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Sumset estimates,which provide bounds on the cardinality of sumsets of finite sets in a group, form an
essential part of the toolkit of additive combinatorics. In recent years, probabilistic or entropic forms
of many of these inequalities were introduced. We study analogues of these sumset estimates in the
context of convex geometry and the Lebesgue measure on R

n. First, we observe that, with respect
to Minkowski summation, volume is supermodular to arbitrary order on the space of convex bodies.
Second, we explore sharp constants in the convex geometry analogues of variants of the Plünnecke-
Ruzsa inequalities. In the last section of the paper, we provide connections of these inequalities to the
classical Rogers-Shephard inequality.

1 Introduction

Minkowski summation is a basic and ubiquitous operation on sets. Indeed, the Minkowski sum A+ B =
{a+b : a ∈ A, b ∈ B} of setsA and Bmakes sense as long asA and B are subsets of an ambient set in which

a closed binary operation denoted by + is defined. In particular, this notion makes sense in any group,

and additive combinatorics (which arose out of exploring the additive structure of sets of integers, but then

expanded to the consideration of additive structure in more general groups) is a field of mathematics

that is preoccupied with studying what exactly this operation does in a quantitative way.

“Sumset estimates” are a collection of inequalities developed in additive combinatorics that provide

bounds on the cardinality of sumsets of finite sets in a group. In this paper, we use #(A) to denote the

cardinality of a countable set A, and |A| to denote the volume (i.e., n-dimensional Lebesgue measure)

of A when A is a measurable subset of Rn. The simplest sumset estimate is the two-sided inequality

#(A)#(B) ≥ #(A + B) ≥ #(A) + #(B) − 1, which holds for finite subsets A,B of the integers; equality in the

second inequality holds only for arithmetic progressions. A much more sophisticated sumset estimate

is Kneser’s theorem [32] (cf., [60, Theorem 5.5], [14]), which asserts that for finite, nonempty subsets

A,B in any abelian group G, #(A + B) ≥ #(A + H) + #(B + H) − #(H), where H is the stabilizer of A + B,

that is, H = {g ∈ G : A + B + g = A + B}. Kneser’s theorem contains, for example, the Cauchy-Davenport

inequality that provides a sharp lower bound on sumset cardinality in Z/pZ. In the reverse direction of

finding upper bounds on cardinality of sumsets, there are the so-called Plünnecke-Ruzsa inequalities

[49, 51]. One example of the latter states that if #(A + B) ≤ α#A, then #(A + k · B) ≤ αk#A, where k · B
refers to the sum of k copies of B. Such sumset estimates form an essential part of the toolkit of additive

combinatorics.

In the context of the Euclidean space R
n, inequalities for the volume of Minkowski sums of convex

sets, andmore generally Borel sets, play a central role in geometry and functional analysis. For example,

the well-known Brunn-Minkowski inequality can be used to deduce the Euclidean isoperimetric

inequality, which identifies the Euclidean ball as the set of any given volume with minimal surface
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area. Therefore, it is somewhat surprising that in the literature, there has only been rather limited

exploration of geometric analogues of sumset estimates. We work towards correcting that oversight in

this contribution.

The goal of this paper is to explore a variety of new inequalities for volumes of Minkowski sums of

convex sets, which have a combinatorial flavor and are inspired by known inequalities in the discrete

setting of additive combinatorics. These inequalities are related to the notion of supermodularity: we

say that a set function F : 2[n] → R is supermodular if F(s∪ t) + F(s∩ t) ≥ F(s) + F(t) for all subsets s, t of [n],

and that F is submodular if −F is supermodular.

Our study is motivated by two relatively recent observations. The first observation motivating this

paper, from [24, Theorem 4.5], states that given convex bodies A,B1,B2 in R
n, |A + B1 + B2| + |A| ≥ |A +

B1| + |A + B2|. This inequality has a form similar to that of Kneser’s theorem– indeed, observe that the

latter can be written as #(A + B + H) + #(H) ≥ #(A + H) + #(B + H), since adding the stabilizer to A + B

does not change it. Furthermore, it implies that the function v : 2[k] → R defined, for given convex

bodies B1, . . . ,Bk in R
n, by v(s) =

∣

∣

∑

i∈s Bi
∣

∣ is supermodular. Foldes and Hammer [17] defined the notion

of higher order supermodularity for set functions. In Section 3, we generalize their definition and main

characterization theorem from [17] to functions defined on R
n
+, and apply it to show that volumes and

mixed volumes satisfy this higher order supermodularity.

The second observation motivating this paper, due to Bobkov and the second named author

[9, Corollary 7.5], is that for any convex bodies A,B1,B2 in R
n, one has

|A||A + B1 + B2| ≤ 3n|A + B1||A + B2|. (1)

The above inequality is inspired by an inequality in information theory analogous to the Plünnecke-

Ruzsa inequality (the most general version of which was proved by Ruzsa for compact sets in [53], and

is discussed in Section 2.2 below). If not for the multiplicative factor of 3n in (1), this inequality would

imply that the logarithm of the volume of theMinkowski sum of convex sets is submodular. In this sense,

it goes in the reverse direction to the supermodularity of volume and thus complements it. However,

the constant 3n obtained by [9] is rather loose. We take up the question of tightening this constant in

Section 4.

Specifically, we obtain both upper and lower bounds for the optimal constant

cn = sup
|A||A + B + C|
|A + B||A + C|

, (2)

where the supremum is taken over all convex bodies A,B,C in R
n, in general dimension n. We get an

upper bound of cn ≤ ϕn in Section 4.2, where ϕ = (1 +
√
5)/2 is the golden ratio, and an asymptotic

lower bound of cn ≥ (4/3 + o(1))n in Section 4.4. In Section 4.3, we show that the optimal constant is 1

in dimension 2 and 4
3 in dimension 3 (i.e., c2 = 1 and c3 = 4/3), and also that c4 ≤ 2. In Section 4.5, we

improve inequality (1) in the special case where A is an ellipsoid, B1 is a zonoid, and B2 is any convex

body: in this case, the optimal constant is 1. This result partially answers a question of Courtade, who

asked (motivated by an analogous inequality in information theory) if |A+B1 +B2| |A| ≤ |A+B1| |A+B2|
holds whenA is the Euclidean ball and B1,B2 are arbitrary convex bodies. Finally, in Section 4.6,we prove

that (1) cannot possibly hold in the more general setting of compact sets with any absolute constant,

which signifies a sharp difference between the proof of this inequality compared with the tools used by

Ruzsa in [53].

The last section of the paper is dedicated to questions surrounding Ruzsa’s triangle inequality: ifA,B,

and C are finite subsets of an abelian group, then #(A)#(B−C) ≤ #(A−B)#(A−C). This inequality is also

known to be true for volume of compact sets in R
n: |A| |B − C| ≤ |A − B| |A − C|. We investigate the best

constant c such that the inequality

|A| |A + B + C| ≤ c|A − B| |A − C|. (3)

is true for all convex sets A,B and C in R
n. For example, in the plane, we observe that it holds with the

sharp constant c = 3
2 .

Again, it is interesting to note that (3) is different from Ruzsa’s triangle inequality, and it is not true,

with any absolute constant c, if one omits the assumption of convexity.
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In a companion paper [25] written together with M. Meyer, we explore the question of reducing the

constant in the Plünnecke-Ruzsa inequality for volumes from ϕn, when we restrict attention to the

subclass of convex bodies known as zonoids. In another series of papers [19, 20] written together with

D. Langharst, we explore ”weighted” extensions of the preceding results for convex bodies, focusing on

log-concave and in particular Gaussian measures.

We also mention that there are probabilistic or entropic analogues of many of the inequalities in this

paper. For example, the afore-mentioned observation due to [9], that a Plünnecke-Ruzsa inequality for

convex bodies holds with a constant 3n, emerges as a consequence of Rényi entropy comparisons for

convex measures on the one hand, and the submodularity of entropy of convolutions on the other. The

submodularity of entropy of convolutions refers to the inequality h(X)+h(X+Y+Z) ≤ h(X+Y)+h(X+Z),

where h denotes entropy, and X,Y,Z are independent Rn-valued random variables, and may be thought

of as an entropic analogue of the Plünnecke-Ruzsa inequality. This latter inequality was obtained in

[35] as part of an attempt to develop an additive combinatorics theory for probability measures where

cardinality or volume of a set is replaced by entropy of a random variable. A number of works have

explored this avenue [30, 35, 37, 38] for probability measures on R
n and more general locally compact

abelian groups; for discrete analogues (e.g., when the random variables take values in finite groups or

the integers), see for example [1, 39, 40, 43, 54, 59].

2 Preliminaries
2.1 Mixed Volumes
In this section, we introduce basic notations and collect essential facts and definitions from convex

geometry that are used in the paper. As a general reference on the theory we use [56].

We write x · y for the inner product of vectors x and y in R
n and by |x| the length (Euclidean norm)

of a vector x ∈ R
n. The closed unit ball in R

n is denoted by Bn2, and its boundary by Sn−1. We will also

denote by e1, . . . , en the standard orthonormal basis in R
n. Moreover, for any set in A ⊂ R

n, we denote its

boundary by ∂A. We write |K|m for the m-dimensional Lebesgue measure (volume) of a measurable set

K ⊂ R
n, where m = 1, ...,n is the dimension of the minimal affine space containing K, we will often use

the shorten notation |K| for the n-dimensional volume.

We write Kn for the collection of nonempty convex compact subsets of Rn. A convex body in R
n is

a convex, compact set with nonempty interior; we write K
(o)
n for the collection of convex bodies in R

n.

A polytope which is the Minkowski sum of finitely many line segments is called a zonotope. Limits of

zonotopes in the Hausdorffmetric are called zonoids; see [56], Section 3.2, for details. From [56, Theorem

5.1.6], for any compact convex sets K1, . . .Kr in R
n and any non-negative numbers t1, . . . , tr, one has

|t1K1 + · · · + trKr| =
r

∑

i1 ,...,in=1

ti1 · · · tinV(Ki1 , . . . ,Kin ), (4)

for some non-negative numbers V(Ki1 , . . . ,Kin ), which are called the mixed volumes of K1, . . . ,Kr. One

readily sees that the mixed volumes satisfy V(K, . . . ,K) = |K|. Moreover, they satisfy a number of

properties which are crucial for our study (see [56]) including the fact that amixed volume is symmetric

in its argument; it ismultilinear, that is, for any λ,μ ≥ 0we haveV(λK+μL,K2, . . . ,Kn) = λV(K,K2, . . . ,Kn)+
μV(L,K2, . . . ,Kn). Mixed volume is translation invariant, that is, V(K + a,K2, . . .Kn) = V(K,K2, . . . ,Kn), for

a ∈ R
n and satisfy a monotonicity property, i.e V(K,K2,K3, . . . ,Kn) ≤ V(L,K2,K3, . . . ,Kn), for K ⊂ L. We will

also often use a two body version of (4)—the Steiner formula:

|A + tB| =
n

∑

k=0

(

n

k

)

tkV(A[n − k],B[k]), (5)

for any t ≥ 0 and any compact, convex sets A,B in R
n, where for simplicity we use the notation A[m]

when a convex set A is repeated m times.

Mixed volumes are also very useful for studying the volume of orthogonal projections of convex

bodies. Let PHA be the orthogonal projection of a convex body A onto an m dimensional subspace H of
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R
n, then

|PHA|m|U|n−m =
(

n

m

)

V(A[m],U[n − m]), (6)

where U is any convex body in the subspace H⊥ orthogonal to H. For example, if we denote by θ⊥ = {x ∈
R
n : x · θ = 0} the hyperplane orthogonal to θ ∈ Sn−1 and passing through the origin, we obtain

|Pθ⊥A|n−1 = nV(A[n − 1], [0, θ ]). (7)

Yet another useful formula is connected with the computation of the surface area andmixed volumes:

|∂A| = nV(A[n − 1],Bn2), (8)

where by |∂A| we denote the surface area of the compact set A in R
n.

Mixed volumes satisfy a number of extremely useful inequalities. The first one is the Brunn-

Minkowski inequality:

|A + B|1/n ≥ |A|1/n + |B|1/n, (9)

whenever A,B and A + B are measurable. The most powerful inequality for mixed volumes is the

Alexandrov–Fenchel inequality:

V(K1,K2,K3, . . . ,Kn) ≥
√

V(K1,K1,K3, . . . ,Kn)V(K2,K2,K3, . . . ,Kn), (10)

for any compact convex sets K1, . . .Kr in R
n. We will also use the following classical local version of

Alexandrov-Fenchel’s inequality that was proved by W. Fenchel (see [16] and also [56]) and further

generalized in [4, 18, 57],

|A|V(A[n − 2],B,C) ≤ 2V(A[n − 1],B)V(A[n − 1],C), (11)

for any convex compact sets A,B,C in R
n. Moreover it was noticed in [57] that (11) is true with constant

one instead of two in the case when A is a simplex. This inequality is one part of a rich class of Bézout-

type inequalities proposed in [55, 57]. The core tool of our work is the following inequality of J. Xiao

(Theorem 1.1 and Lemma 3.4 in [63])

|A|V(A[n − j − m],B[j],C[m])

≤ min

((

n

j

)

,

(

n

m

))

V(A[n − j],B[j])V(A[n − m],C[m]), (12)

for any convex, compact sets A,B,C ⊂ R
n.

2.2 Plünnecke-Ruzsa inequality
Plünnecke-Ruzsa inequalities (see, e.g., [60]) are an important class of inequalities in the field of additive

combinatorics. These were introduced by Plünnecke [49] and generalized by Ruzsa [51], and a simpler

proof was given by Petridis [47]; a more recent generalization is proved in [29], and entropic versions

are developed in [40]. For illustration, the form of Plünnecke’s inequality developed in [51] states that,

if A,B1, . . . ,Bm are finite sets in a commutative group, then there exists an X ⊂ A,X �= ∅, such that

#(A)m#(X + B1 + . . . + Bm) ≤ #(X)

m
∏

i=1

#(A + Bi).

In [53], Ruzsa generalized the above inequality to the case of compact sets on a locally compact

commutative group, written additively, with the Haar measure. The volume case of this deep theorem
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is one of our main inspirations: for any compact sets A,B1, . . . ,Bm in R
n, with |A| > 0 and for every ε > 0,

there exists a compact set A′ ⊂ A such that

|A|m|A′ + B1 + . . . + Bm| ≤ (1 + ε)|A′|
m

∏

i=1

|A + Bi|. (13)

It immediately follows that for any compact sets A,B1, . . . ,Bm in R
n,

|A|m−1|B1 + . . . + Bm| ≤
m

∏

i=1

|A + Bi|. (14)

2.3 Submodularity and supermodularity
Let us first recall the notion of a supermodular set function.

Definition 2.1. A set function F : 2[n] → R is supermodular if

F(s ∪ t) + F(s ∩ t) ≥ F(s) + F(t), (15)

for all subsets s, t of [n].

One says that a set function F is submodular if −F is supermodular. Submodularity is closely related

to a partial ordering on hypergraphs as we will see below. This relationship is frequently attributed to

Bollobas and Leader [11] (cf. [5]), where they introduced the related notion of “compressions”. However,

it appears to have origins that trace back much further—explicitly discussed by Emerson [15], where he

says it is “well known”.

To present this relationship, let us introduce some notation. Let M(n,m) be the following family

of (multi)hypergraphs: each consists of non-empty (ordinary) subsets si of [n], si = sj is allowed, and
∑

i |si| = m. Consider a given multiset C = {s1, . . . , sl} ∈ M(n,m). The idea is to consider an operation that

takes two sets in C and replaces them by their union and intersection; however, note that

(i) if si and sj are nested (i.e., either si ⊂ sj or sj ⊂ si), then replacing (si, sj) by (si ∩ sj, si ∪ sj) does not

change C; and

(ii) if si ∩ sj = ∅, the empty set may enter the collection, which would be undesirable.

Thus, take any pair of non-nested sets {si, sj} ⊂ C and let C′ = C(i, j) be obtained from C by replacing si
and sj by si ∩ sj and si ∪ sj, keeping only si ∪ sj if si ∩ sj = ∅. C′ is called an elementary compression of C. The

result of a sequence of elementary compressions is called a compression.

Define a partial order on M(n,m) by setting A > A′ if A′ is a compression of A. To check that this is

indeed a partial order, one needs to rule out the possibility of cycles, which can be done by noting that

if A′ is an elementary compression of A then

∑

s∈A
|s|2 <

∑

s∈A′

|s|2.

Theorem 2.2. Suppose F is a supermodular function on the ground set [n]. Let A and B be finite

multisets of subsets of [n], with A > B. Then,

∑

s∈A
F(s) ≤

∑

t∈B
F(t).

Proof. When B is an elementary compression of A, the statement is immediate by definition, and

transitivity of the partial order gives the full statement. �

Note that for every multiset A ∈ M(n,m) there is a unique minimal multiset A# dominated by A, that

is, A# < A, consisting of the sets s#j = {i ∈ [n] : i lies in at leastj of the setss ∈ A}. Thus, a particularly
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nice instance of Theorem 2.2 is for the special case of B = A# (we refer to [5, page 132], for further

discussion). We also have a notion of supermodularity on the positive orthant of the Euclidean space.

Definition 2.3. A function f : Rn
+ → R is supermodular if

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y),

for any x, y ∈ R
n
+, where x∨y denotes the componentwisemaximum of x and y and x∧y denotes

the componentwise minimum of x and y.

We note that Definition 2.3 can be viewed as an extension of Definition 2.1 if one consider set

functions on 2[n] as a function on {0, 1}n. We record this connection in the next lemma, using1s : [n] →
{0, 1} to denote the indicator function of s, that is,1s(i) = 1 if i ∈ s and 1s(i) = 0 if i /∈ s.

Lemma 2.4. If f : Rn
+ → R is supermodular, and we set F(s) := f (1s) for each s ⊂ [n], where we

view 1s ∈ {0, 1}[n] as a vector in R
n, then F is a supermodular set function.

Proof. Observe that

F(s ∪ t) + F(s ∩ t) = f (1s∪t) + f (1s∩t)

= f (1s ∨1t) + f (1s ∧1t)

≥ f (1s) + f (1t)

= F(s) + F(t). �

The fact that supermodular functions are closely related to functions with increasing differences is

classical (see, e.g., [36] or [62], which describes more general results involving arbitrary lattices).We will

denote by ∂if the partial derivative of function f with the respect the i’s coordinate and by ∂mi1 ,...,im
the

mixed derivative with respect to coordinates i1, . . . im.

Proposition 2.5. Suppose a function f : Rn
+ → R is in C2, that is, it is twice-differentiable with a

continuous Hessian matrix. Then, f is supermodular if and only if

∂2
i,jf (x) ≥ 0,

for every distinct i, j ∈ [n], and for any x ∈ R
n
+.

We will prove Proposition 2.5 as a part of a more general statement on the mixed derivatives of the

supermodular functions of higher order (Theorem 3.5 below).

Supermodular set functions also arise naturally in connection with convex functions. For instance,

let ϕ : R+ → R be a convex function. Then for every a0, a1, a2 ∈ R+, one has

ϕ(a0 + a1) + ϕ(a0 + a2) ≤ ϕ(a0 + a1 + a2) + ϕ(a0).

This property can be seen as the supermodularity of the function � : 2[2] → R defined by �(s) =
ϕ(a0 + 〈1s, a〉), where we set a = (a1, a2).

3 Higher Order Supermodularity of Mixed Volumes
3.1 Local characterization of higher order supermodularity
We now present analogues of the above development for higher-order supermodularity. Let us notice

that a set function F : 2[n] → R is supermodular if and only if for any s0, s1, s2 ∈ 2[n] with s1 ∩ s2 = ∅
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one has

F(s0 ∪ s1) + F(s0 ∪ s2) ≤ F(s0 ∪ s1 ∪ s2) + F(s0).

Generalizing this property, Foldes and Hammer [17] defined the notion of higher order supermodularity.

In this section, we will adapt their definition and study the following property:

Definition 3.1. Let 1 ≤ m ≤ n. A function F : 2[n] → R is m-supermodular if for any s0 ∈ 2[n] and for

any mutually disjoint s1, . . . , sm ∈ 2[n] one has

∑

I⊂[m]

(−1)m−|I|F

(

s0 ∪
⋃

i∈I

si

)

≥ 0.

Note that for m = 2 in the above definition, we recover a supermodular set function. We also

introduce the notion of higher-order supermodularity for functions defined on the positive orthant of

a Euclidean space.

Definition 3.2. Let 1 ≤ m ≤ n. A function f : Rn
+ → R is m-supermodular if

∑

I⊂[m]

(−1)m−|I|f

(

x0 ∨
∨

i∈I

xi

)

≥ 0,

for any x0 ∈ R
n
+ and for any x1, . . . , xm ∈ R

n
+, with mutually disjoint supports, that is such that

xi ∧ xj = 0, for any 1 ≤ i < j ≤ m.

Remark 3.3. Fix some n ∈ N and m ∈ [n]. Notice that, as in Lemma 2.4, if f : R
n
+ → R is m-

supermodular then F : 2[n] → R defined by F(s) = f (1s) is m-supermodular.

Form = 1 in the above definition,we obtain that f is 1-supermodular if and only if it is non-decreasing

in each coordinate. For m = 2, we recover a supermodular function on the orthant as we prove in the

following lemma.

Lemma 3.4. Let f : Rn
+ → R. Then, f is supermodular if and only if for any x, y, z ∈ R

n
+ such that

y ∧ z = 0, one has

f (x ∨ y ∨ z) + f (x) ≥ f (x ∨ y) + f (x ∨ z). (16)

Proof. Suppose f is supermodular and one has x, y, z ∈ R
n
+ such that y∧ z = 0. Then, we set a = x∨y and

b = x ∨ z, then, a ∨ b = x ∨ y ∨ z and a ∧ b = x, since y ∧ z = 0. Thus,

f (x ∨ y ∨ z) + f (x) − f (x ∨ y) − f (x ∨ z) = f (a ∧ b) + f (a ∨ b) − f (a) − f (b) ≥ 0.

Now assume that f satisfies (16) and let a, b ∈ R
n
+. We set x = a∧ b and we define y by putting yi = ai for

i such that bi < ai and yi = 0 otherwise. In the same way, we set zi = bi, for i such that ai < bi and zi = 0

otherwise. Then, x ∨ y = a, x ∨ z = b and x ∨ y ∨ z = a ∨ b, hence, we conclude similarly. �

The next theorem generalizes Proposition 2.5 to higher order supermodularity.

Theorem 3.5. Let n ∈ N and m ∈ [n]. Let f : Rn
+ → R be a Cm function. Then, f is m-supermodular

if and only if

∂mi1 ,...,im f (x) ≥ 0

for every distinct i1, . . . , im ∈ [n], and for any x ∈ R
n
+.
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Proof. Let x0 ∈ R
n
+ and x1, . . . , xm ∈ R

n
+, with mutually disjoint supports.

∑

I⊂[m]

(−1)m−|I|f

(

x0 ∨
∨

i∈I

xi

)

=
∑

I⊂[m−1]

(−1)m−|I|−1f

(

x0 ∨
∨

i∈I

xi ∨ xm

)

+
∑

I⊂[m−1]

(−1)m−|I|f

(

x0 ∨
∨

i∈I

xi

)

=
∑

I⊂[m−1]

(−1)m−1−|I|

[

f

(

x0 ∨
∨

i∈I

xi ∨ xm

)

− f

(

x0 ∨
∨

i∈I

xi

)]

=
∑

I⊂[m−1]

(−1)m−1−|I|gxm

(

x0 ∨
∨

i∈I

xi

)

,

(17)

where gz(x) = f (x ∨ z) − f (x), for any x, z ∈ R
n
+. Thus, f is m-supermodular if and only if x �→ gz(x) is

(m − 1)-supermodular for any z ∈ R
n
+ as a function on the coordinate subspace Hz = {y ∈ R

n
+ : yizi =

0,∀ i = 1, . . . ,n}.
Now we are ready to prove the theorem for the case m = 2. In this case, the above equivalence (17)

gives us that f is supermodular if and only if x �→ gz(x) is 1-supermodular for any z ∈ R
n
+ as a function

of x ∈ Hz and thus gz is non-decreasing in each coordinate direction of Hz, that is, for each coordinate

index i such that zi = 0. Thus, assuming differentiability, this is equivalent ∂igz ≥ 0 for all i which is a

coordinate direction inHz. Taking z = zjej, zj > 0,we get ∂igzjej ≥ 0 for all i �= j. Thus, ∂if (x∨zjej)−∂if (x) ≥ 0,

and finally ∂2
i,jf (x) ≥ 0. Reciprocally, assuming that ∂2

i,jf (x) ≥ 0 for all i �= j and all x, we get Dy∂if (x) ≥ 0

for y ∈ R
n
+ such that yi = 0, where by Dyf = y · ∇f we denote the directional derivative with respect to

vector y ∈ R
n. Thus ∂if (x + y) − ∂if (x) ≥ 0 for all y ∈ R

n
+ with yi = 0. Thus, considering y ∈ R

n
+, such that

yi = 0 and yj = xj ∨ zj − xj, j �= i, we get ∂ig(z) = ∂if (x ∨ z) − ∂if (x) ≥ 0 for all i not in the support of z.

We will finish the proof applying an induction argument. Assume that the statement of the theorem

is true for m − 1, for some m ≥ 3. Let f : Rn
+ → R be a Cm m-supermodular function. Then, applying (17)

we get that x �→ gz(x) is m − 1-supermodular for any z ∈ R
n
+ as a function of x ∈ Hz, which, applying

inductive assumption, gives us

∂i1 · · · ∂im−1
[f (x ∨ z) − f (x)] ≥ 0,

for every distinct i1, . . . , im−1, coordinates of Hz, applying it to z = zimeim , we get

∂i1 · · · ∂im f (x) ≥ 0.

Now assume the partial derivative condition of the theorem. Then, for every z ∈ R
n
+ and i1, . . . , im−1,

coordinates of Hz, we have

∂i1 · · · ∂im−1
gz(x) = ∂i1 · · · ∂im−1

f (x ∨ z) − ∂i1 · · · ∂im−1
f (x),

but ∂i1 · · · ∂im−1
∂im f (x) ≥ 0 for every im �= ik, for k = 1, . . . ,m − 1 and thus for every im for which zim �= 0. So

∂i1 · · · ∂im−1
f (x) is an non-decreasing function in each coordinate im for which zim �= 0:

∂i1 · · · ∂im−1
f (x ∨ z) − ∂i1 · · · ∂im−1

f (x) ≥ 0

and, applying the inductive assumption, we get that x �→ gz(x) is (m − 1)-supermodular for any z ∈ R
n
+

as a function of x ∈ Hz, which finishes the proof with the help of (17). �

We remark in passing that the positivity of mixed partial derivatives and its global manifestation

also arises in the theory of copulas in probability (see, e.g., [13]). In particular, it is well known there that

for smooth functions C : [0, 1]m → [0, 1], the condition ∂m1,2,...,mC ≥ 0 is equivalent to the condition that
∑

z∈{xi ,yi}m (−1)N(z)C(z) ≥ 0 for every box
∏m

i=1[xi, yi] ⊂ [0, 1]m, where N(z) = #{k : zk = xk}.
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3.2 Higher order supermodularity of volume
Theorem 3.6. Let n, k ∈ N. Let B1, . . . ,Bk be convex compact sets of Rn. Then the function v : Rk

+ →
R defined as

v(x) =

∣

∣

∣

∣

∣

k
∑

i=1

xiBi

∣

∣

∣

∣

∣

(18)

is m-supermodular for any m ∈ [k].

Proof. From themixed volume formula (4), the function v is a polynomial with non-negative coefficients

so its mixed derivatives of any order are non-negative on R
n
+. By Theorem 3.5, we conclude that it is m-

supermodular for any m. �

Remark 3.7. Theorem 3.6 can be given in a more general form: for any natural number l ≤ n, any

convex compact sets C1, . . . ,Cl, B1, . . . ,Bk in R
n, the function v : Rk

+ → R, defined as

v(x) = V

((

k
∑

i=1

xiBi

)

[n − l],C1, . . . ,Cl

)

is m-supermodular for any m ∈ [k].

We notice that in Theorem 3.6 the convexity assumption is essential. Indeed, as was observed in

[24], for k = 3, there exists non convex sets B1,B2,B3 such that the function v defined above is not

supermodular. We will discuss this issue in more details in Section 3.3 below. Using Theorem 3.6,

Remark 3.7, Remark 3.3 and Theorem 2.2 we deduce the following corollary.

Corollary 3.8. Let n, k ∈ N and B1, . . .Bk be compact convex sets of Rn. Let 0 ≤ l ≤ n and C1, . . . ,Cl

be convex bodies in R
n. Then:

1) the function v̄ : 2[k] → [0,∞) defined by

v̄(s) = V

((

∑

i∈s

Bi

)

[n − l],C1, . . . ,Cl

)

, (19)

for each s ⊂ [k], is a m-supermodular set function, for any m ∈ [k].

2) Let A and B be finite multisets of subsets of [k], with A > B. Then,

∑

s∈A
v̄(s) ≤

∑

t∈B
v̄(t). (20)

Let us note that the above m-supermodularity of the function v̄ is equivalent to the fact that for any

convex bodies B0,B1, . . . ,Bk,C1, . . . ,Cl in R
n,

∑

s⊂[k]

(−1)k−|s|V

((

B0 +
∑

i∈s

Bi

)

[n − l],C1, . . . ,Cl

)

≥ 0.

Applying the previous theorem to l = 0, we get

∑

s⊂[k]

(−1)k−|s|

∣

∣

∣

∣

∣

B0 +
∑

i∈s

Bi

∣

∣

∣

∣

∣

≥ 0. (21)
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The above inequality for k = n and B0 = {0} follows also directly from the following classical formula

(see Lemma 5.1.4 in [56])

∑

s⊂[n]

(−1)n−|s|

∣

∣

∣

∣

∣

∑

i∈s

Bi

∣

∣

∣

∣

∣

= n!V(B1, . . . ,Bn).

In the same way, we can also give another proof of the general case of (21).

Theorem 3.9. Let B0,B1, . . . ,Bm be convex bodies in R
n.

∑

s⊂[m]

(−1)m−|s|

∣

∣

∣

∣

∣

B0 +
∑

i∈s

Bi

∣

∣

∣

∣

∣

=
∑

∑m
i=0 ki=n;

k1 ,...,km≥1

(

n

k0, k1, . . . , km

)

V(B0[k0],B1[k1], . . . ,Bm[km])

for m ≤ n and zero otherwise.

Proof. Following the proof of Lemma 5.1.4 in [56]. Define

g(t0, t1, . . . , tm) =
∑

s⊂[m]

(−1)m−|s|

∣

∣

∣

∣

∣

t0B0 +
∑

i∈s

tiBi

∣

∣

∣

∣

∣

.

Observe that g is a homogeneous polynomial of degree n and note that g(t0, 0, t2, . . . , tm) = 0, which

can be seen by noticing that, in this particular case, the sum is telescopic. This implies that, in the

polynomial g(t0, . . . , tm), all monomials with non-zero coefficients must contain a non-zero power of t1.

The same being true for each ti, i ≥ 1, there is no non-zero monomials if m > n. If m ≤ n all non-zero

monomials must come from the case |s| = m, that is, from

|t0B0 + t1B1 + · · · + tmBm|,

which finishes the proof. �

Thanks to the fact that supermodular set functions taking the value 0 at the empty set are

fractionally superadditive (see, e.g., [42, 44]), we can immediately deduce the following inequality. Let

n ≥ 1, k ≥ 2 be integers and let A1, . . . ,Ak be convex sets in R
n. Then, for any fractional partition β using

a hypergraph C on [k],

∣

∣

∣

∣

∣

k
∑

i=1

Ai

∣

∣

∣

∣

∣

≥
∑

s∈C
β(s)

∣

∣

∣

∣

∣

∣

∑

j∈s

Aj

∣

∣

∣

∣

∣

∣

. (22)

It was shown in [6] that (22) actually extends to all compact sets in R
n, but supermodularity does

not extend to compact sets as discussed in the next section. In fact, an even stronger inequality—

fractional superadditivity of the functional vr(A) = |A|1/n—had been conjectured for compact sets in

[10] motivated by analogy to information theoretic inequalities [3, 36], but this conjecture was shown

to be false in [23]. As observed in [41], the latter counterexample also shows that a natural conjecture

about Schur-concavity of volume is false when applied to non-convex sets.

3.3 Going beyond convex bodies
Consider sets A,B ⊂ R

n, such that 0 ∈ B. Define 
B(A) = (A + B) \ A, and note that A + B is always

a superset of A because of the assumption that 0 ∈ B. The supermodularity of volume is also saying

something about set increments. Indeed, for any sets A,B,C consider


C
B(A) = 
C

(

(A + B) \ A
)

=
((

(A + B) \ A
)

+ C
)

\
(

(A + B) \ A
)

.
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We have, if 0 ∈ B ∩ C:

|
C
B(A)| =
∣

∣

(

(A + B) \ A
)

+ C
∣

∣ − |(A + B) \ A|

≥ |(A + B + C) \ (A + C)| − |A + B| + |A|

= |A + B + C| − |A + C| − |A + B| + |A|, (23)

where the inequality follows from the general fact that (K+ C) \ (L+ C) ⊂ (K \ L) + C. Moreover, if A,B,C

are convex, compact sets then the estimate is non-trivial, that is, using Theorem 3.9, we get that the

right-hand side of the above quantity is non-negative. It is interesting to note that the 
 operation is

not commutative, that is, 
C
B(A) �= 
B
C(A); this can be seen, for example, in R
2 by taking A to be a

square, B to be a segment, and C to be a Euclidean ball.

It is natural to ask if the higher-order analog of this observation remains true.

Question 3.10. Let m ∈ N and B1, . . .Bm ⊂ R
n be compact sets containing the origin. Then, for any

compact B0 ⊂ R
n, is it true that

∣

∣
B1 . . . 
Bm (B0)
∣

∣ ≥
∑

s⊂[m]

(−1)m−|s|

∣

∣

∣

∣

∣

B0 +
∑

i∈s

Bi

∣

∣

∣

∣

∣

?

The inequality (23) gives a positive answer to the above question in the case m = 2. We also observe

that if B0,B1, . . . ,Bm are convex, then the right-hand side is non-negative thanks to Theorem 3.6. We

note that it was observed in [24], by considering A = {0, 1} and B = C = [0, 1] in R
1, that the volume of

Minkowski sums cannot be supermodular (even in dimension 1) if the convexity assumption on the set

A is removed. Nonetheless, [24] observed that if A,B,C ⊂ R are compact, then

|A + B + C| + |conv(A)| ≥ |A + B| + |A + C|;

it is unknown if this extends to higher dimension. In particular, we do not know if the following

conjecture is true for n ≥ 2.

Conjecture 3.11. For any convex body A and any compact sets B and C in R
n,

|A + B + C| + |A| ≥ |A + B| + |A + C|.

We can confirm Conjecture 3.11 under the assumption that B is a zonoid.

Theorem 3.12. Assume A is a convex compact set, B is a zonoid and C is any compact set in R
n.

Then,

|A + B + C| + |A| ≥ |A + B| + |A + C|.

Proof. By approximation, we may assume that B is a zonotope. Using the definition of mixed volumes

(4) and (7) we get that for any convex compact set M in R
n,

|M + [0, tu]| − |M| = t|Pu⊥M|n−1, for allt > 0,u ∈ Sn−1.

The above formula can be also proved using a geometric approach and thus studied in the case of not

necessarily convex M. Indeed, consider a compact set M in R
n, t > 0 and u ∈ Sn−1, let ∂uM be the set of

all x ∈ ∂M such that x · u ≥ y · u, for all y ∈ M for which Pu⊥y = Pu⊥x. Note that

(∂uM + (0, tu]) ∩ M = ∅, butM ∪ (∂uM + (0, tu]) ⊆ M + [0, tu].
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Thus,

|M + [0, tu]| ≥ |M| + t|Pu⊥M|n−1.

Now, we are ready to prove the theorem with B = [0, tu],

|A + C + [0, tu]| − |A + C| ≥ t|Pu⊥ (A + C)|n−1 ≥ t|Pu⊥A|n−1 = |A + [0, tu]| − |A|.

Thus, we proved that, for any u ∈ R
n,

|A + C + [0,u]| − |A + [0,u]| ≥ |A + C| − |A|. (24)

Now, we can prove the theorem for the case of a zonotope. Indeed, let Zk =
∑k

i=1[0,ui] be a zonotope.

Apply inequality (24) to the convex body A + Zk−1 and the vector u = uk to get

|A + C + Zk| − |A + Zk| ≥ |A + C + Zk−1| − |A + Zk−1|.

Iterate the above inequality to prove the theorem for the case of B being a zonotope. The theorem now

follows from continuity of the volume and the fact that every zonoid is a limit of zonotopes. �

4 Plünnecke-Ruzsa Inequalities for Convex Bodies
4.1 Existing Plünnecke-Ruzsa inequality for convex bodies
Bobkov and Madiman [9] developed a technique for going from entropy to volume estimates, by using

certain reverse Hölder inequalities that hold for convexmeasures. Specifically, [9, Proposition 3.4] shows

that if Xi are independent random variables with Xi uniformly distributed on a convex body Ki ⊂ R
n for

each i = 1, . . . ,m, then h(X1 + . . . + Xm) ≥ log |K1 + . . . + Km| − n logm, where the entropy of a random

variable X with density f on R
n is defined by

h(X) = −
∫

f (x) log f (x)dx. (25)

This is a reverse Hölder inequality in the sense that h(X1 + . . . + Xm) ≤ log |K1 + . . . + Km| may be seen

by applying Hölder’s inequality and then taking a limit. More general sharp inequalities relating Rényi

entropies of various orders for measures having convexity properties are described in [22] (see also

[7, 8, 26]). Applied to the submodularity of entropy of sums discovered in [35], the paper [9] uses this

technique to demonstrate the following inequality.

Theorem 4.1. Let Ck denote the collection of all subsets of [m] = {1, . . . ,m} that are of cardinality

k. Let A and B1, . . . ,Bm be convex bodies in R
n, and suppose

∣

∣

∣

∣

A +
∑

i∈s

Bi

∣

∣

∣

∣

1
n

≤ cs|A|
1
n

for each s ∈ Ck, with given numbers cs. Then,

∣

∣

∣

∣

A +
m

∑

i=1

Bi

∣

∣

∣

∣

1
n

≤ (1 + m)

[

∏

s∈Ck

cs

] 1

(
m−1
k−1 ) |A|

1
n .

In particular, by choosing k = 1, one already obtains an interesting inequality for volumes of

Minkowski sums.
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Corollary 4.2. Let A and B1, . . . ,Bm be convex bodies in R
n. Then,

|A|m−1

∣

∣

∣

∣

A +
m

∑

i=1

Bi

∣

∣

∣

∣

≤ (1 + m)n
m

∏

i=1

|A + Bi|.

Thus, onemay think of Corollary 4.2 as providing yet another continuous analogues of the Plünnecke-

Ruzsa inequalities in the context of volumes of convex bodies in Euclidean spaces (compare with (13)),

where going from the discrete to the continuous incurs the extra factor of (1 + m), but one does not

need to bother with taking subsets of the set A. In particular, with m = 2, one gets “log-submodularity

of volume up to an additive term” on convex bodies.

Corollary 4.3. Let A and B1,B2 be convex bodies in R
n. Then,

|A| |A + B1 + B2| ≤ 3n|A + B1| |A + B2|. (26)

Unfortunately, the dimension-dependent additive term is a hindrance that one would like to remove

or improve, which is the purpose of the next section.

Remark 4.4. We notice that in the case where B1 = B2 = B, the inequality holds with constant 1:

|A| |A + B + B| ≤ |A + B|2.

by the Brunn-Minkowski inequality. In the next section, we shall see that it is no longer true

for B1 �= B2. Moreover, as we will see in Lemma 4.22, the above inequality is not true with any

absolute constant if we only assume that the sets A and B1 are compact, which exposes an

essential difference of this inequality with (13).

4.2 Improved upper bounds in general dimension
In this section, we will present an improvements in the constant 3n in the three body inequality

from Corollary 4.3. We denote the best constant in such an inequality by cn; this is defined by (2), or

equivalently as the infimum of the constants c > 0 such that, for every convex compact sets A,B,C

in R
n,

|A| |A + B + C| ≤ c|A + B| |A + C|.

For convenience, let us define

c(A,B,C) =
|A| |A + B + C|
|A + B| |A + C|

,

so that cn = supA,B,C∈K(o)
n
c(A,B,C). The following lemma finds repeated use.

Lemma 4.5. Let n ≥ 2. For compact convex sets A,B,C ⊂ R
n, let

vA,B,C(j,m) =
V(A[n − j − m],B[j],C[m])

(n − j − m)!
,

and

d(A,B,C) = max
j,m:0≤j+m≤n

vA,B,C(0, 0)vA,B,C(j,m)

vA,B,C(j, 0)vA,B,C(0,m)
.

Then c(A,B,C) ≤ d(A,B,C). Consequently, cn ≤ dn := supA,B,C∈K(o)
n
d(A,B,C).
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Proof. We apply (4) to get

|A| |A + B + C| =
∑

k+j+m=n

(

n

k, j,m

)

|A|V(A[k],B[j],C[m])

=
∑

0≤j+m≤n

(

n

j,m,n − j − m

)

|A|V(A[n − j − m],B[j],C[m]),

|A + B| |A + C| =
n

∑

j=0

n
∑

m=0

(

n

j

)(

n

m

)

V(A[n − j],B[j])V(A[n − m],C[m]).

The comparison of the above sums term by term shows that c(A,B,C) ≤ d if d satisfies

|A|V(A[n − j − m],B[j],C[m]) ≤ d

(n
j

)(n
m

)

( n
j,m,n−j−m

)V(A[n − j],B[j])V(A[n − m],C[m]),

for each m, j ≥ 0 with m + j ≤ n. The above may be rewritten in a more symmetric way as

|A|
n!

V(A[n − j − m],B[j],C[m])

(n − j − m)!
≤ d

V(A[n − j],B[j])

(n − j)!

V(A[n − m],C[m])

(n − m)!
. (27)

By definition, d(A,B,C) is the best constant that satisfies all these conditions, and we deduce that

c(A,B,C) ≤ d(A,B,C). �

We recall that ϕ = (1 +
√
5)/2 denotes the golden ratio.

Theorem 4.6. Let n ≥ 2. Then, one has 1 = c2 ≤ cn ≤ ϕn, that is, for every convex compact sets

A,B,C ⊂ R
n,

|A| |A + B + C| ≤ ϕn|A + B| |A + C|.

Proof. Observe that, taking B = C = {0} we get cn ≥ 1. For the upper bound, we use Lemma 4.5.

Notice that for m = 0 or j = 0, (27) trivially holds for d = 1. Using inequality (12), we get that d will

satisfy inequality (27) as long as

min

{(

n − j

m

)

,

(

n − m

j

)}

≤ d. (28)

Note that the above is true with constant d = 1 if m + j = n.

We also note that, if m = j = 1, then the required inequality (27) becomes

|A|V(A[n − 2],B,C) ≤ d
n

n − 1
V(A[n − 1],B)V(A[n − 1],C). (29)

Using (11), we see that in this case, it suffices to select d = 2(n−1)

n . In particular, we get that c2 = d2 = 1.

For the more general case, we can provide a bound for d1/n
n using Stirling’s approximation formula.

Indeed,

(

p

q

)

≤
pp

(p − q)p−qqq
e

1
12p − 1

12(p−q)+1 − 1
12q+1

√

p

2π(p − q)q

(

p

q

)

≤
pp

(p − q)p−qqq
e

1
12p − 12p+2

(12(p−q)+1)(12q+1)

√

p

2π(p − 1)
≤

pp

(p − q)p−qqq
.
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Next, let j = yn and m = xn, where x, y ≥ 0, x + y ≤ 1, then it is sufficient for dn to satisfy

max
x,y≥0
x+y≤1

min

{

(1 − y)1−y

(1 − x − y)1−x−yxx
,

(1 − x)1−x

(1 − x − y)1−x−yyy

}

≤ d1/n
n .

Without loss of generality we may assume that |x− 1/2| ≤ |y− 1/2| and thus (1− x)1−xxx ≤ (1− y)(1−y)yy.

Our next goal is to provide an upper estimate for

max
(1 − x)1−x

(1 − x − y)1−x−yyy
,

where the maximum is taken over a set

� = {(x, y) ∈ R
2
+ : x + y ≤ 1, |1/2 − x| ≤ |1/2 − y|}

= {(x, 1 − x) : 0 ≤ x ≤ 1/2} ∪ {(x, y) ∈ R
2
+ : y ≤ min(x, 1 − x)}.

We note that the function y �→ (1 − x − y)1−x−yyy is decreasing for y ∈ [0, (1 − x)/2] and increasing on

[(1 − x)/2, (1 − x)]. So we may consider two cases, comparing x and (1 − x)/2. Next,

max
�∩{x∈[0,1/3]}

(1 − x)1−x

(1 − x − y)1−x−yyy
= max

[0,1/3]

(1 − x)1−x

(1 − 2x)1−2xxx
=

1 +
√
5

2
.

The last equality follows from the fact that the maximum is achieved when (1−2x)2

(1−x)x = 1, that is, at

x = (5 −
√
5)/10. Finally,

max
�∩{x∈[1/3,1]}

(1 − x)1−x

(1 − x − y)1−x−yyy
≤ max

x∈[1/3,1]

(1 − x)1−x

((1 − x)/2)1−x
= 22/3 <

1 +
√
5

2
.

�

Remark 4.7. Recently Cheikh Saliou Ndiaye [46] proved a very useful extension to the inequality

of Xiao (12) and thus extended Theorem 4.6 by providing an estimate for the best constant cn,m
such that, for any convex bodies A,B1, . . . ,Bm in R

n, then

|A| |A + B1 + · · · + Bm| ≤ cn,m

m
∏

i=1

|A + Bi|. (30)

Ndiaye [46] established in particular that cn,m ≤ 2n and other sharper bounds depending on m.

The next proposition gives a different proof of (14) for a special case of three convex sets and,we hope,

gives yet another example of how the methods of mixed volumes as well as the Bézout type inequality

(12) can be applied in this context.

Proposition 4.8. Let A,B,C be convex bodies in R
n, then

|A| |B + C| ≤ |A + B||A + C|, (31)

with equality if and only if |A| = 0.



Sumset Estimates in Convex Geometry | 11441

Proof. The inequality follows from the proof of Theorem 4.6 and the observation that decomposing the

left- and right-hand sides of the (31), we need to show that

n
∑

m=0

(

n

m

)

|A|V(B[n − m],C[m]) ≤
n

∑

j=0

n
∑

m=0

(

n

j

)(

n

m

)

V(A[n − j],B[j])V(A[n − m],C[m]).

It turns out that it is enough to consider only the terms with m+ j = n on the right-hand side, that is, to

show that

n
∑

m=0

(

n

m

)

|A|V(B[n − m],C[m]) ≤
n

∑

m=0

(

n

n − m

)(

n

m

)

V(A[m],B[n − m])V(A[n − m],C[m]),

which is true term by term by using (12) with m+ j = n. Now assume that there is equality. This implies

that the term j = m = 0 in the above double sum must vanish, that is, |A| = 0. �

Remark 4.9. Cheikh Saliou Ndiaye [46] used mixed volume techniques as well as determinant

inequalities to give a proof of Ruzsa’s inequality (14) in the case of convex sets A,B1, . . . ,Bm,

that is, the extension of Proposition 4.8 from m = 2 to general m.

4.3 Improved constants in dimensions 3 and 4
Theorem 4.6 gives an optimal bound of 1 for the three body inequality in dimension 2. Next, we will

show how we can get better bounds for cn in dimension 3 and 4.

Theorem 4.10. Let A,B,C be convex compact sets in R
3. Then,

|A| |A + B + C| ≤
4

3
|A + B| |A + C|

and the constant is best possible: c3 = 4
3 . Moreover, if A is a simplex, then

|A| |A + B + C| ≤ |A + B| |A + C|.

Proof. We follow the same strategy as in the proof of Theorem 4.6 and arrive to the inequality (27) with

m, j ≥ 0 and m + j ≤ 3:

|A|
3!

V(A[3 − j − m],B[j],C[m])

(3 − j − m)!
≤ d

V(A[3 − j],B[j])

(3 − j)!

V(A[3 − m],C[m])

(3 − m)!
.

Again, the inequality is trivially true for m = 0 or j = 0 with constant d = 1. Thus, we are left with the

two following inequalities

|A|V(C,B[2]) ≤ 3d · V(A,B[2])V(A[2],C), (32)

|A|V(A,B,C) ≤
3

2
d · V(B,A[2])V(C,A[2]). (33)

We note that the inequality (32) with d = 1 follows from (12). Next we note that (33) is true with d = 1

whenA is a simplex (see [57]). The general case of (33) follows from (11) with d = 4/3. Thus, themaximal

constant d3 is 4/3, and it follows from Lemma 4.5 that c3 ≤ 4/3. The optimality of this bound follows

from Section 4.4, where we establish more generally that cn ≥ 2 − 2
n . �
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Theorem 4.11. Let A,B,C be convex compact sets in R
4, then

|A| |A + B + C| ≤ 2|A + B| |A + C|.

Thus, c4 ≤ 2. Moreover, if A is a simplex, then

|A| |A + B + C| ≤ |A + B| |A + C|.

Proof. We will check inequality (27) for n = 4, 0 ≤ m ≤ j ≤ 4 and m + j ≤ 4:

|A|
4!

V(A[4 − j − m],B[j],C[j])

(4 − j − m)!
≤ d

V(A[4 − j],B[j])

(4 − j)!

V(A[4 − m],C[m])

(4 − m)!
. (34)

The inequality is trivially true for m = 0 or j = 0 with a constant d = 1. Taking into account that the

inequality is symmetric with respect to m and j and to B and C we get that it is enough to obtain cases

(j,m) = {(1, 1); (1, 2); (1, 3); (2, 2)}. For (j,m) = (1, 1), we require

|A|V(A[2],B,C) ≤
4

3
d · V(A[3],B)V(A[3],C).

If A is a simplex, then the above is true with 4
3d = 1 (see [57]), and the general case follows from (11)

with 4
3d = 2 (or d = 3

2 ). For (j,m) = (1, 2), we require

|A|V(A,B,C[2]) ≤ 2d · V(A[3],B)V(A[2],C[2]).

We again observe that if A is a simplex then the above is true with 2d = 1. To resolve the general case,

we apply (12) with n = 4 and (j,m) = (1, 2) to get 2d = 4, which will satisfy the requirement. When

(j,m) = (1, 3) and we may use the remark after (28) to claim that d = 1 will satisfy the condition (34).

Thus, the maximal constant d4 = 2, and Lemma 4.5 yields that c4 ≤ 2. �

Remark 4.12. We conjecture that actually c4 = 3/2.

Remark 4.13. We conjecture that, for 1 ≤ j ≤ n,

|A|V(L1, . . . , Lj,A[n − j]) ≤ jV(Lj,A[n − 1])V(L1, . . . , Lj−1,A[n − j + 1]).

This conjectured inequality would improve a special case of (12). It would also provide an

improved constant for the (j,m) = (1, 2) case in the proof of Theorem 4.11, and thereby show

that d4 = 3/2, which together with the lower bound from the next section, would yield the

conjectured best constants (c4 = d4 = 3/2) in R
4.

4.4 Lower bounds in general dimension
In this section,we provide a lower bound for the Plünnecke-Ruzsa inequality for convex bodies.Aweaker

lower bound was also independently obtained by Nayar and Tkocz [45]. We first observe that the best

constant cn in the Plünnecke-Ruzsa inequality:

|A| |A + B + C| ≤ cn|A + B| |A + C|, (35)

satisfies cn+m ≥ cncm. Indeed, this follows immediately by considering critical examples of A1,B1,C1 in

R
n and A2,B2,C2 in R

m together with their direct products A1 × A2,B1 × B2,C1 × C2 in R
n+m. Next, we

notice that if (35) is true in a class of convex bodies closed by linear transformations, then

|PE∩HK||K| ≤ cn|PEK| |PHK|, (36)



Sumset Estimates in Convex Geometry | 11443

for any K in this class and any subspaces E,H of Rn, such that dimE = i, dimH = j, i + j ≥ n + 1 and

E⊥ ⊂ H. To see this consider B = U, with dimU = n − i, |U| = 1 and C = V, with dimV = n − j, |V| = 1 and

U,V belong to orthogonal subspaces of Rn. Let A = tK, where t > 0 and set k = n−(n− i)−(n− j) = i+ j−n.

Then, (35) yields together with (4) and (6),

tn|K|
(

n
∑

m=k

(

n

m

)

V(K[m], (U + V)[n − m])tm
)

≤ cn
(

n
∑

m=i

(

n

m

)

V(K[m],U[n − m])tm
)(

n
∑

m=j

(

n

m

)

V(K[m],V[n − m])tm
)

.

Dividing the above inequality by tn+k and taking t = 0, we get

|K|
(

n

k

)

V(K[k], (U + V)[n − k]) ≤ cn

(

n

i

)

V(K[i],U[n − i])

(

n

j

)

V(K[j],V[n − j]).

Finally, using (6), we get (36). It was proved in [28] that

|P{u,v}⊥K||K| ≤
2(n − 1)

n
|Pu⊥K| |Pv⊥K|, (37)

for any convex body K ⊂ R
n and a pair of orthogonal vectors u,v ∈ Sn−1. It was also shown in [28] that the

constant 2(n− 1)/n is optimal. Thus, cn ≥ 2− 2
n and this estimate gives a sharp constant in R

3: c3 = 4/3.

In the case when n = 4, we get c4 ≥ 3/2.

The inequalities analogous to (37) and (36) were studied in many other works, including [2, 4, 18, 57].

In particular, it was proved in [2] that (36) is sharp with

cn ≥ cn(i, j, k) =
( i
k

)( j
k

)

(n
k

) .

Thus, to find a lower bound on cn, one may maximize over cn(i, j, k) with restriction that i+ j ≥ n+ 1 and

k = i + j − n. One may use Stirling’s approximation, with i = j = 2n/3 and k = n/3 (when n is a multiple

of 3, with minor modifications if not) to obtain the following theorem.

Theorem 4.14. For sufficiently large n, we have that cn ≥
(

4
3 + o(1)

)n
.

4.5 Improved upper bound for subclasses of convex bodies
The goal of this section is to prove the following theorem:

Theorem 4.15. Let n ≥ 1 and K be a convex body in R
n. Let B be an ellipsoid and Z be a zonoid in

R
n. Then,

|B| |B + K + Z| ≤ |B + K| |B + Z|.

Theorem 4.15 motivates us to pose the following conjecture.

Conjecture 4.16. Let n ≥ 1 and A,B,C be zonoids in R
n. Then,

|A| |A + B + C| ≤ |A + B| |A + C|.

A detailed study of this conjecture is undertaken in the paper [25].

Before proving Theorem 4.15, we will prove a theorem that would help us to verify Plünnecke-Ruzsa

inequality for convex bodies when the body A is fixed.
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Theorem 4.17. Let n ≥ 1 and A,B be a convex bodies in R
n such that for every 1 ≤ k ≤ n and any

subspace E of Rn of dimension k one has

|PE(A + B)|k
|PE∩u⊥ (A + B)|k−1

≥
|PEA|k

|PE∩u⊥A|k−1
.

Then, for any zonoid Z in R
n, one has

|A| |A + B + Z| ≤ |A + B| |A + Z|.

Proof. Notice that it is enough to prove the inequality for Z being a zonotope and use an approximation

argument. In fact, we prove by induction on k that for any 1 ≤ k ≤ n and any subspace E of R
n of

dimension k and zonoid Z in E one has

|PEA|k|PE(A + B) + Z|k ≤ |PE(A + B)|k|PEA + Z|k. (38)

This statement is true for k = 1 so let us assume that it’s true for k − 1, for some 1 ≤ k ≤ n and let’s

prove it for k. Let E be a subspace of dimension k. To prove that inequality (38) holds for any zonotope

in E, we proceed by induction on the number of segments in Z. Notice that the inequality holds as an

equality for Z = 0. Let us assume that inequality (38) holds for some fixed zonotope Z in E and prove it

for Z + t[0,u] where t > 0 and u ∈ Sn−1 ∩ E. Using (5), we get

|PE(A + B) + Z + t[0,u]|k = |PE(A + B) + Z|k + t|PE∩u⊥ (A + B + Z)|k−1

and

|PEA + Z + [0, tu]|k = |PEA + Z|k + t|PE∩u⊥ (A + Z)|k−1.

Applying the induction hypothesis, it is enough to prove that

|PEA|k|PE∩u⊥ (A + B + Z)|k−1 ≤ |PE∩u⊥ (A + Z)|k−1|PE(A + B)|k. (39)

But the inequality in the k − 1-dimensional subspace E ∩ u⊥ for the zonotope Pu⊥Z gives

|PE∩u⊥ (A)|k−1|PE∩u⊥ (A + B + Z)|k−1 ≤ |PE∩u⊥ (A + B)|k−1|PE∩u⊥ (A + Z)|k−1.

Multiplying this inequality by the assumption of the theorem:

|PEA|k
|PE∩u⊥A|k−1

≤
|PE(A + B)|k

|PE∩u⊥ (A + B)|k−1
,

we get (39). �

Next, we will prove that Bn2 satisfies the conditions of Theorem 4.17.

Theorem 4.18. Let n ≥ 1 and K be a compact set in R
n. Let u ∈ Sn−1. Then,

|K + Bn2|
|Pu⊥ (K + Bn2)|n−1

≥
|Bn2|

|Bn−1
2 |n−1

.
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Proof. We will use a trick from [4] to reduce the proof to the case of K ⊂ u⊥. Indeed, let Su be the Steiner

symmetrization with respect to u ∈ Sn−1 (see [56] and [12] remark 9.3.2). Then one has

Su(K + Bn2) ⊃ Su(K) + Su(B
n
2) = Su(K) + Bn2.

Hence,

|K + Bn2| = |Su(K + Bn2)| ≥ |Su(K) + Bn2|.

Moreover, Pu⊥ (Su(K)) = Pu⊥K and Pu⊥K ⊂ K, hence,

|K + Bn2| ≥ |Pu⊥K + Bn2|.

It follows that we are reduced to the case when K ⊂ u⊥, that is, K = Pu⊥K. Without loss of generality, we

may assume that u = en and we write Bn2 ∩ u⊥ = Bn−1
2 . In this case, we can describe the set K + Bn2 by its

slices by the hyperplanes orthogonal to en denoted Ht = {x ∈ R
n : xn = t}, t ∈ R. We have

(K + Bn2) ∩ Ht = K + Bn2 ∩ Ht = K +
√

1 − t2Bn−1
2 + ten.

Using (5), we get that for all t ∈ [−1, 1],

|(K + Bn2) ∩ Ht|n−1 =
∣

∣

∣K +
√

1 − t2Bn−1
2

∣

∣

∣ n−1.

It follows from Proposition 2.1 [27] (see also [58]) that

∣

∣

∣K +
√

1 − t2Bn−1
2

∣

∣

∣ n−1 ≥
∣

∣

∣

√

1 − t2K +
√

1 − t2Bn−1
2

∣

∣

∣ n−1.

Using Fubini’s theorem, we get

|K + Bn2| =
∫ 1

−1
|(K + Bn2) ∩ Ht|n−1dt ≥

∣

∣K + Bn−1
2

∣

∣

n−1

∫ 1

−1
(1 − t2)

n−1
2 dt.

We finish the proof by noticing that

∫ 1

−1
(1 − t2)

n−1
2 dt =

|Bn2|
|Bn−1

2 |
.

�

Proof of Theorem 4.15. Let T be the affine transform such that B = T(Bn2). If B lives in an hyperplane

then |B| = 0 and the inequality holds. If not, then T is invertible and since the affine image of a zonoid

is a zonoid by applying T−1, we may assume that B = Bn2. Now the theorem follows immediately from

Theorems 4.18 and 4.17. �

Remark 4.19. By applying a linear transform, it is possible to show that, more generally, for any

compact set K and for any ellipsoid B,

|K + B|
|Pu⊥ (K + B)|n−1

≥
|B|

|Pu⊥B|n−1
.

Indeed, let T ∈ GLn, such that B = TBn2. Denoting H = (T∗u)⊥, one has, that for any compact K,

Pu⊥ (TK) = TPH,T−1uK, where PH,T−1uK is the linear projection of K onto H along T−1u. Then, the

remark follows by applying Theorem 4.18 to TK.
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Corollary 4.20. Let n ≥ 1 and K be a convex body in R
n. Let B be an ellipsoid and Z1, . . . ,Zm, m ≥ 1

be zonoids in R
n. Then,

|B|m|B + K + Z1 + . . .Zm| ≤ |B + K|
m

∏

i=1

|B + Zi|.

Proof. The corollary follows immediately applying induction on m ≥ 1 together with Theorem 4.15:

|B|m|B + K + Z1 + . . .Zm| ≤ |B|m−1|B + K + Z1 + . . .Zm−1| |B + Zm|.
�

Remark 4.21. Theorem 4.6 was inspired by the following inequality

V(Bn2[n − 1],Z)V(Bn2[n − 1],K) ≥
n − 1

n
cn|Bn2|V(Bn2[n − 2],Z,K), (40)

where cn = |Bn−1
2 |2/(|Bn−2

2 | |Bn2|) > 1. This inequality was proved by Artstein-Avidan, Florentin,

and Ostrover [4] when Z is a zonoid and K is an arbitrary convex body, as a generalisation of a

result of Hug and Schneider [31] who proved it for K and Z zonoids. It is an interesting question

if one can prove directly Theorem 4.15 by using the decomposition into mixed volumes as it

was done in the proof of Theorem 4.6 and applying inequality (40). Inequality (40) is a sharp

improvement of (12) in the case when A = Bn2 and m = j = 1, and one of the bodies is a zonoid.

Unfortunately, there seems not to be a direct way to apply (40) to prove Theorem 4.15 due to

the lack of a sharp analog of this inequality for V(Bn2[n − m − j],Z[m],K[j]) when m, j > 1.

4.6 The case of compact sets
Let us note that the inequality

|A| |A + B + C| ≤ |A + B| |A + C| (41)

is valid when A,B are intervals and C is any compact set in R. Indeed, by approximation wemay assume

thatC is a finite union of closed intervals,A = [0, a] and B = [0, b], for some a, b ≥ 0.Then,wemay assume

that A + C = ∪m
i=1[αi,βi + a] where intervals [αi,βi + a] are mutually disjoint. Then,

|A + C| = ma +
m

∑

i=1

(βi − αi),

|A + B + C| ≤
m

∑

i=1

(βi − αi + a + b) = m(a + b) +
m

∑

i=1

(βi − αi),

and (41) follows from

a(m(a + b) +
m

∑

i=1

(βi − αi)) ≤ (ma +
m

∑

i=1

(βi − αi))(a + b).

We also note that, as discussed before, inequality (13) as well as inequality (31) and Theorem 4.18 are

valid without additional convexity assumptions.

Still, we now show that there is a sharp difference to those inequalities– the convexity assumption

in Theorem 4.6 can not be removed. The construction is inspired by the proof of [52, Theorem 7.1]:

Lemma 4.22. Fix n ≥ 1, then for any β > 0 there exist two compact sets A,B ⊂ R
n such that

|A| |A + B + B| > β|A + B|2.
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Proof. It is enough to prove the theorem for the case n = 1, indeed, for any other dimension n > 1, one

can consider A × [−1, 1]n−1, B × [−1, 1]n−1 where A,B are the example constructed in R.

To construct the sets A,B ⊂ R, we fix m, l ∈ N large enough and define first two discrete sets A′ and

B′ in R to establish the analogue result for cardinality instead of volume. Let

A′ = {x + y
√
2 : x, y ∈ {0, 1, . . . ,m − 1}} ∪ {z

√
3 : z ∈ {1, . . . ,m}},

thus #A′ = m(m + 1). We also define

B′ = {x : x ∈ {0, 1, . . . , l}} ∪ {y
√
2 : y ∈ {1, . . . , l}).

Thus, one has

B′ + B′ = {x + y
√
2 : x, y ∈ {0, 1, . . . , l}} ∪ {x : x ∈ {l + 1, . . . , 2l}} ∪ {y

√
2 : y ∈ {l + 1, . . . , 2l}}.

It follows that #(B′ + B′) = l2 + 4l + 1. It may help to imagine A′ and B′ as 3-dimensional subsets which

are linear combinations of vectors e1,
√
2e2 and

√
3e3. Then, it is easy to see that A′ + B′ consists of an

m×m square of integer points united with twom× l rectangles of integer points in the {e1, e2} plane and

two additional rectangles: one of sizem× (l+1) in the {e1, e3} plane and another of sizem× (l+1) in the

{e2, e3} plane, where the last two rectangles overlap by m points. Thus,

#(A′ + B′) = m2 + 2ml + 2(m(l + 1) − m) = m(m + 4l + 1).

Finally, we note that A′ + B′ + B′ contains the set

{z
√
3 : z ∈ {1, . . . ,m}} + B′ + B′,

thus #(A′ + B′ + B′) ≥ l2m. Now consider any β ′ > 0. Our goal is to select m, l ∈ N such that

#(A′)#(A′ + B′ + B′) > β ′(#(A′ + B′))2. (42)

For this, it is enough to pick m, l ∈ N such that

m(m + 1)l2m ≥ β ′m2(m + 4l + 1)2

or

√
m + 1l ≥

√

β ′(m + 4l + 1),

which is true as long as m + 1 > 16β ′ and l is large enough.

Now we are ready to construct our continuous example in R, for volume. For the fixed β > 0 consider

β ′ = 4
3β and sets A′ and B′ satisfying (42). Define A = A′ + [−ε, ε] and B = B′ + [−ε, ε] where ε > 0 small

enough such that

|A| = 2ε#(A′); |A + B| = 4ε#(A′ + B′) and |A + B + B| = 6ε#(A′ + B′ + B′),

which, together with (42) gives the required inequality. �

It turns out (see, for example, [21]) that some sumset estimates can still be proved if the convexity

assumption is relaxed by an assumption that the body is star-shaped. The next lemma shows that this

is still not the case for Theorem 4.6.
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Lemma 4.23. Fix n ≥ 3, then for any β > 0, there exists a compact star-shaped symmetric body

A ⊂ R
n such that

|A| |A + A + A| ≥ β|A + A|2.

Proof. Let n = 3, consider a cube Q = [−1, 1]3 and a set X = m([−e1, e1] ∪ [−e2, e2] ∪ [−e3, e3]), that is, the

union of 3 orthogonal segments of length 2m. Let A = Q ∪ X. Then,

|A + A| ≤ |X + X| + |Q + Q| + |X + Q| ≤ 0 + 43 + 3 ∗ (2m + 2) ∗ 2

but |A + A + A| ≥ |X + X + X| = 8m3. We note that in dimension n > 3 one can consider the direct sum

of the above three dimensional example with [−1, 1]n−3. �

5 Playing With Signs
5.1 Ruzsa’s triangle inequality
In additive combinatorics, the Ruzsa distance is defined by d(A,B) = log #(A−B)√

#(A)#(B)
, where A and B are

subsets of an abelian group. We refer to [60] for more information and properties of this object, which

is useful even though it is not a metric (since typically d(A,A) > 0). The Ruzsa distance satisfies the

triangle inequality, which is equivalent to #(C − B) · #A ≤ #(A − C)#(B − A).

An analogue of Ruzsa’s triangle inequality holds for compact sets in R
n.

Theorem 5.1. (see, e.g., [61, Lemma 3.12]) For any compact sets A,B,C ⊂ R
n,

|A| |B − C| ≤ |A − C| |A − B|. (43)

This inequality has a short proof that we provide here for the sake of completeness. Indeed

|B − A||A − C| =
∫

Rn

1B−A ∗ 1A−C(x)dx ≥
∫

B−C
1B−A ∗ 1A−C(x)dx,

where 1M is a characteristic function of a setM ⊂ R
n and f ∗g is the convolution of functions f , g : Rn → R.

Now let x ∈ B − C, there are b ∈ B and c ∈ C such that x = b − c. Thus, changing variable, one has

1B−A ∗ 1A−C(b − c) =
∫

Rn

1B−A(z)1A−C(b − c − z)dz =
∫

Rn

1B−A(b − y)1A−C(y − c)dy

≥
∫

A
1B−A(b − y)1A−C(y − c)dy = |A|.

5.2 An inequality with signed sums
In view of Ruzsa’s triangle inequality, it is natural to try to generalize Theorem 4.6 to the case of the

difference of convex bodies. We recall that ϕ = (1 +
√
5)/2 denotes the golden ratio and for n ≥ 2 the

constant cn was defined in Theorem 4.6 satisfying 1 = c2 ≤ cn ≤ ϕn.

Theorem 5.2. Let A,B,C be convex bodies in R
n. Then,

|A| |A + B + C| ≤
1

2n

(

2n

n

)

cn min{|A − B| |A + C|, |A − B| |A − C|, |A + B| |A − C|}. (44)
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Proof. We first recall Litvak’s observation (see [56, pp. 534]) that

|A + B| ≤
1

2n

(

2n

n

)

|A − B|, (45)

for any convex bodiesA,B in R
n, with equality forA = −B being simplices. Litvak obtained this by simply

combining the Rogers-Shephard inequality ([56], Theorem 10.1.4) and the Brunn-Minkowski inequality.

Indeed, applying the Rogers-Shephard inequality we get

|(A + B) − (A + B)| = |(A − B) − (A − B)| ≤
(

2n

n

)

|A − B|,

and the Brunn-Minkowski inequality gives us

|(A + B) − (A + B)| ≥ 2n|A + B|.

Now, we can write

|A| |A + B + C| ≤ cn|A + B| |A + C| ≤
1

2n

(

2n

n

)

cn|A − B| |A + C|,

where the first inequality follows from Theorem 4.6, and the second from Litvak’s observation. This

gives the first half of the inequality (44) (i.e., the inequality with the first term inside the minimum).

The third inequality is proved in a similar way.

Next, we notice that changing B to −B and C to −C, Theorem 4.6 becomes equivalent to

|A| |A − (B + C)| ≤ cn|A − B| |A − C|,

and we finish the proof of the inequality (44) (i.e., we get the inequality with the second term inside the

minimum) by applying Litvak’s observation on the left-hand side. �

Remark 5.3. We note that the constant in (44) is sharp in the case n = 2, no matter which term

inside the minimumwe consider. Indeed, if C = {0}, then (44) becomes |A+B| ≤ 3
2 |A−B|, which

is sharp for triangles A,B such that A = −B.

We can actually improve Theorem 5.2 in R
2 via the following inequality, which the next section is

dedicated to proving: if A,C are convex sets in R
2, then |A − C| ≤ |A + C| + 2

√

|A| |C|. This inequality is

an intriguing improvement (in dimension 2) of Litvak’s observation (45). To see this, observe that by the

Brunn-Minkowski inequality,

|A − B| ≥ (
√

|A| +
√

| − B|)2 = |A| + |B| + 2
√

|A| |B| = (
√

|A| −
√

|B|)2 + 4
√

|A| |B|,

and hence

4
√

|A| |B| ≤ |A − B| − (
√

|A| −
√

|B|)2.

Thus, in dimension 2, since c2 = 1, we obtain

|A| |A + B + C| ≤ |A + B| |A + C|

≤ (|A − B| + 2
√

|A| |B|) |A + C|

≤
[

3

2
|A − B| −

1

2
(
√

|A| −
√

|B|)2
]

|A + C|,

which is an improvement of Theorem 5.2 in dimension 2.
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5.3 A sum-difference inequality in the plane
For subsets A and C of an abelian group, comparison of cardinality of A + C and A − C has been of

interest in additive combinatorics (see, e.g., [48, 60]). Analogously, in the probabilistic setting, various

works have explored the comparison of the entropies of sums and differences of independent random

variables in different abelian groups (see, e.g., [1, 33, 34, 37]). Inspired by this background, we develop a

sharp sum-difference inequality when the abelian group in question is the Euclidean plane.

Theorem 5.4. Let A,C be two convex sets in R
2, then

|A − C| ≤ |A + C| + 2
√

|A| |C|. (46)

Moreover, the equality in the above inequality is only possible in the following cases:

• One of the sets A or C is a singleton or a segment and the other one is any convex body.

• A is a triangle and C = tA + b, for some t > 0 and b ∈ R
2.

Proof. Let us first prove the inequality. We note that (46) is equivalent to

V(A,−C) ≤ V(A,C) +
√

|A| |C|. (47)

Assume A = A1 + A2 and

V(A1,−C) ≤ V(A1,C) +
√

|A1| |C| andV(A2,−C) ≤ V(A2,C) +
√

|A2| |C|.

Then,

V(A,−C) = V(A1,−C) + V(A2,−C) ≤ V(A,C) +
√

|A1| |C| +
√

|A1| |C|.

Using the Brunn-Minkowski inequality in the plane:
√

|A1| +
√

|A1| ≤
√

|A|, we get

V(A,−C) ≤ V(A,C) +
√

|A| |C|.

Thus, to prove (47) we may assume that both A and C are triangles. Indeed, any planar convex body can

be approximated by a polygon and any planar polygon can be written as a Minkowski sum of triangles

[56] (here we will treat a segment as a degenerate triangle). If A or C is a segment, then the inequality

becomes an equality. Thus, we may assume that A and C are not degenerate triangles. We notice that

(47) is invariant under dilation and shift of the convex body C, thus we may assume that C ⊂ A and has

common points with all three edges of A. Thus, V(A,C) = |A| (see, for example, [57]). Finally, our goal is

to show that for any triangles A,C, such that C ⊂ A and C touches all edges of A, we have

V(A,−C) ≤ |A| +
√

|A| |C|. (48)

To prove the above inequality, one may use the technique of shadow systems ([50] or [56], Section 10.4).

In this particular case, the method can be applied directly. Indeed, if C = A, then (48) becomes an

equality. Otherwise, let C = conv{c1, c2, c3} and one of the c′is is not a vertex of A. Assume, without loss of

generality, that c1 is not a vertex of A. Then, there exists a vertex a1 of A such that the segment (a1, c1)

does not intersect C. Let ct = tc1 + (1 − t)a1 for t ∈ [t0, t1], where [t0, t1] is the largest interval such that

ct ∈ A and ct is not aligned with c2 and c3, for all t ∈ (t0, t1). Notice that ct0 and ct1 are either vertices of A

or belong to the line containing [c2, c3]. Let Ct = conv{ct, c2, c3}. Then,

V(A,−Ct) = V(−A,Ct) =
1

2

3
∑

i=1

hCt (−ui)|Fi|,



Sumset Estimates in Convex Geometry | 11451

where ui, i = 1, 2, 3 is a normal vector to the edge Fi of A. The function hCt (−ui) is convex in t and thus

the same is true for V(A,−Ct). We also notice that |Ct| is an affine function of t on [t0, t1] and thus

g(t) = V(A,−Ct) −
√

|A| |Ct|

is a convex function of t ∈ [t0, t1] and maxt∈[t0 ,t1] = max{g(t0), g(t1)}. Thus, the maximum of g(t) achieved

when either when Ct becomes a segment (and the proof is complete in this case) or ct reaches a vertex

of A. Then, either C = A or there is a vertex of C that is not a vertex of A and we repeat the procedure.

Now let us consider the equality case. Assume

V(A,−C) = V(A,C) +
√

|A| |C|. (49)

First, let us assume that A is not a triangle. Then, A is decomposable: it can be written as A = A1 + A2

where A1 is not homothetic to A2. Then, applying (47) we get

V(A1,−C) ≤ V(A1,C) +
√

|A1| |C| and V(A2,−C) ≤ V(A2,C) +
√

|A2| |C|.

From (49), we have equality in the above inequalities and

√

|A1| |C| +
√

|A2| |C| =
√

|A1 + A2| |C|.

The above equality is only possible in two cases: first, when there is an equality in Brunn-Minkowski

inequality, which would result A2 to be homothetic to A1, and we assumed that this is not the case, and

the second case, when |C| = 0, that is, C is the singleton or a segment. If C is not a triangle, then, the

above discussion shows that |A| = 0.

Now, we assume that A and C are non degenerate triangles. Using homogeneity of equality (49), we

may assume that the triangle C touches all edges of A and equality (49) becomes

V(A,−C) −
√

|A| |C| = |A|. (50)

Assume towards the contradiction that C �= A. Then, there is a vertex c1 of the triangle C = conv(c1, c2, c3)

that is not a vertex of A. We reproduce the same shadow system (Ct)t∈[t0 ,t1] as in the proof of the

inequality.We only need to prove that the function g(t) = V(A,−Ct)−
√

|A| |Ct| is not constant on [t0, t1]. To

do this, we prove that, among the two functions, V(A,−Ct) and
√

|Ct| at least one is not affine. There are

two cases. If |Ct| is not constant then
√

|Ct| is strictly concave, thus g is not a constant. If |Ct| is constant
then all vertices of C are different from the vertices of A. Recall that V(A,−Ct) = 1

2

∑3
i=1 hCt (−ui)|Fi|. Let

u2,u3 be the normal of the edges ofA that do not contain c1. Then it is easy to see that hCt (−u2)+hCt (−u3)

is not affine. Thus, V(A,−Ct) is not constant. This is a contradiction. �

Let us define the additive asymmetry of the pair (A,C) by

asym(A,C) =
∣

∣

∣

∣

|A + C|
|A − C|

− 1

∣

∣

∣

∣

,

and note that asym(A,C) is trivially 0 if either A or C is symmetric. Observe that inequality (46) may be

rewritten as

asym(A,C) ≤ 2e−d(A,C), (51)

where d(A,C) = log |A−C|√
|A|·|C|

is the Euclidean analogue of the Ruzsa distance defined at the beginning of

this section. One wonders if this inequality extends to dimension higher than 2.
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