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Abstract

Graph neural networks (GNNs) have become the dominant solution for learning
on graphs, the typical non-Euclidean structures. Conventional GNNs, constructed
with the Artificial Neuron Network (ANN), have achieved impressive performance
at the cost of high computation and energy consumption. In parallel, spiking GNNs
with brain-like spiking neurons are drawing increasing research attention owing to
the energy efficiency. So far, existing spiking GNNs consider graphs in Euclidean
space, ignoring the structural geometry, and suffer from the high latency issue
due to Back-Propagation-Through-Time (BPTT) with the surrogate gradient. In
light of the aforementioned issues, we are devoted to exploring spiking GNN on
Riemannian manifolds, and present a Manifold-valued Spiking GNN (MSG). In
particular, we design a new spiking neuron on geodesically complete manifolds
with the diffeomorphism, so that BPTT regarding the spikes is replaced by the pro-
posed differentiation via manifold. Theoretically, we show that MSG approximates
a solver of the manifold ordinary differential equation. Extensive experiments on
common graphs show the proposed MSG achieves superior performance to previous
spiking GNNs and energy efficiency to conventional GNNs.

1 Introduction

Graphs are the ubiquitous, non-Euclidean structures that describe the relationship among objects.
Graph neural networks (GNNs), constructed with the floating-point Artificial Neuron Network (ANN),
have achieved state-of-the-art accuracy for learning on graphs [1; 2; 3; 4]. However, they raise the
concerns about computation and energy consumption, particularly when dealing with real-world
graphs of considerable scale [5; 6]. In contrast, Spiking Neuron Networks (SNNs), inspired by the
biological mechanism of brains, utilize neurons that communicate using sparse and discrete spikes,
showcasing their superiority in energy efficiency [7; 8]. Attempting to bring the best of both worlds,
spiking GNNs are drawing increasing research attention.
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In the literature of spiking GNNs, recent efforts have been made to design different architectures
with spiking neurons, e.g., graph convolution [5], attention mechanism [9], variational autoencoder
[10] and continuous GNN [11]. While achieving encouraging results, existing spiking GNNs still
face several fundamental issues: (1) Representation Space. Spiking GNNs consider the graph in
Euclidean space, ignoring the inherent geometry of graph structures. Unlike the Euclidean structures
(e.g., pixel matrix and grid structures), graphs cannot be embedded in Euclidean space with bounded
distortion [12]. Instead, Riemannian manifolds have been shown as the promising spaces to model
graphs in recent years [3; 13; 4] (e.g., hyperbolic space, a type of Riemannian manifolds, is well
aligned with the graphs dominated by hierarchical structures). However, none of the existing works
study SNN on Riemannian manifolds, to the best of our knowledge. It is thus an interesting and
urgent problem to consider how to endow the spiking GNN with a Riemannian manifold. (2)
Training Algorithm. Training spiking GNN is challenging, since the spikes are non-differentiable.
Existing studies consider the spiking GNN as a recurrent neural network and apply Backward-Passing-
Through-Time (BPTT) with the surrogate gradient [5; 9; 10; 11]. They recurrently compute the
backward gradient at each time step, and thus suffer from the high latency issue [14; 15; 16; 6]
especially when the spike trains are long.
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Figure 1: MSG conducts parallel forwarding and enables a
new training algorithm alleviating the high latency issue.

Present work. Deviating from pre-
vious spiking GNNs in Euclidean
space, in this paper, we open a new
direction to explore spiking GNNs on
Riemannian manifolds, and propose a
novel Manifold-valued Spiking GNN
(MSG) sketched in Fig. 1. It is not real-
istic to place spike trains in a manifold
such as hyperbolic or hyperspherical
space, given the fact that spike trains
cannot align with the defining domain.
Instead, we design a Manifold Spik-
ing Layer that conducts parallel for-
warding of spike trains and manifold
representations. Specifically, we first
incorporate the structural information
into spike trains by graph convolution. Then, a new manifold spiking neuron is proposed to emit
spike trains and relate them to manifold representations with diffeomorphism, where the spike train
generates a momentum that forwards manifold representation along the geodesic. Instead of applying
BPTT in spike domain, the proposed neuron provides us with an alternative of Differentiation via
Manifold (DvM). (The red dashed line in Fig. 1.) Yet, differentiation in Riemannian manifold is
nontrivial. We leverage the properties of pullback and derive the closed-form backward gradient
(Theorem 4.1). DvM enables the recurrence-free gradient backpropagation, which no longer needs to
perform recurrent computation of time steps as in BPTT. Theoretically, MSG is essentially related to
manifold Ordinary Differential Equation (ODE). Each layer creates a chart of the manifold, and MSG
approximates the dynamic chart solver [17] of manifold ODE (Theorem 5.2).

Contributions. Overall, the key contributions are summarized as follows: (1) To the best of our
knowledge, we propose the first spiking neural network on Riemannian manifolds (MSG)2, and show its
connection to manifold ODE theoretically. (2) We design a new training algorithm of differentiation
via manifold, which avoids the high latency of BPTT methods. (3) Extensive experiments show the
superior effectiveness and energy efficiency of the proposed MSG.

2 Related Work

We briefly overview the ANN-based GNNs (i.e., the conventional, floating-point GNNs living in
either Euclidean space or Riemannian manifolds) and SNN-based GNNs (i.e., spiking GNNs).

ANN-based GNNs (Euclidean and Riemannian). The majority of GNNs are built with floating-
point ANN, conducting message passing on the graphs [18; 2; 19]. The Euclidean space has been the

2Codes are available at https://github.com/ZhenhHuang/MSG
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workhorse for graph representation learning for decades, and the popular GCN [18], GAT [2] and SGC
[19] are also designed in the Euclidean space. In recent years, Riemannian manifolds have emerged
as an exciting alternative considering the geometry of graph structures [20; 21]. Among Riemannian
manifolds, hyperbolic space is recognized for its alignment with the graphs of hierarchical structures,
and a series of hyperbolic GNNs (e.g., HGNN [22], HGCN [3]) show superior performance to
their Euclidean versions. Beyond hyperbolic space, hyperspherical space is well suited for cyclical
structures [23], and recent studies further investigate the constant curvature spaces [13], product
spaces [24; 25; 26; 27], quotient spaces [28], SPD manifolds [29; 30], etc. Riemannian manifolds
achieve remarkable success in graph clustering [31; 32], structural learning [33], graph dynamics
[34; 35; 36; 37], information diffusion [38] and graph generation [39; 40], but have rarely been
touched yet in the SNN counterpart.

Spiking Neural Networks (SNNs) & Spiking GNNs. Mimicking the biological neural networks,
SNNs [7; 8] utilize the spiking neuron to process spike trains, and offer the advantage of energy
efficiency. Despite the wide application of SNN in computer vision [41; 42], SNNs are still at an
early stage in the graph domain. The basic idea of spiking GNNs is adapting ANN-based GNNs
to the SNN framework by substituting the activation functions with spiking neurons. Pioneering
works study the graph convolution [43; 5], and efforts have also been made to the graph attention [9],
variational graph autoencoder [10], graph differential equations [44], etc. SpikeGCL [6] is a recent
endeavor to conduct graph contrastive learning with SNN. In parallel, spiking GNNs are extended to
model the dynamic graphs [45; 46; 47]. We focus on the static graph in this work. In both dynamic
and static cases, previous spiking GNNs are trained with the surrogate gradient, leading to high
latency, and consider the graphs in the Euclidean space.

3 Preliminaries

Different from aforementioned spiking GNNs, we study the spiking GNN on Riemannian manifolds.
Thus, we formally introduce the basic concepts of Riemannian geometry and SNN. Throughout this
paper, the lowercase boldfaced x and uppercase X denote vector and matrix, respectively. Important
notations are summarized in Appendix A.

Riemannian Geometry & Riemannian Manifold. Riemannian geometry provides elegant frame-
work to study structures and manifolds. A Riemannian manifold is described as a smooth and real
manifold M endowed with a Riemannian metric. Each point x in the manifold is associated with the
tangent space TxM that “looks Euclidean”, and the Riemannian metric is given by the inner product
in the tangent space, so that geometric properties (e.g, angle, length) can be defined. A geodesic be-
tween two points on the manifold is the smooth path connecting them with the minimal length. There
exist three types of isotropic manifold, namely, the Constant Curvature Space (CCS): hyperbolic
space H, hyperspherical space S and the special case of Euclidean space with “flat” geometry E .

Graph & Riemannian Graph Representation Learning. A graph G = (V, E ,F,A) is defined

on the node set V and edge set E ⊂ V × V , and A ∈ R
|V|×|V| is the adjacency matrix describing the

structure information. Each node vi is associated with a feature f i, and node features are summarized

in F ∈ R
|V|×d. In this paper, we resolve the problem of Riemannian Graph Representation Learning

with SNN. Specifically, we seek a graph encoder Fθ : v 7→ z where z ∈ M is a point on the
manifold, instead of Euclidean space, and Fθ is defined with an energy-efficient SNN.

Spiking Neural Network. SNNs are constructed by spiking neurons that communicate with each
other by spike trains. Concretely, a spiking neuron is conceptualized as “a capacitor of the membrane
potential”, and processes the spike trains by the following 3 phases [48]. First, the incoming current
I[t] is accumulated in the capacitor, leading to the potential buildup (integrate). When the membrane
potential V [t] reaches or exceeds a specific threshold Vth, the neuron emits a spike (fire). After that,
the membrane potential is reset to the resting potential Vreset (reset). There are two popular spiking
neurons: IF model and LIF model [49]. In particular, the three phases of IF model are formalized as

Integrate : V [t] = g(V [t− 1], I[t]) = V [t− 1] + I[t] (1)

Fire : S[t] = H(V [t]− Vth) (2)

Reset : V [t] =

{

(1− S[t])V [t] + S[t]Vrest, Fixed-reset,

V [t]− VthS[t], Subtraction-reset.
(3)
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where the incoming current I[t] is related to the input spike train, and Vreset is lower than Vth. t
denotes the time index of the spike. The Heaviside function H(·) is non-differentiable, H(x) = 1
if x ≥ 0, and 0 otherwise. There are two options for reset, and fixed-reset is adopted in this paper.
Overall, an IF model is given as S[t] = IFModel(I[t]), and the only difference between IF model
and LIF model lies in the definition of g(·) in Eq. (1). In this paper, we are interested in designing a
new spiking neuron on Riemannian manifold.

4 Methodology: Manifold-valued Spiking GNN

In this section, we present a simple yet effective Manifold-valued Spiking GNN (MSG), which can
be applied to any geodesically complete manifolds, e.g., the Constant Curvature Space (CCS),
including hyperbolic space and hyperspherical space, or the product of CCS. In particular, we design
a spiking neuron on Riemannian manifolds (named as Manifold Spiking Neuron) that allows for the
differentiation via manifold. It provides a new perspective of training spiking GNN, so that we avoid
the high latency of typical backward-passing-through-time (BPTT) training.

4.1 Manifold Spiking Layer

GCN
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Figure 2: Manifold Spiking Layer. It conducts par-
allel forwarding of spike trains and manifold rep-
resentations, and creates an alternative backward
pass (red dashed line). The backward gradient with
∂vl−1

∂Wl , Dvl−1φl−1 and ∇zlL will be introduced in
Sec. 4.2.

We elaborate on the sole building block of the
proposed model — Manifold Spiking Layer.
Note that, the spike train or spiking represen-
tation in existing spiking GNNs [43; 5; 9; 10;
6; 45; 46; 47] cannot align with the defining do-
main of Riemannian manifolds (e.g., hyperbolic
space and hyperspherical space), thus posing a
fundamental challenge. Our solution is to gen-
erate node representation on the manifold (re-
ferred to as manifold representation) in parallel,
and leverage the notion of Diffeomorphism to
create the alignment between the two domains.
We formulate the parallel forwarding of spike
trains and manifold representations as follows.

Unified Formulation. The forward pass of
the spiking layer consists of a graph convolu-
tion and one proposed manifold spiking neuron.
Without loss of generality, for each node vi ∈ G,
the l−th spiking layer is formulated as follows,

xl−1
i [t] = GCN(sl−1

i [t];Wl), (4)

[sli, z
l
i] = MSNeuron(x

(l−1)
i , z

(l−1)
i ), (5)

where x is the incoming current to generate
spike trains. s and z denote the spike trains and
manifold representation, respectively. GCN(·)
is a GNN in the Euclidean space, and Wl is
the learnable parameter in the layer. Different
from the neuron of previous spiking GNNs, we

design a novel manifold spiking neuron (MSNeuron) as shown in Fig. 2. It emits spike trains and
relates them to manifold representations simultaneously, which is formulated as follows,

sli = IFModel({xl−1
i [t]}t=1,...,T ) (6)

vl−1
i = Pooling(xl−1

i [t]) (7)

zli = f(zl−1
i , εvl−1

i ) ∈ M (8)

where t is the time step of spike trains. The IF model can be replaced by LIF model, and we utilize IF
model by default for simplicity. Pooling is defined as the average pooling of the current x over t,
and v is given as the Euclidean vector. f denotes the diffeomorphism to the Riemannian manifold in
which ε is the step size.
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Incorporating structural information. We inject the structural information when the received
spikes transform into the incoming current of the neuron. A GNN is leveraged to define the current,
conducting message-passing over the graph. Each node’s representation is derived recursively by
neighborhood aggregation [18; 2; 1]. Accordingly, GCN in the proposed neuron is given as follows,

GCN(sl−1
i [t];Wl) = combine(sl−1

i [t], aggregate({sj [t] : j ∈ Ωi};W
l)), (9)

where the neighborhood Ωi is the set of immediate neighbors centering at node vi. The aggregate
function aggregates the messages from neighborhood Ωi, where we create the message of a node by
Wlsj [t]. combine(·) denotes the combination of the center node’s message and aggregated message.
We utilize GCN [18] as the backbone to define aggregate and combine.

Diffeomorphism between manifolds. In the proposed neuron, we bridge the spikes and manifold
representation with the notion of diffeomorphism in differential geometry. A diffeomorphism connects
two smooth manifolds, saying M and N . Formally, a map f : M → N is a diffeomorphism between
M and N if the smooth f is bijective and its inverse f−1 is also smooth.

Recall that the tangent space is locally Euclidean. We propose to place the Euclidean v, a representa-
tion of the spikes, in the tangent space TzM of the point z. In MSG, we choose the exponential map
to act as the diffeomorphism between the tangent space and manifold. With a step size ε, we have

f(z
(l−1)
i , εv

(l−1)
i ) = Exp

z
(l−1)
i

(εv
(l−1)
i ) ∈ M (10)

Concretely, given z ∈ M and v ∈ TzM, the exponential map3 of v at point z, Expz(v) : TzM →
M, maps tangent vector v onto the manifold M. The map pushes z along the geodesic γz,v(t) :
[0, 1] → M starting at γz,v(0) = z and ending at y = γz,v(1). γ̇z,v(t) denotes the velocity of
γz,v(t), and the direction of geodesic at the beginning is given as γ̇z,v(0) = v. That is, the tangent
vector v, derived from the spikes, pushes the manifold representation along the geodesic via the
exponential map. The advantage of our choice is that we are able to define the diffeomorphism in
arbitrary geodesically complete manifold (detailed in Appendix D).

Note that, our idea is inherently different from the exponential/logarithmic based Riemannian GNNs
[3; 4; 22], which leverage the tangent space of the origin for neighborhood aggregation. In contrast,
we consider the successive process over the tangent spaces of manifold representations, which will
be further studied in Sec. 5.

Model Initialization In MSG, we need to simultaneously initialize the spiking input S0 and manifold
representation Z0, which is a collection of points on the given manifold. Given a graph G(V, E ,F,A),
the node features are first encoded by one graph convolution layer H = GCN(A,F;W0), and we
generate T copies of the node encodings H, where T is the number of time steps in spike trains. Then,
we complete model initialization with the proposed manifold neuron [S0,Z0] = MSNeuron(H,O),
where the encoding H is regarded as the incoming current that charges the neuron in each time step.
O consists of the original points of the manifold, e.g., in the sphere model of hyperspherical space,
the original point is given as the south pole o = [−1, 0, ..., 0]> and O = [o>, ...,o>]>. Note that,
the exponential map in the proposed neuron guarantees that Z0 lives in the manifold.

4.2 Learning Approach: Differentiation via Manifold

Optimizing SNNs is challenging, as the Heaviside step function is non-differentiable. In the literature,
existing spiking GNNs typically regard SNN as the recurrent neural network, and leverage backward-
passing-through-time (BPTT) to train the model [50; 51; 52]. Concretely, given a real loss function
L, the gradient backpropagation conducts Differentiation via Spikes (DvS) s as follows,

∇WlL =
∑

t

[
∂sl[t]

∂Wl
]∗∇sl[t]L, (11)

where W is the parameter, and t denotes the time step. The surrogate gradient [51] is required for
DWlsl[t], where Heaviside step function is replaced by a differentiable surrogate, e.g., sigmoid
function. The differentiation via spikes presents high latency in the backward pass [14; 15; 16],
as it needs to recur all the time steps in BPTT. We notice that, in the computer vision domain, the
sub-gradient method [15] is proposed to address such issues in Euclidean space. However, it cannot
be generalized to the Riemannian manifold since the linearity does not hold in Riemannian geometry.

3The inverse map from M to TzM is the logarithmic map.
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Algorithm 1 Training MSG by the proposed Differ-
entiation via Manifold

Input: Graph G(V, E ,F,A), Manifold M, Loss
function over the manifold L(·), Number of
spiking layers L, Original points O.

Output: Parameters {Wl}l=0,··· ,L
1: while not converging do
2: B forward pass
3: Input current X0 = GCN(A,F;W0);
4: Initialize [S0,Z0] = MSNeuron(X0,O);
5: for each spiking layer l = 1 to L do

6: X(l−1) = GCN(A,S(l−1);Wl);
7: [Sl,Zl] = MSNeuron(X(l−1),Z(l−1));
8: end for
9: B backward pass

10: Compute ∇zLL from L(ZL).
11: for layer l = L− 1 to 1 do

12: Compute Dzlψl, Dvl−1φl−1, ∂v
l−1

∂Wl .
13: Compute ∇zlL, ∇WlL as Eq. 12.
14: Update Wl.
15: end for
16: end while

In MSG, we decouple the forward pass and
backward pass, and propose Differentiation
via Manifold (DvM) to avoid the high latency
in differentiation via spikes. The overall pro-
cedure of training MSG by the proposed learn-
ing approach is summarized in Algorithm 1.
Thanks to the parallel forwarding of spikes
and manifold representation, the proposed neu-
ron provides us with an alternative of studying
∇WlL through the forwarding pass on the
manifold (i.e., differentiation via manifold).
Nevertheless, it is nontrivial and it requires
to derive the pullback between different dual
spaces.

Pushforward, Pullback and Dual Space.
We first introduce the differentiation in Rie-
mannian geometry which is essentially dif-
ferent from that in Euclidean space. In Rie-
mannian geometry, a pushforward refers to a
derivative of a map connecting two manifolds
M and N . Concretely, given f : M → N
and a point z ∈ M, the pushforward Dzf
maps a tangent vector v ∈ TzM to the tan-
gent vector Dzf(v) ∈ Tf(z)N . On the nota-

tion, for a manifold-valued function f(z) =
p ∈ N , ∂p/∂z is equivalent to Dzf . For a scalar function f , Dzf is interchangeable with ∇zf .

In the proposed MSG, we consider a scalar loss function on the manifold L : M → R. The pushfor-
ward DzL at point z ∈ M maps tangent vector v ∈ TzM to a scalar value and, correspondingly,
DzL belongs to the dual space of the tangent space T ∗

zM, which is a vector space consisting all
linear functional F : TzM → R. As the tangent spaces at different points of the manifold are
different, it requires a pullback that maps the dual space T ∗

zlM to the dual space T ∗
z(l+1)M.

We derive the backward gradient with properties of differential 1−form (Lemma B.1), communication
(Lemma B.2), and pullback of a sum and a product (Lemma B.3) detailed in Appendix B.1.

Theorem 4.1 (Backward Gradient). Let L be the scalar-valued function, and zl is the output of l-th
layer with parameter Wl, which is delivered by tangent vector vl. Then, the gradient of function L
w.r.t Wl is given as follows:

∇WlL = [
∂vl−1

∂Wl
]∗[Dvl−1φl−1]∗∇zlL, ∇zlL = [Dzlψl]∗∇zl+1L, (12)

where φl−1(·) = Expzl−1(·), ψl(·) = Exp(·)(v
l), and [·]∗ means the matrix form of pullback.

The detailed proof is given in Appendix B.1, and we derive the two Jacobian matrices Dvl−1φl−1

and Dzlψl in Appendix C. There are three key advantages of the proposed DvM. First, every term
in Equation (12) is differentiable, and thereby the surrogate gradient is no longer needed. Second,
DvM enables the recurrence-free backward pass alleviating the high latency training. We specify
that both DvM and the previous DvS recurrently compute every time step in the forward pass, and
the difference lies in the backward pass. In particular, we only conduct recurrence-free gradient
backpropagation layer by layer, while the previous DvS recurs every time step of each layer in BPTT.
In addition to the differentiable and recurrence-free properties, DvM does not suffer from gradient
vanishing/explosion, and the empirical evidence is provided in Appendix F.

5 Theory: MSG as Neural ODE Solver

Next, we demonstrate the theoretical aspects of our model that MSG approximates a solver of manifold
Ordinary Differential Equations (ODEs).
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Figure 3: Charts given by the logarithmic map.

We leverage the notion of chart to study the
relationship between MSG and manifold ODE.
A manifold ODE defined as

dz(t)

dt
= u(z(t), t), z(t) ∈ M, (13)

describes a vector field u that maps a smooth
path z(t) : [0, 1] → M to the tangent bundle
TM 4. In other words, the vector field u as-
signs each point z(t) ∈ M to a tangent vector
u(z(t), t) ∈ Tz(t)M. A chart at z, denoted as

(Uz, φz), is a smooth bijection φz between z’s
neighborhood Uz ⊂ M and a subspace of Eu-
clidean space. Thus, the chart relates Eq. (13)
to ODE in Euclidean space [17]. Specifically, if

y(t) : [τ, τ + ε] → R
n is the solution of

dy(t)

dt
= (Dφ

−1
i

(y(t))φi)u(φ
−1
i (y(t)), t), (14)

then y(t) = φi(z(t)) is a valid solution of Eq. (13) on t ∈ [τ, τ + ε].

Definition 5.1 (Dynamic Chart Solver [17]). The manifold ODE in Eq. (13) with initial condition
z(0) = z can be solved with a finite collection of successive charts {(Ui, φi)}i=1,...,L. If odei is the
numerical solver to Euclidean ODE corresponding to the i-th chart, y(t) = odei(t) on [τi, τi + εi],
then z(t) in Eq. (13) is given as

(φ−1
L ◦ odeL ◦(φL ◦ φ−1

L−1) ◦ ... ◦ (φ2 ◦ φ
−1
1 ) ◦ ode1 ◦φ1)(t). (15)

That is, a manifold ODE can be solved in Euclidean subspaces given by a series of successive charts.

In MSG, we consider the charts given by the logarithmic map as illustrated in 3, and we prove that MSG
approximates a dynamic chart solver of manifold ODE (Theorem 5.2).

Theorem 5.2 (MSG as Dynamic Chart Solver). If y(t) : [τ, τ + ε] → R
n is the solution of

dy(t)

dt
= (DExp

z
(y(t)) Logz)u(Expz(y(t)), t), (16)

then z(t) = Expz(y(t)) is a valid solution to the manifold ODE of Eq. (13) on t ∈ [τ, τ + ε], where
z = z(τ). If y(t) is given by the first-order approximation with the ε small enough,

y(τ + ε) = ε · (Dz Logz)u(z(τ), τ), (17)

then the update process of Eqs. (4) and (8) in MSG is equivalent to Dynamic Chart Solver in Eq. (15).

Proof. The proof utilizes some facts of Riemannian manifolds and is detailed in Appendix B.2.

In other words, in MSG, the transformation of manifold input and output is described as some manifold
ODE, whose vector field is governed by a spiking-related neural network in the tangent bundle. To
solve the manifold ODE, MSG leverages the Dynamic Chart Solver (Definition 5.1). Specifically, each
manifold spiking layer corresponds to a chart, and thus the number of spiking layers equals to the
number of charts. Each layer solves the ODE of a smooth path y(t) : [τ, τ + ε] → R

n in the tangent
space that centered at the manifold layer input. With the first-order approximation in Theorem 5.2,
given a step size ε, the endpoint y(τ + ε) of the path is parameterized by a GNN related to the spikes.
Layer-by-layer forwarding solves the manifold ODE from the current chart to the successive chart.
Consequently, the manifold output of MSG approximates the solution to the manifold ODE.

We notice that a recent work [11] connects spiking GNN to an ODE in Euclidean space. In contrast,
the proposed MSG is essentially related to the manifold ODE.

The Appendix contains the proofs, the derivation of Jacobian, necessary facts on Riemannian
geometry (i.e., Lorentz/Sphere model, stereographic projection and κ-stereographic model, and
Cartesian product and product space), empirical details and additional results.

4The tangent bundle TM is the disjoint union of all the tangent spaces of the manifold TM =

⊔
z∈M

TzM.
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Table 1: Node Classification (NC) in terms of classification accuracy (%) and Link Prediction in
terms of AUC (%) on Computers, Photo, CS and Physics datasets. The best results are boldfaced,
and the runner-ups are underlined. The standard derivations are given in the subscripts.

Computers Photo CS Physics
NC LP NC LP NC LP NC LP

A
N

N
-E

GCN [18] 83.55±0.71 92.07±0.40 86.01±0.20 88.84±0.39 91.68±0.84 93.68±0.84 95.03±0.19 93.46±0.39

GAT [2] 86.82±0.04 91.91±1.08 86.68±1.32 88.45±0.07 91.74±0.22 94.06±0.70 95.11±0.29 93.44±0.70

SGC [19] 82.17±1.25 90.46±0.80 87.91±0.65 89.84±0.40 92.09±0.05 95.94±0.43 94.77±0.32 95.93±0.70

SAGE [1] 81.69±0.86 90.56±0.48 89.41±1.28 89.86±0.90 92.71±0.73 95.22±0.14 95.62±0.26 95.75±0.37

A
N

N
-R

HGCN [3] 88.71±0.24 96.88±0.53 89.18±0.50 94.54±0.20 90.72±0.16 93.02±0.26 94.46±0.20 94.10±0.64

κ-GCN [13] 89.20±0.50 95.30±0.20 92.22±0.62 94.89±0.15 91.98±0.15 94.86±0.18 95.85±0.20 94.58±0.22

Q-GCN [4] 85.94±0.93 96.98±0.05 92.50±0.95 97.47±0.03 91.18±0.28 93.39±0.20 94.84±0.25 OOM
HyboNet [54] 86.29±2.30 96.80±0.05 92.67±0.09 97.70±0.07 92.34±0.03 95.65±0.26 95.56±0.18 98.46±0.49

SpikeNet [45] 88.00±0.70 - 92.90±0.10 - 92.15±0.18 - 92.66±0.30 -
SpikeGCN [5] 86.90±0.30 91.12±1.79 92.60±0.70 93.84±0.03 90.86±0.11 95.07±1.22 94.53±0.18 92.88±0.80

SpikeGCL [6] 89.04±0.08 92.72±0.03 92.50±0.17 95.58±0.11 91.77±0.11 95.13±0.24 95.21±0.10 94.15±0.29

S
N

N
-E

SpikeGT [55] 81.00±1.06 - 90.66±0.38 - 91.86±0.61 - 94.38±1.57 -

MSG (Ours) 89.27±0.19 94.65±0.73 93.11±0.11 96.75±0.18 92.65±0.04 95.19±0.15 95.93±0.07 93.43±0.16

6 Experiments

We conduct extensive experiments with 12 strong baselines to evaluate the proposed MSG in terms of
(1) the representation effectiveness, (2) the energy efficiency, and (3) the advantages of the proposed
components. Additional results are presented in Appendix F.

6.1 Experimental Setups

Datasets. Our experiments are conducted on 4 commonly used benchmark datasets including two
popular co-purchase graphs: Computers and Photo[53], and two co-author graphs: CS and Physics
[53]. Datasets are detailed in Appendix E.

Baselines. We compare the proposed MSG with 12 strong baselines of three categories: (1) ANN-
based Euclidean GNNs: the popular GCN [18], GAT [2], GraphSAGE [1] and SGC [19], (2)
ANN-based Riemannian GNNs: HGCN [3] and HyboNet [54] of hyperbolic spaces, κ−GCN [13]
of the constant curvature space, and the recent Q−GCN [4] of the quotient space, (3) The previous
Euclidean Spiking GNNs: SpikeNet [45], SpikeGCN [5], SipkeGraphormer [55] (termed as SpikeGT
for short) and the recent SpikeGCL [6]. Note that, we focus on the graph representation learning
on static graphs, and thereby graph models for the dynamic ones are out of the scope of this paper.
SpikeNet [45] was originally designed for dynamic graphs, and we utilize its variant for static graphs
according to [6]. So far, spiking GNN has not yet been connected to Riemannian manifolds, and we
are devoted to bridging this gap.

Evaluation Protocol. All models are evaluated by node classification and link prediction tasks.
The evaluation metrics of node classification is classification accuracy; we employ the popular Area
Under Curve (AUC) for link prediction. The hyperparameter setting is the same as the original
papers. We perform 10 independent runs for each case, and report the mean with standard derivations.
Experiments are conducted on the hardware of NVIDIA GeForce RTX 4090 GPU 24GB memory, and
AMD EPYC 9654 CPU with 96-Core Processor. Our model is built upon GeoOpt [56], SpikingJelly
[56] and PyTorch [57].

Model Instantiation & Configuration. Note that, the proposed MSG applies to any Constant
Curvature Space (CCS) or the product of CCS. We instantiate MSG in the Lorentz model of hyperbolic
space by default (whose Riemannian metric, exponential map, and the derived Jacobian is given in
Appendix C), and study the impact of representation space in the Ablation Study. The dimension of
the representation space is set as 32. The manifold spiking neuron is based on the IF model [49] by
default, and it is ready to switch to the LIF model [49] whose results are given in Appendix F. The
time steps T for neurons is set to 5 or 15. The step size ε in Eq. 8 is set to 0.1. The hyperparameters
are tuned with grid search, in which the learning rate is {0.01, 0.003} for node classification and
{0.003, 0.001} for link prediction, and the dropout rate is in {0.1, 0.3, 0.5}. We provide the source
code of MSG at the anonymous link https://github.com/ZhenhHuang/MSG.
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6.2 Results & Discussion

Effectiveness. We evaluate the effectiveness of MSG in both node classification and link prediction
tasks. Specifically, for node classification, we cannot directly feed the manifold representations
of Riemannian baselines to a softmax layer with Euclidean measure. We bridge the manifold
representation and Euclidean softmax with the logarithmic map of respective manifold. For link
prediction, we utilize the generalized sigmoid for all the baselines, i.e., the Fermi-Dirac decoder
[3] in which the distance function is defined under the respective geometry. In the proposed MSG,
the model inference does not need the expensive successive exponential maps, and only limited
float-point operations (i.e., addition) are involved. Accordingly, we leverage the tangent vectors
for the downstream tasks. The performance of both learning tasks on Computer, Photo, CS and
Physics datasets are collected in Table 1. Note that, SpikeNet and SpikeGT cannot do link prediction,
since they are designed for node classification and do not offer spiking representation. The proposed
MSG consistently achieves the best results among SNN-based models. In addition, MSG generally
outperforms the best ANN-based baselines in node classification, and has competitive results to the
recent ANN-based Riemannian baselines in link prediction.

Table 2: Ablation study of geometric variants. Results of
node classification in terms of ACC (%).

Computers Photo CS Physics

H
32 89.27±0.19 93.11±0.11 92.65±0.04 95.93±0.07

S
32 87.84±0.77 92.03±0.79 92.72±0.06 95.85±0.02

E
32 88.94±0.24 92.93±0.21 92.82±0.04 95.81±0.04

H
16 ×H

16 89.18±0.25 92.06±0.14 92.67±0.10 95.90±0.04

H
16 × S

16 88.00±1.05 91.97±0.08 92.33±0.21 95.73±0.11

S
16 × S

16 82.49±1.18 92.31±0.45 92.18±0.21 95.81±0.10

Ablation Study. Here, we examine
the impact of representation space and
the effectiveness of the proposed Dif-
ferentiation via Manifold (DvM). For
the former goal, we instantiate 6 geo-
metric variants of MSG in hyperbolic
space H

32, hyperspherical space S
32,

Euclidean space E
32 and the products

of H16×H
16, H16×S

16 and S
16×S

16.
The superscript denotes the dimension
of representation space, and we leverage DvM for optimization. Manifold variants generally achieve
superior results to the Euclidean one, thus verifying our motivation. On CS dataset, the performance
of geometric variants is aligned with that of Euclidean and Riemannian baselines in Table 1. The
proposed MSG is ready to switch among H, S, E, and their products, matching the geometry of graphs.
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(a) Backward times in model training.
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(b) Gradient norm of L regarding tangent vector v.

Figure 4: Backward time and gradient norm for node classification on Computer.

To examine the effectiveness of DvM, we design the optimization variant (named as Surrogate) for a
given representation space. In the variant, we conduct differentiation via spikes and leverage BPTT
for optimization, same as previous spiking GNNs. The training time of the optimization variants in
different representation spaces are given in Fig. 4(a). Backward time of DvM is significantly less
than that of BPTT algorithm. The reason is that DvM no longer needs recurrent gradient calculation
of each time step (recurrence-free), while BPTT leads to high training time especially when the time
step is large. In addition, we examine the backward gradient of DvM, and plot the gradient norm of
each layer in Fig. 4(b). It demonstrates that DvM does not suffer from gradient vanishing/explosion.

Energy Cost. We investigate the energy cost of the graph models in terms of theoretical energy
consumption (mJ) [5; 6], whose formula is specified in Appendix E. We summarize the results for
node classification in Table 3 in which the number of parameters at the running time is listed as a
reference. It shows that SNN-based models generally enjoy less energy cost than ANN-based ones.
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Table 3: Energy cost. The number of parameters at the running time (KB) and theoretical energy
consumption (mJ) on Computers, Photo, CS and Physics datasets. The best results are boldfaced,
and the runner ups are underlined.

Computers Photo CS Physics
#(para.) energy #(para.) energy #(para.) energy #(para.) energy

A
N

N
-E

GCN [18] 24.91 1.671 24.14 0.893 218.29 18.444 269.48 42.842
GAT [2] 24.99 2.477 24.22 1.273 218.38 28.782 269.55 81.466
SGC [19] 7.68 0.508 5.97 0.219 102.09 8.621 42.08 6.688
SAGE [1] 49.77 1.671 48.23 0.893 436.53 18.444 538.92 42.842

A
N

N
-R

HGCN [3] 24.94 1.614 24.96 0.869 217.79 18.390 269.31 42.800
κ-GCN [13] 25.89 1.647 25.12 0.889 218.24 18.440 269.44 42.836
Q−GCN [4] 24.93 1.629 24.96 0.876 217.83 18.393 269.34 42.809
HyboNet [54] 27.06 1.625 26.29 0.875 219.94 18.399 271.47 42.825

S
N

N
-E

SpikeNet [43] 101.22 0.070 98.07 0.040 438.51 0.218 540.04 0.334
SpikingGCN [5] 38.40 0.105 29.84 0.046 510.45 1.871 210.40 1.451
SpikeGCL [6] 59.26 0.121 57.85 0.067 445.69 0.128 548.74 0.214
SpikeGT [55] 77.07 1.090 74.46 0.584 365.28 6.985 355.77 12.524

MSG(Ours) 26.95 0.047 25.68 0.043 226.15 0.026 143.72 0.029

Note, MSG achieves the best energy efficiency among SNN-based models except Photo dataset. In
addition, it has at least 1/20 energy cost to the Riemannian baselines.

Figure 5: Visualization on S
1 × S

1

Visualization & Discussion. We empirically study the
connection between the proposed MSG and manifold ODE.
In particular, we visualize a toy example of Zachary Karate
Club dataset [58] on a S

1 × S
1 in Fig. 5, where we plot

each layer output on the manifold. The red curve is the path
connecting the layer input and layer output, and the blue
one is the direction of the geodesic. As shown in Fig. 5, the
red and blue curves are coincided, that is, each layer solves
an ODE describing the geodesic on the manifold.

7 Conclusion

In this paper, we study spiking GNN from a fundamentally
different perspective of Riemannian geometry, and present
a simple yet effective Manifold-valued Spiking GNN (MSG).
Concretely, we design a manifold spiking neuron which
leverages the diffeomorphism to bridge spiking representations and manifold representations. With
the proposed neuron, we propose a new training algorithm with Differentiation via Manifold, which
no longer needs to recur the backward gradient and thus alleviates the high latency of previous
methods. An interesting theoretical result is that, MSG is essentially related to manifold ODE.
Extensive empirical results on benchmark datasets demonstrate the superior effectiveness and energy
efficiency of the proposed MSG.

8 Broader Impact and Limitations

Our work brings together two previously separate domains: spiking neural network and Riemannian
geometry, and presents a novel Manifold-valued Spiking GNN for energy-efficiency graph learning,
especially for the large graphs. Our work is mainly a theoretical exploration, and not tied to particular
applications. A positive societal impact is the possibility of decreasing carbon emissions in training
large models. None of negative societal impacts we feel must be specifically highlighted here.

Limitation. Our work as well as the previous spiking GNNs considers the undirected, homophilous
graphs, while the spiking GNN on directed or heterophilous graphs still remains open. Also, readers
may find it challenging to implement the proposed method. However, we provide downloadable code
and will offer an easy-to-use interface.
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The appendix is organized as follows:

1. Notation table,

2. Proofs of Theorem 4.1 and Theorem 5.2,

3. Derivation of the Jacobian,

4. Riemannian geometry including geodesically complete manifold, stereographic projection
and κ-stereographic model, and Cartesian product and product manifold,

5. Empirical details, i.e., datasets/baselines description, theoretical energy consumption and
implementation notes,

6. Additional results of link prediction, layer-wise gradient and the visualization.

A Notations

We summarize the important notations of our paper in Table 4.

Table 4: Notations.

Notation Description

M,N Smooth manifolds

x,y, z Points on manifolds

o The original point on manifold

TzM The tangent space at point z

TM The tangent bundle of the manifold M
u The vector field over the manifold, described by an ODE

T ∗
zN The dual space of TzN
Dzf The differential of f at point z

(df)z The differential 1−form of f at point z

{(∂/∂z1)|z, ..., (∂/∂z
n)|z} A basis of the tangent space TzN

{(dz1)z, ..., (dz
n)z} A basis of T ∗

zN
∇L The gradient of a smooth scalar function L

Expz(·) The exponential map at point z

Logz(·) The logarithmic map at point z

S
d d-dimensional Sphere model of hyperspherical space

E
d d-dimensional Euclidean space

H
d d-dimensional Lorentz model of Hyperbolic space

V, E ,F,A Node set V , edge set E , feature matrix F and adjacency matrix A

G = (V, E ,F,A) A graph defined on V , E , F and A

Ωi Neighbourhood of node i
Fθ A graph encoder with parameters θ
V [t] Membrane potential of a spiking neuron at time step t
H(·) The Heaviside step function

S[t] Spikes fired by a spiking neuron at time step t
Vth Threshold membrane potential of a spiking neuron

l The index of spiking layer in neural network

MSNeuron The proposed manifold spiking neuron

B Proofs

In this section, we demonstrate the proofs of Theorem 4.1 (Backward Gradient) and Theorem 5.2
(MSG as Dynamic Chart Solver).

B.1 Proof of Proposition 4.1

First, we give the formal definition of the pullback. Given a smooth map φ : M → N connecting
two manifolds M and N , and a real, smooth function f : N → R, the pullback of f by φ is the
smooth function φ∗f on M defined by (φ∗f)(x) = f(φ(x)).
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Next, we introduce some properties of the pullback in the smooth manifold [59] (i.e., differential
1-form of a smooth function, communication, and pullback of a sum and a product), supporting the
derivation of the backward gradient (Theorem 4.1).

Lemma B.1 (Differential 1-form of a smooth function). For a point z ∈ N related with a coordinate
chart (U, z1, ..., zn), there is a series of covectors {(dz1)z, ..., (dz

n)z} forming a basis of T ∗
zN dual

to the basis {(∂/∂z1)|z, ..., (∂/∂z
n)|z} of tangent space TzN . Then, for any smooth function f on

N restrict to U , the differential 1-form of f is

df =

n
∑

i=1

∂f

∂zi
dzi. (18)

Lemma B.2 (Communication). Let F : N → M be a smooth map, for any smooth function g on
M, we have F ∗(dg) = d(F ∗g).

Lemma B.3 (Pullback of a sum and a product). Let F : N → M be a smooth map, g is a smooth
scalar function on M, and ω, γ are differential 1-forms on M. Then, we have

F ∗(ω + γ) = F ∗ω + F ∗γ (19)

F ∗(gω) = (F ∗g)(F ∗ω). (20)

Given the properties of the pullback, we derive the closed-form backward gradient of the real function
on the manifold, and prove Theorem 4.1.

Theorem 4.1 (Backward Gradient) Let L be the scalar-valued function, and zl is the output of l-th
layer with parameter Wl, which is delivered by tangent vector vl. Then, the gradient of function L
w.r.t. Wl is given as follows:

∇WlL = [
∂vl−1

∂Wl
]∗[Dvl−1φl−1]∗∇zlL, ∇zlL = [Dzlψl]∗∇zl+1L, (21)

where φl−1(·) = Expzl−1(·), ψl(·) = Exp(·)(v
l), and [·]∗ means the matrix form of pullback.

Proof. Given zl, zl+1 in M, and F : M → M be the smooth map such that F (zl) = zl+1.

Consider scalar loss function L : M → R, if we relate zl with a chart (U, x1, ..., xm) and zl+1 with

(V, y1, ..., ym), the gradients of L at zl+1 and zl are given by Lemma. B.1,

∇zl+1L =
∑

i

∂L

∂yi

∣

∣

∣

∣

zl+1

dyi (22)

∇zl(L ◦ F ) =
∑

i

∂L ◦ F

∂xi

∣

∣

∣

∣

zl

dxi. (23)

Then, we apply the pullback F ∗ on ∇zl+1L that

F ∗(∇zl+1L) = F ∗
∑

i

∂L

∂yi

∣

∣

∣

∣

zl+1

dyi|zl+1 (24)

=
∑

i

(F ∗ ∂L

∂yi

∣

∣

∣

∣

zl+1

)(F ∗dyi|zl+1) from Lemma. B.3 (25)

=
∑

i

(
∂L

∂yi
◦ F )|zl(d(F ∗yi)|zl) from Lemma. B.2 (26)

=
∑

i

(
∂L

∂yi
◦ F )|zl(d(yi ◦ F ))|zl (27)

=
∑

i

(
∂L

∂yi

∣

∣

∣

∣

zl+1

)(
∑

j

∂F i

∂xj
dxj)|zl from Lemma. B.1 (28)

=
∑

i,j

∂L

∂yi

∣

∣

∣

∣

zl+1

∂F i

∂xj

∣

∣

∣

∣

zl

dxj |zl , (29)

Then, we can find that the matrix form of the pullback F ∗ can be written as the transpose of the

Jacobian matrix of F , denoted as [∂F
i

∂xj |zl ]∗ or [DzlF ]∗. The derivation of ∇WlL is similar, we only
need to use an addition process like above on ∇vl−1L.
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Note that, we give the closed-form expression of exponential map, logarithmic map, and parallel
transport for hyperbolic and hyperspherical space, and derive the corresponding Jacobian in Sec. C.

B.2 Proof of Theorem 5.2

Theorem 5.2 (MSG as Dynamic Chart Solver) If y(t) : [τ, τ + ε] → R
n is the solution of

dy(t)

dt
= (DExp

z
(y(t)) Logz)u(Expz(y(t)), t), (30)

then z(t) = Expz(y(t)) is a valid solution to the manifold ODE of Eq. (13) on t ∈ [τ, τ + ε], where
z = z(τ). If y(t) is given by the first-order approximation with the ε small enough,

y(τ + ε) = ε · (Dz Logz)u(z(τ), τ), (31)

then the update process of Eqs. (4) and (8) in MSG is equivalent to Dynamic Chart Solver in Eq. (15).

Proof. Let t ∈ [τ, τ + ε], then we have

dz(t)

dt
= (Dy(t) Expz)

dy(t)

dt
(32)

= (Dy(t) Expz)(DExp
z
(y(t)) Logz)u(Expz(y(t)), t) (33)

= (Dy(t) Expz)(Dz(t) Logz)u(Expz(y(t)), t) (34)

= u(z(t), t). (35)

Consider two adjacent charts (U1,Logz1
) and (U2,Logz2

), such that z1 ∈ U1 and z2 ∈ U1 ∩ U2.
Note that, in interval [τ, τ + ε], z(τ) = z1 and z(τ + ε) = z2, we have y(τ) = Expz1

(z1) = 0.
With the first-order approximation, y(τ + ε) is thus given by

y(τ + ε) = y(τ) + ε · (DExp
z1

(y(τ)) Logz1

)u(Expz(y(τ)), τ) (36)

= ε · (Dz1
Logz1

)u(z(τ), τ) (37)

Also, Eq. (37) can be treated as a step in the Euler solver [60] for a small ε. Finally, we have
z(τ + ε) = Expz1

(y(τ + ε)) = z2, ending the process of dynamic chart solver. That is, MSG
considers the logarithmic map to define the charts, and is equivalent to Dynamic Chart Solver
(Definition 5.1), completing the proof.

C Deviation of Jacobian

We instantiate the proposed MSG in the Lorentz model H of hyperbolic space, sphere model S of
hyperspherical space, and the products of H’s or/and S’s. Accordingly, we derive the Jacobian in H

and S, and introduce the construction in the products in D.3.

C.1 Hyperbolic Space

Lorentz Model The d-dimensional Lorentz model Hd is defined on the (d + 1)-dimensional

manifold of {z = [z0, z1, · · · , zd]
T ∈ R

d+1|〈z, z〉L = −1, z0 > 0} 5, equipped with the Minkowski
inner product,

〈u,v〉L = −u0v0 +
d

∑

i=1

uivi. (38)

The tangent space at point z ∈ H
d is TzH

d = {v ∈ R
d+1|〈z,v〉L = 0}, and Projz(u) =

u + 〈z,u〉Lz is to project a vector u ∈ R
d+1 into the tangent space TzH

d. The Lorentz norm of

tangent vector is defined as ‖v‖L =
√

〈z, z〉L.

Theorem 4.1 requires the Jocabian of φ(·) = Expz(·) and ψ(·) = Exp(·)(v), and Lorentz model has

the closed-form exponential map given as follows,

Expz(v) = cosh(‖v‖L)z+
sinh(‖v‖L)

‖v‖L
v. (39)

5We utilize the manifold of standard curvature for model instantiation, i.e., constant curvature of −1 for
hyperbolic space, and 1 for hyperspherical space. Note that, hyperbolic/hyperspherical spaces of different
constant curvatures are mathematically equivalent in essence.
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The inverse of exponential map (i.e, the logarithmic map) is

Logz(x) =
arcosh(〈z,x〉L)

sinh(arcosh(〈z,x〉L))
(x− 〈z,x〉Lz) (40)

Deviation of Jacobian We first calculate the Jacobian of ψ, and it is given as

Dzψ = cosh(‖v‖L)I. (41)

Note that, Jacobian of φ needs the Jacobian of ‖v‖L, which is derived as

Dv‖v‖L =
d

d〈v,v〉L
(
√

〈v,v〉L)Dv(〈v,v〉L) =
1

‖v‖L
v̂T , (42)

where v̂ = [−v0, v1, ..., vd]
T . Then, we compute the derivative of the first term of Eq. 39.

Dv cosh(‖v‖L)z =
d

d‖v‖L
(cosh(‖v‖L))z(Dv‖v‖L) =

sinh(‖v‖L)

‖v‖L
zv̂T , (43)

and the derivative of the second term is derived as

Dv

sinh(‖v‖L)

‖v‖L
v = Dv(

sinh(‖v‖L)

‖v‖L
)v +

sinh(‖v‖L)

‖v‖L
Dvv (44)

=
‖v‖L cosh(‖v‖L)− sinh(‖v‖L)

‖v‖3L
vv̂T +

sinh(‖v‖L)

‖v‖L
I (45)

Summing up above equations, we finally have

Dvφ =
‖v‖L cosh(‖v‖L)− sinh(‖v‖L)

‖v‖3L
vv̂T +

sinh(‖v‖L)

‖v‖L
(I+ zv̂T ), (46)

where I is the identity matrix.

C.2 Hyperspherical Space

Sphere Model The sphere model Sd is defined on the (d + 1)-dimensional manifold of {z =

[z0, z1, · · · , zd]
T ∈ R

d+1|〈z, z〉 = 1, z0 > 0} with the standard inner product 〈x,y〉 =
∑d

i=0 xiyi

and norm ‖x‖ =
√

∑d
i=0 x

2
i . The tangent space at point z is TzS

d = {v ∈ R
d+1|〈z,v〉 = 0}.

Similar to Lorentz model, we have Projz(u) = u− 〈z,u〉z projecting a vector u ∈ R
d+1 into TzS

d.

The exponential map in the sphere model is given as

Expz(v) = cos(‖v‖)z+
sin(‖v‖)

‖v‖
v, (47)

and the logarithmic map is

Logz(x) =
arccos(〈z,x〉)

sin(arccos(〈z,x〉))
(x− 〈z,x〉z) (48)

Derivation of Jacobian We first calculate the Jacobian of ψ, and it is given as

Dzψ = cos(‖v‖)I. (49)

Similar to that in Lorentz model, the Jacobian of φ needs the Jacobian of ‖v‖,

Dv‖v‖ =
d

d〈v,v〉
(
√

〈v,v〉)Dv(〈v,v〉) =
1

‖v‖
vT . (50)

Then, we compute the derivative of the first term of Eq. 47.

Dv cos(‖v‖)z =
d

d‖v‖
(cos(‖v‖))z(Dv‖v‖) =

− sin(‖v‖)

‖v‖
zvT , (51)

and the derivative of the second term is

Dv

sin(‖v‖)

‖v‖
v = Dv(

sin(‖v‖)

‖v‖
)v +

sin(‖v‖)

‖v‖
Dvv (52)

=
‖v‖ cos(‖v‖)− sinh(‖v‖)

‖v‖3
vvT +

sin(‖v‖)

‖v‖
I (53)

Summing up above equations, we finally have

Dvφ =
‖v‖ cos(‖v‖L)− sin(‖v‖)

‖v‖3
vvT +

sin(‖v‖)

‖v‖
(I− zvT ). (54)
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D Riemannian Geometry

D.1 Some Notations

Here, we give the formal descriptions of the notions mentioned in the main paper, and please refer to
[61] for systematic elaborations.

Geodesically Complete Manifold. A manifold is said to be geodesically complete if the maximal
defining interval of any geodesic is R. For any Riemannian manifold (M, g) admitting a metric
structure given by the length of geodesic

d(p, q) = inf{L(γ)|γ is a piecewise smooth curve connecting p to q}, (55)

the completeness of d can be described as a metric space is complete if any Cauchy sequence in it
converges. For instance, hyperbolic space as well as hyperspherical space is geodesically complete.

Tangent Bundle. Given an n-dimensional smooth manifold M, the tangent bundle TM is the
disjoint union of all the tangent spaces of the manifold TM =

⊔

z∈M TzM, and the tangent bundle

with the projection π(v) = p for all v ∈ TpM is a vector bundle of rank n.

Chart. A chart of a manifold is a pair (U, φ) whereU is an open set in the manifold and φ : U → R
n

is homeomorphism onto it image, giving a local coordinate of the manifold. In other words, it provides
a way of identifying the manifold locally with a Euclidean space. Given two charts (U1, φ1) and
(U2, φ2), if the overlap

φ2 ◦ φ
−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) and φ1 ◦ φ

−1
2 : φ2(U1 ∩ U2) → φ1(U1 ∩ U2), (56)

the two charts are said to be compatible.

Curvature and Sectional Curvature. The curvature is a notion describing the extent of how a
manifold derivatives from being “flat”. In particular, the curvature of a Riemannian manifold M
should be viewed as a measure R(X,Y )Z of the extent to which the operator (X,Y ) → ∇X∇Y Z is
symmetric, where ∇ is a connection on M (where X,Y, Z are vector fields, with Z fixed). Sectional
curvature is simpler object of curvature and is defined on two independent vector unit in the tangent
space. When ∇ is the Levi-Civita connection induced by a Riemannian metric on M, it turns out
that the curvature operator R can be recovered from the sectional curvature.

Constant Curvature Space, Hyperbolic Space, Hyperspherical Space. A Riemannian manifold
is said to be a constant curvature space (CCS) if the sectional curvature is constant scalar everywhere
on the manifold. When the CCS has a negative constant curvature, it is referred to as hyperbolic
space, and the CCS is hyperspherical when its constant curvature is positive.

D.2 κ-stereographic model and Stereographic Projection

κ-stereographic model It gives a unified formalism for both positive and negative constant curva-
tures. For a positive curvature, it is the hyperspherical model for the hyperspherical space, and for a
negative curvature, it switches to the Poincaré ball model.

Specifically, for a curvature κ and a dimension d ≥ 2, the κ-stereographic model stdκ is defined on the

manifold of {x ∈ R
d|−κ‖x‖2< 1}, which is equipped with a Riemannian metric gκx = 4

(1+κ‖x‖2)2
I

for any constant curvature κ. When κ ≥ 0, the defining domain is Rd in which the stereographic
projection of the Sphere model of hyperspherical space is endowed. When κ < 0, the manifold stdκ is
represented in an open ball of radius 1√

−κ
, and is the stereographic projection of the Lorentz model

of hyperbolic space.

The κ-stereographical model is a gyrovector space in which a non-associative vector operator system
is defined. For x,y ∈ G

n, a ∈ R, the κ-addition (a.k.a. Möbius addition) is given as

x⊕κ y =
(1− 2κxTy − κ‖y‖2)x+ (1 + κ‖x‖2)y

1− 2κxTy + κ2‖x‖2‖y‖2
(57)
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The distance function given by κ-addition is thus formulated as

dκ(x,y) = 2 tan−1
κ (‖(−x)⊕κ y‖) (58)

The κ-scaling for any real scalar c is defined as

c⊗κ x = tanκ(c · tan
−1
κ (‖x‖))

x

‖x‖
(59)

The unit-speed geodesic from x to y is

γx→y(t) = x⊕κ (t⊗κ ((−x)⊕κ y)) (60)

With the unit-speed geodesic, the exponential map as well as its inverse (i.e., the logarithmic map)
has the closed-form expression as follows,

Expκx(v) = x⊕κ (tanκ(|κ|
1
2
λκx‖v‖

2
)

v

‖v‖
) (61)

Logκx(y) =
2|κ|−

1
2

λκx
tan−1

κ (‖(−x)⊕κ y‖)
(−x)⊕κ y

‖(−x)⊕κ y‖
, (62)

where the curvature-aware trigonometric function is utilized, e.g.,

tanκ(x) =











1√
κ
tan(x) κ > 0,

x κ = 0,
1√
−κ

tanh(x) κ < 0.

(63)

Stereographic Projection The stereographic projection is a diffeomorphism connecting the dif-
ferent model spaces of Riemannian manifold. In particular, it is defined as a map π : Ld

κ/S
d
κ → stdκ

taking the form of

π : Ld
κ/S

d
κ → stdκ, x =

1

1 +
√

|κ|x′
d+1

x′
1:d, (64)

where x′ is a point on the Lorentz model Ld
κ or Sphere model Ld

κ, and x, the image of the projection,
is the corresponding point in the gyrovector ball of κ−stereographic model. The inverse projection is
given as follows,

π−1 : stdκ → L
d
κ/S

d
κ, x′ =

(

λκxx,
1

√

|κ|
(λκx − 1)

)

, (65)

where λκx = 2
1+κ‖x‖2 is known as the conformal factor.

D.3 Cartesian Product and Product Manifold

The concept of product manifolds allows for creating a new manifold from a finite collection of
existing ones. Given a set of smooth manifolds M1,M2, . . . ,Mk, the product manifold P is given
as the Cartesian product of these manifolds:

P = M1 ×M2 × . . .×Mk, (66)

where ⊗ denotes the Cartesian product. Specifically, with the Cartesian product construction, a point
x ∈ P are represented by a concatenation of x = [x1, . . . ,xk], where xi ∈ Mi. A tangent vector
v ∈ TxP at a point x can be given as v = [v1, . . . ,vk], where vi ∈ Txi

Mi. If each manifold Mi

is equipped with a metric tensor gi, the product metric g decomposes into the direct sum of the
individual metrics g = ⊕k

i=1g
i, which can be expressed as Diag(g1, ...,gk). For x and y ∈ P, the

distance between them is defined as dP(x,y) =
∑k

i=1 dMi
(xi,yi). Accordingly, the exponential

map is given as

Expx([v1, . . . ,vk]) =
[

Expx1
(v1),Expx2

(v2), . . . ,Expxk
(vk)

]

. (67)
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Table 5: Dataset statitics.

Computers Photo CS Physics

#Nodes 13752 7650 18,333 34,493
#Features 767 745 6,805 8,415
#Edges 245861 119081 163,788 495,924
#Classes 10 8 15 5

E Experimental Setups

E.1 Dataset

We use four common benchmark datasets to evaluate our model and Table 5 show the details of the
datasets. There are two co-purchase graphs including Amazon-Photo and Amazon-Computers [53]
and two co-author network including CS and Physics [53].

E.2 Baselines

Table 6: The categories of the baselines

ANN-based Models SNN-based Models

Euclidean Space
GCN [18], SAGE [1],

GAT [2], SGC [19]
SpikeNet [45], SpikeGraphormer [55],

SpikeGCN [5], SpikeGCL [6]

Riemannian Space
Q−GCN [4], κ−GCN [13],
HyboNet [54], HGCN [3]

As shown in Table 6, we divide the baselines into three categories: ANN-based Euclidean GNNs,
ANN-based Riemannian GNNs and SNN-based Euclidean GNNs. Note that, none of the existing
work studies the SNN-based GNN in Riemannian space, to the best of our knowledge.

ANN-based Euclidean GNNs

• GCN [18]: It defines graph convolution on the spectral domain.

• SAGE [1]: It gives the aggregate-and-combine formulation for the message passing over
the graph.

• GAT [2]: It introduces the attention mechanism for the learning on graphs.

• SGC [19]: It reformulates GCN [18] with feature propagation and linear layer, acting as a
low-pass filter.

ANN-based Riemannian GNNs

• HGCN [3] : It generalizes GAT [2] in the Lorentz model of hyperbolic space in which the
graph convolution is conducted in the tangent space.

• κ−GCN [13]: It generalizes GCN [18] to the κ−stereographical model of constant curvature
spaces where several gyrovector operators are given in the unified formalism.

• HyboNet [54]: It introduces a parameterized Lorentz transformation for hyperbolic graph
modeling without the tangent space.

• Q−GCN [4]: It studies the graph convolution network in the Pseudo-Riemannian manifold.

SNN-based Euclidean GNNs.

• SpikeGCN [5]: It integrates SNN and graph convolution network in which SNN acts as an
activation function.

• SpikeGraphormer [55] (termed as SpikeGT for short in our main paper): It generalizes a
kind of graph transformer with spiking neurons, accompanied by an ANN for improving the
performance.
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• SpikeGCL [6]: It introduces a method to perform graph contrastive learning with the
spiking GNN.

• SpikeNet [45]: It is original designed for dynamic graph modeling, and we utilize its version
for static graph following [6].

Note that, existing SNN-based GNNs work with Euclidean space, and leverage the BPTT training
with surrogate gradient, suffering from high latency.

E.3 Theoretical Energy Consumption

Following the previous works [6; 5; 62], we calculate the theoretical energy consumption for each
model, instead of measuring actual electricity usage, for fair comparison.

• For the SNN-based models, the energy consumption involves encoding energy Eencoding and
spiking process energy Espiking. The former is calculated by the number of multiply-and-
accumulate (MAC) operations, and the latter is given by the number of SOP operations. The
energy consumption is thus defined as follows,

E = Eencoding + Espiking = EMAC

T
∑

t=1

NdSt + ESOP

T
∑

t=1

L
∑

l=1

Sl
t, (68)

where the scaling constant EMAC and ESOP are set to 4.6pJ and 3.7pJ , respectively. N
is the number of nodes in the graph, d is the dimension of node features, L is the number
of layers in the neural model. T is the time steps of the spikes, and Sl

t denotes the output
spikes at time step t and layer l.

• For the ANN-based models, the energy consumption is given by embedding generation step
and aggregation step, and both of them are calculated by MAC operations. In the embedding
generation step, the feature transformation with a weight matrix of Rdin×dout executes
Ndindout multiplication and Ndindout addition operations. In the aggregation step, |E|din
is the number of multiplication and |E|dout is the number of addition operations. Supposing
|E|din = |E|dout, the energy consumption is given as follows,

E = EMAC(Ndindout + |E|dout). (69)

where the scaling constant EMAC is set to 4.6pJ , |E| is the number of edge, din and dout
are the input and output dimensions.

E.4 Implementation Notes

Model Instantiation. The proposed MSG is instantiated in the Lorentz model H of hyperbolic space
or Sphere model S of hyperspherical space as well as the products over H and S. Note that, MSG can
be equivalently instantiated on the κ−stereographic model (i.e., Poincaré model of hyperbolic space
or Hyperspherical model of hyperspherical space), given the closed form Riemannian metric and
exponential map. The equivalence can be achieved by scaling the stereographical projection. We
leverage the Lorentz model H by default.

Hyperparameters. The dimension of the manifold is set as 32. When we instantiate MSG on the
product manifold, the sum of factor manifold’s dimensions is defined as 32. The manifold spiking
neuron is based on the IF model [49] by default, and it is ready to switch to the LIF model [49]. The
time latency T for neurons is set to 5 or 15. The step size ε in Eq. 8 is set to 0.1. The hyperparameters
are tuned with grid search, in which the learning rate is {0.01, 0.003} for node classification and
{0.003, 0.001} for link prediction, and the dropout rate is in {0.1, 0.3, 0.5}.

Hardware. Experiments are conducted on the NVIDIA GeForce RTX 4090 GPU 24GB memory,
and AMD EPYC 9654 CPU 315 with 96-Core Processor.

F Additional Results

In this section, we show the additional results on backward gradient, comparison between IF and LIF
model, link prediction and visualization.
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(a) The norm of backward gradient of L with respect to z in each spiking layers.
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(b) The norm of backward gradient of L with respect to v in each spiking layers.
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(c) The loss in model training.

Figure 6: Visualizations of the training process for node classification on Computer dataset.

Backward Gradient. Previous studies compute backward gradients though the Differentiation via
Spikes (DvS). Distinguishing from the previous studies, we compute backward gradients though
the Differentiation via Manifold (DvM). In order to examine the backward gradients, we visualize
the training process for node classification on Computer dataset. Concretely, we plot the norm of
backward gradients in each iteration in Figs. 6 (a) and (b) together with the value of loss function in
Figs. 6 (c). As shown in Fig. 6, the proposed algorithm with DvM converges well, and the backward
gradients do not suffer from gradient vanishing or gradient explosion.

Comparison between IF and LIF model. In the main paper, the proposed MSG is built with the
IF model, and it is applicable to LIF model as well. We compare the performance between IF
and LIF model in different algorithms (DvM and DvS) and in different manifolds (hyperbolic H,
hyperspherical S, Euclidean E and the product spaces among H and S) for a comprehensive evaluation.
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The results of node classification on Computer, Photo, CS and Physics datasets are summarized in
Table 7 and Table 8. Note that, IF model and LIF model achieves competitive performance in every
case. We opt for IF model in the model instantiation for simplicity.

Table 7: Comparison between IF and LIF model in Node Classification, qualified by classification
accuracy (%). The proposed model is trained by Differentiation via Spikes (i.e., BPTT with the
surrogate gradient).

Computers Photo CS Physics

IF
H

32 89.65±0.18 93.46±0.12 91.73±0.34 95.16±0.17

S
32 89.37±0.26 93.39±0.21 91.59±0.24 95.15±0.10

E
32 88.36±0.95 92.75±0.40 92.53±0.06 96.00±0.03

L
IF

H
32 89.58±0.34 92.81±0.21 92.44±0.13 95.63±0.02

S
32 89.32±0.19 92.82±0.15 92.11±0.16 95.54±0.04

E
32 89.13±0.27 92.93±0.23 92.56±0.15 95.97±0.05

Table 8: Comparison between IF and LIF model in Node Classification, qualified by classification
accuracy (%). The proposed model is trained by Differentiation via Manifold.

Computers Photo CS Physics

IF

H
32 89.27±0.19 93.11±0.11 92.65±0.04 95.93±0.07

S
32 87.84±0.77 92.03±0.79 92.72±0.06 95.85±0.02

E
32 88.94±0.24 92.93±0.21 92.82±0.04 95.81±0.04

L
IF

H
32 88.71±0.13 92.74±0.07 92.43±0.11 95.64±0.06

S
32 88.43±0.10 92.45±0.13 92.53±0.06 95.84±0.03

E
32 86.34±0.19 92.42±0.09 92.66±0.09 96.02±0.03

Link Prediction. The performance of link prediction in terms of AUC is provided in the main
paper. We show the results on Computer, Photo, CS and Physics datasets in terms of AP (%) in
Table 9. In particular, we feed the spiking representation of SpikingGCN and SpikeGCL into the
Fermi-Dirac decoder same as the proposed MSG, while SpikeNet and SpikeGT are designed for node
classification specially. As shown in Table 9, the proposed spiking MSG consistently achieves the
best results among the spiking GNNs on all the four datasets, and even achieves the competitive
performances with the strong Riemannian baselines.

Table 9: Link Prediction in terms of AP (%) on Computers, Photo, CS and Physics datasets. The best
results are boldfaced, and the runner-ups are underlined. The standard derivations are given in the
subscripts. OOM denotes Out-Of-Memory.

Computers Photo CS Physics

A
N

N
-E

GCN [18] 92.10±0.50 86.43±0.40 93.38±0.92 92.83±0.47

GAT [2] 91.61±0.65 87.04±0.05 94.34±0.60 93.44±0.45

SGC [19] 90.78±0.60 90.05±0.70 95.34±0.58 95.37±0.81

SAGE [1] 90.51±0.42 88.40±0.40 94.86±0.21 95.15±0.51

A
N

N
-R

HGCN [3] 96.46±0.74 93.86±0.30 91.90±0.35 92.01±0.57

κ-GCN [13] 94.80±0.60 93.50±0.09 94.97±0.07 94.16±0.48

Q-GCN [4] 96.28±0.03 96.65±0.10 92.24±0.75 OOM
HyboNet [54] 95.78±0.07 96.79±0.04 96.21±0.33 98.12±0.97

S
N

N
-E

SpikeNet [45] - - - -
SpikingGCN [5] 91.17±1.64 93.16±0.04 94.79±1.23 92.19±0.90

SpikeGCL [6] 92.54±0.03 95.16±0.12 95.06±0.19 91.82±0.25

SpikeGT [55] - - - -

MSG (Ours) 94.45±0.78 96.46±0.19 95.12±0.12 92.53±0.19

Visualization. Here, we visualize the forward pass of the proposed MSG and empirically demonstrate
the connection between MSG and manifold ordinary differential equation (ODE).

We choose a toy example of KarateClub dataset. The proposed MSG are instantiated on the 2D
manifold for the ease of visualization. Specifically, we plot the node representation of each spiking
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Figure 7: Visualizations of node representations on Zachary karateClub datasets [58].

layer in Fig. 7(a) and Fig. 7(b) in which the curve connecting the outputs of successive layer is
marked in red, and blue arrow is the direction of the geodesic. It is shown that a spiking layer
forwards the node along the geodesic on the manifold. In other words, each layer, constructing a
chart given by the exponential map, is a solver of the ODE describing the geodesic.

24



NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel Manifold-valued Spiking GNN (MSG), and design a new
training algorithm with Differentiation via Manifold with theoretical gaurantee. Extensive
experiments show the effectiveness of the proposed approach.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Sec. 8. The proposed model is applicable to
any geodesically complete manifold (e.g., hyperbolic space, hyperspherical space and their
products), and its generalization to more generic manifold leaves as the future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the complete proof in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are given in Sec. 6.1, and further introduced in Appendix
E. Also, we give pseudocodes in Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets are publicly available. We properly cite and introduce the
datasets in Sec. 6.1 and Appendix E.1. Our source code is at the anonymous link https:
//anonymous.4open.science/r/MSG-16E9.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give experimental settings in Sec. 6.1, which is further detailed in Appendix
E. Implementation details can be found in the anonymous link at https://anonymous.
4open.science/r/MSG-16E9.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the experiment, we perform 10 independent runs for each case, and report
the mean with standard derivations in Sec. 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Sec. 6.1, we provide the information on the computer resources: NVIDIA
GeForce RTX 4090 GPU 24GB memory, and AMD EPYC 9654 CPU with 96-Core Proces-
sor.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in Sec. 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the public datasets and open source Python library (e.g.,
Geoopt and SpikingJelly) in Sec. 6.1 and Appendix E.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We give the source code of the proposed model with documentation at https:
//anonymous.4open.science/r/MSG-16E9.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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