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Sumset estimates, which provide bounds on the cardinality of sumsets of finite sets in a group, form an
essential part of the toolkit of additive combinatorics. In recent years, probabilistic or entropic forms
of many of these inequalities were introduced. We study analogues of these sumset estimates in the
context of convex geometry and the Lebesgue measure on R". First, we observe that, with respect
to Minkowski summation, volume is supermodular to arbitrary order on the space of convex bodies.
Second, we explore sharp constants in the convex geometry analogues of variants of the Pliinnecke-
Ruzsa inequalities. In the last section of the paper, we provide connections of these inequalities to the
classical Rogers-Shephard inequality.

1 Introduction

Minkowski summation is a basic and ubiquitous operation on sets. Indeed, the Minkowski sum A+ B =
{a+b:ae A,be B} of sets A and Bmakes sense aslong as A and B are subsets of an ambient set in which
a closed binary operation denoted by + is defined. In particular, this notion makes sense in any group,
and additive combinatorics (which arose out of exploring the additive structure of sets of integers, but then
expanded to the consideration of additive structure in more general groups) is a field of mathematics
that is preoccupied with studying what exactly this operation does in a quantitative way.

“Sumset estimates” are a collection of inequalities developed in additive combinatorics that provide
bounds on the cardinality of sumsets of finite sets in a group. In this paper, we use #(A) to denote the
cardinality of a countable set A, and |A| to denote the volume (i.e., n-dimensional Lebesgue measure)
of A when A is a measurable subset of R". The simplest sumset estimate is the two-sided inequality
#(A)#(B) > #(A + B) > #(A) + #(B) — 1, which holds for finite subsets A, B of the integers; equality in the
second inequality holds only for arithmetic progressions. A much more sophisticated sumset estimate
is Kneser's theorem [32] (cf., [60, Theorem 5.5], [14]), which asserts that for finite, nonempty subsets
A, B in any abelian group G, #(A + B) > #(A + H) + #(B + H) — #(H), where H is the stabilizer of A + B,
thatis, H={g € G: A+ B+ g = A + B}. Kneser’s theorem contains, for example, the Cauchy-Davenport
inequality that provides a sharp lower bound on sumset cardinality in Z/pZ. In the reverse direction of
finding upper bounds on cardinality of sumsets, there are the so-called Plinnecke-Ruzsa inequalities
[49, 51]. One example of the latter states that if #(A + B) < a#A, then #(A 4+ k- B) < o*#A, where k - B
refers to the sum of k copies of B. Such sumset estimates form an essential part of the toolkit of additive
combinatorics.

In the context of the Euclidean space R", inequalities for the volume of Minkowski sums of convex
sets, and more generally Borel sets, play a central role in geometry and functional analysis. For example,
the well-known Brunn-Minkowski inequality can be used to deduce the Euclidean isoperimetric
inequality, which identifies the Euclidean ball as the set of any given volume with minimal surface
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area. Therefore, it is somewhat surprising that in the literature, there has only been rather limited
exploration of geometric analogues of sumset estimates. We work towards correcting that oversight in
this contribution.

The goal of this paper is to explore a variety of new inequalities for volumes of Minkowski sums of
convex sets, which have a combinatorial flavor and are inspired by known inequalities in the discrete
setting of additive combinatorics. These inequalities are related to the notion of supermodularity: we
say that a set function F : 2" — R is supermodular if F(sUt) + F(sNt) > F(s) 4+ F(t) for all subsets s, t of [n],
and that F is submodular if —F is supermodular.

Our study is motivated by two relatively recent observations. The first observation motivating this
paper, from [24, Theorem 4.5], states that given convex bodies A, By, By in R", |JA + By + By + |A| > |[A +
Bi| + |A + By|. This inequality has a form similar to that of Kneser’s theorem- indeed, observe that the
latter can be written as #(A + B+ H) + #(H) > #(A + H) + #(B + H), since adding the stabilizer to A + B
does not change it. Furthermore, it implies that the function v : 2 — R defined, for given convex
bodies By, ..., By in R", by u(s) = |ZiES Bi} is supermodular. Foldes and Hammer [17] defined the notion
of higher order supermodularity for set functions. In Section 3, we generalize their definition and main
characterization theorem from [17] to functions defined on R, and apply it to show that volumes and
mixed volumes satisfy this higher order supermodularity.

The second observation motivating this paper, due to Bobkov and the second named author
[9, Corollary 7.5], is that for any convex bodies A, B1, B, in R", one has

|AllA + B1 4+ B;| < 3"|A 4+ B1]]A + By|. 1)

The above inequality is inspired by an inequality in information theory analogous to the Pliinnecke-
Ruzsa inequality (the most general version of which was proved by Ruzsa for compact sets in [53], and
is discussed in Section 2.2 below). If not for the multiplicative factor of 3" in (1), this inequality would
imply that the logarithm of the volume of the Minkowski sum of convex sets is submodular. In this sense,
it goes in the reverse direction to the supermodularity of volume and thus complements it. However,
the constant 3" obtained by [9] is rather loose. We take up the question of tightening this constant in
Section 4.
Specifically, we obtain both upper and lower bounds for the optimal constant

_ |AlJA+B+C|

G =SUP TRAYC

2)

where the supremum is taken over all convex bodies A, B, C in R", in general dimension n. We get an
upper bound of ¢, < ¢" in Section 4.2, where ¢ = (1 + +/5)/2 is the golden ratio, and an asymptotic
lower bound of ¢, > (4/3 + o(1))" in Section 4.4. In Section 4.3, we show that the optimal constant is 1
in dimension 2 and % in dimension 3 (i.e,, c; = 1 and c3 = 4/3), and also that ¢, < 2. In Section 4.5, we
improve inequality (1) in the special case where A is an ellipsoid, B; is a zonoid, and B; is any convex
body: in this case, the optimal constant is 1. This result partially answers a question of Courtade, who
asked (motivated by an analogous inequality in information theory) if [A 4+ B1 4+ By| |A| < |A+B1||A+ By|
holds when A is the Euclidean ball and By, B, are arbitrary convex bodies. Finally, in Section 4.6, we prove
that (1) cannot possibly hold in the more general setting of compact sets with any absolute constant,
which signifies a sharp difference between the proof of this inequality compared with the tools used by
Ruzsa in [53].

The last section of the paper is dedicated to questions surrounding Ruzsa’s triangle inequality: if A, B,
and C are finite subsets of an abelian group, then #(A)#(B — C) < #(A — B)#(A — C). This inequality is also
known to be true for volume of compact sets in R": |A||B — C| < |A — B||A — C|. We investigate the best
constant ¢ such that the inequality

|AlIA+B+C| <clA—-BJ|A-C]. 3)

is true for all convex sets A, B and C in R". For example, in the plane, we observe that it holds with the
sharp constantc = 3.

Again, it is interesting to note that (3) is different from Ruzsa’s triangle inequality, and it is not true,
with any absolute constant c, if one omits the assumption of convexity.
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In a companion paper [25] written together with M. Meyer, we explore the question of reducing the
constant in the Plinnecke-Ruzsa inequality for volumes from ¢", when we restrict attention to the
subclass of convex bodies known as zonoids. In another series of papers [19, 20] written together with
D. Langharst, we explore "weighted” extensions of the preceding results for convex bodies, focusing on
log-concave and in particular Gaussian measures.

We also mention that there are probabilistic or entropic analogues of many of the inequalities in this
paper. For example, the afore-mentioned observation due to [9], that a Plinnecke-Ruzsa inequality for
convex bodies holds with a constant 3", emerges as a consequence of Rényi entropy comparisons for
convex measures on the one hand, and the submodularity of entropy of convolutions on the other. The
submodularity of entropy of convolutions refers to the inequality h(X) +h(X+Y+2) < h(X+Y)+h(X+2),
where h denotes entropy, and X, Y, Z are independent R"-valued random variables, and may be thought
of as an entropic analogue of the Plinnecke-Ruzsa inequality. This latter inequality was obtained in
[35] as part of an attempt to develop an additive combinatorics theory for probability measures where
cardinality or volume of a set is replaced by entropy of a random variable. A number of works have
explored this avenue [30, 35, 37, 38] for probability measures on R" and more general locally compact
abelian groups; for discrete analogues (e.g., when the random variables take values in finite groups or
the integers), see for example [1, 39, 40, 43, 54, 59].

2 Preliminaries
2.1 Mixed Volumes

In this section, we introduce basic notations and collect essential facts and definitions from convex
geometry that are used in the paper. As a general reference on the theory we use [56].

We write x - y for the inner product of vectors x and y in R" and by |x| the length (Euclidean norm)
of a vector x € R™. The closed unit ball in R" is denoted by B}, and its boundary by S*~. We will also
denote by ey, ..., e, the standard orthonormal basis in R". Moreover, for any set in A C R", we denote its
boundary by 9A. We write |K|,, for the m-dimensional Lebesgue measure (volume) of a measurable set
K c R", where m = 1, ..., n is the dimension of the minimal affine space containing K, we will often use
the shorten notation |K| for the n-dimensional volume.

We write KC,, for the collection of nonempty convex compact subsets of R". A convex body in R" is
a convex, compact set with nonempty interior; we write K for the collection of convex bodies in R".
A polytope which is the Minkowski sum of finitely many line segments is called a zonotope. Limits of
zonotopes in the Hausdorff metric are called zonoids; see [56], Section 3.2, for details. From [56, Theorem
5.1.6], for any compact convex sets K, ... K, in R" and any non-negative numbers ti,..., t,, one has

.
Ky 4+ 6Kl = >t VK, K, 4

i1, in=

for some non-negative numbers V(Kj,,...,K; ), which are called the mixed volumes of Ky,...,K,;. One
readily sees that the mixed volumes satisfy V(X,...,K) = |K|. Moreover, they satisfy a number of
properties which are crucial for our study (see [56]) including the fact that a mixed volume is symmetric
inits argument; itis multilinear, thatis, forany A, u > 0 we have VAK+uL, Ko, ..., Ky) = AV(K, Ky, ..., Kn)+
nV(L, Ky, ... K. Mixed volume is translation invariant, that is, V(K + a,K,...K,) = V(K,K,,...,Ky), for
a € R" and satisfy a monotonicity property, i.e V(K,Ky,Ks,...,Ky) < V(L,Ky,Ks,...,Ky), for K C L. We will
also often use a two body version of (4)—the Steiner formula:

A + tB| = Z(Z)th(A[n—k],B[k]), 5)

k=0

for any t > 0 and any compact, convex sets A, B in R", where for simplicity we use the notation A[m]
when a convex set A is repeated m times.

Mixed volumes are also very useful for studying the volume of orthogonal projections of convex
bodies. Let PyA be the orthogonal projection of a convex body A onto an m dimensional subspace H of
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R" then
PaAlnlUln-n = (2 )VeALm), U = mi, ©

where U is any convex body in the subspace H* orthogonal to H. For example, if we denote by 61 = {x €
R" : x - § = 0} the hyperplane orthogonal to § € S"~! and passing through the origin, we obtain

[Pos Aln1 = nV(A[n - 1],[0,6]). )
Yet another useful formula is connected with the computation of the surface area and mixed volumes:
[9A| = nV(A[n — 1], BY), @)

where by |dA| we denote the surface area of the compact set A in R™.
Mixed volumes satisfy a number of extremely useful inequalities. The first one is the Brunn-
Minkowski inequality:

|A+B|"" = |A[Y" + BT, ©)

whenever A,B and A + B are measurable. The most powerful inequality for mixed volumes is the
Alexandrov-Fenchel inequality:

V(K1,Kp,Ks, ..., Ky) = VK, K1, Ks, ..., Kn) VK2, Ko, K3, ..., Kn), (10)

for any compact convex sets Kq,...K; in R". We will also use the following classical local version of
Alexandrov-Fenchel’s inequality that was proved by W. Fenchel (see [16] and also [56]) and further
generalized in [4, 18, 57],

JA[V(A[n —2],B,C) < 2V(A[n — 1], B)V(A[n — 1], C), (11)

for any convex compact sets A, B, C in R". Moreover it was noticed in [57] that (11) is true with constant
one instead of two in the case when A is a simplex. This inequality is one part of a rich class of Bézout-
type inequalities proposed in [55, 57]. The core tool of our work is the following inequality of J. Xiao
(Theorem 1.1 and Lemma 3.4 in [63])

[AIV(A[n —j —m],B[j], C[m])

<min (7). (1)) Vet =, Bibvear - m, cim), (12)
for any convex, compact sets A, B,C C R".

2.2 Pliinnecke-Ruzsa inequality

Pliinnecke-Ruzsa inequalities (see, e.g., [60]) are an important class of inequalities in the field of additive
combinatorics. These were introduced by Plinnecke [49] and generalized by Ruzsa [51], and a simpler
proof was given by Petridis [47]; a more recent generalization is proved in [29], and entropic versions
are developed in [40]. For illustration, the form of Plinnecke’s inequality developed in [51] states that,
if A,Bq,..., By are finite sets in a commutative group, then there exists an X C A, X # ¢, such that

#A)" X+ By +... 4 By) < #X) [ [ #(A +B).
i=1

In [53], Ruzsa generalized the above inequality to the case of compact sets on a locally compact
commutative group, written additively, with the Haar measure. The volume case of this deep theorem
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is one of our main inspirations: for any compact sets A, By, ..., By iIn R", with |A| > 0 and for every ¢ > 0,
there exists a compact set A’ C A such that

m
|A™|A 4+ By + ...+ Bul < (1+#)|A|[]IA +Bil. (13)
i=1
It immediately follows that for any compact sets A, By, ..., By in R,
m
JA"YBy + ...+ Bl < []IA +Bil. (14)

i=1

2.3 Submodularity and supermodularity

Let us first recall the notion of a supermodular set function.

Definition 2.1. A set function F : 2[l — R is supermodular if
F(sUt) +F(snt) > F(s) + F(t), (15)

for all subsets s, t of [n].

One says that a set function F is submodular if —F is supermodular. Submodularity is closely related
to a partial ordering on hypergraphs as we will see below. This relationship is frequently attributed to
Bollobas and Leader [11] (cf. [5]), where they introduced the related notion of “compressions”. However,
it appears to have origins that trace back much further—explicitly discussed by Emerson [15], where he
says it is “well known”.

To present this relationship, let us introduce some notation. Let M(n, m) be the following family
of (multi)hypergraphs: each consists of non-empty (ordinary) subsets s; of [n], s; = s; is allowed, and
> Isil = m. Consider a given multiset C = {s1, ..., s;} € M(n, m). The idea is to consider an operation that
takes two sets in C and replaces them by their union and intersection; however, note that

(i) if s; and s; are nested (i.e, either s; C s; or s; C s;), then replacing (s;, s;) by (s; N sj,s; U sj) does not
change C; and
(i) if s; N's; = ¥, the empty set may enter the collection, which would be undesirable.

Thus, take any pair of non-nested sets {s;,s;} ¢ C and let C" = C(i,)) be obtained from C by replacing s;
and s; by s; Ns; and s; Uss;, keeping only s; Us; if s;N's; = @. C' is called an elementary compression of C. The
result of a sequence of elementary compressions is called a compression.

Define a partial order on M (n, m) by setting A > A’ if A’ is a compression of \A. To check that this is
indeed a partial order, one needs to rule out the possibility of cycles, which can be done by noting that
if A’ is an elementary compression of A then

2 IslP < DIl

seA se A’

Theorem 2.2. Suppose F is a supermodular function on the ground set [n]. Let A and B be finite
multisets of subsets of [n], with A > B. Then,

> Fs) < D F().

seA teB

Proof. When B is an elementary compression of A, the statement is immediate by definition, and
transitivity of the partial order gives the full statement. |

Note that for every multiset A € M(n, m) there is a unique minimal multiset .A* dominated by A, that
is, A* < A, consisting of the sets s;' = {i € [n] : 1lies in at leastj of the setss € .A}. Thus, a particularly
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nice instance of Theorem 2.2 is for the special case of B = A* (we refer to [5, page 132], for further
discussion). We also have a notion of supermodularity on the positive orthant of the Euclidean space.

Definition 2.3. A function f : R} — Ris supermodular if

FEvy) +fEAY) = f)+f),

forany x,y € R, where xvy denotes the componentwise maximum of x and y and x Ay denotes
the componentwise minimum of x and y.

We note that Definition 2.3 can be viewed as an extension of Definition 2.1 if one consider set
functions on 2" as a function on {0, 1}". We record this connection in the next lemma, using 1, [n] —
{0, 1} to denote the indicator function of s, that is, 1s(i) =1lifiesand 13(1') =0ifi¢s.

Lemma 2.4. If f : R, — R is supermodular, and we set F(s) := f(].s) for each s C [n], where we
view 1, ¢ {0, 1} as a vector in R, then F is a supermodular set function.

Proof. Observe that

Fsut) +Fsnt = (Lo + f( L)
:f(ls \ 11{) +f(1s A 1t)

=fly+fly
= F(s) + F(b). u

The fact that supermodular functions are closely related to functions with increasing differences is
classical (see, e.g., [36] or [62], which describes more general results involving arbitrary lattices). We will
denote by 9;f the partial derivative of function f with the respect the i's coordinate and by 8" ; the

1yeelm

mixed derivative with respect to coordinates iy, . .. inm.

Proposition 2.5. Suppose a function f : R — R is in C?, that is, it is twice-differentiable with a
continuous Hessian matrix. Then, f is supermodular if and only if

f ) =0,

for every distinct i,j € [n], and for any x € R’}

We will prove Proposition 2.5 as a part of a more general statement on the mixed derivatives of the
supermodular functions of higher order (Theorem 3.5 below).

Supermodular set functions also arise naturally in connection with convex functions. For instance,
let ¢ : Ry — R be a convex function. Then for every do, ai,a; € Ry, one has

@(ao + a1) + ¢(ao + a2) < ¢(ao + a1 + az) + ¢(do).

This property can be seen as the supermodularity of the function @ : 22 — R defined by ®(s) =
o(ap + (Ls,a)), where we set a = (a4, ap).

3 Higher Order Supermodularity of Mixed Volumes
3.1 Local characterization of higher order supermodularity

We now present analogues of the above development for higher-order supermodularity. Let us notice
that a set function F : 2" — R is supermodular if and only if for any so,s1,s, € 20" with sy Ns, = @
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one has

F(so Us1) + F(so Usy) < F(sp Usy Usy) + F(so).

Generalizing this property, Foldes and Hammer [17] defined the notion of higher order supermodularity.
In this section, we will adapt their definition and study the following property:

Definition 3.1. Let 1 < m < n. A function F : 2I" — R is m-supermodular if for any s, € 2" and for

any mutually disjoint sy, ..., sy, € 2" one has
> (—1)m_IF(So ulYJ si) > 0.
Ic[m] iel

Note that for m = 2 in the above definition, we recover a supermodular set function. We also
introduce the notion of higher-order supermodularity for functions defined on the positive orthant of
a Euclidean space.

Definition 3.2. Let 1 <m < n. A function f : R} — R is m-supermodular if

>, (1)m”f(Xo vV xl) >0,

Ic[m] iel

for any xo € R} and for any x1,..., X, € RY, with mutually disjoint supports, that is such that
xiAx=0foranyl<i<j<m

Remark 3.3. Fix some n € N and m € [n]. Notice that, as in Lemma 2.4, if f : R} — R is m-
supermodular then F : 21" — R defined by F(s) = f(1,) is m-supermodular.

For m = 1in the above definition, we obtain that f is 1-supermodular if and only if it is non-decreasing
in each coordinate. For m = 2, we recover a supermodular function on the orthant as we prove in the
following lemma.

Lemma 3.4. Let f : R} — R. Then, f is supermodular if and only if for any x,y,z € R} such that
yAz=0,one has

fRVyvVD)+fx)>fxvy +fxva). (16)

Proof. Suppose f is supermodular and one has x,y, z € R]; such thaty Az = 0. Then, we seta = xvy and
b=xvzthen,avb=xvyvzandaAb=x,sinceyAz=0.Thus,

fRvyvo+f@) —fxvy) —fxvzy=f@ab)+f@vb) —f@) —fb) >0.
Now assume that f satisfies (16) and let a, b € R",. We set x = a A b and we define y by putting y; = a; for
i such that b; < g; and y; = 0 otherwise. In the same way, we set z; = b;, for i such that a; < by and z; = 0
otherwise. Then,xvy=a,xvz=bandxVvyvz=avb, hence, we conclude similarly. [ |

The next theorem generalizes Proposition 2.5 to higher order supermodularity.

Theorem 3.5. Letn e Nand m € [n]. Let f : R} — R be a C™ function. Then, f is m-supermodular
if and only if

for every distinct iy, ...,1in € [n], and for any x € R%.
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Proof. Let xo € R} and x1, ..., xn € R}, with mutually disjoint supports.

> (—1)”‘If(xo vV xi)

Ic[m] iel

= > (—1)’”"1‘1f(><o v\/xiv Xm) + > (=pmhf (Xo vV Xi)
]

Ic[m-1] iel Ic[m-1 iel
(17)
= > (=pmn |:f(xo v/ xv xm) —f(xo v/ xl)}
Ic[m-1] iel iel
= > (-pmtlig,, (Xo vV xi),
Ic[m-1] iel

where g,(x) = f(x v z) — f(), for any x,z € R.. Thus, f is m-supermodular if and only if x — g,(x) is
(m — 1)-supermodular for any z € R’ as a function on the coordinate subspace H, = {y € R : y;jz; =
o,vi=1,...,n}.

Now we are ready to prove the theorem for the case m = 2. In this case, the above equivalence (17)
gives us that f is supermodular if and only if x + g,(x) is 1-supermodular for any z € R} as a function
of x € H; and thus g, is non-decreasing in each coordinate direction of H,, that is, for each coordinate
index i such that z; = 0. Thus, assuming differentiability, this is equivalent d;g, > 0 for all i which is a
coordinate direction in H,. Taking z = zje;, z; > 0, we get 39z = 0 foralli#j. Thus, 8f (xvzje)—8f (x) = 0,
and finally af_)f(x) > 0. Reciprocally, assuming that af}f(x) > 0 foralli # j and all x, we get Dyd;f (x) > O
for y e R} such that y; = 0, where by Dyf = y - Vf we denote the directional derivative with respect to
vector y € R". Thus af (x +y) — 9f (x) = 0 for all y € R} with y; = 0. Thus, considering y € R, such that
yi=0andy; =x vz —x,]#1, we get §;9(z) = 8;f (x v z) — 9;f (x) = 0 for all i not in the support of z.

We will finish the proof applying an induction argument. Assume that the statement of the theorem
is true for m — 1, for some m > 3. Let f : R, — R be a C" m-supermodular function. Then, applying (17)
we get that x — g,(x) is m — 1-supermodular for any z € R’} as a function of x € H;, which, applying
inductive assumption, gives us

0, -0, [f(xvz) —fX)] =0,
for every distinct iy, ..., im—1, coordinates of H;, applying it to z = z; e; , we get
By 8, f(x) 2 0.

Now assume the partial derivative condition of the theorem. Then, for every z € R} and iy, ..., In-1,
coordinates of H,, we have

By 0, G20 = 0y - By, fRVZ) =8, -8, O,

but o, --- 9, , 8 f(x) > O for every in # i, for k =1,...,m — 1 and thus for every i,, for which z; # 0. So
d;, ---0;,_.f(x) is an non-decreasing function in each coordinate i, for which z; # 0:

B, -0, fxvz) =8, -8, f(X)=0

and, applying the inductive assumption, we get that x + g,(x) is (m — 1)-supermodular for any z € R"
as a function of x € H,, which finishes the proof with the help of (17). |

We remark in passing that the positivity of mixed partial derivatives and its global manifestation
also arises in the theory of copulas in probability (see, e.g., [13]). In particular, it is well known there that

ZZE{X“y‘)m(fl)N(Z)C(z) > 0 for every box [ [x;, yi] € [0, 1]™, where N(z) = #{k : zx = X}
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3.2 Higher order supermodularity of volume

Theorem 3.6. Letn,k € N. Let By, ..., By be convex compact sets of R". Then the function v : Rﬁ —
R defined as

(18)

is m-supermodular for any m € [k].

Proof. From the mixed volume formula (4), the function v is a polynomial with non-negative coefficients
so its mixed derivatives of any order are non-negative on R',. By Theorem 3.5, we conclude that it is m-
supermodular for any m. [ |

Remark 3.7. Theorem 3.6 can be given in a more general form: for any natural number | <n, any
convex compact sets Cq,...,Cj, By,..., By in R", the function v : R’i — R, defined as

U(x)—V((sz)[n 1,Cq,...,C )

is m-supermodular for any m € [k].

We notice that in Theorem 3.6 the convexity assumption is essential. Indeed, as was observed in
[24], for k = 3, there exists non convex sets By, By, B3 such that the function v defined above is not
supermodular. We will discuss this issue in more details in Section 3.3 below. Using Theorem 3.6,
Remark 3.7, Remark 3.3 and Theorem 2.2 we deduce the following corollary.

Corollary 3.8. Let n,k € N and B,... B, be compact convex sets of R".Let 0 <l <nand Cy,...,G
be convex bodies in R". Then:

1) the function ¥ : 2¥ — [0, 00) defined by

ﬁ(s):V((ZB)[n 1.C1,.., 1), (19)

for each s c [k], is a m-supermodular set function, for any m € [k].
2) Let A and B be finite multisets of subsets of [k], with A > B. Then,

> = >0, (20)

seA teB

Let us note that the above m-supermodularity of the function U is equivalent to the fact that for any
convex bodies By, By, ..., B, Cyq,...,C in R",

Z(—l)k'sv((BoJrZB) 1,Ci,.. ,C)zo.

sclk] ies

Applying the previous theorem to I = 0, we get

2 (=DFH

sC[k]

BO+ZBl

ies

> 0. (21)
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The above inequality for k = n and By = {0} follows also directly from the following classical formula
(see Lemma 5.1.4 in [56])

=n!V(B,...,Bn.

PG

sc(n]

>

ies

In the same way, we can also give another proof of the general case of (21).

Theorem 3.9. Let By, By, ..., B, be convex bodies in R".

Bo+ZB1‘

ies

2. =pme
sc[m]

n
:zmzk;n- (ko,kl, . km)V(Bo[ko],Bl[kl], o Bulkn))

for m < n and zero otherwise.

Proof. Following the proof of Lemma 5.1.4 in [56]. Define

toBo + D tiB;

ies

g(to, t1,...,tm) = Z (=1ym-lsl
]

sc[m

Observe that g is a homogeneous polynomial of degree n and note that g(to, 0, to,...,tn) = 0, which
can be seen by noticing that, in this particular case, the sum is telescopic. This implies that, in the
polynomial g(to, ..., tm), all monomials with non-zero coefficients must contain a non-zero power of t;.
The same being true for each t;, i > 1, there is no non-zero monomials if m > n. If m < n all non-zero
monomials must come from the case |s| = m, that is, from

[toBo + t1B1 + + - - + tmBml,

which finishes the proof. |

Thanks to the fact that supermodular set functions taking the value 0 at the empty set are
fractionally superadditive (see, e.g., [42, 44]), we can immediately deduce the following inequality. Let
n> 1,k > 2beintegers and let Ay, ..., Ay be convex sets in R". Then, for any fractional partition g using
a hypergraph C on [k],

3

>

i=1

> > ) | DA (22)

seC jes

It was shown in [6] that (22) actually extends to all compact sets in R", but supermodularity does
not extend to compact sets as discussed in the next section. In fact, an even stronger inequality—
fractional superadditivity of the functional vr(A) = |A|"/"—had been conjectured for compact sets in
[10] motivated by analogy to information theoretic inequalities [3, 36], but this conjecture was shown
to be false in [23]. As observed in [41], the latter counterexample also shows that a natural conjecture
about Schur-concavity of volume is false when applied to non-convex sets.

3.3 Going beyond convex bodies

Consider sets A,B ¢ R", such that 0 € B. Define Ag(A) = (A + B) \ A, and note that A + B is always
a superset of A because of the assumption that 0 € B. The supermodularity of volume is also saying
something about set increments. Indeed, for any sets A, B, C consider

AcAp(A) = Ac((A+B)\A) = ((A+B)\A)+C)\ (A+B)\ A).
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We have, if 0 e BN C:

|AcAB(A) = |[((A+B)\A) +C| — [(A+B)\ Al
>(A+B+O\NA+C)|—|A+Bl+]A]

=|A+B+C|—|A+C|—|A+B|+|A] (23)

where the inequality follows from the general fact that (K+ C)\ (L+C) C (K\ L) + C. Moreover, if A,B,C
are convex, compact sets then the estimate is non-trivial, that is, using Theorem 3.9, we get that the
right-hand side of the above quantity is non-negative. It is interesting to note that the A operation is
not commutative, that is, AcAg(A) # AgAc(A); this can be seen, for example, in R? by taking A to be a
square, B to be a segment, and C to be a Euclidean ball.

It is natural to ask if the higher-order analog of this observation remains true.

Question 3.10. Let m € N and By, ... B, C R" be compact sets containing the origin. Then, for any
compact By c R, is it true that

|Ap, ... A, (Bo)| = D (=)™ ?

sc[m]

BO+ZBi

ies

The inequality (23) gives a positive answer to the above question in the case m = 2. We also observe
that if By, B1,...,By are convex, then the right-hand side is non-negative thanks to Theorem 3.6. We
note that it was observed in [24], by considering A = {0, 1} and B = C = [0, 1] in R?, that the volume of
Minkowski sums cannot be supermodular (even in dimension 1) if the convexity assumption on the set
A is removed. Nonetheless, [24] observed that if A, B, C c R are compact, then

[A+B+C|+|conv(A)| > |A+ Bl +]A+Cl;

it is unknown if this extends to higher dimension. In particular, we do not know if the following
conjecture is true forn > 2.

Conjecture 3.11. For any convex body A and any compact sets B and C in R",

[A+B+Cl+|Al > |A+Bl+|A+C|.

We can confirm Conjecture 3.11 under the assumption that B is a zonoid.

Theorem 3.12. Assume A is a convex compact set, B is a zonoid and C is any compact set in R".
Then,

[A+B+Cl+ Al = |A+Bl+]A+C].

Proof. By approximation, we may assume that B is a zonotope. Using the definition of mixed volumes
(4) and (7) we get that for any convex compact set M in R",

IM + [0, tu]| — |M| = t|Py: M|,_1, forallt > 0,u e S" 1.

The above formula can be also proved using a geometric approach and thus studied in the case of not
necessarily convex M. Indeed, consider a compact set M in R", t > 0 and u € S"!, let 3,M be the set of
all x € aM such that x-u > y - u, for all y € M for which P,.y = P,. x. Note that

M+ O, tu)) "M =@, butM U (3,M + (0, tu]) € M + [0, tu].
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Thus,
M+ [0, tu]| > M| + t|Py M|n_1.
Now, we are ready to prove the theorem with B = [0, tu],
|A+C+[0,tu]l = A+ C| 2 t|Pye (A + O)ln—1 = tIPe Aln1 = |A + [0, tu]| — |A].
Thus, we proved that, for any u € R",
[A+C+[0,u]l — A+ [0,u]l > |A+C| — Al (24)

Now, we can prove the theorem for the case of a zonotope. Indeed, let Z; = ZLl[O, u;] be a zonotope.
Apply inequality (24) to the convex body A + Z,_; and the vector u = u, to get

[A+C+Zel — A+ Zk| 2 A+ C+ Zra| — |A + Zeal.

Iterate the above inequality to prove the theorem for the case of B being a zonotope. The theorem now
follows from continuity of the volume and the fact that every zonoid is a limit of zonotopes. |

4 Pliinnecke-Ruzsa Inequalities for Convex Bodies

4.1 Existing Pliinnecke-Ruzsa inequality for convex bodies

Bobkov and Madiman [9] developed a technique for going from entropy to volume estimates, by using
certain reverse Holder inequalities that hold for convex measures. Specifically, [9, Proposition 3.4] shows
that if X; are independent random variables with X; uniformly distributed on a convex body K; ¢ R" for
eachi=1,...,m, then h(X; +... + Xn) > log|Ki + ... + Km| — nlogm, where the entropy of a random
variable X with density f on R" is defined by

nX) = —/f(x) logf(x)dx. (25)

This is a reverse Holder inequality in the sense that h(X; + ... + X;n) < log|K; + ... + Kn| may be seen
by applying Holder’s inequality and then taking a limit. More general sharp inequalities relating Rényi
entropies of various orders for measures having convexity properties are described in [22] (see also
[7, 8, 26]). Applied to the submodularity of entropy of sums discovered in [35], the paper [9] uses this
technique to demonstrate the following inequality.

Theorem 4.1. Let C;, denote the collection of all subsets of [m] = {1,..., m} that are of cardinality
k.Let A and By, ..., By be convex bodies in R", and suppose

1
‘A+ZBI <cslAlF

ies

for each s € G, with given numbers c;. Then,

1
n Tm=1y
< (1+m)[ Hcs}(“’w%.

seCy

In particular, by choosing k = 1, one already obtains an interesting inequality for volumes of
Minkowski sums.
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Corollary 4.2. Let A and By, ..., B, be convex bodies in R". Then,

m

A+ZBi

i=1

m
|Am <@+m"[]IA+Bil.

i=1

Thus, one may think of Corollary 4.2 as providing yet another continuous analogues of the Pliinnecke-
Ruzsa inequalities in the context of volumes of convex bodies in Euclidean spaces (compare with (13)),
where going from the discrete to the continuous incurs the extra factor of (1 + m), but one does not
need to bother with taking subsets of the set A. In particular, with m = 2, one gets “log-submodularity
of volume up to an additive term” on convex bodies.

Corollary 4.3. Let A and By, B, be convex bodies in R". Then,

|Al]A + B1 + By| < 3"|A + B4| |A + Byl (26)

Unfortunately, the dimension-dependent additive term is a hindrance that one would like to remove
or improve, which is the purpose of the next section.

Remark 4.4. We notice that in the case where B; = B, = B, the inequality holds with constant 1:
|A||A+B+B| <|A+B

by the Brunn-Minkowski inequality. In the next section, we shall see that it is no longer true
for By # By. Moreover, as we will see in Lemma 4.22, the above inequality is not true with any
absolute constant if we only assume that the sets A and B; are compact, which exposes an
essential difference of this inequality with (13).

4.2 Improved upper bounds in general dimension

In this section, we will present an improvements in the constant 3" in the three body inequality
from Corollary 4.3. We denote the best constant in such an inequality by c,; this is defined by (2), or
equivalently as the infimum of the constants ¢ > 0 such that, for every convex compact sets A,B,C
in R,

|AlIA+B+C| <clA+BJ|A+C].

For convenience, let us define

|Al|A +B+C]
|A+BlIA+Cl’

c(A,B,C) =
so thatc, = SUP4 g cexc® ¢(A, B, C). The following lemma finds repeated use.

Lemma 4.5. Letn > 2. For compact convex sets A, B,C Cc R", let

V(A[n —j —m],B[j],C[m])
(n—j—m!

Vagc(,m) =

)

and

0,0 j
d(A.B,C)= max UA,B,C(l, )UA,B,C(J‘m)‘
jm:o<j+m=<n Uas,c(), 0)Ua 5 c(0, m)

Then c(A, B,C) < d(A, B,C). Consequently, ¢, < d, = SUP4 g cexc® d(A, B, C).
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Proof. We apply (4) to get

ana+sra= 3, ;‘m)mW(A[k], BJj], Clm))

R+j+m=n

= 3 () AIVEAI =i =), B, Cpr,

0<j+m=n

|A+B||A+Cl= Z Z (;1) (Y:ll)V(A[n —j1,BDV(A[n — m], C[m).

j=0 m=0
The comparison of the above sums term by term shows that c(A, B,C) < d if d satisfies

() ()

n

|AIV(A[n —j —m],B[j],C[m]) < d
(j,m,n—j—m)

V(An—J], BIDV(An — m], C[m]),

for each m,j > 0 with m +j < n. The above may be rewritten in a more symmetric way as

1Al V(A[n —j —m], B}, C[m}) _ , V(A[n—]], Bj]) V(A[n —m], C[m])

n! n—j—m! - n—j! n—m)! @7)

By definition, d(A,B,C) is the best constant that satisfies all these conditions, and we deduce that
c(A,B,C) < d(A,B,C). |
We recall that ¢ = (1 ++/5)/2 denotes the golden ratio.

Theorem 4.6. Let n > 2. Then, one has 1 = ¢, < ¢, < ¢", that is, for every convex compact sets
A,B,C C R",

|AIIA+B+Cl <¢"|A+B[|A+C|

Proof. Observe that, taking B = C = {0} we get ¢, > 1. For the upper bound, we use Lemma 4.5.
Notice that form = 0 orj = 0, (27) trivially holds for d = 1. Using inequality (12), we get that d will

satisfy inequality (27) as long as
minl(n_}),(n_.m)] <d. (28)
m J

Note that the above is true with constantd=1ifm+j=n.
We also note that, if m =j = 1, then the required inequality (27) becomes

|A[V(A[n - 2],B,C) < dnﬁilvm[n ~1],B)V(A[n - 1],0). (29)

Using (11), we see that in this case, it suffices to select d = 221 In particular, we get thatc, = dy = 1.
For the more general case, we can provide a bound for dy/" using Stirling’s approximation formula.

Indeed,
(P) <P hmiememn [P
q - q1 2r(p—9q
(p) <P hueme [P P
q (P —Pr-igq? 2r(p—-1 ~ (p—Pigt
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Next, letj = ynand m = xn, where x,y > 0, x + y < 1, then it is sufficient for d, to satisfy

_ 1-y _ 1-x
max min a-y , a-x <dim
X,y>0 (1—x—Yxyxx’ (1 —x—y)l=*yy
x+y<1

Without loss of generality we may assume that [x — 1/2| < |y — 1/2] and thus (1 —x)17*x* < (1 — )@y,
Our next goal is to provide an upper estimate for

< (1 _X)l—x
(1 —x—ylxyyy’

where the maximum is taken over a set

Q={xy) eR x+y=<1,1/2-x <|1/2 -y}

={(x,1-%x:0<x<1/2}U{(x,y) e R? :y <min(x, 1 - x)}.

We note that the function y — (1 — x — y)!*7VyY is decreasing for y € [0, (1 — x)/2] and increasing on
[(1—%)/2,(1 —x)]. So we may consider two cases, comparing x and (1 — x)/2. Next,

(1—=x)1=x 1-x 1+5

max ——————— =mnax =
anie(0,1/3) (1 —x =)y o) (1 — 2x)1-2%xx 2

The last equality follows from the fact that the maximum is achieved when ((1112;;;2 = 1, that is, at
x = (5 — +/5)/10. Finally,

(1-x A-x"* . 1+45
max < max — 023 _ )
anxe[1/3,1)) (1 — X — Y1 XYYV 7 xef1/3,1] (1 —x)/2)1-x

Remark 4.7. Recently Cheikh Saliou Ndiaye [46] proved a very useful extension to the inequality
of Xiao (12) and thus extended Theorem 4.6 by providing an estimate for the best constant c,m,
such that, for any convex bodies A, By, ..., By in R, then

m
|A[JA+B1+ -+ Bnl < com [ [ 1A +Bil. (30)
i=1

Ndiaye [46] established in particular that ¢, ,» < 2" and other sharper bounds depending on m.
The next proposition gives a different proof of (14) for a special case of three convex sets and, we hope,
gives yet another example of how the methods of mixed volumes as well as the Bézout type inequality

(12) can be applied in this context.

Proposition 4.8. Let A, B, C be convex bodies in R", then
|A|IB+Cl < |A+BIIA+C], (31)

with equality if and only if [A] = 0.
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Proof. The inequality follows from the proof of Theorem 4.6 and the observation that decomposing the
left- and right-hand sides of the (31), we need to show that

i(;l)'f"v(m”‘m]c ><ZZ()( )V(An j1, BIDV(A[n — m], Clm)).

m=0 j=0 m=0

It turns out that it is enough to consider only the terms with m +j = n on the right-hand side, that is, to
show that
n n

(:q)|A|V(B[n —m,Cmp = > (n fm) (:;)V(A[m], B[n — m)V(A[n —m], C[m]),

m=0 m=0

which is true term by term by using (12) with m +j = n. Now assume that there is equality. This implies
that the term j = m = 0 in the above double sum must vanish, thatis, |A| = 0.

Remark 4.9. Cheikh Saliou Ndiaye [46] used mixed volume techniques as well as determinant
inequalities to give a proof of Ruzsa’s inequality (14) in the case of convex sets A, By, ..., B,
that is, the extension of Proposition 4.8 from m = 2 to general m.

4.3 Improved constants in dimensions 3 and 4

Theorem 4.6 gives an optimal bound of 1 for the three body inequality in dimension 2. Next, we will
show how we can get better bounds for ¢, in dimension 3 and 4.

Theorem 4.10. Let A, B, C be convex compact sets in R®. Then,
4
|A||JA+B+C| < §|A+B| |A+C|

and the constant is best possible: ¢3 = % Moreover, if A is a simplex, then
|AlJA+B+C| <|A+B||A+C|.
Proof. We follow the same strategy as in the proof of Theorem 4.6 and arrive to the inequality (27) with
m,j>0andm+j<3:

|1AI VA —j —m],Bj], C[m] _ , V(A[3 —j], B[] V(A[3 — m], C[m])
3] G—j—m = G-l G—m)

Again, the inequality is trivially true for m = 0 or j = 0 with constant d = 1. Thus, we are left with the
two following inequalities

|A|V(C,B[2]) < 3d - V(A, B[2])V(A[2], O), (32)

|AIV(A,B,C) < gd -V(B,A[2)V(C, A[2)). (33)

We note that the inequality (32) with d = 1 follows from (12). Next we note that (33) is true with d = 1
when A is a simplex (see [57]). The general case of (33) follows from (11) with d = 4/3. Thus, the maximal
constant ds is 4/3, and it follows from Lemma 4.5 that c; < 4/3. The optimality of this bound follows
from Section 4.4, where we establish more generally thatc, > 2 — 2. [ ]
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Theorem 4.11. Let A, B, C be convex compact sets in R*, then
[AlIA+B+Cl <2]A+BJ|A+C|
Thus, ¢4 < 2. Moreover, if A is a simplex, then
|A||JA4+B+C| <|A+B||A+Cl.

Proof. We will check inequality (27) forn=4,0<m<j<4andm+j <4

1A] V(A[4 —j —m], B],C[D _ , V(A[4 ], Bj]) V(A[4 —m],C[m])
41 @E—j—m = @) @ —m)!

(34)

The inequality is trivially true for m = 0 or j = 0 with a constant d = 1. Taking into account that the
inequality is symmetric with respect to m and j and to B and C we get that it is enough to obtain cases
G,m) = {(1,1);(1,2);(1,3);(2,2)}. For (j, m) = (1,1), we require

IAIV(A[2], B,C) < %d V(A[3], BV(A[3], O).

If A is a simplex, then the above is true with £d = 1 (see [57]), and the general case follows from (11)
with %d =2(ord= %) For (j,m) = (1, 2), we require

IAIV(A, B, C[2]) < 2d - V(A[3], B)V(A[2], C[2)).

We again observe that if A is a simplex then the above is true with 2d = 1. To resolve the general case,
we apply (12) with n = 4 and (j,m) = (1,2) to get 2d = 4, which will satisfy the requirement. When
(,m) = (1,3) and we may use the remark after (28) to claim that d = 1 will satisfy the condition (34).
Thus, the maximal constant d, = 2, and Lemma 4.5 yields that ¢4 < 2. [ |

Remark 4.12. We conjecture that actually ¢, = 3/2.

Remark 4.13. We conjecture that, for 1 <j <n,
[AIV(L,,... ,L)',A[Yl —]]) SJV(L}',A[H — 1])V(L1, .. ,Lj,l,A[Yl —j + 1])

This conjectured inequality would improve a special case of (12). It would also provide an
improved constant for the (j, m) = (1,2) case in the proof of Theorem 4.11, and thereby show
that d4 = 3/2, which together with the lower bound from the next section, would yield the
conjectured best constants (¢4 = d4 = 3/2) in R*.

4.4 Lower bounds in general dimension

In this section, we provide a lower bound for the Plinnecke-Ruzsa inequality for convex bodies. A weaker
lower bound was also independently obtained by Nayar and Tkocz [45]. We first observe that the best
constant ¢, in the Plinnecke-Ruzsa inequality:

[AlJA+B+C| <clA+Bl|A+C], (35)
satisfies ¢uym > cnCm. Indeed, this follows immediately by considering critical examples of A1, By, Cy in
R" and A, By, C, in R™ together with their direct products A; x Ay, By x By, Cq x Cp in R™™. Next, we

notice that if (35) is true in a class of convex bodies closed by linear transformations, then

[PenuKI K] < ol PeK] [PHK], (36)
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for any K in this class and any subspaces E,H of R", such that dimE =i, dimH =j,i+j > n+ 1 and
E+ C H. To see this consider B=U, with dimU =n -1, |[U/=1and C =V, with dimV =n—j, |[V| =1 and
U, V belong to orthogonal subspaces of R*. Let A = tK, wheret > O and setk =n—(n—1i)—(n—j) = i+j—n.
Then, (35) yields together with (4) and (6),

n

1K ( Z(;)V(K[m], U+ V)[n—mht™)

m=k
<a(> (;)V(K[m], U —mpe") (3 (:q)V(K[m], Vin — mptr).
m=i m=j

Dividing the above inequality by t"** and taking t = 0, we get
n n . e . .
1 T, 0+ v =) = o ()t uln - () vepl, vin - .
Finally, using (6), we get (36). It was proved in [28] that

2n—1)
|P{M,U)LKHK| = T

[P K] [PyeK], (37)

for any convex body K  R" and a pair of orthogonal vectors u, v € S*~*. It was also shown in [28] that the
constant 2(n — 1)/n is optimal. Thus, ¢, > 2 — % and this estimate gives a sharp constant in R3: ¢3 = 4/3.
In the case when n = 4, we get ¢4 > 3/2.

The inequalities analogous to (37) and (36) were studied in many other works, including (2, 4, 18, 57].

In particular, it was proved in [2] that (36) is sharp with

Y0
Cn > Cn(i,j, k) — (k)n(k) )
(&)
Thus, to find a lower bound on ¢,, one may maximize over cy(i, j, k) with restriction thati+j > n+1and

k =14 j —n. One may use Stirling’s approximation, with i = j = 2n/3 and k = n/3 (when n is a multiple
of 3, with minor modifications if not) to obtain the following theorem.

n

Theorem 4.14. For sufficiently large n, we have that ¢, > (% + 0(1))
4.5 Improved upper bound for subclasses of convex bodies
The goal of this section is to prove the following theorem:

Theorem 4.15. Let n > 1 and K be a convex body in R". Let B be an ellipsoid and Z be a zonoid in
R". Then,

IBIIB+K+Z| <|B+KJIB+Z|.

Theorem 4.15 motivates us to pose the following conjecture.

Conjecture 4.16. Let n > 1 and A, B, C be zonoids in R". Then,

IAlIA+B+Cl <|A+B[IA+C|.

A detailed study of this conjecture is undertaken in the paper [25].
Before proving Theorem 4.15, we will prove a theorem that would help us to verify Pliinnecke-Ruzsa
inequality for convex bodies when the body A is fixed.
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Theorem 4.17. Letn > 1 and A, B be a convex bodies in R" such that for every 1 < k <n and any
subspace E of R" of dimension k one has

Pe(A+Be  _ IPeAfk
|Peut (A 4+ B)le—1 ~ 1Perut Ale—1

Then, for any zonoid Z in R", one has

IAlIA+B+Z| < |A+B||A+Z].

Proof. Notice that it is enough to prove the inequality for Z being a zonotope and use an approximation
argument. In fact, we prove by induction on k that for any 1 < k < n and any subspace E of R" of
dimension k and zonoid Z in E one has

[PEA[RIPE(A + B) + Zlk < [Pe(A + B)[k[PEA + Z]k. (38)

This statement is true for k = 1 so let us assume that it’s true for k — 1, for some 1 < k < n and let’s
prove it for k. Let E be a subspace of dimension k. To prove that inequality (38) holds for any zonotope
in E, we proceed by induction on the number of segments in Z. Notice that the inequality holds as an
equality for Z = 0. Let us assume that inequality (38) holds for some fixed zonotope Z in E and prove it
for Z + t[0, u] where t > 0 and u € S™' N E. Using (5), we get

IPE(A +B) + Z +t[0, u]lx = |PE(A + B) + Z|x + t|Pgry (A + B+ Z) |1
and
[PEA 4+ Z + [0, tu]lx = [PEA + Z|p + t|Perys (A + Z)|p-1.
Applying the induction hypothesis, it is enough to prove that
[PEAlkIPEus (A + B+ ZD)le—1 < |Perus (A + Z)|i—1|PE(A + B . (39)
But the inequality in the k — 1-dimensional subspace E nu* for the zonotope P,. Z gives
[Penut (A) k=1 [Perut (A + B + D) le—1 = |Perye (A + B) -1 [Pyt (A + Z)le—1.

Multiplying this inequality by the assumption of the theorem:

PeAlk  _ _ IPe(A+ Bl
|Perut Alk—1 ~ |Perut (A +B)le—1’

we get (39). |
Next, we will prove that B)) satisfies the conditions of Theorem 4.17.

Theorem 4.18. Let n > 1 and K be a compact set in R". Let u € S™. Then,

IK+B3l  _ _ IBjl
[Pur(K+B)ln—1 ~ [BI ey

G2Z0Z YdJeN 0 uo Jasn Aysionlun a1eis Juay Ad €2£€69/2/921 | LIS L/720g/a101e/ulwl/wod dno olwapede//:sdjy woly papeojumoq



Sumset Estimates in Convex Geometry | 11445

Proof. We will use a trick from [4] to reduce the proof to the case of K c ut. Indeed, let S, be the Steiner
symmetrization with respect to u € S"! (see [56] and [12] remark 9.3.2). Then one has

SuK+ Bg) D Su(K) + Su(Bg) =Su(K) + Bg»

Hence,

IK+ Bj| = [Su(K + B})| > |Su(K) + B}

Moreover, P,. (S, (K)) = P,.K and P,.K c K, hence,
K+ B3| > [Pk + Bl
It follows that we are reduced to the case when K c ut, that is, K = P,. K. Without loss of generality, we

may assume that u = e, and we write B} N ut = BI~*. In this case, we can describe the set K + B} by its
slices by the hyperplanes orthogonal to e, denoted H; = {x € R" : x, = t}, t € R. We have

(K+B)NH =K+BiNH =K++1— 2B +te,.

Using (5), we get that forall t € [-1,1],

K+ B N Hiloy = [K+v/1— 28]

n—1-
It follows from Proposition 2.1 [27] (see also [58]) that

n-1-

’K +v1-t2By?

w1z [VI- K+ V1B

Using Fubini’s theorem, we get

1 1
KBl = [ 1K+ B nHade > K48 Yo [ (-8 at
-1 -1

We finish the proof by noticing that

1 n
/ (1— ) dr = P!

1 |BA-Y

Proof of Theorem 4.15. Let T be the affine transform such that B = T(B}). If B lives in an hyperplane
then |B| = 0 and the inequality holds. If not, then T is invertible and since the affine image of a zonoid
is a zonoid by applying T~!, we may assume that B = B}. Now the theorem follows immediately from
Theorems 4.18 and 4.17. |

Remark 4.19. By applying a linear transform, it is possible to show that, more generally, for any
compact set K and for any ellipsoid B,

K+B _ _ 1B
[Pye K+ B)ln-1 — |Pu*B|n—1.

Indeed, let T € GLy, such that B = TB}}. Denoting H = (T*u)*, one has, that for any compact K,
P, (TK) = TPyr1,K, where Pyr1,K is the linear projection of K onto H along T-'u. Then, the
remark follows by applying Theorem 4.18 to TK.
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Corollary 4.20. Let n > 1 and K be a convex body in R". Let B be an ellipsoid and Z4, ..., Zy, m > 1
be zonoids in R". Then,

m
BI"B+K+Z1+...Znl < B+KI[]IB+Zl.
i=1

Proof. The corollary follows immediately applying induction on m > 1 together with Theorem 4.15:

BI"B+K+Z1+...Zm| < IB™ Y B+K+Z1+4...Zn_1| B+ Znl.

Remark 4.21. Theorem 4.6 was inspired by the following inequality

n—

1
. cn|BSIV(BS[n — 2], Z,K), (40)

V(Bi[n—1],2)V(Bjn—1,K) >

where ¢, = [Bi7'?/(1Bi~%| |BE]) > 1. This inequality was proved by Artstein-Avidan, Florentin,
and Ostrover [4] when Z is a zonoid and K is an arbitrary convex body, as a generalisation of a
result of Hug and Schneider [31] who proved it for K and Z zonoids. It is an interesting question
if one can prove directly Theorem 4.15 by using the decomposition into mixed volumes as it
was done in the proof of Theorem 4.6 and applying inequality (40). Inequality (40) is a sharp
improvement of (12) in the case when A = B} and m = j = 1, and one of the bodies is a zonoid.
Unfortunately, there seems not to be a direct way to apply (40) to prove Theorem 4.15 due to
the lack of a sharp analog of this inequality for V(B3[n — m —j], Z[m],K[j]) when m,j > 1.

4.6 The case of compact sets
Let us note that the inequality

IA|JA+B+C| <|A+B||A+C| (41)

is valid when A, B are intervals and C is any compact set in R. Indeed, by approximation we may assume
that Cis a finite union of closed intervals, A = [0, a] and B = [0, b], for some a, b > 0. Then, we may assume
that A+ C =U", [, B + a] where intervals [«;, B; + a] are mutually disjoint. Then,

A+Cl=ma+ > (B — ),

i=1

JA+B+Cl <> (Bi—ei+a+b) =m@+b)+ D (B —ap,
i=1 i=1

and (41) follows from
aim@+b) + D (B —a)) < (Ma+ D (B —a)(@+Db).
i=1 i=1

We also note that, as discussed before, inequality (13) as well as inequality (31) and Theorem 4.18 are
valid without additional convexity assumptions.

Still, we now show that there is a sharp difference to those inequalities- the convexity assumption
in Theorem 4.6 can not be removed. The construction is inspired by the proof of [52, Theorem 7.1]:

Lemma 4.22. Fixn > 1, then for any g > 0 there exist two compact sets A,B c R" such that

IA||A +B+B| > lA +BJ%.
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Proof. It is enough to prove the theorem for the case n = 1, indeed, for any other dimension n > 1, one
can consider A x [—-1,1]""%, B x [—~1, 1]"* where A, B are the example constructed in R.

To construct the sets A,B C R, we fix m,1 € N large enough and define first two discrete sets A’ and
B’ in R to establish the analogue result for cardinality instead of volume. Let

A’:{X-i—yﬁ:x,ye{O,l,...,m—l}}U{z«@:ze{1,...,m}},
thus #A’ = m(m + 1). We also define
B={x:xe{0,1,... . [3u{yv2:ye(l,....1p.
Thus, one has
B’+B’:{X+yx/§:x,ye{O,1,...,l}}u{x:xe{l+1,‘..,21}}U{yﬁ:ye{l+1,...,21}}.

It follows that #(B' + B') = 17 + 41 + 1. It may help to imagine A’ and B’ as 3-dimensional subsets which
are linear combinations of vectors er, v/2e, and v/3es. Then, it is easy to see that A’ + B’ consists of an
m x m square of integer points united with two m x [ rectangles of integer points in the {e, e;} plane and
two additional rectangles: one of size m x (14 1) in the {eq, es} plane and another of size m x (I+ 1) in the
{e2, e3} plane, where the last two rectangles overlap by m points. Thus,

#A +B) =m?+2ml+2m1+ 1) —m) = m(m + 4l + 1).
Finally, we note that A’ + B’ + B’ contains the set
{zv/3:ze{l,... m}}+B +B,
thus #(A’ + B' 4+ B') > I?’m. Now consider any g’ > 0. Our goal is to select m,1 € N such that
#AV#(A +B +B) > p'#(A +B))°. (42)
For this, it is enough to pick m,l € N such that
mm + DIPm > g'm?(m + 4l + 1)?
or
VmF 1> /B m+4l+1),

which is true as long as m+ 1 > 168’ and | is large enough.

Now we are ready to construct our continuous example in R, for volume. For the fixed 8 > 0 consider
p' = ip and sets A’ and B satisfying (42). Define A = A’ + [—¢,¢] and B = B’ + [—e, ¢] where € > 0 small
enough such that

|A| = 2e#(A); |A + B| = 4e#(A’ + B') and |A + B + B| = 6e#(A’ + B + B,

which, together with (42) gives the required inequality. |

It turns out (see, for example, [21]) that some sumset estimates can still be proved if the convexity
assumption is relaxed by an assumption that the body is star-shaped. The next lemma shows that this
is still not the case for Theorem 4.6.
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Lemma 4.23. Fix n > 3, then for any g > 0, there exists a compact star-shaped symmetric body
A c R" such that

IAIIA+A+A| = BIA+ A%,

Proof. Let n = 3, consider a cube Q = [~1,1]® and a set X = m([—ey,e1] U [—ey, e2] U [—e3, e3]), that is, the
union of 3 orthogonal segments of length 2m. Let A = Q U X. Then,

JA+A <X+ X +]1Q+Q+I1X+Ql<0+4>+3%x2m+2) %2

but JA+ A+ A| > |X + X + X| = 8m>. We note that in dimension n > 3 one can consider the direct sum
of the above three dimensional example with [—1, 1]"~3. ]

5 Playing With Signs
5.1 Ruzsa’s triangle inequality
In additive combinatorics, the Ruzsa distance is defined by d(A,B) = log J%, where A and B are
subsets of an abelian group. We refer to [60] for more information and properties of this object, which
is useful even though it is not a metric (since typically d(A,A) > 0). The Ruzsa distance satisfies the
triangle inequality, which is equivalent to #(C — B) - #A < #(A — CO)#(B — A).

An analogue of Ruzsa's triangle inequality holds for compact sets in R".

Theorem 5.1. (see, e.g., [61, Lemma 3.12]) For any compact sets A, B,C C R",

|Al|IB—C] <|A—-C||A—-B| (43)

This inequality has a short proof that we provide here for the sake of completeness. Indeed

[B—AJlA-C|= / 1p_a * la_c(x)dx > / 1p_a * 1a_c()dx,
RN c

where 1y is a characteristic function of a set M ¢ R" and f xg is the convolution of functions f,g : R" — R.
Now let x € B— C, there are b € B and c € C such that x = b — ¢. Thus, changing variable, one has

Igaxlactb—0 = /R 1g-a(@la-cb—c—2)ydz = /R 1g_a(b—y)1la_c(y —Ody

z/Alg%(b—y)lAfc(y—c)dy — AL

5.2 An inequality with signed sums

In view of Ruzsa’s triangle inequality, it is natural to try to generalize Theorem 4.6 to the case of the
difference of convex bodies. We recall that ¢ = (1 + +/5)/2 denotes the golden ratio and for n > 2 the
constant ¢, was defined in Theorem 4.6 satisfying 1 =c, < ¢, < ¢".

Theorem 5.2. Let A, B, C be convex bodies in R". Then,

1 (2n .
[A[I[A+B+C| < ﬂ(n)cnmm{lA—Bl |A+C|,|A—B||A—C|,|A+B||A - CJ}. (44)
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Proof. We first recall Litvak’s observation (see [56, pp. 534]) that
1 (2n
A+Bl < — A-B 45
A+ |52n(n)| l (45)

for any convex bodies A, Bin R", with equality for A = —B being simplices. Litvak obtained this by simply
combining the Rogers-Shephard inequality ([56], Theorem 10.1.4) and the Brunn-Minkowski inequality.
Indeed, applying the Rogers-Shephard inequality we get
2n
A48 - A+BI=1a-B - A=< (})a-5,

and the Brunn-Minkowski inequality gives us
I(A+B) —(A+B)| > 2"|A+B|

Now, we can write

1 (2n
ANA+ B+ Cl <GilA +BIA+Cl = 2o (oA = BlIA+

where the first inequality follows from Theorem 4.6, and the second from Litvak’s observation. This
gives the first half of the inequality (44) (i.e., the inequality with the first term inside the minimum).
The third inequality is proved in a similar way.

Next, we notice that changing B to —B and C to —C, Theorem 4.6 becomes equivalent to

|AlA = B+ C)| =calA—BJIA-C],
and we finish the proof of the inequality (44) (i.e., we get the inequality with the second term inside the

minimum) by applying Litvak’s observation on the left-hand side. |

Remark 5.3. We note that the constant in (44) is sharp in the case n = 2, no matter which term
inside the minimum we consider. Indeed, if C = {0}, then (44) becomes |A +B| < %|A —B|, which
is sharp for triangles A, B such that A = —B.
We can actually improve Theorem 5.2 in R? via the following inequality, which the next section is
dedicated to proving: if A, C are convex sets in R?, then |A — C| < |A + C| + 2/|A[[C|. This inequality is

an intriguing improvement (in dimension 2) of Litvak’s observation (45). To see this, observe that by the
Brunn-Minkowski inequality,

|A—B| = (VIAI+ /1= B)” = |Al + B + 2V/|A[B| = (/|Al = VIB)” + 4V/A[ B,
and hence
4V/1AI Bl < |A — Bl — (1Al = VIBD?.
Thus, in dimension 2, since ¢, = 1, we obtain

[AIIJA+B+C|<|A+B|IA+C|
< (A -Bl+2VIAIBDIA+C]
3 1
< [§|A—B| - SWIAI- \/|B|>2]|A+C\,

which is an improvement of Theorem 5.2 in dimension 2.
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5.3 A sum-difference inequality in the plane

For subsets A and C of an abelian group, comparison of cardinality of A + C and A — C has been of
interest in additive combinatorics (see, e.g., [48, 60]). Analogously, in the probabilistic setting, various
works have explored the comparison of the entropies of sums and differences of independent random
variables in different abelian groups (see, e.g., [1, 33, 34, 37]). Inspired by this background, we develop a
sharp sum-difference inequality when the abelian group in question is the Euclidean plane.

Theorem 5.4. Let A, C be two convex sets in R?, then
|[A—C| <|A+C|+2VI|AlIC|. (46)

Moreover, the equality in the above inequality is only possible in the following cases:

e One of the sets A or C is a singleton or a segment and the other one is any convex body.
¢ Aisa triangle and C = tA + b, for some t > 0 and b € R?,

Proof. Let us first prove the inequality. We note that (46) is equivalent to

V(A, =C) < V(A,O) + VA C]. (47)
Assume A = A1+ A and

V(A1 =0) < V(A1,0) + VA1 [C| andV(A2, =C) < V(A2, ©) + VA2 [Cl.
Then,
V(A, —C) = V(A1,—C) + V(A,—C) < V(A, ) + VIA1[1Cl + VIA1[ICI.

Using the Brunn-Minkowski inequality in the plane: /[A1] + /|A1] < V]A], we get

V(A,-C) < V(A,C) +/IA[C].

Thus, to prove (47) we may assume that both A and C are triangles. Indeed, any planar convex body can
be approximated by a polygon and any planar polygon can be written as a Minkowski sum of triangles
[56] (here we will treat a segment as a degenerate triangle). If A or C is a segment, then the inequality
becomes an equality. Thus, we may assume that A and C are not degenerate triangles. We notice that
(47) is invariant under dilation and shift of the convex body C, thus we may assume that C C A and has
common points with all three edges of A. Thus, V(A, C) = |A| (see, for example, [57]). Finally, our goal is
to show that for any triangles A, C, such that C ¢ A and C touches all edges of A, we have

V(A, =CO) < |Al+ VIA[IC]. (48)

To prove the above inequality, one may use the technique of shadow systems ([50] or [56], Section 10.4).
In this particular case, the method can be applied directly. Indeed, if C = A, then (48) becomes an
equality. Otherwise, let C = conv{cy, ¢, cs} and one of the ¢/s is not a vertex of A. Assume, without loss of
generality, that c; is not a vertex of A. Then, there exists a vertex a; of A such that the segment (a1, ¢1)
does not intersect C. Let ¢; = tc; + (1 — t)ay for t € [to, t1], Where [to, t1] is the largest interval such that
¢t € A and ¢; is not aligned with ¢, and cs, for all t € (to, t1). Notice that ¢;, and ¢;, are either vertices of A
or belong to the line containing [cy, c3]. Let C; = conv(c;, ¢p, cs}. Then,

1 3
VA, =C) =V(=A,C) = 5 > he (-wIFi,
i=1
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where u;, 1 = 1,2, 3 is a normal vector to the edge F; of A. The function he, (—u;) is convex in t and thus
the same is true for V(A, —C;). We also notice that |C;| is an affine function of t on [to, t;] and thus

gt = V(A, =Cp — VIA[IC

is a convex function of t € [to, t1] and maxc[y, ;] = max{g(to), g(t1)}. Thus, the maximum of g(t) achieved

when either when C; becomes a segment (and the proof is complete in this case) or c¢; reaches a vertex

of A. Then, either C = A or there is a vertex of C that is not a vertex of A and we repeat the procedure.
Now let us consider the equality case. Assume

V(A, —C) = V(A, C) + VIA|[C]. (49)

First, let us assume that A is not a triangle. Then, A is decomposable: it can be written as A = A1 + A,
where A is not homothetic to A,. Then, applying (47) we get

V(A1, —C) = V(A1,O) + VIA1]IC] and V(Az, —C) = V(A;, C) + V|A2]IC].

From (49), we have equality in the above inequalities and

VIALICl + VA1 ICl = V1AL + Azl [C.

The above equality is only possible in two cases: first, when there is an equality in Brunn-Minkowski
inequality, which would result A, to be homothetic to A, and we assumed that this is not the case, and
the second case, when |C| = 0, that is, C is the singleton or a segment. If C is not a triangle, then, the
above discussion shows that |A| = 0.

Now, we assume that A and C are non degenerate triangles. Using homogeneity of equality (49), we
may assume that the triangle C touches all edges of A and equality (49) becomes

V(A, =CO) = VIATIC] = |A]. (50)

Assume towards the contradiction that C # A. Then, there is a vertex ¢; of the triangle C = conv(cy, ¢z, ¢3)
that is not a vertex of A. We reproduce the same shadow system (Ct)i[t, ;] @s in the proof of the
inequality. We only need to prove that the function g(t) = V(A, —Cy)—+/|A| |Ct] is not constant on [to, t1]. To
do this, we prove that, among the two functions, V(A, —C;) and V/IC¢] at least one is not affine. There are
two cases. If |C¢| is not constant then ,/|C| is strictly concave, thus g is not a constant. If |C;| is constant
then all vertices of C are different from the vertices of A. Recall that V(A, —C;) = % Zf’:l he, (—uy)|Fjl. Let
Uz, Us be the normal of the edges of A that do not contain c;. Then itis easy to see that he, (—u2) +he, (—us)
is not affine. Thus, V(A, —C;) is not constant. This is a contradiction. [ ]

Let us define the additive asymmetry of the pair (A, C) by

|A+C|
lA—-C

asym(A,C) = — 1|,

and note that asym(A, C) is trivially 0 if either A or C is symmetric. Observe that inequality (46) may be
rewritten as

asym(A, C) < 2e~440), (51)

where d(A, C) = log % is the Euclidean analogue of the Ruzsa distance defined at the beginning of

this section. One wonders if this inequality extends to dimension higher than 2.

G2Z0Z YdJeN 0 uo Jasn Aysionlun a1eis Juay Ad €2£€69/2/921 | LIS L/720g/a101e/ulwl/wod dno olwapede//:sdjy woly papeojumoq



11452 | M. Fradelizi et al.

Funding

This work is supported in part by the U.S. National Science Foundation through grants DMS-1409504
(CAREER), CCF-1346564, DMS-1101636, Simons Foundation, CNRS, and the Bézout Labex funded by ANR,
reference ANR-10-LABX-58.

Acknowledgments

Plotr Nayar and Tomasz Tkocz [45] independently obtained upper and lower bounds on the optimal
constants in the Plinnecke-Ruzsa inequality for volumes (versions of Theorems 4.6 and 4.14, though
with weaker bounds obtained using different methods); we are grateful to them for communicating
their work. We are indebted to Ramon Van Handel for pointing to us the original work of W. Fenchel on
the local version of Alexandrov’s inequality, to Daniel Hug for suggesting that we consider equality cases
in Theorem 5.4, and to Mathieu Meyer, Cheikh Saliou Ndiaye, Auttawich Manui, and Dylan Langharst
for a number of valuable discussions and suggestions.

References

1. Abbe, E,J.Li,and M. Madiman. “Entropies of weighted sums in cyclic groups and an application to polar
codes.” Entropy, Special issue on “Entropy and Information Inequalities” (edited by V. Jog and J. Melbourne) 19,
no. 9 (2017).

2. Alonso-Gutiérrez, D, S. Artstein-Avidan, B. Gonzalez Merino, C. H. Jiménez, and R. Villa. “Rogers-
Shephard and local Loomis-Whitney type inequalities.” Math. Ann. 374, no. 3-4 (2019): 1719-71. https://
doi.org/10.1007/s00208-019-01834-3.

3. Artstein, S, K. M. Ball, F. Barthe, and A. Naor. “Solution of Shannon'’s problem on the monotonicity of
entropy.” J. Amer. Math. Soc. 17 (2004): 975-82. https://doi.org/10.1090/S0894-0347-04-00459-X.

4. Artstein-Avidan, S., D. Florentin, and Y. Ostrover. “Remarks about mixed discriminants and volumes.”
Commun. Contemp. Math. 16 (2014): 1350031. https://doi.org/10.1142/50219199713500314.

5. Balister, P. and B. Bollobas. “Projections, entropy, and sumsets.” Combinatorica 32, no. 2 (2012): 125-41.
https://doi.org/10.1007/s00493-012-2453-1.

6. Barthe, F. and M. Madiman. “Volumes of subset Minkowski sums and the Lyusternik region.” Discrete
Comput. Geom. 71 (2024): 823-48. https://doi.org/10.1007/s00454-023-00606-w.

7. Bobkov, S., M. Fradelizi, D. Langharst, J. Li, and M. Madiman. “When can one invert Hoélder’s inequality?
(and why one may want to).” (2024): preprint.

8. Bobkov, S.and M. Madiman. “The entropy per coordinate of a random vector is highly constrained under
convexity conditions.” IEEE Trans. Inform. Theory, 57, no. 8 (2011): 4940-4954, https://doi.org/10.1109/
TIT.2011.2158475.

9. Bobkov, S. and M. Madiman. “Reverse Brunn-Minkowski and reverse entropy power inequalities for
convex measures.” J. Funct. Anal. 262 (2012): 3309-39. https://doi.org/10.1016/j.jfa.2012.01.011.

10. Bobkov, S. G, M. Madiman, and L. Wang. “Fractional generalizations of Young and Brunn-Minkowski
inequalities.” Concentration, Functional Inequalities and Isoperimetry, volume 545 of Contemp. Math, edited by
Houdré C., Ledoux M., Milman E., and Milman M., 35-53. Amer. Math. Soc., 2011.

11. Bollobas, B. and L. Leader. “Compressions and isoperimetric inequalities.” J. Combinatorial Theory Ser. A
56, 0. 1 (1991): 47-62. https://doi.org/10.1016/0097-3165(91)90021-8.

12. Burago, Y. D. and V. A. Zalgaller. Geometric Inequalities Volume 285 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer, 1988. Translated
from the Russian by A. B. Sosinskii’, Springer Series in Soviet Mathematics.

13. Cardin, M. “Multivariate measures of positive dependence.” Int. J. Contemp. Math. Sci. 4, no. 1-4 (2009):
191-200.

14. DeVos, M. “A short proof of Kneser’s addition theorem for Abelian groups.” Combinatorial and Additive
Number Theory—CANT 2011 and 2012, volume 101 of Springer Proc. Math. Stat. 39-41. New York: Springer,
2014.

15. Emerson, W. R. “Averaging strongly subadditive set functions in unimodular amenable groups.” I. Pacific
J. Math. 61, no. 2 (1975): 391-400. https://doi.org/10.2140/pjm.1975.61.391.

16. Fenchel, W. “Generalisation du theoreme de Brunn et Minkowski concernant les corps convexes.” C. R.
Acad. Sci. Paris 203 (1936): 764-6.

G2Z0Z YdJeN 0 uo Jasn Aysionlun a1eis Juay Ad €2£€69/2/921 | LIS L/720g/a101e/ulwl/wod dno olwapede//:sdjy woly papeojumoq



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Sumset Estimates in Convex Geometry | 11453

Foldes, S. and P. L. Hammer. “Submodularity, supermodularity, and higher-order monotonicities
of pseudo-Boolean functions.” Math. Oper. Res. 30, no. 2 (2005): 453-61. https://doi.org/10.1287/
moor.1040.0128.

Fradelizi, M., A. Giannopoulos, and M. Meyer. “Some inequalities about mixed volumes.” Israel J. Math.
135 (2003): 157-79. https://doi.org/10.1007/BF02776055.

Fradelizi, M., D. Langharst, M. Madiman, and A. Zvavitch. Weighted Brunn-Minkowski theory I: On
weighted surface area measures. . Math. Anal. Appl., 529, no. 2 (2024): 127519, https://doi.org/10.1016/j.
jmaa.2023.127519.

Fradelizi, M., D. Langharst, M. Madiman, and A. Zvavitch. “Weighted Brunn-Minkowski theory II:
inequalities for mixed measures and applications.” (2024): preprint, arXiv:2402.10314.

Fradelizi, M, Z. Langi, and A. Zvavitch. “Volume of the Minkowski sums of star-shaped sets.” Proc. Amer.
Math. Soc. Ser. B9 (2022): 358-72. https://doi.org/10.1090/bproc/97.

Fradelizi, M., J. Li, and M. Madiman. “Concentration of information content for convex measures.”
Electron. J. Probab. 25, no. 20 (2020): 1-22. https://doi.org/10.1214/20-EJP416.

Fradelizi, M., M. Madiman, A. Marsiglietti, and A. Zvavitch. “Do Minkowski averages get progressively
more convex?” C. R. Acad. Sci. Paris Sér. I Math. 354, no. 2 (2016): 185-9. https://doi.org/10.1016/].
crma.2015.12.005.

Fradelizi, M., M. Madiman, A. Marsiglietti, and A. Zvavitch. “The convexification effect of Minkowski
summation.” EMS Surveys in Mathematical Sciences 5,no. 1/2 (2019): 1-64. https://doi.org/10.4171/emss/26.
Fradelizi, M., M. Madiman, M. Meyer, and A. Zvavitch. “On the volume of the Minkowski sum of zonoids.”
J. Funct. Anal. 286, no. 3 (2024): 110247. https://doi.org/10.1016/].jfa.2023.110247.

Fradelizi, M., M. Madiman, and L. Wang. “Optimal concentration of information content for log-concave
densities.” High Dimensional Probability VII: The Cargése Volume, edited by Houdré C., Mason D, Reynaud-
Bouret P, and Rosinski J. Basel: Progress in Probability. Birkh&user, 2016.

Fradelizi, M., and A. Marsiglietti. “On the analogue of the concavity of entropy power in the Brunn-
Minkowski theory.” Adv. in Appl. Math. 57 (2014): 1-20. https://doi.org/10.1016/j.aam.2014.02.004.
Giannopoulos, A., M. Hartzoulaki, and G. Paouris. “On a local version of the Aleksandrov-Fenchel
inequality for the quermassintegrals of a convex body.” Proc. Amer. Math. Soc. 130, no. 8 (2002): 2403-12.
https://doi.org/10.1090/50002-9939-02-06329- 3.

Gyarmati, K., M. Matolcsi, and I. Z. Ruzsa. “Pliinnecke’s inequality for different summands.” In Building
Bridges Volume 19 of Bolyai Soc. Math. Stud. 309-20. Berlin: Springer, 2008.

Hochman, M. “On self-similar sets with overlaps and inverse theorems for entropy in R%.” arXiv: https://
arxiv.org/abs/1503.09043.

Hug, D. and R. Schneider. “Reverse inequalities for zonoids and their application.” Adv. Math. 228, no. 5
(2011): 2634-46. https://doi.org/10.1016/j.aim.2011.07.018.

Kneser, M. “Abschétzung der asymptotischen Dichte von Summenmengen.” Math. Z. 58 (1953): 459-84.
https://doi.org/10.1007/BF01174162.

Kontoyiannis, I. and M. Madiman. “Sumset and inverse sumset inequalities for differential entropy
and mutual information.” IEEE Trans. Inform. Theory 60, no. 8 (2014): 4503-14. https://doi.org/10.1109/
TIT.2014.2322861.

Li, J. and M. Madiman. “A combinatorial approach to small ball inequalities for sums and differences.”
Comb. Probab. Comput. 28, no. 1 (2019): 100-29. https://doi.org/10.1017/5S0963548318000494.

Madiman, M. “On the entropy of sums.” Proc. IEEE Inform. Theory Workshop, 303-7. Porto, Portugal,
2008.

Madiman, M. and F. Ghassemi. “Combinatorial entropy power inequalities: a preliminary study
of the Stam region.” IEEE Trans. Inform. Theory 65, no. 3 (2019): 1375-86. https://doi.org/10.1109/
TIT.2018.2854545.

Madiman, M. and I. Kontoyiannis. “The entropies of the sum and the difference of two IID random
variables are not too different.” Proc. IEEE Intl. Symp. Inform. Theory, Austin, Texas, 2010.

Madiman, M. and 1. Kontoyiannis. Entropy bounds on abelian groups and the Ruzsa divergence. IEEE
Trans. Inform. Theory, 64, no. 1(2018): 77-92, https://doi.org/10.1109/T1T.2016.2620470.

Madiman, M., A. Marcus, and P. Tetali. “Information-theoretic inequalities in additive combinatorics.”
Proc. IEEE Inform. Theory Workshop, Cairo, Egypt, 2010.

Madiman, M., A. Marcus, and P. Tetali. “Entropy and set cardinality inequalities for partition-determined
functions.” Random Struct. Alg. 40 (2012): 399-424. https://doi.org/10.1002/rsa.20385.

«

G2Z0Z YdJeN 0 uo Jasn Aysionlun a1eis Juay Ad €2£€69/2/921 | LIS L/720g/a101e/ulwl/wod dno olwapede//:sdjy woly papeojumoq



11454 | M. Fradelizi et al.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

Madiman, M., P. Nayar, and T. Tkocz. “Two remarks on generalized entropy power inequalities.” Geometric
Aspects of Functional Analysis: Israel Seminar (GAFA) 2017-2019, volume 2266 of Lecture Notes in Mathematics,
edited by Klartag B., and Milman E., 169-85. Springer, 2020.

Madiman, M. and P. Tetali. Information inequalities for joint distributions, with interpretations
and applications. IEEE Trans. Inform. Theory 56, no. 6 (2010): 2699-2713, https://doi.org/10.1109/
TIT.2010.2046253.

Madiman, M., L. Wang, and J. O. Woo. “Rényi entropy inequalities for sums in prime cyclic groups.” SIAM
J. Discrete Math. 35, no. 3 (2021): 1628-49. https://doi.org/10.1137/18M1185570.

Moulin Ollagnier, J.,, and D. Pinchon. “Filtre moyennant et valeurs moyennes des capacités invariantes.”
Bull. Soc. Math. France 79, no. 3 (1982): 259-77. https://doi.org/10.24033/bsmf.1961.

Nayar, P. and T. Tkocz. Personal communication. 2017.

Ndiaye, C. S. “A note on Bézout type inequalities for mixed volumes and Minkowski sums.” (2023):
preprint, arXiv:2304.12065.

Petridis, G. “New proofs of Pliinnecke-type estimates for product sets in groups.” Combinatorica 32, no. 6
(2012): 721-33. https://doi.org/10.1007/500493-012-2818-5.

Pigarev, V. P. and G. A. Freiman. “The relation between the invariants R and T.” Number-Theoretic Studies
in the Markov Spectrum and in the Structural Theory of Set Addition (Russian), 172—4. Moscow: Kalinin. Gos.
Univ, 1973.

Plinnecke, H. “Eine zahlentheoretische Anwendung der Graphentheorie.” . Reine Angew. Math. 1970
(1970): 171-83. https://doi.org/10.1515/crl.1970.243.171.

Rogers, C. A. and G. C. Shephard. “Some extremal problems for convex bodies.” Mathematika 5 (1958):
93-102. https://doi.org/10.1112/S0025579300001418.

Ruzsa, I. Z. “An application of graph theory to additive number theory.” Scientia Ser. A Math. Sci. (N.S.) 3
(1989): 97-109.

Ruzsa, I. Z. Sums of finite sets. In Number Theory (New York, 1991-1995), pp. 281-293. Springer, New York,
1996, https://doi.org/10.1007/978-1-4612-2418-1_21.

Ruzsa, I. Z. “The Brunn-Minkowski inequality and nonconvex sets.” Geom. Dedicata 67, no. 3 (1997):
337-48. https://doi.org/10.1023/A:1004958110076.

Ruzsa, I. Z. “Sumsets and entropy.” Random Structures Algorithms 34, no. 1 (2009): 1-10. https://doi.
0rg/10.1002/rsa.20248.

Saroglou, C., I. Soprunov, and A. Zvavitch. “Characterization of simplices via the Bezout inequality for
mixed volumes.” Proc. Amer. Math. Soc. 144, no. 12 (2016): 5333-40. https://doi.org/10.1090/proc/13149.
Schneider, R. Convex Bodies: The Brunn-Minkowski Theory. Volume 151 of Encyclopedia of Mathematics
and Its Applications. Cambridge, expanded edition: Cambridge University Press, 2014.

Soprunov, I. and A. Zvavitch. “Bézout inequality for mixed volumes.” Int. Math. Res. Not. IMRN 23 (2016):
rnv390-7252. https://doi.org/10.1093/imrn/rmv390.

Stach¢, L. L. “On the volume function of parallel sets.” Acta Sci. Math. (Szeged) 38, no. 3-4 (1976): 365-74.
Tao, T. “Sumset and inverse sumset theory for Shannon entropy.” Combin. Probab. Comput. 19, no. 4 (2010):
603-39. https://doi.org/10.1017/5S0963548309990642.

Tao, T. and V. Vu. Additive combinatorics. Volume 105 of Cambridge Studies in Advanced Mathematics.
Cambridge: Cambridge University Press, 2006.

Tao, T. and V. Vu. “From the Littlewood-Offord problem to the circular law: universality of the spectral
distribution of random matrices.” Bull. Amer. Math. Soc. (N.S.) 46, no. 3 (2009): 377-96.

Topkis, D. M. “Supermodularity and complementarity.” Frontiers of Economic Research. Princeton, NJ:
Princeton University Press, 1998.

Xiao, J. “Bézout-type inequality in convex geometry.” Int. Math. Res. Not. 2019 (2019): 4950-65. https://
doi.org/10.1093/imrn/rnx232.

G2Z0Z YdJeN 0 uo Jasn Aysionlun a1eis Juay Ad €2£€69/2/921 | LIS L/720g/a101e/ulwl/wod dno olwapede//:sdjy woly papeojumoq



	 Sumset Estimates in Convex Geometry
	 1Introduction
	 2Preliminaries
	 3Higher Order Supermodularity of Mixed Volumes
	 4Plunnecke-Ruzsa Inequalities for Convex Bodies
	 5Playing With Signs
	Funding
	Acknowledgments


