2012.

[36] Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and
acceleration. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[37] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts.
International Conference on Learning Representations, 2017.

[38] H Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. The
Journal of Machine Learning Research, 18(1):3117-3166, 2017.

[39] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in Hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory
(COLT), 2014.

[40] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. arXiv.:1002.4908, 2010.

[41] Zakaria Mhammedi and Wouter M Koolen. Lipschitz and comparator-norm adaptivity in on-
line learning. In Conference on Learning Theory (COLT), 2020.

[42] Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-
free learner. arXiv:2306.06101, 2023.

17

KREISLER IVGI HINDER CARMON

[43] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequali-
ties with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229-251, 2004.

[44] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 27(2):372-376, 1983.

[45] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013.

[46] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[47] Francesco Orabona. Dimension-free exponentiated gradient. Advances in Neural Information
Processing Systems (NeurIPS), 2013.

[48] Francesco Orabona. A modern introduction to online learning. arXiv:1912.13213,2021.

[49] Francesco Orabona and D4vid Pal. Coin betting and parameter-free online learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2016.

[50] Courtney Paquette and Katya Scheinberg. A stochastic line search method with expected
complexity analysis. SIAM Journal on Optimization, 30(1):349-376, 2020.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019.

[52] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830,
2011.

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable

visual models from natural language supervision. In International Conference on Machine
Learning (ICML), 2021.

[54] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
sequences. In Advances in Neural Information Processing Systems (NeurIPS), 2013.

[55] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond.
In International Conference on Learning Representations (ICLR), 2018.

[56] Christopher J Shallue, Jachoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
and George E Dahl. Measuring the effects of data parallelism neural network training. Journal
of Machine Learning Research, 20:1-49, 2019.

18

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International Conference on Machine
Learning (ICML), 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning (ICML), 2018.

Matthew Streeter and H Brendan McMahan. No-regret algorithms for unconstrained online
convex optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2012.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272, 2020.

Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the
9th Python in Science Conference, 2010.

Ross Wightman. PyTorch image models. https://github.com/rwightman/pytor
ch-image-models, 2019.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun
database: Exploring a large collection of scene categories. International Journal of Computer
Vision, 119(1):3-22, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference (BMVC), 2016.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme,
Mario Lucic, Josip Djolonga, André Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Syl-
vain Gelly, and Neil Houlsby. A large-scale study of representation learning with the visual
task adaptation benchmark. arXiv:1910.04867, 2019.

19

KREISLER IVGI HINDER CARMON

Contents

1 Introduction

1.1

Related work e

2 Preliminaries and algorithmic framework

3 Analysis in the noiseless case

3.1
32
33

General suboptimallybound oL oL
Iterate stability e e
Rate of convergence in the noiselesscase

4 Analysis in the stochastic case

4.1
4.2
43
4.4

Analysis withbounded noise L L
From bounded to sub-Gaussian noise
Corollary: mini-batch of bounded noise
Discussion: how parameter-free is our algorithm?

5 Experiments

A Proof for Section 3 (the noiseless setting)

Al

Proof of Proposition3

A2 Proof of Proposition4

A3

Proof of Theorem 5 e

B Proofs for Section 4 (the stochastic setting)

B.1
B.2
B.3
B4
B.5

Proof of Proposition 7.
Proof of Proposition 8
Proof of Theorem 9
Proof of Corollary 11
Proof of Corollary 13

C Suboptimality lemmas

C.1
C2
C3

Weighted regret to suboptimality conversion (Lemma 14)
Inductive suboptimality bound (Lemma 15)
General regret bound (Lemma 16)

D Iterate stability lemmas

D.1

A weighted regret bound (Lemma 17)

D.2 Inductive stability bound (Lemma 18)

D3

Single-step iterate stability (Lemma 19)

E Concentration bounds

E.1
E.2
E.3

An empirical-Bernstein-type time uniform concentration bound (Lemma 20)
Concentration bound for suboptimally proof (Lemma21)
Concentration bound for iterate stability proof (Lemma22)

20

13

22
22
25
27

30
30
32
32
35
36

36
36
37
39

41
41
42
43

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

E4 Relating Q; to Q; (Lemma23) 46
E.5 Concentration inequality for bounded random vectors (Lemma24) 47
Auxiliary lemmas 48
F.1 The growthrate of), 7rap (Lemma25) 48
F.2 Discrete derivative lemma (Lemma 26) 48
E3 Discrete integral lemma (Lemma 27) 49
F4 Additional lemmas from priorwork 50
Experimental details 50
G.1 U-DOGSEPSIZES v v v vt i i e i e e e e e e e e e 50
G.2 ACCELEGRAD-DOG (A-DOG) e 51
G.3 Convex eXperiments vt i e e e e e e e e e 51
G.4 Non-convex exXperiments v v v v v v vt e e e 52
G.5 Implementationdetails L oL 52

21

KREISLER IVGI HINDER CARMON

Appendix A. Proof for Section 3 (the noiseless setting)

A.1. Proof of Proposition 3

Proof Define
= 1 and
e a
t
Q=Y agmin{[|V (@) = VL(2)? lg — mall*}
k=0

Note that in the noiseless setting Qr = Qp. However, most of the proof carries over to the noisy
setting as well. Therefore, until a later stage of the proof, we do not use that m; = V f(Z),

gt = Vf(2) and Q: = Q; in the noiseless setting.

Recall the notation 7, ; = \/% and 7, = % Algebraic manipulation gives us that for
x,t y,t
allk > 0
TRORPk 2] 2
TR0tk (G, Th1 — Tu) < %Hgk —mg* = %ka-&-l — Ykl
k=0
1 1 9 9
5 T o= Tht1 — Yl + 1 Th+1 — Y41

(5~ 3) Qs = 9l + ks = i)

_ 2 _ _ 2\.

+ Qﬁw(”w* ll® = 2w = yrsll”);

see Lemma 16 for a proof. Therefore, by summing over both sides of the inequality we get that for

allt >0

t 7y~ okl —mi? !)
Z ko A9k Th1 — Ta) < — Z - Z 51Tkt — Ykl
2 k 2 9 2p5,
= =0T 2llg —myl2 i
(A) (B)
1 1
+ 472 [— } -y — (2 -d2,).
o Z Pk Mok 2 kZ:O Ty, k (i = dic)
@ (D)
Bounding (A): We have > _, \/ ak“gk |2 < 2\/22:0 o2||gr, — mgl|?; see Lemma 28

> =0 J”.‘JJ m; 12

with sp = a2 |lgx — my|?, and therefore

t
i Z apllge —mel? 7}
DT a2llg —mylr P

22

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Bounding (B): We have that for all £ > 0
- vz Y oszpa g2
IVF(Er) = VIE)IT < B2 — 2
B*rioq
(0= 17"20‘%)
(2) 42

< 5 llwker — il
A

- 2 |Zry1 — yk”2

where (1) is from the 3-smoothness of f, and (2) is because 7o < 2 25:1 7304 by Lemma 25 .
Therefore,

Q| ER) — VG
432 '

Nt — il <

Thus,

t t 2 A 2 V112
1 2 IV Ff (k) = V()|
kzzozpkﬂ k1 — Ykl < kzzo S5

Bounding (C): As plk ﬁxl,k

set of indices for which it is non-negative as

., t} we define the

1 1
é{ke{o,L...,t} P — = zo}.

Define iy, as the k-th smallest index in /, and define ¢j71 ==t + 1. We note that for all k¥ € I then
ik < ig+1 — 1 < t. Therefore,

1] 1]
1

= 472 — = < 47 _

i Z (plk TNa,i,) o Z < Pligs1—1] nx,ik >

= 1] _ t—1

472 | 1 1 4772 1 1

< ltJr1+47:+1 < - = >§ S arty, {—~]

pt p[ik—l] nm,ik ,Ot k=0 pk 77507]6"1‘1 +

Bounding (D):
t

1 1 2 1 1 1
52 k+1): 0 tfl+2z<~—~)di

0 2ny,O 2ny,t Ty k Ny, k—1

31

B d 1
-3
o 2ﬁy,O 277yt 2 77y, ﬁy,k—l

By performing telescopic summation we obtain

72 2
(D) S dt+1 ~_ dt+1)
277y,t

23

KREISLER IVGI HINDER CARMON

Let s € argmaxy<;, di, we have that d7 | — d7, | = d2? — d?, | = (ds — dyy1) (ds + di1) <
1Ys — yes1 |l (ds + dis1) < (Fs + 7441) (ds + dig1) < 47¢11dis1. Thus,
(D) < 27‘t+~1dt+1.
Myt
Bounding (4) + (B) + (C) + (D): Combining all of the above, we obtain that

t

_ 1 1
ZT ko (G, g1 — @) < BFpp1 (Fegr + dis1) max{) = }
=0 Pt Myt

t—1 R .
it {1 - f] _y oklIVIE - ViGI
+

— Lok ek — 852 py,

Therefore, as for any we have that G, 1, > Qk_l,

t

2|V f(&r) — Vf ()|
D rkak (g w1 — 2a) < 5T (Fepr + disr)\/max{Gyr, Qi) — Z v/ ggzpk fEIT

k=0

Let s > 0 and recall that pik = +/Q. We get that

t SNTE
a;|IVf(z Z

E Tra (Gr Tha1 — Tu) < 1087141 (Fegr + disr) Qi — E : RlIVS (@) — VG V Qk

k=0

852
+ 57411 (Fe1 + dysn) <8\/@ - 25\/@)
+ 571 (Fe1 + disy1) <\/ max{Gyt, Qt} — 3\/@) (16)

We have that

t
v N
105741 (Feq1 + dis1) \/7 Z af[[V£(mt&BQ V&) NN

t . . 9 B
< 108741 (ft+1 + Jtﬂ) \/@ - Z & mln{HVf(xk) 852(DI llge mk” } \/>
k=0

Define B} = aj min{ ||V f(&r) — V£ (2e)|1 llgr — mll?}, e1 = 108711 (T30 + diy1), and ¢ =
832. Lemma 27 gives us that for all t > 0

Therefore,

o |V f(z V)2
105741 (41 + dis1) \/> Z £V t852 f(E) JOr

2(10s7 41 (Fra1 + dt+1))3/ 2(88)1% < 18053741 (Frar + diy1) 5.

24

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Combining this result with eq. (16) yields that forall¢ > 0and s > 0

t
- T2
> ke (ghs Trp1 — @) < 1808271 (Frp1 + dia) B

k=0
+ 5741 (Feg1 + dis1) (5\/@ - 28\/@)
-+ 577t+1 (fﬂ_l + CZH_l) <\ / max{Gyvt, Qt} — S\/@) . (17)

Lemma 14 gives us that

Fl) = [(00) € 3 Fran (V£ mhr —).

B Zk 0TkCk 12

Now, by additionally using the fact that in the noiseless setting

Q= Q; and

t t

> Teon (VF(&8), Thp1 — Tu) = Y Trk (G Thp1 — o)
k=0 k=0

we get that

. 7 _ T
F(@) = fly) < 18082 =B (g + dt+1)2
k=0 TkQk

5 () + di) WM_ s\/@>.

20 ThO

Finally, by using the fact that Jt+1 < dp + 7141 and because Fkaz <2 Zgzl oy forallk > 0
(Lemma 25), we obtain that

(83/2l3<7"t+1 + d0>2 + (77754_1 + do) [\/maX{Gth, Qt} — 8\/@]+>

f(&) = f(zi) <O
(ZZ:O Fk/ﬂﬂ)z

A.2. Proof of Proposition 4
Proof For any /& > 0 (in this case h = 12), define

= hlogi(s ZQt> and

1
pr = .
ci—1vVs+ Q¢

25

KREISLER IVGI HINDER CARMON

Lemma 16 gives us that, for all £ > 0,

_ 7o py 2 1 1 2 2
Tea (Ge, Tep1 — Tu) < ———||ge —mu||* + | =— — =— (H$t+1 = yell” + 1741 — Yol)
2 20t 2Mgy
+ %(Hx* - ytH2 - H.TC* - yt+1H2)'
From the definitions of p¢ and 7jp+ = 1//Get < 1/1/Gyi—1 < 1/pi—1 we obtain that
1 1 C? 1
2Pt 277“ 7Pt(Qt Qt—1)7

See proof in Lemma 26. Now, because we also have that max{||z;+1 — y¢ ||, || Yer1 — Teg1]|} < j”
we get

1’

N 9_
Teoy (9e, Tep1 — Tu) < §T§Pta?\|gt me||* + — 277 (df — di).
y7

Thus,

20y 1T 0y (9t 111 — m4) < 9ft2ﬁy,tptafllgt - th2 + (d2 dt+1)
Consequentially, by summing the two sides of the inequality, we get that for all ¢ > 0

t t t

2> Ay kTkak (ghs Thr — 24) <9 Py kpraillgr — mall® + D (i — disy)
k=0 k=0 k=0

972 Qr — Qr—1 :
- h72t 2 [s+Qp + Z k—H
k=0 (5 + Q) logy <T) k=0

Lemma 30 gives us that

Qr — Qr-1

2 (s+Q s L
S
=5 (5 + Qi) log? (1)
Therefore, we obtain that
t 9,2 t
2> iy kO (Ghs Tht1 —) < Tt +) (dy — diyy).

k=0 k=0

Thus,
2 ko (VI (1), @xan = 22) S5 + ZZny,mak (V () = g, The1 — @)
k=0 k=0
t
+ Z diy1)
k=0

26

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Consequentially, as Lemma 17 gives us that

t
> iy aTeon (VF(Er), Thar — 2.) > 0,
k=0

we get that

t

977

O<ﬁ+22nyk% (V@) = g rpr — a) +) _(df — diy)
k=0 k=0

Therefore, we get that forall ¢ > 0

9
dfy < =l +220y,kak (VI(@r) = grs xh1 — 24) + 3.
k=0

As we are in the noiseless case, and h = 12, we get that for all ¢ > 0
—2

a2, <L+ d3
1 S 16 +

1 \2
< (do + 47"t> .
Finally, Lemma 18 now gives us that for all £ > 0

dt < 2d0 and Tt < 4d0

A.3. Proof of Theorem 5
Proof Define
[[mol* + Qt)

[lmolf?

From Lemma 19, we get that for all £ > 0 the distance between iterates is not large:

e =12 logi (

27‘,5
max{||zir1 — yell, |Ter1 — verall} £ —

Ct—1 .
Now, we fulfill all the conditions for Proposition 4 and therefore, for all ¢ > 0

Jt < 2d0 and Tt < 4d0

Proposition 3 gives that for all ¢ > 0 and forall s > 0

f@) = flz) <O

(5o 7/Pee1)

27

<83/25(7“t+1 +do)* + (41 + do) /Gyt — S\/@L

(18)

KREISLER IVGI HINDER CARMON

By using the fact that 7, < 4dy, we get that forall ¢ > 0

$328d2 + do[/Gyt — sV Qr
Fla) — o) < 0< —— [Sl). (19)
(Zk:o "’k/T't+1)
Recall that
T = arg max Z #
t<T i<t Tt+1
To show the non-smooth rate, we set s = 0 and obtain
T—1
VG < ery| max {adllme|?} + > adllge — il < er VI?L2 + T3L? < 20T ey,
= k=0
This result, with eq. (19), gives us that
X LdyT3/?
f@r) = fla) <O | ———ger | (20)
(Zk:o Tk/Tte1)

To show the smooth rate, setting s = 2¢¢4; yields

VG = V@ < e (V@I —2V@0) < eon (VT ~ V).

For some x; < ¢ we have that \/M; = ay,||my,||. In addition, the smoothness of f implies that
IV£(2)|I? < 28[f(2) — f(zy)] for all z € X'. Combining this fact with the triangle inequality gives
us that, in the noiseless setting,

O‘HszHzH = aHtva(éHt)H < aHtva('i‘Ht) - vf('%l@t)H + O%t\/%v f(:i'ﬂt) - f(x*)

Thus,

VM < V/Qu+ i, V2BV f(Ek,) — flaa)

Therefore,

vV Gyt — 3\/@ < Qi \/ 20%4-16\/ J(@r,) — f(xs).

This result, together with eq. (19), give us that for all £ > 0, there exist x; < ¢ such as
3/2 2 2 d2\/f
Ct+15 0 T Ok, Ct—f—lB oV [(k) = f(y)
o 2
(ZIIZ::O "”k/7“t+1)

Using the previous inequality and Lemma 15 we obtain that for all ¢ > 0 that

f(&) = fla) <O

f(@) — flze) <O By QC§+1) ' (21)
(Xm0 Pk /Tr41)

28

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Combining the result from eq. (20) and eq. (21) gives

(22)

fl@:) — f(ze) <O <min{5d(2), LdoT?/?} 2)

— cr
(Sheo Tk/Ter1)’
Lemma 29 gives us that

o2 i 1)

k=0

Thus, it T > 2log (F7/rc) then

1 1 T’T>>
=—— < O =lo .
D k=0 Th/Tt41 (T B (Te

Therefore, from eq. (22), we obtain

- 2 3/2 _
f(en) — (2 <O (mm{ﬂ 6 LT} 4 102 (T)) . 3

€

We have that

moll? + Qp_
r =0 <l°gi<u O|’|mou§T >)

(4 2 T3 min{ﬁdg, L} >> 2 min{ﬁd%, Ldo}
§O<log+<” wicolz)) SOV M T e~ fw))

due to (7) the noiseless setting and f being S-smooth and L-Lipschitz, and (i7) convexity, which
implies f(xg) — f(xx) < do||V f(20)| Finally, from eq. (23), we obtain

: 2 3/2 - 2
f#r) — f(z.) <O (mm{ﬁ 4, LT} | g (1 + T““W’LdO}> log? (?)) Q4

T2 f(@o) = () ¢

Finally, for T" < 2log , (71 /) the theorem holds trivially since f(;)—f(z4) < min{Sd2, Ld }
and d, < 2dgy by Proposition 8. Therefore,

min{ 3d3, Ld,
f(@:) = f(ze) <O (min{Bdg, Ldo }) < O (W]egi(ﬁ/re)> ;

and so the bound Equation (24) holds in all cases, concluding the proof. |

29

KREISLER IVGI HINDER CARMON

Appendix B. Proofs for Section 4 (the stochastic setting)

B.1. Proof of Proposition 7
Proof Define

t
Qe = afmin{|[Vf(ix) = VF ()1 llgn — ma]*}.
k=0

Our proof continues from eq. (17) in the proof Proposition 3, which also holds for stochastic
gradients.

t
Z k(G Tt — 22) < 1808% 27 (Fepy + disr)

k=0
+ 5741 (Fe1 + dig1) <S\/@ - 25\/@)

+ 5741 (Fe1 + dis1) (\/ max{Gy, Qt} — 3\/@)

2

B

Forallk > 0

gk — mel® < 20V f (@) — VfCe)® + 209k — V(@) — (me — VF(2)|?
< 2min{[|V (@) — VL) gk — mul*} + 4llme — V)| + 4llge — V(@)

Thus, forall kK > 0
g — ml* < 2min{ [V F(@x) = VFE, gk — mal*} + dllme — V(2|7 + 4llge — V f (@)%
Multiplying by ozi, summing and recalling that ap, < k+ 1 implies @y < 2Qt +4(t +1)3V;, where

Vi = H% Sico(lge = V(@)% + [lme — Vf(2)]|?) is the empirical variance. Substituting into
eq. (17), we get that

t
32~ (- SN2
> hak (g wrgn —) < 1808° 27 (Peyr + digr) B

k=0
+ 5741 (g1 + dis1) <\/ max{Gyt, Qt} — 5@)

+ 1087441 (Feg1 + digr)V (E+ 1)3V. (25)

Lemma 21 gives us that with probability of at least 1 —§—IP [ET,l > Q%] ,forallt € {0,1,...,T — 1},

t t
> T (Vf(&k) = G Thr1 — o) | < 8ouTi(Fran +do) y | 10 D IV F (k) = gell? + (Br41,6B)%.
k=0 —

30

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Using the previous equality and the definition of V; we obtain that

t

Z TLOL Vf .Z‘k $k+1—37*>
k=0

I
M“

t
o0 (ks That — o) + O T (VF(E8) = G Thp1 — 2
k=0

£
=l

0

IN

Thk (Ghy Th1 —) + STy (Teg1 + do)\/(t + 1)0:11.6Vi + (0:415B)%. (26)
0

>
I

Lemma 14 gives us that

t
f(@) — f(2s) < ch:i?”kak kzzofkak (Vf(2r), Tpgr — 24 -

By combining the above inequality with eq. (25) and eq. (26), we obtain

. 7 ~ _
F(@0) = flze) <1808 "2 B(7 1 + dyy1)’
k=0 TkQk

+ 5%(77#1 + di11) <\/ max{Gy, Q¢ } — s/ Qt)
k=0"k"k

T _
+10(1 4 8) = (Fry1 + diga) \/(t +1)3V; + (04158)%
Zk:o TLOk

Now, as Lemma 25 gives us that rtat <2 Z k—o Tk, We obtain that

1

F@r) — flzs) < 360s%2 50 (Fr1 + dis1)”

S o Tk/Tet1)

+10 > 1 . (Fesr + desr) <\/m _ s@)
k=0Tk/Tt+1

1 -
+20 (5L /7)2 (Fe1 + dis1) \/(t +1)3V; + (0141,B)°.
k=0Tk/Tt+1

Finally, because that dir1 < do + Tiy1, we get that for any B8 > 0 with probability of at least
1 —0 —P[bp_1 > B] we have that for all ¢ < T and for any number s > 0

(14 5)(Tey1 + do)\/t39t,6V2 + (tet,a%)z
2
(ZZ:O Tk/Tt—H)

$3/2B(Fey14do) > +(Fey1+do) [\/ max{Gy,¢,Qt}— F]

(ZZ:O fk/Ft+1)2
Proposition 3. u

f(@) — f(z+) <O | RHS¢q. 4 +

where RHS.; 1) = + is the error term appearing in

31

KREISLER IVGI HINDER CARMON

B.2. Proof of Proposition 8

Proof The proof continues from eq. (18) in the proof of Proposition 4, which also holds for stochas-
tic gradients. Substituting h = 400 in eq. (18) gives, for all £ > 0,

972 !)
diy < Kotz +2> ko (VF(Er) = gk Thg1 —) + d5-
k=0

Now, Lemma 22 gives us that with probability at least 1 — ¢, forall ¢t < T

t

. 1201115
> awny g gk = V(@) wp1 — 2)| < 400t; 7¢(Fe1 + do)
k=0
1201116 12 3\, 12
< d 1+ — —7d).
< 2000y, e T redo) < 3 (1+ gog) e+ gggTedo
Therefore,
8177 24 , 24 Tedo
i L 7 do + dg —— +d
1= 002 T a00"t Tago 0t = 16+ g T
Thus, with probability of at least 1 — 6, forall ¢t < T
1 2
Finally, Lemma 18 gives us that with probability of atleast 1 — § forall ¢t < T'
dt < 2d0 and Tt < 4d()
|
B.3. Proof of Theorem 9
Proof Recall the notation
t
G =207 ||Ge — mu|* . Q= Zmax{qk, G} and p = 8(t + 1)b7,
k=0
and that our step sizes are of the form (2) with
Gyt = é? max{HmOHQ +po+pt + G + Qi-1, Mt}7
where 3
R pt+ G+ Qi1
& = 40007 5 log? <1+>
R N T
We begin by verifying the conditions of Proposition 8 with s = ||mq||? + po, where condition

(7v) holds by construction. By Assumption 6 we have
lgr — ge1* < 2llg0 = Vf (@)||* + 2013 — V. (@0)[|* < 467

32

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Therefore, since t +1 > o4, we have
G + 1t > of (211G — mael® + 2llge — Gel1?) > Fllge — mull* = ax,

and consequently
gt +pt + Qr—1 > Q1.

Defining

Q+
= 40007 51 214 — =
‘ 73 "g*(T Tl + 10)

we conclude that
Gyt >} max{HmoH2 + po + Qi, My} > Z([lmoll* + po + Q1)
so that condition () of Proposition 8 holds. Next, since
Gyt > C% max{Qy, My} > CtQOé? max{||g: — mt||27 HthQ}a
Lemma 19 guarantees condition (i) of Proposition 8. Finally, we note that
pr 2 8ai max{|lge — V f (&)l 1ge — V.f (&) %}

and
pe+ @ > of (2llme — GilI* + 2015 — V(@) > aflme — Vf (&)

Therefore, as \/Gy+ > ci\/pt + s> condition (iiz) of Proposition 8 holds.
As all the conditions for Proposition 8 hold, with probability of at least 1 — §, for all £ > 0

d; < 2dp and 7 < 4dy.

Recalling that b, := max,|;;_, <24, {b(x)}, this also implies that P[by_; > b,] < 4.

We now combine the conclusions of Proposition 8 with Proposition 3 to obtain a suboptimality
bound for U-DOG. Substituting P(77 < 4dg) < § and P[by_; > b,] < § into Proposition 7 we get
that, with probability at least 1 — 36, forallt < T'and s > 0,

2603 + do[\/Cys — sv/Qi) , + (14 8)do\/8¥0041,5Vi + (t0141,56.)°

f(@) = f(z) <O
(ZZZO fk/ft+1)2

27

To simplify gy,t in the bound above, we invoke Lemma 23 which gives that, with probability at
least 1 — 6 — P[bp—1 > by > 1— 26, forallt < T,

Qi < 5Q; +80(t +1)°\/0r 1 5V + 2(t + 1)%0141,6b2,

and hence
VGyt < éz&\/@t +2M,; + 2p, = O(ét\/ Q¢ + e/ My + e075/ 13V, + thZ)

33

KREISLER IVGI HINDER CARMON

Combining this with the bound (27) and replacing s with s¢;v/3, we get that with probability at least
1—-59,forallt < T and s > 0,

53261283 + evdy ([(1 = 5)V/@Qr + VL], + (1 +)05/, + 267

(@) = f(z) <O
(Zl;‘;zo fk/ft—i—l)Q

(28)

The remainder of the proof parallels the proof of Theorem 5, where we specialize our bound to
the Lipschitz and smooth cases by choosing different values of s. For the Lipschitz case, we use the
facts that

Q<4 G (IVF@IIP+ IV LB + llge — V@) + llme — VF(2)II°) = O(LPT+VoT?)
k<T

Q¢ = O(L?T3) and M; < O(L?T?) and (under the event dr < 2dg)

My < masc{ 202 (|91 ()P + g — VFGI)} = O(LPT? + 02T2),

giving the suboptimality bound. Substituting these expression and s = 0 into (28) we get, for all
t<T,

5 . LdoT?3? + doOr 51/ T3V + T202
f(@) — f(ze) <O (ct 0 0075 T 1) 29)

_ 2
(Xheo Tr/Tr1)
For the smooth case and any ¢ < T, let k¢ < t be such that For some x; < t we have that
\% M; = aHthfitH'

The smoothness of f implies that |V f(2)||?> < 28[f(z) — f(x4)] for all z € X. Combining this
fact with the triangle inequality gives us that

aHthHtH < aHtHVf(i‘Ht) - Vf(ém)n + O‘:‘Cthl@t - vf(éliz)n + O‘Ht\/ﬁ\/ f(i'ﬂt) - f($*)

and therefore,

VM < V/Qi + V(1 + 1)PVi + e V2BV [() — fla)-
Substituting into eq. (28) and taking s = 2, we get, forall t < T,
&2 B3 + vdobr.s/ TV + T207 + /2,1 BB/ F (i) — F ()
— 2
(ZZ:O Tk /Tet1)

Applying Lemma 15 and noting that 67 5 < ¢; simplifies the bound to

o) A
FE) — Flo) < O (cTﬁdO + CT9T75d0w/T3V§ ¥ T2b3) | o)
(ko T/ Tet1)

34

f(@) = flz) <O

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Combining the bounds eq. (29) and eq. (30) and noting that 675 < ¢, we conclude that, with
probability at least 1 — 56, forall t < T,

ind Bd2. LdoT3/2\ + do/T3Vr_; + T262
f(it)—f(x*)§0<é%_m1n{5 6, Ldo T} + do/ T3V + *>'

(ZZ:O Fk/FtH)Q

For 7 = argmax;, . >, 7> Lemma 29 gives us that

ZT’“/ e <log+<€T/n> 1)'

Thus, for T' > 2log , (77 /rc) we get (under the event r7 < 4d)

ind Bd2. LdoT3/?\ + dor/T3Vr_, + T262
f@)—f(m)ﬁO(1o+(§{o).mm{6m 0 };w 71+)

€

which establishes the theorem, since

Y 2 T253+QT—1)> 2 1302 + T3 3 0 IV f (@) — V(G|
ér 20 10gh (1+ Tt)) <0 <10g+ (1 y IVIGIP

9 T362 + T3 min{Bdy, L})> T362d} + T° min{Bd}, Ld3 }
=0 <1°g+ (1 T NG < O\l {1+ — 50— Fa)

B 9 b,do + min{ﬁd%, Ldo}
_O<log+(1+T o) — Fo) ,

where (i) is because |V f(20)[?> < [[Vf(20) — mo + mo||*> < 2||mo||* + po, and (ii) is from
convexity: f(xo) — f(zx) < do||V f(20)].

Finally, when T" < 2log (7 /7¢) the required bound is immediate from problem geometry, as
explained at the end of the proof of Theorem 5. |

B.4. Proof of Corollary 11
Proof Define

]

/_
6t_5(t+1)2'

A black-box reduction from sub-Gaussian to bounded stochastic gradient (Lemma 31) shows that

at each iteration ¢, with probability at least 1 — d7, a call to a o2-sub-Gaussian subgradient ora-

cle produces an identical result to a call to an alternative stochastic gradient that is bounded by
o8 (3/2)).

We apply Theorem 9 to U-DOG with the alternative, bounded stochastic gradient oracle. Thus,

for this setting, with probability at least 1 — 58, we have dr < 2dg, 71 < 4dj, and the suboptimality

bound (15) holds for by, = o0,¢7_1,5. To conclude the proof we use Lemma 31 to show that the

35

KREISLER IVGI HINDER CARMON

algorithm described above produces output different than U-D0OG with the original sub-Gaussian
oracle as at most

o0 o0
36 1 3.2
!
D42 T D gl
t=0 t=1

where the factor of 3 comes from the fact that every U-DOG iteration involves 3 stochastic gradient
queries. |

B.5. Proof of Corollary 13

Proof A mini-batch of B gradient oracle results, each with noise bounded by L, is a Qg -sub-

Gaussian (see Lemma 24), and we can therefore apply Corollary 11 with o7 = %. Moreover,
reusing the sub-Gaussian-to-bounded reduction in the proof of Corollary 11 (Section B.4) we get
that, with probability at least 1 — 66,

2L
Vr < LCT,&

~ VB

holds in addition to the suboptimality bound given by Corollary 11. Substituting the above bound
on /Vr along with b, < \/5%@75 concludes the proof. [|

Appendix C. Suboptimality lemmas

C.1. Weighted regret to suboptimality conversion (Lemma 14)

The following lemma is a straightforward reproduction of Lemma 1 from Kavis et al. [30] with
minor changes. In addition, we use the proof of the following lemma as a starting point for the
proof of Lemma 17.

Lemma 14 (Kavis et al. [30]) For any sequence of positive numbers wg, w1, ws, . . ., define
A ZZ:O WETk+41
Tp= ==
D k=0 Wk

We have that for any T' > 0

T—1
FEra) = () € = 3 wi (T F(#0), 2001 — 24) -
t=0 Wt 1—p

36

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Proof For any ¢ > 0 we have that

t t—1
~ N oWk . Wk .
Wi <Vf($t), T4l — CC*> = Wt <Vf(l't), Zk;f kl’t — Z:k(;()kwt—l - .’IZ*>

t

1
= w; <Vf(£t), M(@ —x) - M@t_l _ x*>>
Wi

Wt
t t—1
= W (VF(r), & —) = 3wk (VF (), -1 — 24)
k=0 k=0
-1
=wi (Vf(2), 2 — i) + Zwk (V (@), & — Bp—1) -
k=0

By using the convexity of f, we get

t—1
wi (Vf(#0), @1 — @) > wil(F(@0) = fla2) + Y wn(f (@) = f(#1))- (D)
k=0
Therefore, for any 7' > 0
T—1 T—1 T—1t—1
D Wi (V@) men —) > > wil((@) — fla) + wi(f () = f(E-1))
t=0 t=0 t=0 k=0
T—1 T-2 T—1
=D wi(f(2e) — flz)) + wi(f (&) = f(d-1))-
t=0 k=0 t=k+1
By performing a telescopic summation, we obtain
T-1 T-1 T—2
ST W (V@) et — 2 = S wilf @) — f@) + S wilfEr—1) — f(r)
t=0 t=0 t=0
T—2
= wr 1 (f(@r1) = f(20) + Y wilf (@) — f(w0) + f(@r-1) = f(#0))
t=0
T—1
=) wi(f(Er-1) — f(zs)).
t=0
Dividing both sides by ZtT:_Dl wy concludes the proof. |
C.2. Inductive suboptimality bound (Lemma 15)
Lemma 15 Let sqg, s1,...,87—1 and hg, h1, ..., hr_1 be non-negative non-decreasing sequences.

Let b > 1 such that 7141 /Tt < bforanyt € {0,1,2...,T —1}. Ifforallt € {0,1,2...,T — 1}
there exist ky € {0,1,2...,t} such that

F(@0) ~ flan) < o/ I 2T
T (S’

37

KREISLER IVGI HINDER CARMON

then forallt € {0,1,2...,T — 1} we have that
4b2(8t + ht)

t (Sl /i)

Proof We prove by induction that
. 4b%(s¢ + h
Flae) ~ flan) < oLt)

(ko 771<:/735+1)2.

We will only use the induction assumption for the case where x; < t.

If kK, =t: We have that
/St f (Zk,) ar* + hy
(Zk ork/rtJrl)
Tt“ \F\/ xl@t :U* ht

f(«%t) - f(37*) <

om0 T/ Tt (ZZ:O P /ern)”
b\/>\/ (Z,) — [(2%) ht
Zk ork/rtﬂ (Zzzom/ﬁH)Q

Thus,
b nt *
Flan) — fla) — S) 2 T —
Zk ork/rt—‘rl (Zk:o Tk/Tt-i-l)
If
FG@) = f@) o byE/) — f (@)
ST S () flan) - DU
then
. 2hy
f(@e) = f(zs) <
t (> k=0 7:Ic/7"t+1)2
Otherwise,
F@) = fz) _ by/sey/ f(@e) = flax)
2 T D k=0 Tk/Ttr1
Therefore,
_ 2b./s¢
- $) S =
f(wt) f(w) Z};:o fk/FtJrl
Consequentially,

4[)2815

f(i‘t) - f(l‘*) < .
(22:0 fk/ft—kl)Q

In either case, we obtain that
4b2($t + ht)

(Sho T/Fes1)”

38

f(jt) - f(x*) <

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

We assume by induction that

If x; < t:
R 4b? Swp + P,
Flon) — f() < (e)
(D5l T/ Tri+1)
Therefore,
«
Qg smgﬂlS Sn—f-hn%
B T) = T 2] < 2050 o F P
< 267 /s /si +
t
< 20%(s¢ + hy).
Thus,
. 20%(sy + hy) + h
Fla) — flay) < 2ot)
(Zk:o 7"k/rtJrl)
4b2(5t + ht)

= t _ B P
(Zk:o rk/rt+1)
For t = 0 we have k; = 0 = ¢. For the case x; = t we did not use the

Finalizing the induction:
induction assumption, and therefore we have the base of the induction:

PR 4[)2(80 + ho)
f(&o) — f(*)37(770/?1)2 :

Thus, by induction we get that for all ¢t € {0,1,2,...,7 — 1},
4[)2(8t + ht)

f(it) - f(w*) < .
(ZZ:O fk/ft+1)2

C.3. General regret bound (Lemma 16)
The following lemma is inspired by the regret analysis of UNIXGRAD [30]

Lemma 16 Using Algorithm 1, eq. (2) and eq. (3), for any t > 0, p; > 0, we have that

=2 2

Tra 1

o grwr —) < S g =yl = g — wil?
Pt

1 1 2 2
(55~ 535) Qess =l + s = e)
1 9 2
+ iy, (lye = 2ell® = lyesr — z]1?).

KREISLER IVGI HINDER CARMON

Proof We have

T0u (Gt Tog1 — T)

= Ty (Gt — Mty Tegp1 — Y1) + Teow (M, Te1 — Yer1) + Te0w (9, Yer1 — Ty . (32)

In addition

~

i

Tea (ge — M, Top1 — Yer1) < Teollge — mull|vee1 — Y|

i) 2
Pt

< Tt”gt

—~

—~

1
—my||® + TptH«’UtH — Y+l (33)

where (i) is from Holder’s Inequality and (i7) is due to Young’s Inequality.
For the Euclidean Bregman divergence Dg(z,y) = %||z — y[|> we have that the update rule
Zi1 = Projc(ye — aunzemy) = Projyc(yr — Trauflzmy) is equivalent to the update rule ;1 =

arg min . ,C{Ftat (x,my) + ﬁj,t Dr(z,yt) } Therefore, from the optimality of z;,1 we get

_ 1
Troy (Mg, Te1 — Yey1) < F (VaDr(Zt41,Ye), Teg1 — Y1)
z,t

1
ﬁx,t

(Dr(ye+1,9t) — Dr(we11,9t) — DR(Ye41, Te41)). (34

Similarly, y;+1 = arg minye,c{?tat (y, gt) + ﬁDR(y, yt)} Therefore, from the optimality
of y;4+1 we get

1

Teou (Gt Y1 —) < 7 (VaDR(Yt+1,Yt), T — Ytt1)
y,t
1
= T(DR(x*v Yt) — DR(Yt+1,Yt) — Dr(ZTw, Yt41))- (35)
y,t

By combining eqs. (34), (35) and (33) into eq. (32) we obtain that

-2 2
Ty O Py

1
Teou (Gr, Tl — Tu) < llge — mt||2 + %H1‘t+1 - yt+1H2
t

2
1

+ T(Hyt-f—l — el = lzeer — well> = llyesr — l’t+1H2)
Nt
1

(e = well® = lyerr — well® = e — yesa?)

20y 4

)
_ o pe _ 2 1 a2
= T g — el = 5 fles —
+ (50— 5) Uess = wlP + e = e)
+ o= T = YellI” = 1% —Ye1ll”) | 52— — 5= | 1M1 — Gell™-
g (e =l = llow = et lP) + (57— = 5o Yl =
Since 7).+ < 7).+, we may drop the final term in the above display, completing the proof. |

40

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Appendix D. Iterate stability lemmas

D.1. A weighted regret bound (Lemma 17)

Lemma 17 For any sequence of positive numbers wgy, w1, ws, . . ., define
. S o WkTht1
Tp= ==
k=0 Wk
Let 19, M1, M2, . . . be a non-increasing sequence of positive numbers. We have that for any T' > 0,
T—1
> it (V (@), w1 — 22) 2 0.
t=0
Proof Define

f(x) = f(@) = f(2s).

We start from eq. (31) inside the proof of Lemma 14, which says that for all £ > 0

t—1
wi (VI (@e), @1 — 22 > wi(f (@) = f(@0) + Y wn(f (@) = f(@6-1)).
k=0

Multiplying each side by 7; and summing, we obtain

T-1 T-1 T-1¢-1
D i (VF(@e), w1 —) > Y wiie(f(#0) — f(4)) + wil(f(£e) — f(#1-1))
t=0 t=0 t=0 k=0
T-1 ~ T-1t—-1 ~ ~
= > wiinf @) + > > wiie (@) - f@n))
t=0 t=0 k=0
(%) T-1 _ —1t-1 ~
>N wiief (@) + DY w (ntf(a?t) - 77t—1f(%—1)>
=0 =0 k=
;—1 _ ';—2];1—1 ~ ~
=) wilief (&) + Wk <ﬁtf(xt) - 77t—1f(90t—1)>,
t=0 k=0 t=k+1

where (x) is because that f(fct_l) >0and ;1 > 7 > 0.
We can now perform a telescopic summation and obtain

-1 -1 -2
D wiii (Vf (@), w1 —) = > wpiinf () + > wi (ﬁTfl]E(iprl) - ﬁtf(@))
=0 ~ T_;:o ~ =0 ~ ~
= wr—r—1f(@r-1) +) _ w (ﬁtf(it) +ir-1f(@r-1) — ﬁtf(ft)>
=0
71

= wr_afr_1 f(@r_1) + wiir—1 f(#7_1).
1

-
Il

41

KREISLER IVGI HINDER CARMON

Thus, because f (Zr—1) > 0, we obtain that

T-1

Z Wit <Vf(jt)v Ti+1 — l‘*> > 0.
t=0

D.2. Inductive stability bound (Lemma 18)
Lemma 18 Ifr. = rog < dy, and for allt > 1 we have that

Ti—1
— d
T an

IN

lye — ¢l

] 2
dz < <d0+ 4?“t—1> ,

then for all t > 0 we get that
di < 2dgy and r; < 4dg.
Proof We prove this lemma by induction. The basis of the induction is that for ¢ = 0 we get that

do < 2d0 and T0 < d() < 4d0. B
For any ¢t > 1, we assume that d;—1 < 2dg and 731 < 4dy. Thus,

dy < do + %Ft—l < 2dp.
Also,
lye = zoll < llye — @ull + |0 — 2f| = di + do < 3do.
In addition,

lze = zoll < llye — xoll + [lze — el

(%) P
< 3dy + tTl
< 4dy.

Tt As aresult,

where (%) is because ||z; — || <
dt < 2d0 and Tt < 4d0
Finally, by induction, we get that for all ¢ > 0

dt S 2d0 and Tt S 4d0.

42

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

D.3. Single-step iterate stability (Lemma 19)
Lemma 19 Let ¢ be a positve number. Using Algorithm 1, for any t > 0, if g4 < m

and 1y ¢ < Nyt then

<
Myt = canllge—ma]]

|Tip1 —yell < —

C
27
yer1 — well < —

C
27
ze41 — ye1] < —

2
T < 'Ft<1 + c>'

Proof First, by definition of the iterates and the fact that XC is convex (and projection onto a closed
convex set is nonexpansive) we have

. T
lTi41 — yell = ||Projic(ye — cunw i) — yel| < ||| < - (36)
Second, by definition of the iterates and the fact that K is convex, we also have

Y1 — yell = Projic(ye — caumy,ege) — yell < cunyell gell
27,
< iy allge —]| + cumy el < f (37)

Third, by definition of the iterates, the fact that C is convex, the fact 1, ; < 7, ;, and the assumed
upper bounds on 7, ; and 7, ; in the premise of this lemma we have

zt41 — yer1ll = [[Projic(ye — une,eme) — Projic(ye — cuny.t9:)||
< al[nz e — Ny egell < camyillgr — mul| + (e — my.e) [mel]
274
< gy tllge — mgl| + aneellmel| < —~
Finally,

rey1 < e+ max(||zer — yells e — well)-

Therefore, using eq. (36) and eq. (37) we obtain

_ _ _ _ 2
frar = max(is i) < ot mas(loess = el e -) < (14 2),

43

KREISLER IVGI HINDER CARMON

Appendix E. Concentration bounds

E.1. An empirical-Bernstein-type time uniform concentration bound (Lemma 20)

Lemma 20 (From Ivgi et al. [27]) Let S be the set of nonnegative and nondecreasing sequences.
Let Cy € F;—1 and let X; be a martingale difference sequence adapted to Fy such that | Xy| < Cy
with probability 1 for all t. Then, forall § € (0,1), ¢ > 0, and X; € F;_1 such that | X;| < Cy with
probability 1,

t
A\ 2
P3t<T, 3y}, €S >y 0D (Xi— %)+ 262,

=1

t
Zini

i=1

<O04+PE<ST:C>c).

E.2. Concentration bound for suboptimally proof (Lemma 21)

Lemma 21 LetB > 0and 6 € (0,1). In the bounded noise setting (Assumption 6), using Al-
gorithm 1 and eq. (12), with probability of at least 1 — 6 — IP’[bT,l > ‘B] we get that for all
te€{0,1,...,T — 1} then

t t
Z Fro (Vf(Zk) — G, Thp1 — Tu) | < 8Tt (Teq1 +do) | Orv1s ZHVf(ﬁ?k) —)12 4+ (B3 1.6%B)°.
k=0 k=0

d = MaX||T — Tx||-

For k € {0,1,...,T — 1} define the random variables:

Yi = oTrdpr1, and Xp = <Vf(56k) - gk, $k+~1—$*> .
di+1

From these definitions we get
t t
> ViXp =Y Teap (VF(Ek) = grs Ths1 — Ts)
k=0 k=0

and that {Yk};‘gz_ol is a non-decreasing sequence of non-negative numbers. In addition, as xy; and
dj.+1 are independent of the noise of gy, then X, is a martingale difference sequence. Therefore, as
| X%| < by with probability of 1, Lemma 20 gives us that

t
Pl3t<T : > 8Yy, |10 Y (Xk — 0)% + (6141,58)% | <6+P[br1 > B).

k=0

t
Z Vi X5

k=0

44

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Therefore, by using the Cauchy—Schwarz inequality, we obtain that, with a probability of at least
1—0—P[br_y > B, forallt € {0,1,...,T — 1}

t

< 8yTydyi1y | Ori16 ZHVf(ka) — gkl|? + (B141,5%B)
k=0

t
> P (VI (k) = Gy Trgr — T4
k=0

t
< 8y (ﬁﬂ + do) Orr1o Y _IVF(Er) = grll? + (6141,58)%.
5—0

Thus,

t
< 8Ty (Ter1 + do) o | Ot41,5 ZHVf(ka) — gkll? + (B141,B)°.

t
> P (VI (k) = gy Trgr — T4
k=0

|
E.3. Concentration bound for iterate stability proof (Lemma 22)
Lemma 22 Let 1), ; be such that, for some c,s > 0 we have
1 s+ @ . N
n—>cmax Vs + Qilog, . |V (&) — myll, o |V F(Z) — gel| ¢
y,t
Ifforallt > 0 we have that 1, s = T¢7)y 1 is independent of g; given x, . .., x4, then, with probability

of at least 1 — 6, for all t > 0,
t

> awnyr (gk — VF(Er), Trsr — 22| <
k=0

Proof For ¢t € {0,1,...,T} define

126 16 _
B0y (Fryn + do).

dy = max||z; — x|
k<t
Fort € {0,1,...,T — 1} define

Xi = Oétﬁy,t

- vf(i't)a xt—’—} — x*> ’

< diy1
X; = Ty t <Vf(§7t) — my, W> and
dit1
Y, = ridiya.

The assumption = > cay max{ ||V f(i¢) — my|, ||g: — V£ (&1)]|} implies that max{]Xt], \Xty} <

E' In addition, as m¢ ,x¢4+; and dt+1 are independent of the noise of g; then Xt is independent of
the noise of g, and X; is a martingale difference sequence. Thus, Lemma 20 gives us that

t
Z Vi X

k=0

. i N2 1
P(vte{0,1,...} < 87y | Orins D (Xi — X) + 50,5 210

k=0

45

KREISLER IVGI HINDER CARMON

Furthermore, we have

t

9 ¢ . B 2 t
% - k+1 — & -
> (xe- %) :§j<akny,k <gk—mk,g >) <> ofity kllg —mil”
k=0

k=0 k=0 t+1

(i) 1 & | gr — my 1
=

t 2 _ 2 = "9
= (S + ZZ:O aingk _ mkHz) logi (SJer:o O‘;;Hgk |) c

where (i) follows from the assumption that =— > ¢/s + Q; log n (#) and the definition of Q;,

Nyt —
and (44) is a direct result of Lemma 30 with ay = s + Y5 _, a?||gr — mx/|>. In addition, we have
that

Yi Xt = amyi(9e — VI (21), 2e11 — 7).
Therefore, with probability of at least 1 — ¢, for all ¢ > 0 we have that

t 2
z = 7 Ori1s Biv1s
Z QRMly .k <gk - Vf(a:k), Thtl — 1‘*> < 8Fydyg1 227 22,
k=0
126 B
< t+1,0 Tt (ft+1 + d0>
120,016
S A 7t(Fe41 + do).

E.4. Relating Q; to Q; (Lemma 23)

Lemma 23 Let B > 0 and § € (0,1). In the bounded noise setting (Assumption 6), using Algo-
rithm 1 and the step sizes (14), with probability of at least 1 — § — P[bT_l > ‘B] we get that, for
allt € {0,1,..., T —1},

Q: < 5Q¢ + 80(t + 1)\ /01 15Vi + 2(t +1)%6,11 6B
Proof For all £ > 0 we have

gk — mil? < 2[lgk — mal* + 2llgx — G¢l|?
< 2||gi — mu||® + 4llgr — VF@R)|1? + 4Gk — VF(@r)]

Therefore, since o, < k + 1,

t t t
> adllgr —mil® <2 " ofllg — ml? + 8 (k4 1)%|lgx — V£ (@)
k=0 k=0 k=0
t

+4) (k+1)*(lge — V@RI = llge = V@), (38)
k=0

46

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

We now bound Y4 _ o (k + 1)2(||gs — VF(@r)|12 = llgr — V£ (24)]|?). Define

Xe=(|ge = VF@)* = llge = V(@)
X, = [|ge — Vf(@)]* and
Y= (t+1)%

We have that for all ¢ > 0 then | X;| < b2 and | X;| < b2 with probability 1. Therefore, Lemma 20
gives us that

t N2
< 8Yi,[bir15 Z(Xk - Xk) + 0;:2+1,6§B4
k=0

t
Z Vi X

k=0
>1 —5—P(ET_1 > %)

P(vte{0,1,....,T—1} :

Consequentially, by combining this result with eq. (38), we get that with probability at least
1-0-— IP’(bT_l > %) that forall ¢ € {0,1,...,7 — 1} we have that

t t t
> aillgr —mill> <2 afllgr — mil® +40(t +1)*v/Or15 > _llgr — V(@17 + (¢ 4+ 1)%641 5%
k=0 k=0 k=0

Substituting into the above equation the definition of QJ; and V; given in eq. (1) and eq. (11), respec-
tively, and recalling the definition of Q; given in eq. (13)

¢ t
Qv =Y ajmax{|lgr — ml®,2/13x — mil*} < Qu +2) aill gk — mall?
k=0 k=0
completes the proof. |

E.5. Concentration inequality for bounded random vectors (Lemma 24)

Lemma 24 (Howard et al. [25]) For T € N, let {U;}yc[7) be a sequence of mean zero random
vectors in R® with |Uy|| < ¢ almost surely. Then

22
P > SQexp<—22T>.
c

Proof This result follows from Howard et al. [25, Corollary 10.a] with Y; = S, Uy, ¥(-) = |- |,
¢t = cand m = c®T. The selection of ¥(-) = || - || yields D, = 1 (see discussion preceding [25,

Corollary 10.a]). Setting ¢; = c yields V; = ¢*t. Hence %(VT —m) < 0 and Howard et al. [25,

eq. (4.28)] gives the desired result. |

T
S
t=1

47

KREISLER IVGI HINDER CARMON

Appendix F. Auxiliary lemmas

F.1. The growth rate of), 7oy, (Lemma 25)

We note that in accelerated optimization algorithms we normally have that a; = ©(t). Even though
this is not the case for U-DOG, o is roughly similar to ¢. First, it is easy to see that 1 < oy < ¢.
Secondly, the running sum of 7,y grows roughly quadratically. This is shown in the following
lemma, in which we replace o, and 7; with a; and sy, respectively

Lemma 25 Let sg, s1,...,5: be a non-decreasing sequence of positive numbers. Define aj, =

Zk i then

=0 Sk

t
sta? <2 g SLa.

k=0
Proof We have
t t ok t
S sk =303 = Ytk + D
k=0 k=0 i=0 k=0
And,
T 9 & t 1 t t t
2 _ — 2 L 2 i _
siay = s ZZsksz =3 Zsstl 5 Zsk < ZZSkZ 5 < 2Z(t k+1)sg.
k=0 i=0 k=0 i=k k=0 k=0 i=k k=0
Thus,
t
sta? <2 Z Ska.
k=0
|
F.2. Discrete derivative lemma (Lemma 26)
Lemma 26 Let c be a positive number, and let sg, s1, S2, ... be a sequence of positive numbers.
For every t > 0 define
1

Pt = 7)&
Cy/ > k=0 Sk

We have that for every t > 0

T
— — — < P18+l
Pt+1 Pt

48

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Proof For every ¢ > 0 we have that

t+1 t t+1 t+1 t 1 1 1
D S) 3E D S D o e e
k=0 k=0 k=0 k=0 k=0
Thus,
1 1
—— — — S CPi415i41
Pt+1 Pt

F.3. Discrete integral lemma (Lemma 27)

Lemma 27 For any positive numbers c1, co, for any t > 0, and for any sequence of non-negative
numbers By, B, Ba, ..., By we have that

Proof Define

Lemma 28 gives us that

Therefore, we obtain

Define

)

49

KREISLER IVGI HINDER CARMON

where (x) is because of Lemma 28. From the definition of x, we obtain that

1

C27IB,k

C1MB,x >

Thus,

2c1 3/2 1/2
”7?]].{”20} S 201/ 62/ .

F.4. Additional lemmas from prior work

Lemma 28 (e.g., Levy et al. [36]) For any k > 0 and for any sequence on non-negative numbers
S0, 51,52, - - -, Sk, the following holds:

* <2
\/ Zzzo 8j
Lemma 29 (Ivgi et al. [27, Lemma 3]) Ler sg, S1,..., ST be a positive nondecreasing sequence.
Then
S; 1 T
max - > —F—-1).
ST S~ 51 e log, (s7/s0)

Lemma 30 (Ivgi et al. [27, Lemma 6]) Let a_1,aq,a1,...,a; be a non-decreasing sequence of
non-negative numbers, then

t

Z ap — Gp—1 <1.

= ak logi(ak/a,l)

Lemma 31 (Attia and Koren [3, Lemma 15]) Let X be a o?(x)-sub-Gaussian. For and § €
(0,1) here exist a random variable X such that:

1. X is zero-mean: EX = 0.
2. X isequal to X w.h.p: IP’(X = X) >1-09.

3. X is bounded with probability 1: IF’(HX'H = 30\/log(4/5)> =1

Appendix G. Experimental details
G.1. U-DoG step sizes
In the experiments, we use the following step sizes for U-DOG

T T

Net = and 7 b=)
\/max{Qt_hMt} v \/maX{Qt,Mt}

50

N AW N =

10
11

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

with 7, (¢, and M, as defined in Section 2. This step size is similar to the choice in eq. (10),
which enjoys proven stability in the noiseless case, except we replace the logarithmic factor in
the denominator with 1; preliminary experiments indicated 1 was the smallest value for which the
algorithm was stable in practice. This difference between practical and theoretical algorithms is
analogous to the difference between DOG and its theoretically stable variant T-DOG [27]. However,
we maintain the maximization with M; in the denominator, mainly in order to ensure that 7, ;
and 7),; are not too large early in the training. As with DOG, the additional step size adjustments
necessary for the stochastic setting (given in eq. (14)) do not appear to be useful in practical settings.

G.2. ACCELEGRAD-DOG (A-D0G)

While U-DOG enjoys strong theoretical guarantees, it requires an extra-gradient computation at
each step, which can be expensive in practice. To address this, we propose an alternative algorithm,
A-DO0G, which combines ACCELEGRAD [36] and DOG. To complete the combination we set o
in the same way as it is calculated in U-DOG (algorithm 1). A-DOG is a simple algorithm that does
not require an extra-gradient computation at each step and is presented in Algorithm 2. While we do
not provide theoretical guarantees for A-DOG, our experiments demonstrate its efficacy in practice.
The main challenge in proving guarantees for A-DOG appears to lie in deriving a suboptimality
bound akin to Proposition 3, whose proof strongly leverages U-DO0OG’s extra-gradient structure.

Algorithm 2: ACCELEGRAD-DOG (A-Do0G)

Input: Initialization z(?) € K, positive constant . and number of iterations 7.

Set yo = xg = 29 and 79 = r¢
fort=0,1,,..., T —1do
ar = _oTk/Tt

gt~ G(zt41)

_ Tt

Mt = =
V> ko @2 llgk 12

— at ot

Tep1 = =2—2z + |1 — 7)
t+1 22:0 Qg t Z};:o Ak 4

Yt+1 = Tt4+1 — TMtGt
zep1 = Hic(2e — cumege)
Te1 = max{7y, |21 — 2o}

end

return T > returning yr gives similar results in practice

G.3. Convex experiments

The bulk of our experiments focus on smooth stochastic convex optimization problems, matching
our theoretical assumptions.

Multiclass logistic regression. We experiment with multi-class logistic regression on multiple
tasks from the VTAB benchmark and the LIBSVM [12] suite (a full list is given in Section G.5). For
VTAB tasks we use features obtained from a pretrained ViT-B/32 [20] model (i.e., perform linear
probes), and for LIBSVM tasks we use apply logistic regression directly on the features provided.

51

KREISLER IVGI HINDER CARMON

Figures 2, 4, 6, 8, 10, 12, 14 and 16 show a view of the results for different datasets analogous to
Figure 1. Figures 3,5, 7,9, 11, 13, 15 and 17 give a complementary view by providing training
curves at different batch sizes. As discussed in Section 5, we find that both U-D0OG and A-DoG
are competitive with well-tuned accelerated SGD (ASGD) and often significantly outperform DoOG
and tuned SGD. This is especially true for the training loss (for which our theory directly holds)
and at large batch sizes, with A-DOG outperforming U-DOG in most cases, as both algorithms
take advantage of the reduced variance in the gradient estimates to scale effectively with the batch
size, as the theory suggests. In most experiments A-DOG attain and tuned ASGD attain superior
convergence rate in terms of test accuracy as well as train loss; the only exception is CIFAR-100
(Figures 4 and 5, bottom rows) where the test accuracy does not closely track the train loss.

Least-squares. We modify the loss on a subset of the previous experiments to least squares,
learned over a one-hot encoding of the features. We use features obtained from a pretrained ViT-
B/32, similar to what we used for the multiclass logistic regression. We find that our algorithms
perform well in this setting as well. In comparison, while SGD and ASGD can perform well when
tuned correctly, they become more sensitive to the choice of step size and momentum, performing
poorly when not properly tuned and sometimes diverging completely. Similar to the other experi-
ments, the results are given in Figures 18 to 21.

Noiseless quadratic experiments. As a final experiment, we compare the performance of the
n

different algorithms on the quadratic function f(z) = Y"1 | (5= 27 + ;) with n = 10%. The results
agree with the theoretical analysis, with all algorithms reaching the optimal solution or very close
to it, barring GD and AGD with excessively high momentum and learning rate. Results are depicted

in Figure 22.

G.4. Non-convex experiments

While we mainly focus on demonstrating the effectiveness of U-DOG and A-DOG in settings that
match our theoretical analysis, we also perform preliminary experimentation in practical scenarios,
namely training neural networks on datasets of moderate scales. In particular, we train a ResNet-50
[24] from scratch on a subset of the VTAB benchmark (Figures 23 to 27). Additionally, we repeat
two experiments from [27]: fine-tuning a CLIP model [53] on ImageNet (Figure 28), and training
a WideResnet-28-10 [66] model from scratch on CIFAR-10 (Figure 29). We observe that U-DOG
often fails to converge to competitive results, while A-DOG is quite competitive with DOG on the
VTAB tasks, but under-performs it for CIFAR-10 and ImageNet fine-tuning, indicating that it is not
a yet a viable general-purpose neural network optimizer.

G.5. Implementation details

Environment settings. All of our experiments were based on PyTorch [51] (version 1.12.0). For
DoG and the implementation of polynomial-decay model averaging [57], we used the dog-optimizer
package (version 1.0.3) [27]. For ASGD, we used the native PyTorch SGD? with the Nesterov
option enabled.

VTAB experiments were based on the PyTorch Image Models (t imm, version(.7.0dev0) repos-
itory [63], with TensorFlow datasets (version 4.6.0) as a dataset backend [1]. LIBSVM [12]
experiments were based on the 1ibsvmdata (version 0.4.1) package.

5. https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

52

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

To support the training and analysis of the results, we used numpy [23], scipy [61], pandas [62]
and scikit-learn [52].
As much as possible, we leveraged existing recipes as provided by t imm to train the models.

Datasets. The subset of datasets used in our VTAB experiments are: CIFAR-100 [34], CLEVR-
Dist [29], DMLab [5], Resisc45 [13], Sun397 [64, 65], and SVHN [46]. From LIBSVM, we used
the Pendigits [2] and Covertype [8] datasets, where cover covertype we used the scaled features
version (i.e., covtype . scale). We also experiment with CIFAR-10 [34] and ImageNet [18].

Models. The computer vision pre-trained models were accessed via t imm. The strings used to
load the models were: ‘resnet50°, ‘vit_base_patch32_224 _in21k’.

Complexity measure. To fairly compare all algorithms, we measure complexity by the number
of batches evaluated, i.e., the number of stochastic gradient queries performed by the algorithm.
U-DOG requires two batches per iteration while the rest of the algorithms we consider require
only one. We note that the algorithms we compare also have different memory footprints and
runtimes per iteration (by constant factors). We focus on the number of batches as our complexity
metric since it is most relevant to our theory. Memory and per-iteration runtime optimizations are
potentially possible for U-DOG and A-DOG; we leave investigating those to future work.

ASGD model selection. In the convex optimization experiments, we run (A)SGD over a wide
range of momentum and learning rate parameters. For the batch size scaling figures (e.g., the left
panels in Figure 1), we pick the parameters that reach the target metric in the smallest number of
batches, providing a conservative upper bound on the performance obtainable with a very care-
fully tuned algorithm. The learning curve figures adjacent to the batch size scaling figures (e.g.,
the middle panels in Figure 1) show the learning curve for the (A)SGD run attaining the best tar-
get performance at the batch size indicated. For plots of learning curves at different batch sizes
(e.g., Figure 19), we select the (A)SGD parameters that are the first to reach 95% of the best met-
ric attained by A-DOG. If no such parameters exist, we take the parameters that reach the best
performance within the iteration budget.

Iterate averaging. When evaluating test accuracy, we follow Ivgi et al. [27] and apply polynomial-
decay weight averaging [57] with parameter 8. We did not tune this parameter or comprehensively
check how beneficial the averaging is. Nevertheless, a cursory examination of our data suggests
that averaging is mostly helpful across the board, but much more so for DOG and SGD than their
accelerated counterparts. This is in line with the theory, which provides guarantees on (essentially)
the last iterate of U-DOG, but only the averaged iterate of DOG.

Learning rate schedule. We use a constant learning rate schedule for (A)SGD. We do not use a
decaying schedule such as cosine decay [37] as it would complicate comparing the smallest number
of steps required to reach a target metric, since a decaying schedule requires knowing the number
of steps in advance. Preliminary experiments indicate that, in the settings we study, cosine decay is
not significantly better than a constant schedule combined with iterate averaging.

Setting .. Similarly to Ivgi et al. [27] we set 7. = (1 + ||zo||) with ¥ = 1075, Our theoretical
analysis suggests that the particular choice of . does not matter as long as it is sufficiently small
relative to the distance between the weight initialization X0 and the optimum.

53

KREISLER IVGI HINDER CARMON

Weight decay. We do not use weight decay in most experiments, except for training from scratch
on CIFAR-10 (Figure 29), where we use a weight decay of 5 - 10~*. For DOG we decay the
parameters toward zero, while for U-DOG and A-DOG we decay the parameters toward the initial
point zg. That is, for DOG we add 5 - 10~*x to the stochastic gradient evaluated at , while for
U-DOG and A-DOG we add 5 - 10™#(z — o).

Gradient accumulation. Due to GPU memory limitations, in the non-convex experiments, for
large batch sizes we divide each batch into smaller sub-batches of size of either 128 or 256 samples.
We calculate the gradient for each sub-batch and average those into a single gradient which we then
use to perform a single step. When batch normalization is used (that is, for ResNet50), this is not
mathematically identical to computing the gradient in one large batch.

54

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Batches to train loss 0.963

Train loss for BS 4096

1044 %

1034

L 2 x 10°

10° To9e3 g

Train loss after 400 batches
1]

0.9999
0.9997

0.9990 ¢
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838

Batches to test accuracy 0.613

Test accuracy for BS 4096

0.0000

Test accuracy after 400 batches
— 0.9999

1044

103

102 4

°
3

6 P13 65 ' L
0.4 1 3
0.2 1 g .

0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

102 10

batch size

A-DoG m U-DoG

e DoG +

10° 10 104
batches evaluated

SGD

A ASGD (momentum=0.9)

1073 10°
learning rate

ASGD (best momentum)

Figure 2: Training a linear model with ViT-32 features and log loss on SVHN. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4

Train loss for BS 64

Train loss for BS 1024

Train loss for BS 65536

3 x10°
1004 1 1 =%
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
>
E 0.6 1 |
=
S
8 0.4 1 1
=
n
Lo0.2{t= 1 1
107 103 104 107 103 104 102 103 104 10?2 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —eo— DoG —+— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 3: Training a linear model with ViT-32 features and log loss on SVHN. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes.

KREISLER IVGI HINDER CARMON

Batches to train loss 0.055 Train loss for BS 4096 Train loss after 400 batches

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

4 | L
10 100

3 L
10 10-2 1

7

102

Batches to test accuracy 0.800 Test accuracy for BS 4096 Test accuracy after 400 batches

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

0.85 1
10344 F 0.80 -o-800

0.75

2] L
10 =—=F—5}| 0.701

-

- - . . 0.65 . - - ; .
10! 10?2 103 104 10? 103 104 1074 1072 10° 102
batch size batches evaluated learning rate

A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 4: Training a linear model with ViT-32 features and log loss on CIFAR-100. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 45000
o 10 .
o = t:h :mw
c)
'® 1072 1
5

ang
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 45000

- -
1®) i
@ 0.75
=
Y 0.50 1
©
% 0.251
g

10? 103 104 102 103 104 102 103 104 102 103 104

batches evaluated batches evaluated batches evaluated batches evaluated

A-DoG —&— U-DoG —e— DoG —— SGD —A— ASGD (momentum=0.9) ASGD (best momentum)

Figure 5: Training a linear model with ViT-32 features and log loss on CIFAR-100. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

56

train loss

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Batches to train loss 1.150 Train loss for BS 4096 Train loss after 400 batches

1041 L 1.8 x 10° 0.9999

1.7 x 10° 0.9997
p 1.6 x 100 0.9990 ¢
1.5x10° 0.9968 2
1.4x10° \ 0.9900 &
103 4 L . g
1.3x10 0.9684 &
1.2x10° 0.9000 =

r.150

g 1.1x10° g 0.6838

. i T ey T T T 0.0000

Batches to test accuracy 0.451 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999

4] | Py a0l . .

10 cas = = =] T AEEpmiiiet— | fo.0s7

- Vg 0.9990
0.41 s \ g
- \ 0.9968 3
1024 : : 0.9900 &
0.9684 g
031 I 0.9000 =

1021 2 I : 0.6838

- - . . T T T 0.0000

102 104 102 103 104 103 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 6: Training a linear model with ViT-32 features and log loss on DMLab. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

3% 109 Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536
X
e N !%—u Is:;;;:!:._*'
1004 : = : 1 = : = 1 = : = 1 = e =
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
5 0.4 1 1 1
v
v
©
=
%)
202 1 J
102 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —eo— DoG —— SGD —A&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 7: Training a linear model with ViT-32 features and log loss on DMLab. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes.

57

Batches to train loss 0.010

KREISLER IVGI HINDER CARMON

Train loss for BS 4096

Train loss after 400 batches

1072

10!

1075

-0.010

il

7

1044

Batches to test accuracy 0.875

Test accuracy for BS 4096

Test accuracy after 400 batches

0.9 1

0.8 1

0.7+

0.6 A

0.875

oo o

102 108 10

batch size

m U-DoG [

10!

A-DoG

DoG

+ SGD

102 103 104

batches evaluated

A ASGD (momentum=0.9)

102 10°
learning rate

104

102

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

ASGD (best momentum)

Figure 8: Training a linear model with ViT-32 features and log loss on Resisc45. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4

Train loss for BS 64

Train loss for BS 1024

Train loss for BS 18900

%]
& 100 {S—aEpRereaagan | 1 M
=
E 1075 {
5
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 18900
>
1®)
® 0.751
=
5 0.50 1
©
% 0.251
g
10? 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —& U-DoG —e— DoG —+— SGD —A&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 9: Training a linear model with ViT-32 features and log loss on Resisc45. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

58

train loss

Batches to train loss 0.100

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Train loss for BS 4096

Train loss after 400 batches

104

103

Vi

10° -

p.100

102

1074+

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838

Batches to test accuracy 0.703

Test accuracy for BS 4096

Test accuracy after 400 batches

0.0000

1044

1034

1024

/

0.8 1
b.703
0.6 A
0.4 1

0.2 1

P

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838

A-DoG

10
batch size

104

m U-DoG

102

103 104 104

batches evaluated

® DoG + SGD

A ASGD (momentum=0.9)

102
learning rate

0.0000

100 102

ASGD (best momentum)

Figure 10: Training a linear model with ViT-32 features and log loss on Sun397. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4

Train loss for BS 64

Train loss for BS 1024

Train loss for BS 65536

100 | F— SRRl | | "H#""‘hﬂ
10—5 4
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
9
o
205
v
©
i
s 0.0+
' 10? 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —e— DoG —+— SGD —A&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 11: Training a linear model with ViT-32 features and log loss on Sun397. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

59

train loss

Batches to train loss 1.155

KREISLER IVGI HINDER CARMON

Train loss for BS 4096

Train loss after 400 batches

1.8 x 10° 0.9999
0
1044 n—s—et %g x %go 0.9997
. o 0.9990
1.5x%x 10 0.9968 5
1.4 x 10°) £
1.2 x 10° . : 2
11100l R 0.9000 =
H o 5 \\'*h X 0.6838
2 10°- — et 0.0000
Batches to test accuracy 0.465 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
0.5 ke P '
l0.a65 PN s 0.9997
0.9990
0.4 0.9968 2
0.9900 &
0.9684 5
0.3 0.9000 =
" 5 0.6838
g
. r . r . T T 0.0000
10? 104 10? 103 104 1073 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 12: Training a linear model with ViT-32 features and log loss on CLEVR-Dist. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance

at all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4

Train loss for BS 64

Train loss for BS 1024

Train loss for BS 65536

3x10°
e N !ih’—'hn-u '%*.
1004 4 = : : 4 : : = 4 : e =
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
5 0.4 1 R g
v
v
©
=
(%]
202 1 J
102 103 104 102 103 104 102 103 104 102 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —o— DoG —— SGD —A&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 13: Training a linear model with ViT-32 features and log loss on CLEVR-Dist. Top: Loss vs.
batches processed training for different batch sizes. Bottom: Test accuracy of averaged model vs.
batches processed for different batch sizes.

60

train loss

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Batches to train loss 0.765

Train loss for BS 4096

Train loss after 1000 batches

100 -

6x107!

Batches to test accuracy 0.700

Test accuracy for BS 4096

0.7 1

0.6

0.5 1

0.4+

102 10 10

batch size

10!

10 10
batches evaluated

102

102 100 103

learning rate

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 14: Training a linear model with log loss on LIBSVM/CovertypeScale. Top: Train loss.
Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity to
reach target performance. Second column: Learning curves. Third column: ASGD performance at
all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 8 Train loss for BS 64 Train loss for BS 512 Train loss for BS 8192

2 x10°

1009

6)(10—1 T T T T T r T T - T T : “.“

—

Test accuracy for BS 8 Test accuracy for BS 8192

Test accuracy for BS 64 Test accuracy for BS 512

>
@
5 0.6 1 E 1
(S
o
©
il
3 0.41 .)
10° 103 10 10° 10 10 102 10° 10 10° 10° 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —a— U-DoG —o— DoG —— SGD —A— ASGD (momentum=0.9) ASGD (best momentum)

Figure 15: Training a linear model with log loss on LIBSVM/CovertypeScale. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes.

61

1044

1034

1024

Batches to train loss 0.150

KREISLER IVGI HINDER CARMON

Train loss for BS 4096

Train loss after 1000 batches

[0.150

-
T T T

Batches to test accuracy 0.850

Test accuracy for BS 4096

Test accuracy after 1000 batches

10! 103

batch size

0.8

0.6

0.4

DTy TPV PPy

10° 10
batches evaluated

102

103 100 103

learning rate

0.9999
0.9997
0.9990 ¢
0.9968 3
0.9900 &
0.9684 5
0.9000 =
0.6838
0.0000

0.9999
0.9997
0.9990
0.9968 3
0.9900 &
0.9684 §
0.9000 =
0.6838
0.0000

train loss

test accuracy

A-DoG m U-DoG ® DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 16: Training a linear model with log loss on LIBSVM/Pendigits. Top: Train loss. Bottom:
Test accuracy after iterate averaging. First column: Batch size scaling of complexity to reach target
performance. Second column: Learning curves. Third column: ASGD performance at all learning
rates and momenta, contrasted with DOG variants.

Train loss for BS 1 Train loss for BS 32 Train loss for BS 512 Train loss for BS 7494

101 4
1% 'k M&
107! E .
Test accuracy for BS 1 Test accuracy for BS 32 Test accuracy for BS 512 Test accuracy for BS 7494
’:5,””'__
0.75)./
0.50
0.254
10? 10° 10 10 103 10 102 103 10 102 10° 10
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —e— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 17: Training a linear model with log loss on LIBSVM/Pendigits. Top: Loss vs. batches
processed training for different batch sizes. Bottom: Test accuracy of averaged model vs. batches
processed for different batch sizes. As most algorithms here fail to converge at reasonable rate, we
use significantly lower targets to choose hyper-parameters.

62

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Batches to train loss 0.062 Train loss for BS 4096 Train loss after 400 batches

104] L 0.9999

9x 1072 0.9997

0.9990
8x 1072 0.9968 2
103 I g\\k 0.9900 g
Aﬁ 7x1072 ® D 0.9684 5
\ % 0.9000 =

® 0.062 il 0.6838

3 -2 g 2

g 6x10 i .] . 0.0000

Batches to test accuracy 0.633 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999

061 0.9997

0.9990
0.51 0.9968 3
0.l 0.9900 &
' 0.9684 5
0.3 0.9000 =

e | 0.6838

i g 0.2 1 : § " I | dm | 0.0000

107 104 10?2 103 104 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 18: Training a linear model with ViT-32 features and least-squares loss on SVHN. Top: Train
loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of complexity
to reach target performance. Second column: Learning curves. Third column: ASGD performance
at all learning rates and momenta, contrasted with DOG variants. This is the same as Figure 1.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 65536
1071 1
$9x1072
2 g x10-2
=
® 7%x1072
=
6x 1072
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 65536
- — :
0 0.6 1 1
e
>
[9)
2 0.4 1 1
—
3
= 0'2 L T T L T T T L T T T 1 T T T
102 103 104 107 103 104 107 103 104 10? 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —m— U-DoG —o— DoG —+— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 19: Training a linear model with ResNet50 features and least-squares loss on SVHN. Top:
Loss vs. batches processed training for different batch sizes. Bottom: Test accuracy of averaged
model vs. batches processed for different batch sizes.

63

train loss

KREISLER IVGI HINDER CARMON

Batches to train loss 5.20e-03 Train loss for BS 4096 Train loss after 400 batches
1072 0.9999
f 9x 1073 0.9997
8x10-3 0.9990
0.9968 32
L 7x10-3 0.9900 3
£
0.9684 &
-3
6x10 0.9000 =
E 5% 1073 7" ' |l 0.6838
; : T T —— 0.0000
Batches to test accuracy 0.850 Test accuracy for BS 4096 Test accuracy after 400 batches 0.9999
0.85 -BV w—’—ﬁ—ﬁ L H ;) 0:9997
i 0.9990
0.9968 2
080 I 0.9900 §
0.9684 5
=
0.75 | 0.9000
: g 0.6838
-) -) : : : - - : 0.0000
10t 10? 103 104 10?2 103 104 1074 1072 10°
batch size batches evaluated learning rate
A-DoG m U-DoG e DoG + SGD A ASGD (momentum=0.9) ASGD (best momentum)

Figure 20: Training a linear model with ViT-32 features and least-squares loss on CIFAR-100. Top:
Train loss. Bottom: Test accuracy after iterate averaging. First column: Batch size scaling of com-
plexity to reach target performance. Second column: Learning curves. Third column: ASGD perfor-
mance at all learning rates and momenta, contrasted with DOG variants.

Train loss for BS 4 Train loss for BS 64 Train loss for BS 1024 Train loss for BS 45000
1072 T q]
x 1073
x 1073
x 1073
x 1073 ‘
x 1073
Test accuracy for BS 4 Test accuracy for BS 64 Test accuracy for BS 1024 Test accuracy for BS 45000
- -
0 0.751 1 1 ?
o
g 0.50- 1 1
©
4 0.254 1 1
g
102 103 104 107 103 104 107 103 104 10? 103 104
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —&— U-DoG —o— DoG —— SGD —&— ASGD (momentum=0.9) ASGD (best momentum)

Figure 21: Training a linear model with ResNet50 features and least-squares loss on CIFAR-100.
Top: Loss vs. batches processed training for different batch sizes. Bottom: Test accuracy of averaged
model vs. batches processed for different batch sizes.

suboptimlaity

train loss

train loss

test accuracy

2 x 100 [F WS g g g H—.—u—._._._‘T Lo L = e
10°]]]
6x107t : : . . . ; ; ; ;

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Suboptimlaity Suboptimlaity after 500 batches Suboptimlaity after 2500 batches 0.9999
et o - 0.9997
—= “‘% 0.9990 £
« 0.9968 £
0.9900 ©
] 0.9684 £
0.9000 =
" - 0.6838
. . . v : ' T T T T T T 0.0000
10° 10! 102 103 104 10> 1073 107! 10t 107 1071 107
batches evaluated learning rate learning rate
A-DoG —&— U-DoG —e— DoG —— GD —A&— AGD (momentum=0.9) AGD (best momentum)

Figure 22: Training a model on a noiseless quadratic problem. At larger base learning rates, all AGD
variants diverge while DOG variants remain stable, and U-DOG and A-DOG perform especially
well.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192

Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192
9
£ 0.75 1 1 1
>3
19
® 0.501 . 1 1
i
£0.251 H—.—.w 1 1 a—n—unusB" "
102 10 10° 104 10° 104 10! 102 102
batches evaluated batches evaluated batches evaluated batches evaluated

A-DoG & U-DoG —e— DoG

Figure 23: Training a ResNet50 model from scratch on SVHN. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates
at varied batch sizes.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192

E | | ‘“‘Qi-*\\- |
Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192

0.501 1 1 1
0.251 1 : 1
0.00+ = = 1 = - ' r : i T T

103 104 103 104 103 104 10! 107 103

batches evaluated batches evaluated batches evaluated batches evaluated

A-DoG —a— U-DoG —o— DoG

Figure 24: Training a ResNet50 model from scratch on Sun397. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates
at varied batch sizes.

65

train loss

train loss

J
i
/

train loss

test accuracy

KREISLER IVGI HINDER CARMON

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192
e | (ST
ML= =: = s == = == ‘ﬁ]]
10—2 4 4
Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192

o
o

test accuracy
o
'S

103 10 10° 10 10° 10 10 102 10°
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —#— U-DoG —e— DoG

Figure 25: Training a ResNet50 model from scratch on DMLab. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates
at varied batch sizes.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192

Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192

\
\
\

10 10 10° 10 103 104 10! 10° 10°
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —#— U-DoG —e— DoG

Figure 26: Training a ResNet50 model from scratch on Resisc45. Top: Loss vs. batches processed
training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged iterates
at varied batch sizes.

Train loss for BS 32 Train loss for BS 128 Train loss for BS 512 Train loss for BS 8192
100 W J) L= = 5 = = ===
1072 A 1 1
Test accuracy for BS 32 Test accuracy for BS 128 Test accuracy for BS 512 Test accuracy for BS 8192
0.75 1 1
0.50 1 1 1
02547 . i , - . . M;;:_
103 104 103 104 103 104 10t 102 103
batches evaluated batches evaluated batches evaluated batches evaluated

A-DoG —& U-DoG —e— DoG

Figure 27: Training a ResNet50 model from scratch on CLEVR-Dist. Top: Loss vs. batches pro-
cessed training for different batch sizes. Bottom: Test accuracy vs. batches processed for averaged
iterates at varied batch sizes.

66

train loss

test accuracy

train loss

test accuracy

ACCELERATED PARAMETER-FREE STOCHASTIC OPTIMIZATION

Train loss for BS 32

Train loss for BS 64

Train loss for BS 512

Train loss for BS 8192

1004 k| 1
08 Test accuracy for BS 32 Test accuracy for BS 64 Test accuracy for BS 512 Test accuracy for BS 8192
0.6 1 1 1
0.4+ . /f : : //-/. : : : -l
103 104 10° 103 104 10° 103 104 107 103
batches evaluated batches evaluated batches evaluated batches evaluated
A-DoG —— U-DoG —o— DoG

Figure 28: Fine-tuning a Clip-ViT-B/32 model on ImageNet, at different batch sizes. Top: Loss
vs. step training curve for different batch sizes. Bottom: Test accuracy vs. step curve for averaged
iterates at varied batch sizes.

Train loss for BS 32

Train loss for BS 64

Train loss for BS 512

Train loss for BS 8192

100 4 1 1

1.0 Test accuracy for BS 32 Test accuracy for BS 64 Test accuracy for BS 512 Test accuracy for BS 8192
0.8 1 1 ﬂ

0.6 : . ‘

10° 104
batches evaluated

10

10° 104 10° 10° 104
batches evaluated batches evaluated
A-DoG —a— U-DoG —o— DoG

102 103
batches evaluated

Figure 29: Training a Wide-ResNet-28-10 model on CIFAR-10 from scratch, at different batch sizes.
Top: Loss vs. step training curve for different batch sizes. Bottom: Test accuracy vs. step curve for
averaged iterates at varied batch sizes.

67

KREISLER IVGI HINDER CARMON

68

	Introduction
	Related work

	Preliminaries and algorithmic framework
	Analysis in the noiseless case
	General suboptimally bound
	Iterate stability
	Rate of convergence in the noiseless case

	Analysis in the stochastic case
	Analysis with bounded noise
	From bounded to sub-Gaussian noise
	Corollary: mini-batch of bounded noise
	Discussion: how parameter-free is our algorithm?

	Experiments
	Proof for sec:noiseless (the noiseless setting)
	Proof of prop:noiseless-subopt
	Proof of prop:noiseless-stability
	Proof of thm:noiseless-main

	Proofs for sec:stochastic (the stochastic setting)
	Proof of prop:stochastic-subopt
	Proof of prop:sochastic-stability
	Proof of thm:sochastic-main
	Proof of coro:subGuassian-noise
	Proof of coro:mini-batch

	Suboptimality lemmas
	Weighted regret to suboptimality conversion (lem: sub-optimality inequality)
	Inductive suboptimality bound (lem: remove sqrt sub opt)
	General regret bound (lem: unixgrad inequality)

	Iterate stability lemmas
	A weighted regret bound (lem: bound for distance)
	Inductive stability bound (lem: d bound recursive)
	Single-step iterate stability (lem: rbar grwoth)

	Concentration bounds
	An empirical-Bernstein-type time uniform concentration bound (cor:product-mg-concentration)
	Concentration bound for suboptimally proof (lem: bound on noise mul x dist)
	Concentration bound for iterate stability proof (lem: uni noise bound)
	Relating [t] to [t] (lem: bound on g tide variance)
	Concentration inequality for bounded random vectors (lem: mini-batch to sub-Gausian)

	Auxiliary lemmas
	The growth rate of k[k]k (lem: weight sum of alphas)
	Discrete derivative lemma (lem: diff of etat)
	Discrete integral lemma (lem: Bound on sqrt sum B)
	Additional lemmas from prior work

	Experimental details
	U-DoG step sizes
	AcceleGrad-DoG (A-DoG)
	Convex experiments
	Non-convex experiments
	Implementation details

