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negative whenever n ≥ 5. It is natural to consider an analog of the Busemann-Petty
problem for a more general class of measures. �e �rst result in this direction was a
solution of the Gaussian analog of the Busemann-Petty problem [22]. It turns out that
the answer for the Busemann-Petty problem is the same if we replace the volume with
the Gaussian measure. Moreover, it was proved in [23] that the answer is the same if
we replace the volume with any measure with continuous, positive, and even density.

V. Milman [16] asked whether the answer to the Gaussian Busemann-Petty prob-
lem would change in a positive direction if we compared not only the Gaussian
measure of sections of the bodies but also the Gaussian measure of sections of their
dilates; that is, consider two convex symmetric bodies K , L ⊂ R

n , such that

γn−1(rK ∩ ξ⊥) ≤ γn−1(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0,

where ξ⊥ denotes the central hyperplane perpendicular to ξ. Does it follow that

γn(K) ≤ γn(L)?
Here, γn denotes the standard Gaussian measure on R

n , and

γn−1(K ∩ ξ⊥) = 1

(√2π)n−1 ∫K∩ξ⊥
e−

∣x∣2

2 dx .

�e addition of dilation to the Busemann-Petty problem, clearly, would not change
anything in the case of the volume measure. Still, in the case of more general log-
concave measures, the behavior of the measure of a dilation of a convex body is very
interesting; we refer to [1, 6, 12, 15] for just a few examples of such results.

Even though the dilation adds some strength to the condition of the bodies, the
answer to the dilation problem for Gaussianmeasure is positive for n ≤ 4 and negative
for n ≥ 7 (see [24]). �at leaves the problem open for n = 5, 6.

To show the strength of the condition of the dilates, it was proved in [24] that the
dilation problem has an a
rmative answer when K is a dilate of a centered Euclidean
ball: Consider a star body L ⊂ R

n and assume there exists R > 0, such that

γn−1(rRBn
2 ∩ ξ⊥) ≤ γn−1(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0.

�en, it follows that RBn
2 ⊆ L.

In this paper, we review some generalizations of the above fact. In particular, we
study measures µ for which we have an a
rmative answer for the following problem:

Question 1 Consider a convex, symmetric body K ⊂ R
n such that for every t large

enough and for some R > 0,

µ(tRBn
2 ) ≤ µ(tK).

Does it follow that RBn
2 ⊆ K?

In Section 2, we will present a solution for Question 1 for the case of a log-concave
rotation invariant probability measure µ.

In Section 3, we consider a more general case. Instead of comparing K with Bn
2 , we

will compare K with another convex, symmetric body L. Let us denote by ∥x∥L the
Minkowski functional of L which is de�ned to be ∥x∥L =min{λ > 0 ∶ x ∈ λL}.
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Question 2 Let K , L ⊂ R
n be convex, symmetric bodies, and let µ be a log-concave

probability measure with density e−ϕ(∥x∥L), where ϕ ∶ [0,∞) → [0,∞) is a noncon-
stant, convex function. If for every t large enough and some R > 0,

µ(tRL) ≤ µ(tK),
does it follow that RL ⊆ K?

One of the core steps in answering Questions 1 and 2 is a generalization of the
classical large deviation principle, which is provided in Lemma 2.6 and Equation (3.2)
below: Consider two symmetric, convex bodiesK , L ⊂ R

n , and let r(K , L) =max{R >
0 ∶ RL ⊂ K}. �en,

lim sup
t→∞

ln µ((tK)c)
ϕ(r(K , L)t) = −1,

where µ is a log-concave probability measure with density e−ϕ(∥x∥L), and by Ac we
denote a complement of a set A ⊂ R

n (i.e., Ac = R
n ∖ A).

Finally, in Section 4, we will discuss the generalization of the dilation problem for
Gaussian measures:

Question 3 Consider a measure µ with continuous positive density f. Let µn−1(K ∩
ξ⊥) = ∫K∩ξ⊥ f (x)dx . Consider two convex symmetric bodies K , L ⊂ R

n , such that

µn−1(rK ∩ ξ⊥) ≤ µn−1(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0.

Does it follow that

µ(K) ≤ µ(L)?
We show that, in general, the answer is still negative in dimension n ≥ 5, even under

the assumption that f is a nonconstant log-concave function. We also prove that if
we add the requirement for the measure to be rotation invariant, the answer will be
negative in dimension n ≥ 7, which leaves the case of rotation invariant log-concave
measures open in dimension n = 5, 6.

2 The case of rotation invariant measures

In this section, we consider a rotation invariant probability log-concave measure µ
with nonconstant density – that is,

µ(A) = ∫
A
e−ϕ(∣x ∣)dx ,

where ϕ ∶ [0,∞) → [0,∞) is a nonconstant, convex function.Wewill denote by ϕ′(t)
the le� derivative in the case when the convex function ϕ(t) is not di�erentiable at t.
�eorem 2.1 Consider a convex, symmetric body K ⊂ R

n such that for every t large
enough and some R > 0,

µ(tRBn
2 ) ≤ µ(tK).

	en, RBn
2 ⊆ K .
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In order to prove the above theorem, we will need two lemmas.

Lemma 2.2 Consider R > 0.	en,

lim sup
t→∞

ln µ((tRBn
2 )c)

ϕ(tR) = −1.(2.1)

Proof Without loss of generality, we may assume that R = 1. Let us �rst show that
the le�-hand side of equality (2.1) is less or equal to −1. Writing the integral in polar
coordinates, we get

lim sup
t→∞

ln ∫Sn−1 ∫ ∞t e−ϕ(r)rn−1drdθ
ϕ(t) = lim sup

t→∞
ln ∫ ∞t e−ϕ(r)rn−1dr

ϕ(t) .

We remind that limt→∞ ϕ(t) = ∞. Let η(t) = −(n − 1) ln t + ϕ(t). Using that ϕ is a
convex and nonconstant function, we get that there exists t0 ≥ 0 such that ϕ′(t0) > 0.
�us, ϕ′(t) > 0 for all t > t0, and there exists a constant a > 0 such that η′(t) > a for
all t > t0. �us, η(r) ≥ η(t) + a(r − t) for r > t > t0, and

lim sup
t→∞

ln ∫ ∞t e−ϕ(r)rn−1dr
ϕ(t) ≤ lim sup

t→∞
ln ∫ ∞t e−η(t)−a(r−t)dr

ϕ(t)
= lim sup

t→∞
ln e−η(t) + ln ∫ ∞t e−a(r−t)dr

ϕ(t)
= lim sup

t→∞
ln(tn−1e−ϕ(t)) + ln 1

a

ϕ(t)
= −1 + lim sup

t→∞
ln 1

a

ϕ(t)
= −1.

Next, we will show that the right-hand side of equality (2.1) is greater or equal to −1.
Since r > t, we have

lim sup
t→∞

ln ∫ ∞t e−ϕ(r)rn−1dr
ϕ(t) ≥ lim sup

t→∞
ln (tn−1 ∫ ∞t e−ϕ(r)dr)

ϕ(t)
= lim sup

t→∞
ln ∫ ∞t e−ϕ(r)dr

ϕ(t) .

To �nish proving the lemma, we prove the following claim.

Claim 2.3 lim supt→∞
ln ∫ ∞t e−ϕ(r)dr

ϕ(t) ≥ −1. ∎
Proof of Claim 2.3. Assume the result is not true.�en, there exists α > 1 such that

lim sup
t→∞

ln ∫ ∞t e−ϕ(r)dr
ϕ(t) < −α.
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�us, there exists t0 > 0 such that for all t > t0, we have

∫ ∞
t

e−ϕ(r)dr ≤ e−αϕ(t) .(2.2)

Let F(t) = ∫ ∞t e−ϕ(r)dr, and note that F′(t) = −e−ϕ(t), and thus, (2.2) is equivalent

to F(t) 1
α ≤ −F′(t). �erefore, for t > t0, we have

1 ≤ − F′(t)
F(t) 1

α

.

Integrating both sides of the above inequality over t ∈ [t0 ,∞), we get that 1
1− 1

α

F(t)1− 1
α

is unbounded, which gives a contradiction, and the claim is proved. �is �nishes the
proof of Lemma 2.2. ∎
Remark 2.4 Wenote that inClaim 2.3, we have proved a stronger statement. Indeed,
�x α > 1 and let

E = {t ∶ ln∫ ∞
t

e−ϕ(r)dr < −αϕ(t)} .
�en, ∣E∣ < ∞. �is follows from the fact that for all t ∈ E, we have that

1 < − F′(t)
F(t) 1

α

.

�us,

∣E∣ ≤ ∫
E
− F′(t)
F(t) 1

α

dt ≤ ∫ ∞
t0

− F′(t)
F(t) 1

α

dt < ∞.(2.3)

Remark 2.5 It is tempting to replace limit superior by the actual limit in the
statement of Lemma 2.2. �is may be done in many particular cases of measure µ,
but it is not true in general. Indeed, if we assume that

lim
t→∞

ln ∫ ∞t e−ϕ(r)dr
ϕ(t) = −1,

then there exits T > 0 such that for all t > T , we have

∣ ln ∫
∞
t e−ϕ(r)dr
ϕ(t) + 1∣ ≤ 1.

In particular,

∫ ∞
t

e−(ϕ(r)−ϕ(t))dr ≥ e−ϕ(t) .(2.4)

Using convexity of ϕ, we get that ϕ(r) − ϕ(t) ≥ ϕ′(t)(r − t), and thus, combining this
with (2.4), we get that

ϕ′(t) ≤ eϕ(t), for all t > T .(2.5)
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Let us show that there is an increasing, positive, convex, piecewise quadratic function
ϕ which has su
ciently large derivative at a sequence of points tk →∞; such ϕ would
contradict (2.5).

We de�ne function ϕ to be quadratic on each interval [k, k + 1] and show that
there exist tk ∈ (k, k + 1), for all k ∈ {0, 1, . . . }, which would contradict (2.5). Let
ϕ(0) = ϕ′(0) = 1. Assume we have constructed desired function ϕ on interval [0, k]
with ϕ(k) = ak , ϕ

′(k) = bk . Consider an auxiliary quadratic function ϕk ∶ [k,∞) →[ak ,∞), such that ϕ′k(t) = αk(t − k) + bk , where αk > 0 to be selected later. �us,
ϕk(t) = αk(t − k)2/2 + bk(t − k) + ak . Our goal is to �nd tk ∈ (k, k + 1) and αk such

that αk(t − k) + bk > eαk(t−k)2/2+bk(t−k)+ak . Let tk = k + 1/√αk . �en, the previous

inequality becomes
√
αk + bk > e1/2+bk/

√
αk+ak , which is true for all αk large enough

(and in particular allows us to guarantee that tk ∈ (k, k + 1)).Wenow set ϕ(t) = ϕk(t)
for t ∈ [k, k + 1] and repeat the process for the interval [k + 1, k + 2].

We remind that for two convex, symmetric bodies K , L ⊂ R
n , we de�ne r(K , L) =

max{R > 0 ∶ RL ⊂ K}.�e next lemmamay be seen as a generalization of the classical
large deviation principle (see, for example, Corollary 4.9.3 in [2]).

Lemma 2.6 Consider a symmetric body K ⊂ R
n . 	en,

lim sup
t→∞

ln µ((tK)c)
ϕ(r(K , Bn

2 )t) = −1.
Proof Let R = r(K , Bn

2 ). �en, (tK)c ⊂ (tRBn
2 )c . Using Lemma 2.2, we get

lim sup
t→∞

ln µ((tK)c)
ϕ(tR) ≤ lim sup

t→∞
ln µ((tRBn

2 )c)
ϕ(tR) = −1.

To obtain the reverse inequality, we denote by P a plank of width 2R which contains
K. More precisely, using the maximality of R, there exist at least two tangent points
y,−y ∈ RSn−1 ∩ ∂K. �us, we may consider P = {x ∈ Rn ∶ ∣⟨x , y⟩∣ ≤ R}. Next,

lim sup
t→∞

ln µ((tK)c)
ϕ(tR) ≥ lim sup

t→∞
ln µ((tP)c)

ϕ(tR) .

By the rotation invariant of µ, we may assume that y = Ren , and so

µ((tP)c) = 2∫ ∞
tR

∫
Rn−1

e−ϕ(∣zen+x ∣)dxdz.

Using the triangle inequality and the polar coordinates, we get

µ((tP)c) ≥ 2∫ ∞
tR

∫
Rn−1

e−ϕ(z+∣x ∣)dxdz

= 2∫ ∞
tR

∫
Sn−2

∫ ∞
0

e−ϕ(z+r)rn−2drdθdz

= 2∣Sn−2∣ ∫ ∞
0

rn−2 ∫ ∞
tR

e−ϕ(z+r)dzdr

= 2∣Sn−2∣ ∫ ∞
0

rn−2 ∫ ∞
tR+r

e−ϕ(z)dzdr
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= 2∣Sn−2∣ ∫ ∞
tR

e−ϕ(z)∫ z−tR
0

rn−2drdz

= 2
∣Sn−2∣
n − 1

∫ ∞
tR

(z − tR)n−1e−ϕ(z)dz.
Now to �nish the proof of Lemma 2, we need to prove the following claim.

Claim 2.7

lim sup
t→∞

ln ∫ ∞tR (z − tR)me−ϕ(z)dz
ϕ(Rt) ≥ −1,

for any nonnegative integer m.

Proof of Claim 2.7. Making the change of variables, we get

lim sup
t→∞

ln ∫ ∞tR (z − tR)me−ϕ(z)dz
ϕ(Rt) = lim sup

t→∞
ln ∫ ∞t (r − t)me−ϕ(r)dr

ϕ(t) .

We will �rst prove the following inductive step: �x a nonnegative integer m, and let

Fm(t) = ∫ ∞
t

(r − t)me−ϕ(r)dr.
�en,

lim inf
t→∞

ln Fm(t)
ln Fm−1(t) = 1, for all m ∈ N.(2.6)

We note that Fm(t) ≤ 1, for t large enough, and thus, the denominator and numer-
ator are negative. It is a bit easier to work with a fraction when both the denominator

and numerator are nonnegative. So we will prove that lim inf
t→∞

− ln Fm(t)
− ln Fm−1(t) = 1. Using

integration by parts, we get

Fm−1(t) = 1

m ∫ ∞
t

(r − t)mϕ′(r)e−ϕ(r)dr ≥ 1

m
ϕ′(t)∫ ∞

t
(r − t)me−ϕ(r)dr,

where, again, we denote by ϕ′(t) the le� derivative of ϕ. �us,

− ln Fm−1(t) ≤ − ln(ϕ′(t)/m) − ln Fm(t),
and

lim inf
t→∞

− ln Fm(t)− ln Fm−1(t) ≥ lim inf
t→∞

ln(ϕ′(t)/m) − ln Fm−1(t)− ln Fm−1(t) .

Now we may use that ϕ′(t) > a > 0 for t large enough and lim
t→∞ ln Fm−1(t) = −∞ to

claim that

lim inf
t→∞

− ln Fm(t)− ln Fm−1(t) ≥ lim inf
t→∞

ln(a/m) − ln Fm−1(t)− ln Fm−1(t) ≥ 1.(2.7)

To prove the reverse inequality, we note that

F′m(t) = −m∫ ∞
t

(r − t)m−1e−ϕ(r)dr.
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Assume that

lim inf
t→∞

− ln Fm(t)
− ln(− 1

m
F′m(t)) > α > 1,

but then, again there exists t0 > 0 such that for all t > t0 , we have

− ln Fm(t) > −α ln(− 1

m
F′m(t)),

and thus,

m < −F′m(t)
Fm(t) 1

α

.

Take an integral over t ∈ [x ,∞) from both sides to get F
1− 1

α
m (x) = ∞, which is a

contradiction. �is �nishes the proof of the inductive step, but we actually need a
bit stronger statement, which is similar to Remark 2.4. Indeed, consider any m ∈ N
and α > 1. Let

Em ,α = {t ∶ − ln Fm(t) > −α ln Fm−1(t)}.
�en, using the same ideas as in (2.3), we get ∣Em ,α ∣ < ∞.

To complete our proof, let

X i(t) = ln Fi(t)
ln Fi−1(t) and Y(t) = ln F0(t)

ϕ(t) .

Using (2.6), we get lim inf
t→∞ X i(t) = 1, and using (2.1), we get lim sup

t→∞
Y(t) = −1. Now

let X(t) = ∏m
i=1 X i(t). Our goal is to prove that

lim sup
t→∞

X(t)Y(t) ≥ −1.
Assume that this is not true. �en, there exists α > 1 such that

lim sup
t→∞

X(t)Y(t) < −α < −1.
�erefore, there exists t0 such that for all t > t0,

X(t)Y(t) ≤ −α.(2.8)

Using (2.7), we may also assume that X i(t) > 0 for all t > t0 . Next, consider the set

A ∶= {t > t0 ∶ X(t) > α + 1

2
} .

We claim that ∣A∣ < ∞. Note that

∣{t ∶ X(t) > α + 1

2
}∣ ≤ ∣{t ∶ X i(t) > (α + 1

2
)

1
m

, for some i ∈ {1, . . . ,m}}∣

< m∑
i=1

∣{t ∶ X i(t) > (α + 1

2
)

1
m }∣ < ∞.
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We also note that 2α
α+1 > 1, and thus,

∣{t ∶ Y(t) < − 2α

α + 1
}∣ < ∞.

Finally,

∣{t > t0 ∶ X(t)Y(t) < −α}∣ = ∣{t > t0 ∶ Y(t) < − α

X(t)}∣

≤ ∣A∣ + ∣{t > t0 ∶ Y(t) < − α

X(t) and X(t) < α + 1

2
}∣

≤ ∣A∣ + ∣{t ∶ Y(t) < − 2α

α + 1
}∣ < ∞,

which contradicts with (2.8). �e claim is proved, and this �nishes the proof of
Lemma 2.6. ∎∎

We are now ready to prove�eorem 2.1.

Proof Let K ⊂ R
n be a convex, symmetric body such that µ(tRBn

2 ) ≤ µ(tK) holds
for for some �xed R > 0 and every t large enough, but RBn

2 /⊂ K . �us, the maximal
Euclidean ball inK has radius rR, with r ∈ (0, 1). From the assumption, it follows that

µ((tRBn
2 )c) ≥ µ((tK)c),

which implies that

ln µ((tRBn
2 )c)

ϕ(tR) ≥ ln µ((tK)c)
ϕ(trR)

ϕ(trR)
ϕ(tR) .

From the convexity of ϕ and r ∈ (0, 1), we get that
ϕ(trR) = ϕ(trR + (1 − r)0) ≤ rϕ(tR) + (1 − r)ϕ(0).

Using that ϕ(tR) → ∞, we get that there exists r′ ∈ (0, 1) and t0 > 0 such that
ϕ(trR)
ϕ(tR) ≤

r′ for all t > t0. �us,

ln µ((tRBn
2 )c)

ϕ(tR) ≥ r′ ln µ((tK)c)
ϕ(trR)(2.9)

for all t > t0. Taking the limit superior, as t →∞, from both sides of the inequality
(2.9), we obtain −1 ≥ −r′ . But this contradicts the fact that r′ is less than 1. �erefore,
our assumption that RBn

2 /⊂ K must be false. ∎
Remark 2.8 �e rotation invariant assumption on µ in �eorem 2.1 is necessary.
Indeed, one can construct an example of a log-concave probability measure that is
not rotation invariant in R

2 which does not satisfy the statement of �eorem 2.1.
Consider the rectangle Ω = {(x , y) ∶ ∣x∣ ≤ π

2
, ∣y∣ ≤ 1

2
}, and de�ne the measure µ as
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µ(K) = ∣K∩Ω∣∣Ω∣ . Taking K = Ω, we have

B2
2 /⊂ Ω, but ∣B2

2∣ = ∣Ω∣ = π and ∣tB2
2∣ = ∣tΩ∣, ∀t > 0.

Note that µ(tB2
2) ≤ µ(tΩ); ∀t > 0; indeed, this is equivalent to ∣tB2

2 ∩Ω∣ ≤ ∣tΩ ∩Ω∣.
If t ≤ 1, then we have ∣tB2

2 ∩Ω∣ ≤ ∣tB2
2∣ = ∣tΩ∣, and if t ≥ 1, we get ∣tB2

2 ∩Ω∣ ≤ ∣Ω∣. So,
we provided an example where

µ(tB2
2) ≤ µ(tK); ∀t > 0,

but B2
2 /⊂ K .

3 The cases where density depends on the norm

In this section, wewould like to give a proof�eorem 2.1 in amore general case, which
would answer Question 2.�emain idea and computation are in the same spirit as in
the proof of �eorem 2.1.

�eorem 3.1 Let K , L ⊂ R
n be convex, symmetric bodies, and let µ be a log-concave

probabilitymeasure, with density e−ϕ(∥x∥L), where ϕ ∶ [0,∞) → [0,∞) is an increasing,
convex function. If for every t large enough and some R > 0,

µ(tRL) ≤ µ(tK),
then RL ⊆ K .

Proof We have to check Lemma 2.2 and Lemma 2.6 (i.e., to prove yet another
generalization of the classical large deviation principle (see (3.2) below)).

We claim that for any R > 0,

lim sup
t→∞

ln µ((tRL)c)
ϕ(tR) = −1.

We can assume R = 1. Moreover, as before, using convexity of ϕ, we may assume that
ϕ(t) is a strictly increasing function for large enough t. �us,

µ((tL)c) = ∫(tL)c e−ϕ(∥x∥L)dx = ∫(tL)c ∫
∞

ϕ(∥x∥L)
e−ududx

= ∫
Rn

∫ ∞
ϕ(∥x∥L)

χ(tL)c(x)e−ududx = ∫ ∞
0

∫{x ∶ϕ(∥x∥L)<u}χ(tL)c(x)e−udxdu
=∫ ∞

0
e−u ∣{x∶ ∥x∥L ∈ [t, ϕ−1(u)]}∣du = ∣L∣∫ ∞

ϕ(t)
((ϕ−1(u))n − tn)e−udu

= ∣L∣ ∫ ∞
t

(vn − tn)ϕ′(v)e−ϕ(v)dv = −∣L∣ ∫ ∞
t

(vn − tn)de−ϕ(v)
= n∣L∣ ∫ ∞

t
vn−1e−ϕ(v)dv .(3.1)
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Note that ϕ(t) may be a constant function on some interval [0, t0] and strictly
increasing on [t0 ,∞). In such a case, we de�ne ϕ−1(ϕ(0)) = t0. So, we have

lim sup
t→∞

ln µ((tL)c)
ϕ(t) = lim sup

t→∞
ln(n∣L∣ ∫ ∞t e−ϕ(v)vn−1dv)

ϕ(t)
= lim sup

t→∞
ln ∫ ∞t e−ϕ(v)vn−1dv

ϕ(t) ,

= −1,
where the last equality follows from the proof of Lemma 2.2.

To �nish the proof, we must check Lemma 2.6. In particular, we want to show that

lim sup
t→∞

ln µ((tK)c)
ϕ(r(K , L)t) = −1(3.2)

for symmetric, convex bodies K , L ⊂ R
n , convex, increasing function ϕ ∶ [0,∞) →[0,∞) and measure µ with density e−ϕ(∥x∥L).

Let R = r(K , L). �en, we have (tK)c ⊂ (tRL)c from the assumption. �us, using
Lemma 2.2, we get

lim sup
t→∞

ln µ((tK)c)
ϕ(tR) ≤ lim sup

t→∞
ln µ((tRL)c)

ϕ(tR) = −1.
Using that RL is the maximal dilate of L inside K, we get that there is a pair of points
v ,−v ∈ ∂RL ∩ ∂K. Let P be a plank created by tangent planes to RL andK at v and −v.
Let nv be a normal vector to ∂RL at v. �en, the width of the plank P is 2RhL(nv) =
2hK(nv): P = {x ∈ Rn ∶ ∣⟨x , nv⟩∣ ≤ RhL(nv)}, where hL(x) = sup{⟨x , y⟩ ∶ y ∈ L} is
the support function of L (see [20] for basic de�nitions and properties). Next,

lim sup
t→∞

ln µ((tK)c)
ϕ(tR) ≥ lim sup

t→∞
ln µ((tP)c)

ϕ(tR) .

Selecting a proper system of coordinates, we may assume that nv = en . Let a =
tRhL(en). �en,

µ((tP)c) = 2∫ ∞
a

∫
e⊥n

e−ϕ(∥zen+x∥L)dxdz

= 2∫ ∞
a

∫
e⊥n
∫ ∞
ϕ(∥zen+x∥L)

e−ududxdz

= 2∫ ∞
a

∫ ∞
0

∫{x∈e⊥n ∶ϕ(∥zen+x∥L)<u} e
−udxdudz

= 2∫ ∞
a

∫ ∞
0

e−u ∣{x ∈ e⊥n ∶ ∥zen + x∥L ≤ ϕ−1(u)}∣ dudz.
Now note that

∣{x ∈ e⊥n ∶ ∥zen + x∥L ≤ ϕ−1(u)}∣ = ∣{x ∈ e⊥n ∶ zen + x ∈ ϕ−1(u)L}∣ .
�e above volume is zero if z > ϕ−1(u)hL(en) (or ϕ(z/hL(en)) > u). For z ∈[0, ϕ−1(u)hL(en)], we note that ϕ−1(u)L is a convex body and thus contains
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inside a pyramid ∆ with base L ∩ e⊥n and the height ϕ−1(u)hL(en) (with apex
ϕ−1(u)hL(en)v/R). �en,

∣{x ∈ e⊥n ∶ zen + x ∈ ϕ−1(u)L}∣ ≥ ∣∆ ∩ (e⊥n + zen)∣
= (ϕ−1(u)hL(en) − z)n−1∣L ∩ e⊥n ∣.

�us,

µ((tP)c) ≥ 2∣L ∩ e⊥n ∣ ∫ ∞
a

∫ ∞
ϕ(z/hL(en))

e−u(ϕ−1(u)hL(en) − z)n−1dudz
= 2∣L ∩ e⊥n ∣ ∫ ∞

a
∫ ∞
z/hL(en)

e−ϕ(u)ϕ′(u)(uhL(en) − z)n−1dudz
= −2∣L ∩ e⊥n ∣ ∫ ∞

a
∫ ∞
z/hL(en)

(uhL(en) − z)n−1de−ϕ(u)dz
= 2(n − 1)∣L ∩ e⊥n ∣ ∫ ∞

a
∫ ∞
z/hL(en)

e−ϕ(u)(uhL(en) − z)n−2dudz
= 2(n − 1)∣L ∩ e⊥n ∣ ∫ ∞

a/hL(en) ∫
hL(en)u

a
e−ϕ(u)(uhL(en) − z)n−2dzdu

= 2∣L ∩ e⊥n ∣ ∫ ∞
a/hL(en)

e−ϕ(u)(uhL(en) − a)n−1du
= 2hn−1

L (en)∣L ∩ e⊥n ∣ ∫ ∞
tR

e−ϕ(u)(u − tR)n−1du.

So, we have

lim sup
t→∞

ln µ((tP)c)
ϕ(tR) ≥ lim sup

t→∞
ln (2hn−1

L (en)∣L ∩ e⊥n ∣ ∫ ∞tR e−ϕ(u)(u − tR)n−1du)
ϕ(tR)

= lim sup
t→∞

ln ∫ ∞tR e−ϕ(u)(u − tR)n−1du
ϕ(tR) .

By Claim 2, the above quantity is greater than or equal to −1; thus, Lemma 2.6 is
applied here, which �nishes the proof for our main result. ∎
Remark 3.2 �e proofs for �eorem 2.1 and �eorem 3.1 apply similarly to an
asymmetric convex body K with the origin as an interior point of it. �e only
di�erence is that instead of dealing with a plank P in Lemma 2.6, we need to work
with a half-space. Speci�cally, for�eorem 2.1, one would use the half-spaceH = {x ∈
R

n ∶ ⟨x , y⟩ ≤ R}, where y ∈ RSn−1 ∩ ∂K. For�eorem 3.1, one may use the half-space
de�ned by H = {x ∈ Rn ∶ ⟨x , nv⟩ ≤ RhL(nv)}, where nv is the normal vector to ∂RL
at a tangent point v.

4 The Busemann - Petty type problems

In this section, we will discuss Question 3. We �rst note that one must make some
additional assumptions on themeasure µ to avoid a trivial answer. Indeed, if ameasure
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µ has a homogeneous density (i.e., f (rx) = rp f (x), for r > 0 and p > 1 − n), then the
answer is identical to the one given in [23].

Let us �rst show that in dimension n ≥ 5, one can always �nd a pair of convex,
symmetric bodies K and L and measure µ, such that the answer to Question 3 is
negative. �e main idea follows from the construction in [24]. We begin with the
following fact:

Fact If dµ = e−ϕ(∥x∥L)dx is a log-concave measure and K , L ⊂ R
n are convex, sym-

metric bodies such that ∣K∣ ≤ ∣RL∣ for some R > 0, then

µ(K) ≤ µ(RL).
Proof Using calculations similar to (3.1), we get

µ(K) = ∫ ∞
0

e−u ∣K ∩ ϕ−1(u)L∣du
and

µ(RL) = ∫ ∞
0

e−u ∣RL ∩ ϕ−1(u)L∣du.
To get µ(K) ≤ µ(RL), we only need to check that ∣K ∩ ϕ−1(u)L∣ ≤ ∣RL ∩ ϕ−1(u)L∣.
Indeed, if R ≤ ϕ−1(u), then we have

∣K ∩ ϕ−1(u)L∣ ≤ ∣K∣ ≤ ∣RL∣ = ∣RL ∩ ϕ−1(u)L∣,
and if R ≥ ϕ−1(u), then we get

∣K ∩ ϕ−1(u)L∣ ≤ ∣ϕ−1(u)L∣ = ∣RL ∩ ϕ−1(u)L∣.
Hence, µ(K) ≤ µ(RL) for any R > 0. ∎

Next, we show that Question 3 has a negative answer for n ≥ 5.

�eorem4.1 For n ≥ 5, there are convex symmetric bodies K , L ⊂ R
n and log-concave

measure µ with density e−ϕ(∥x∥L), such that

µ(rK ∩ ξ⊥) ≤ µ(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0,(4.1)

but µ(K) > µ(L).
Proof Let us assume, toward the contradiction, that Question 3 has an a
rmative
answer in R

n for some �xed n ≥ 5. So, for any pair of convex symmetric bodies K , L
that satisfy (4.1), we would get µ(K) ≤ µ(L). �e condition on sections (4.1) will be
also satis�ed for the dilated bodies tK and tL, for all t > 0. �erefore, we have

µ(tK) ≤ µ(tL), ∀t > 0,(4.2)

which, by de�nition of µ, means

∫
tK

e−ϕ(∣∣x ∣∣L)dx ≤ ∫
tL
e−ϕ(∣∣x ∣∣L)dx ,
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or equivalently, applying the change of variables x = tx, we have

∫
K
e−ϕ(t∣∣x ∣∣L)dx ≤ ∫

L
e−ϕ(t∣∣x ∣∣L)dx .

Using the continuity of ϕ and compactness of K and L, we can take the limit for the
above inequality as t → 0+ to obtain

∣K∣ ≤ ∣L∣.
�erefore, we have a relation between the dilation problem for a log-concave prob-
ability measure, with the Busemann-Petty problem for volume measure, which is if

µ(rK ∩ ξ⊥) ≤ µ(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0,

then ∣K∣ ≤ ∣L∣.
A number of very interesting counterexamples to the Busemann-Petty prob-

lem were shown by Papadimitrakis [17]; Gardner [7]; Gardner, Koldobsky, and
Schlumprecht [10]: there are convex symmetric bodies K , L inR

n for n ≥ 5 such that

∣K ∩ ξ⊥∣ ≤ ∣L ∩ ξ⊥∣, ∀ξ ∈ Sn−1 ,(4.3)

but

∣K∣ > ∣L∣.(4.4)

Note that because the volume measure is homogeneous, the condition on sections
(4.3) is also true for dilates of K and L, so we have

∣rK ∩ ξ⊥∣ ≤ ∣rL ∩ ξ⊥∣, ∀ξ ∈ Sn−1 , ∀r > 0.(4.5)

Now, applying the fact to (4.5), we get that

µ(rK ∩ ξ⊥) ≤ µ(rL ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0.

�us, using (4.2), we have
µ(tK) ≤ µ(tL), ∀t > 0.

Dividing by tn and taking the limit of the above inequality as t → 0+, we get

∣K∣ ≤ ∣L∣,
and this contradicts (4.4). ∎

It is interesting to note that the measure µ constructed above is very speci�c.
For example, we cannot use this construction directly with the assumption that µ
is rotation invariant.

Still, we can show that the answer to Question 3 is negative in R
n for n ≥ 7 even

when µ is a log-concave measure with rotation invariant density.

�eorem 4.2 For dimension n ≥ 7, and dµ = e−ϕ(∣x ∣)dx, there is a convex symmetric
body K ⊂ R

n such that

µ(rK ∩ ξ⊥) ≤ µ(rBn
2 ∩ ξ⊥), ∀ξ ∈ Sn−1 , ∀r > 0,

but µ(K) > µ(Bn
2 ).
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Proof Giannopoulos [11] and Bourgain [4] constructed an example inRn for n ≥ 7
of convex body K ⊂ R

n that satis�es

∣K ∩ ξ⊥∣ ≤ ∣Bn
2 ∩ ξ⊥∣, ∀ξ ∈ Sn−1 ,

but ∣K∣ > ∣Bn
2 ∣. To prove �eorem 4.2, one may take the same convex body K and Bn

2

as provided in [11, 4] and repeat the proof of �eorem 4.1. ∎
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