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Measure comparison problems for dilations
of convex bodies

Malak Lafi and Artem Zvavitch

Abstract. We study a version of the Busemann-Petty problem for log-concave measures with an
additional assumption on the dilates of convex, symmetric bodies. One of our main tools is an analog
of the classical large deviation principle applied to log-concave measures, depending on the norm of
a convex body. We hope this will be of independent interest.

1 Introduction

We denote by R” the n-dimensional Euclidean space equipped with the inner product
(-,-) and the standard orthonormal basis {ey,...,e,}, and we denote by |-| the
standard Euclidean norm on R”. For a measurable set A ¢ R”, we refer to its volume
(the Lebesgue measure) by |A| and its boundary by dA. The notation B} stands for the
closed unit ball in R”, and S"~! for the unit sphere (i.e., S"™' = 9B}). A convex body
is a convex, compact set with a nonempty interior. Furthermore, a convex body K is
symmetric if K = —K. A measure y is log-concave on R” if for every pair of nonempty
compact sets A and B in R” and 0 < A < 1, we have

u(AA + (1-1)B) > u(A)*u(B)'*,

where the addition is the Minkowski sum which is defined as theset A+ B={a+b:
a € A, b € B}, and the constant multiple (dilation) of a set A c R” and « € R is defined
as aA = {aa : a € A}. It follows from the Prékopa-Leindler inequality [18, 19, 9] that
if a measure y that is defined on the measurable subsets of R” is generated by
a log-concave density, then y is also log-concave. Furthermore, Borell provides a
characterization for log-concave measures [3]; precisely, a locally finite and regular
Borel measure y is log-concave, if and only if its density (with respect to the Lebesgue
on the appropriate subspace) is log-concave.

In 1956, Busemann and Petty [5] posed the following volume comparison problem:
Let K and L be symmetric convex bodies in R” so that the (n —1)-dimensional
volume of every central hyperplane section of K is smaller than the same section for L.
Does it follow that the n-dimensional volume of K is smaller than the #-dimensional
volume of L? In the late 1990s, the Busemann-Petty problem was solved as a result
of many works including [8, 10, 13, 14, 21]. The answer is affirmative when n < 4 and
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Measure comparison problems for dilations of convex bodies 271

negative whenever n > 5. It is natural to consider an analog of the Busemann-Petty
problem for a more general class of measures. The first result in this direction was a
solution of the Gaussian analog of the Busemann-Petty problem [22]. It turns out that
the answer for the Busemann-Petty problem is the same if we replace the volume with
the Gaussian measure. Moreover, it was proved in [23] that the answer is the same if
we replace the volume with any measure with continuous, positive, and even density.

V. Milman [16] asked whether the answer to the Gaussian Busemann-Petty prob-
lem would change in a positive direction if we compared not only the Gaussian
measure of sections of the bodies but also the Gaussian measure of sections of their
dilates; that is, consider two convex symmetric bodies K, L c R", such that

Yua(rKn &) <ya(rLn&),  VEeS"™h,  vr>o,
where &' denotes the central hyperplane perpendicular to €. Does it follow that
yn(K) <yn(L)?

Here, y,, denotes the standard Gaussian measure on R”, and

N o

Yu1(Kn &) = (Vo) fKnsle dx.
The addition of dilation to the Busemann-Petty problem, clearly, would not change
anything in the case of the volume measure. Still, in the case of more general log-
concave measures, the behavior of the measure of a dilation of a convex body is very
interesting; we refer to [1, 6, 12, 15] for just a few examples of such results.

Even though the dilation adds some strength to the condition of the bodies, the
answer to the dilation problem for Gaussian measure is positive for n < 4 and negative
for n > 7 (see [24]). That leaves the problem open for n = 5, 6.

To show the strength of the condition of the dilates, it was proved in [24] that the
dilation problem has an affirmative answer when K is a dilate of a centered Euclidean
ball: Consider a star body L ¢ R" and assume there exists R > 0, such that

Yua(rRBy N &) <y, (rLn &),  VEeS™',  Vr>o0.

Then, it follows that RB} < L.
In this paper, we review some generalizations of the above fact. In particular, we
study measures y for which we have an affirmative answer for the following problem:

Question 1  Consider a convex, symmetric body K c R" such that for every t large
enough and for some R > 0,

u(tRBy) < u(1K).
Does it follow that RBY ¢ K?

In Section 2, we will present a solution for Question 1 for the case of a log-concave
rotation invariant probability measure .

In Section 3, we consider a more general case. Instead of comparing K with B}, we
will compare K with another convex, symmetric body L. Let us denote by | x| the
Minkowski functional of L which is defined to be ||x|; = min{A > 0:x € AL}.
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272 M. Lafi and A. Zvavitch

Question 2 Let K, L c R" be convex, symmetric bodies, and let u be a log-concave
probability measure with density e”?Ux1), where ¢ : [0, 00) — [0, 00) is a noncon-
stant, convex function. If for every t large enough and some R > 0,

u(tRL) < u(tK),
does it follow that RL € K?
One of the core steps in answering Questions 1 and 2 is a generalization of the
classical large deviation principle, which is provided in Lemma 2.6 and Equation (3.2)

below: Consider two symmetric, convex bodies K, L ¢ R",andlet (K, L) = max{R >
0: RL c K}. Then,

In u((tK)°)

limsup ———++% = -1,
roea? $(r(K, L)1)

where y is a log-concave probability measure with density e=#(I¥I1), and by A we
denote a complement of a set A c R” (i.e., A° = R" \ A).

Finally, in Section 4, we will discuss the generalization of the dilation problem for
Gaussian measures:

Question 3 Consider a measure y with continuous positive density f. Let pi,_1 (K N
§') = [kne f(x)dx. Consider two convex symmetric bodies K, L c R", such that

(K &) <p,a(rLn &),  VYEeS™',  Vr>o0.
Does it follow that
u(K) < pu(L)?

We show that, in general, the answer is still negative in dimension #n > 5, even under
the assumption that f is a nonconstant log-concave function. We also prove that if
we add the requirement for the measure to be rotation invariant, the answer will be
negative in dimension n > 7, which leaves the case of rotation invariant log-concave
measures open in dimension n = 5, 6.

2 The case of rotation invariant measures

In this section, we consider a rotation invariant probability log-concave measure y
with nonconstant density — that is,

u(A) = / e 90D g,
A

where ¢ : [0, 00) — [0, c0) is a nonconstant, convex function. We will denote by ¢’ ()
the left derivative in the case when the convex function ¢(¢) is not differentiable at ¢.

Theorem 2.1 Consider a convex, symmetric body K c R" such that for every t large
enough and some R > 0,

u(tRBy) < u(iK).
Then, RB} € K.

https://doi.org/10.4153/50008439524000729 Published online by Cambridge University Press



Measure comparison problems for dilations of convex bodies 273

In order to prove the above theorem, we will need two lemmas.

Lemma 2.2 Consider R > 0. Then,

(21) lutn sup ln‘u(gb((t+B)g)c) I

Proof  Without loss of generality, we may assume that R = 1. Let us first show that

the left-hand side of equality (2.1) is less or equal to —1. Writing the integral in polar

coordinates, we get

In e [ e D en=1drdo In [ e~ ¢ pn=14,

lim sup Sy ), = lim sup Ji
[ ¢(1) oo ¢(1)

We remind that lim;_, ., ¢(t) = 0. Let #(¢) = —(n—1)Int + ¢(¢). Using that ¢ is a

convex and nonconstant function, we get that there exists ty > 0 such that ¢’(#,) > 0.

Thus, ¢'(t) > 0 for all ¢t > ¢y, and there exists a constant a > 0 such that #'(t) > a for

all t > to. Thus, 5(r) > n(t) + a(r - t) for r > t > to, and

lnfto<> e (M pn-lg,

In [~ e~1(0=a(r=1) g,

lim sup < limsup
t—o0 ¢(f) t—o0 ¢(t)
) Ine ™ +1n [~ ea(=D gy
= lim sup
In(t" e M) +In i
=limsup 2
t—o0 é(t)
Lol ln%
= -1+ limsup
too (1)

-1

Next, we will show that the right-hand side of equality (2.1) is greater or equal to —1.
Since r > t, we have

In [, e M1y In (" [[7 e~ dr)

lim sup > lim sup
In [ et g
im0
t—o0 ¢(t)

To finish proving the lemma, we prove the following claim.

In [ e gy

Claim 2.3 limsup,_, 0 > -1 -

Proof of Claim 2.3.  Assume the result is not true. Then, there exists « > 1 such that

In [ e~ ¢(N g
lim sup M <-a.

t—00 ¢(1)
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274 M. Lafi and A. Zvavitch

Thus, there exists ty > 0 such that for all ¢ > ¢y, we have

(2.2) foo e gy < gm0

t
Let F(t) = [,” e~9("Ndr, and note that F'(t) = —e~("), and thus, (2.2) is equivalent
to F(t)« < —F'(t). Therefore, for t > to, we have

_F()

1< -
F(t)«

Integrating both sides of the above inequality over € [ £y, o), we get that L F( -
is unbounded, which gives a contradiction, and the claim is proved. This finishes the
proof of Lemma 2.2. ]

Remark2.4 Wenote thatin Claim 2.3, we have proved a stronger statement. Indeed,

fix @ > 1and let
E-= {t : lnf e Mdr < —oc(p(t)}.
t

Then, |E| < co. This follows from the fact that for all ¢ € E, we have that

LFO).
F(t)«
Thus,
ROV 0PI
(2.3) |E|S/E F(t)idtsfto Fordt <

Remark 2.5 It is tempting to replace limit superior by the actual limit in the
statement of Lemma 2.2. This may be done in many particular cases of measure y,
but it is not true in general. Indeed, if we assume that

In [, e *Mdr

lim ——— =1,

oo (1)

then there exits T > 0 such that for all t > T, we have

In [ ety
Inj e ®dr 1y
(1)
In particular,
(2.4) f‘” e~ (8(=6(0) g, 5 =9(D)
t

Using convexity of ¢, we get that ¢(r) — ¢(t) > ¢'(¢)(r — t), and thus, combining this
with (2.4), we get that

(2.5) ¢’ (1) < e, forall t > T.
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Let us show that there is an increasing, positive, convex, piecewise quadratic function
¢ which has sufficiently large derivative at a sequence of points f; — oo; such ¢ would
contradict (2.5).

We define function ¢ to be quadratic on each interval [k, k + 1] and show that
there exist #; € (k, k +1), for all k €{0,1,...}, which would contradict (2.5). Let
$(0) = ¢’(0) =1. Assume we have constructed desired function ¢ on interval [0, k]
with ¢(k) = a, ¢’(k) = by. Consider an auxiliary quadratic function ¢y : [k, 00) —
[ak, ), such that ¢ (t) = ax(t — k) + by, where ay > 0 to be selected later. Thus,
¢r(t) = ar(t —k)*/2+ by(t — k) + ay. Our goal is to find ¢; € (k, k +1) and &y such
that ay (¢t — k) + by > ek (1=K)?[2+bi(t=k)+ax ot tx = k +1/\/ak. Then, the previous
inequality becomes /a + by > e!/>*be/v/@*ax which is true for all a large enough
(and in particular allows us to guarantee that ¢, € (k, k +1)). Wenowset ¢(¢) = ¢ ()
for t € [k, k +1] and repeat the process for the interval [k + 1, k + 2].

We remind that for two convex, symmetric bodies K, L ¢ R", we define (K, L) =
max{R > 0: RL c K}. The next lemma may be seen as a generalization of the classical
large deviation principle (see, for example, Corollary 4.9.3 in [2]).

Lemma 2.6  Consider a symmetric body K c R". Then,

c
lim sup AREHOD) )

oo $(r(K,B})1)

Proof LetR =r(K,Bj). Then, (tK) c (tRB})*. Using Lemma 2.2, we get
Inp((tK)) . Inu((tRBY)°) _

lim sup <lim

hel T Q(R) TR T g(R)

To obtain the reverse inequality, we denote by P a plank of width 2R which contains
K. More precisely, using the maximality of R, there exist at least two tangent points
y,—y € RS"™! n 9K. Thus, we may consider P = {x € R" : |(x, y)| < R}. Next,

tim sup EUED S i up IEWER)Y)

e’ $(tR) el @(tR)

By the rotation invariant of i, we may assume that y = Re,,, and so

i)y Yy=2 [ ~0(zen+xD) gy d 7.
u(eryy=2 [ [ e xdz

Using the triangle inequality and the polar coordinates, we get
tP)¢ zzfoof ~¢e D gxd
w222 [ [ et

:Zf / f e )20, 40d

tR S#=2 Jo

:2|S”_2|foor”_zfooe_‘b(“r)dzdr
0 (R

:2|S”’2|f r”fzf e dzdr
0 tR+r
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276 M. Lafi and A. Zvavitch

oo z—tR
=2|S”’2|f e"b(z)/ r"2drdz
n-2
S |f (z— tR)" e ¢ gz,

n-1
Now to finish the proof of Lemma 2, we need to prove the following claim.

—2

Claim 2.7
In [X (z—tR)"e™()d
lim sup nJuw (2 )"e il > -1,

t—>o0 ¢(Rt)

for any nonnegative integer m.

Proof of Claim 2.7. Making the change of variables, we get

lim sup In [, (z-tR)"e™*@dz  Jim sup In [~ (r-t)me*Mdr
t—o0 $(Rt) 100 ¢(t)

We will first prove the following inductive step: fix a nonnegative integer m, and let

Fu(f) = ftoo(r—t)me"b(r)dr.

Then,

(2.6) liminf M

e F (1) =1, forall m e N.

We note that F,,, (¢) < 1, for ¢ large enough, and thus, the denominator and numer-

ator are negative. It is a bit easier to work with a fraction when both the denominator

and numerator are nonnegative. So we will prove that l1m 1nf l"#((tz) = 1. Using

integration by parts, we get

1
Fna(t) =~ [T (= 0"¢ (e dr> —g'(r) [ (r- 1yt a,
m Ji
where, again, we denote by ¢'(¢) the left derivative of ¢. Thus,
~InF,_i(t) < -In(¢'(t)/m) —InF, (1),

and
f S () I (0)m) ~nFa (1)
t=oo —InFy- 1(t) t=oo —InF,,_1(t)
Now we may use that ¢/(¢) > a > 0 for ¢ large enough and tlim InF,,_1(t) = —o0 to
claim that
(2.7) l1m1nfL(t) > llmmf ln(a/m) —In Fm—l(t) 51
t— o0 —ln m 1( ) t—o00 _lnFm_l(t)

To prove the reverse inequality, we note that

F (t)=-m ft (r—t)" e ¢y,
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Assume that

—~InF,(t
nl—mf) > > 1,
t=eo —In(—Fy, (1))

but then, again there exists ¢y > 0 such that for all ¢ > t;, we have
1
~InF,(t) > —aln(-—F,,(t)),
m

and thus,
—-F (t
m < L(,)
Fnu(t)«
Take an integral over t € [x, 00) from both sides to get Fp® (x) = oo, which is a
contradiction. This finishes the proof of the inductive step, but we actually need a
bit stronger statement, which is similar to Remark 2.4. Indeed, consider any m € N
and « > 1. Let
Ena={t:-InF,(t) > —-alnF,_(t)}.
Then, using the same ideas as in (2.3), we get |E o] < oo.
To complete our proof, let
InF;(t In Fy (¢
Xi(t): n () n 0()
ll'lF,'_l(t) ¢(t)
Using (2.6), we get lign inf X;(¢t) =1, and using (2.1), we get limsup Y (¢) = -1. Now

and Y(t) =

t—o0

let X(t) = [T, X;(t). Our goal is to prove that
limsup X(#)Y(t) > -1.

t—o00

Assume that this is not true. Then, there exists « > 1 such that

limsup X(#)Y(t) < —a < -1.

t—o0

Therefore, there exists t; such that for all ¢ > ¢,
(2.8) X(1)Y(¢) < -a.
Using (2.7), we may also assume that X;(¢) > 0 for all ¢ > t,. Next, consider the set
+1
A::{t>t0:X(t)> “2 }

We claim that |A| < co. Note that

o221

1

{t (Xi(t) > (“TH),; for some i € {1,...,m}H

o (55

<

HE

< 00,

m
<2
i=1
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278 M. Lafi and A. Zvavitch

We also note that % > 1, and thus,

Ht: Y(t) <—2—“}

a+1

< 00,

Finally,

[{t>to: X(£)Y(t) <-a}| =

{t >ty Y(t) < —%H

{t> to: Y(t) < —X?t) and X(t) < “THH

<A+

<|Al+

2
{t:Y(t)<——(x}‘<oo,
a+1

which contradicts with (2.8). The claim is proved, and this finishes the proof of

Lemma 2.6. u
| |

We are now ready to prove Theorem 2.1.

Proof Let K c R” be a convex, symmetric body such that g4 (¢RBj}) < u(tK) holds
for for some fixed R > 0 and every ¢ large enough, but RB} ¢ K. Thus, the maximal
Euclidean ball in K has radius rR, with r € (0,1). From the assumption, it follows that

#((tRB)%) 2 u((tK)%),
which implies that

Inu((¢RB3)%)  Inp((tK)) $(trR)
¢(tR)  —  ¢(trR)  $(tR)

From the convexity of ¢ and r € (0,1), we get that
¢(trR) = ¢(trR+ (1-1r)0) < r¢p(tR) + (1 - r)¢(0).

Using that ¢(fR) — oo, we get that there exists r' € (0,1) and ¢, > 0 such that % <
r’ for all ¢ > ty. Thus,

Inu((¢1RB3))  ,Inp((tK)°)
¢(tR)  — $(trR)
for all ¢ > t,. Taking the limit superior, as t — oo, from both sides of the inequality

(2.9), we obtain —1 > —7’. But this contradicts the fact that r’ is less than 1. Therefore,
our assumption that RB} ¢ K must be false. [ ]

(2.9)

Remark 2.8  The rotation invariant assumption on y in Theorem 2.1 is necessary.
Indeed, one can construct an example of a log-concave probability measure that is
not rotation invariant in R* which does not satisfy the statement of Theorem 2.1.
Consider the rectangle O = {(x,y) :[x| < Z,[y| < 3}, and define the measure y as
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Measure comparison problems for dilations of convex bodies 279

u(K) = |K‘8?‘. Taking K = Q, we have

B3 ¢ Q, but |B3| = |Q| = mand |tB3| = [tQ], V¢ > 0.
Note that y(tB3) < u(tQ); Vt > 0; indeed, this is equivalent to [tB3 n Q| < [tQ n Q.
If t <1, then we have |tB3 n Q| < |tB3| = |tQ, and if t > 1, we get |tB3 n Q] < |Q]. So,
we provided an example where

u(tB3) < u(tK); Vit >0,

but B3 ¢ K.

3 The cases where density depends on the norm

In this section, we would like to give a proof Theorem 2.1 in a more general case, which
would answer Question 2. The main idea and computation are in the same spirit as in
the proof of Theorem 2.1.

Theorem 3.1 Let K, L c R" be convex, symmetric bodies, and let u be a log-concave
probability measure, with density e *U¥11) where ¢ : [0, 00) — [0, 00) is an increasing,
convex function. If for every t large enough and some R > 0,

u(tRL) < u(tK),

then RL c K.

Proof = We have to check Lemma 2.2 and Lemma 2.6 (i.e., to prove yet another
generalization of the classical large deviation principle (see (3.2) below)).
We claim that for any R > 0,

hrtriilp Inp((IRL)7) H;EZZ;)C) =

We can assume R = 1. Moreover, as before, using convexity of ¢, we may assume that
¢(t) is a strictly increasing function for large enough ¢. Thus,

1Y) < e—«»(nxundx:f fw e " dudx
H((EL)") (tL)e (tL)s J¢(llxlle)

= [,, v/(#;;x”L;((tL)‘(x)e’ududx:[000ﬂx:¢(|‘x‘|L)<uf((tL)[(x)e—udxdu
= [ e el e (g7 (oD du =10 [ (67 @))" ~ ) du

ILIfoo(V”—t”)¢’(v)e*¢‘”>dv:—|L|f°°(v"-t")de*¢m
t t

n|L| [ vile M gy,
t

(3.1)
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280 M. Lafi and A. Zvavitch

Note that ¢(¢) may be a constant function on some interval [0, ty] and strictly
increasing on [ty, 00). In such a case, we define ¢ (¢(0)) = t,. So, we have

c | L| [ e ¢Wyn-1g
sy ML) iG] [ 40 )
t—oo0 ¢(f) t—o0 (/)(t)
1 o —¢(v) nfld
= lim sup n]t ¢ Y V,
t—oc0 ¢(t)

= —1,

where the last equality follows from the proof of Lemma 2.2.
To finish the proof, we must check Lemma 2.6. In particular, we want to show that

c
(3.2) lim sup w
t=oo $(r(K, L)1)
for symmetric, convex bodies K, L c R", convex, increasing function ¢ : [0,00) —
[0, 00) and measure y with density e~¢(I*ls),
Let R = r(K, L). Then, we have (tK) c (tRL)° from the assumption. Thus, using
Lemma 2.2, we get

=1

fim sup U)o g MECERLY)
t>0  $(tR) t—o0 ¢(R)
Using that RL is the maximal dilate of L inside K, we get that there is a pair of points
v,—v € 0RL N JK. Let P be a plank created by tangent planes to RL and K at v and —v.
Let n, be a normal vector to dRL at v. Then, the width of the plank P is 2Rk (n,) =
2hg(ny): P={xeR":|(x,n,)| < Rhp(n,)}, where hy(x) =sup{(x,y):yeL} is
the support function of L (see [20] for basic definitions and properties). Next,

fimsap A | ng((eP)°)

t—>00 ¢(tR) o ¢(tR)

Selecting a proper system of coordinates, we may assume that n, =e,. Let a =
tRhy(ey). Then,

u((tP)°) = 2[ f e ¢Uzentxlt) gy,

:2/ f f e “dudxdz

a ex Jo(llzentx(1)

zf [ [ e Ydxdudz
a 0 {xeel:¢(||zen+x|L)<u}

2/00 foo e [{xee;:|zen+ x| < ¢7'(u)}| dudz.
a 0

Now note that
{xee;:|zen+x|r<¢'(u)}|=|{xee;:zen+xe¢ " (u)L}.

The above volume is zero if z > ¢ (u)hr(e,) (or ¢(z/hr(e,)) > u). For ze€
[0, (u)hr(e,)], we note that ¢'(u)L is a convex body and thus contains
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Measure comparison problems for dilations of convex bodies 281

inside a pyramid A with base Lne. and the height ¢~*(u)hy(e,) (with apex
¢ (u)hy(e,)v/R). Then,

{xeey:zen+xe¢™ (u)L}|>[AN (e} +zen)|
= (¢7 ' (u)hi(en) —2)" 'Ly,
Thus,
tP))>2|Lne; foofoo e (¢ (u)hi(en) —2)" 'dudz
weyysaoe) [T e W) )
:2|Lnei|/ f/h( )e_‘p(”)gb'(u)(uhL(e,,)—z)"_ldudz
=-2|Lne, /oofoo uhr(e,) —2)" 'de *dz
el [T 7 Gwhien-2)

:2(n—1)|Lmei|f f/h( )e‘¢(“)(uhL(en)—z)”_zdudz

=2(n-1)|Lne,| f

[hi(en

=2|Lne;| e ) (uhy (e,) — a)" " du

afhi(en)

:zhz-l(en)uneﬂf %) (4~ tR)" du.
tR

o)

hL(e")u
)/ e (uhy(e,) - 2)" 2dzdu

So, we have

I pP)¢ In (20" (e, )L net| [ e ) (u - tR)" du
limsup TECEPYD I @R el 0 eyl fig e R)" )
tooo P(tR) 00 ¢(tR)
 Jimsup In [,x e (u - tR)"du
By Claim 2, the above quantity is greater than or equal to —1; thus, Lemma 2.6 is
applied here, which finishes the proof for our main result. ]

Remark 3.2 'The proofs for Theorem 2.1 and Theorem 3.1 apply similarly to an
asymmetric convex body K with the origin as an interior point of it. The only
difference is that instead of dealing with a plank P in Lemma 2.6, we need to work
with a half-space. Specifically, for Theorem 2.1, one would use the half-space H = {x ¢
R" : (x, y) < R}, where y € RS"™' n 9K. For Theorem 3.1, one may use the half-space
defined by H = {x e R" : {x, n,) < Rh(n,)}, where n, is the normal vector to oRL
at a tangent point v.

4 The Busemann - Petty type problems

In this section, we will discuss Question 3. We first note that one must make some
additional assumptions on the measure y to avoid a trivial answer. Indeed, if a measure
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u has a homogeneous density (i.e., f(rx) = rf f(x), for r > 0 and p > 1 - n), then the
answer is identical to the one given in [23].

Let us first show that in dimension #n > 5, one can always find a pair of convex,
symmetric bodies K and L and measure g, such that the answer to Question 3 is
negative. The main idea follows from the construction in [24]. We begin with the
following fact:

Fact Ifdu= e ?U1)dx is a log-concave measure and K, L c R" are convex, sym-
metric bodies such that |K| < |RL| for some R > 0, then

#(K) < p(RL).
Proof  Using calculations similar to (3.1), we get

W(K) = [ e KN g7 () Lldu
and

u(RL) = /0°° e™|RL 1 ¢~ (u)L|du.

To get u(K) < u(RL), we only need to check that |[K n ¢~ (u)L| <|RL N ¢~ (u)L|.
Indeed, if R < ¢! (u), then we have

[Kn¢™ (u)L| < |K| < [RL| = [RLn ¢! (u)L],
and if R > ¢ ™' (u), then we get
K¢~ (w)L] <[¢" (u)L| = |RLN ¢~ (u)L].
Hence, y(K) < p(RL) for any R > 0. |

Next, we show that Question 3 has a negative answer for n > 5.
Theorem 4.1 Forn > 5, there are convex symmetric bodies K, L c R" and log-concave
measure u with density e”9U*11) | such that
(4.1) u(rKn &) <u(rLné&), VEeS™', Vr>o,
but u(K) > u(L).
Proof Let us assume, toward the contradiction, that Question 3 has an affirmative
answer in R" for some fixed n > 5. So, for any pair of convex symmetric bodies K, L

that satisfy (4.1), we would get p(K) < u(L). The condition on sections (4.1) will be
also satisfied for the dilated bodies tK and tL, for all ¢ > 0. Therefore, we have

(4.2) u(tK) <u(tL), Vt>0,

which, by definition of 4, means

f e—¢(ux||L>de/ eI g
tK tL
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or equivalently, applying the change of variables x = tx, we have

fe—wuxnndxg /e—wrnxuodx.
K L

Using the continuity of ¢ and compactness of K and L, we can take the limit for the
above inequality as t - 0" to obtain
K] <|L].

Therefore, we have a relation between the dilation problem for a log-concave prob-
ability measure, with the Busemann-Petty problem for volume measure, which is if

u(rKn &) <u(rLn &), VvEeS™', Vr>o,

then |K| < |L|.

A number of very interesting counterexamples to the Busemann-Petty prob-
lem were shown by Papadimitrakis [17]; Gardner [7]; Gardner, Koldobsky, and
Schlumprecht [10]: there are convex symmetric bodies K, L in R” for n > 5 such that

(4.3) [Kn&<|Ln&), vEes™,
but
(4.4) K| > |L|.

Note that because the volume measure is homogeneous, the condition on sections
(4.3) is also true for dilates of K and L, so we have

(4.5) [rKn & <|rLn&|, vEeS"™h,  Vr>o.
Now, applying the fact to (4.5), we get that
u(rKn &) <u(rLn &), VvEesS™',  vr>o.

Thus, using (4.2), we have
u(tK) < u(tL), Vt>O0.

Dividing by t" and taking the limit of the above inequality as t - 0%, we get
Kl <L,
and this contradicts (4.4). [ ]

It is interesting to note that the measure y constructed above is very specific.
For example, we cannot use this construction directly with the assumption that y
is rotation invariant.

Still, we can show that the answer to Question 3 is negative in R" for n > 7 even
when y is a log-concave measure with rotation invariant density.

Theorem 4.2 For dimension n > 7, and du = e~ *(*D dx, there is a convex symmetric
body K c R" such that

u(rKn &) <u(rByn &), VvEeS™', Vr>o,
but u(K) > u(Bj).
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Proof  Giannopoulos [11] and Bourgain [4] constructed an example in R” for n > 7
of convex body K c R” that satisfies

[Kn&<|BinE, VeSS,

but |K| > |BY|. To prove Theorem 4.2, one may take the same convex body K and B}
as provided in [11, 4] and repeat the proof of Theorem 4.1. ]
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