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1. Introduction

The deep parallels between inequalities in Information Theory and Convex Geom-
etry have been explored intensively. The recognition of these parallels goes back to
at least 1984, when Costa and Cover [15] observed the formal resemblance between
the Brunn-Minkowski inequality in Convex Geometry and the entropy power inequal-
ity in Information Theory. The Brunn-Minkowski inequality (see, e.g., [30,51]) states
that for all compact sets A, B in R™, |A 4 B|Y/"™ > |A|Y/" + |B|'/", where we write |A|
for the volume of A. The entropy power inequality (see, e.g., [17]) states that for any
pair of independent random vectors X,Y in R", N(X +Y) > N(X) + N(Y), where
N(X) = ™% denotes the entropy power of X, and h(X) = — [ f(z)log f(z)dx is
the entropy of X if X has density f (and h(X) = —oo if not). Despite the apparent
distinctness of the settings, a compelling case can be made (see, e.g., [18,54,30,56,43])
that these inequalities are deeply connected — in particular, it is now well understood
that the functional A ~— |A|'/™ in the geometry of compact subsets of R”, and the
functional fx — N(X) in probability are analogous in many (but not all) ways. In the
last decade, several further developments have been made that link Information Theory
to the Brunn-Minkowski theory, including entropy analogues of Blaschke-Santald’s in-
equality [38], reverse Brunn-Minkowski’s inequality [7,8], Rogers-Shephard’s inequality
[10,41] and Busemann’s inequality [5]. Indeed, volume inequalities and entropy inequal-
ities (and also certain small ball inequalities [44]) can be unified using the framework of
Rényi entropies; this framework and the relevant literature is surveyed in [43].

The analogies between Information Theory and Convex Geometry are not so direct
when one moves to second-order functionals. In particular, convex geometry analogues
of Fisher information inequalities hold sometimes but not always [24,2,29]. Motivated by
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these analogies, Dembo, Cover and Thomas [18] proposed the inequality, called concavity
of the ratio of volume to the surface area,

A+ B A B
>
AT By = [0AL: | 19Blums @)

as a natural analogue dual to the Fisher information inequality; here and in the sequel,
| A, will mean the m-dimensional Hausdorff measure of the set A. It was noticed already
in [18] (see also [31]) that (1) is true when A (or B) is an Euclidean Ball, moreover, in
[24], it was proved that this last inequality holds for any convex bodies A and B in R2.
It is interesting to note that even a weaker conjecture, called monotonicity of the ratio
of volume to the surface area,

|A+ B| | Al
> 2
DAL B = [0AL @

is not trivial. The case of B being a segment already gives another natural conjecture

0Py Als |94l
<
oAl = 4] (3)

where P, A denotes the orthogonal projection A onto the hyperplane with normal vector
u € 8"~ 1. We explain in details the relationships between the above conjectures as parts
of Theorems 3.6, 3.9 and Remark 3.10 below. It was proved in [31] (see also Lemma 5.4
for a simple proof) that (3) holds with a multiplicative constant:

(P Al _ 2(n = 1) 0401 @
| Put Aln— n 4]

Moreover, it was shown in [24] that the constant is sharp. Thus, there are counterexam-
ples to (3) in R™ for any n > 3 and inequalities (1) and (2) are not true in general for
the whole class of convex bodies in R™, n > 3.

Conjecture (1) is connected with the following conjecture for the volume of projections
(see Remark 3.10 below):

|A+ B| Al |B|
> + . 5
|Poi(A+ B)ln-1 = |PyrAln-1  |PyrBln-1 (5)

Bonnesen proved in [12] (see [51, eq. (7.196)]) that, for any convex bodies A, B in R™,

A+B|> (|Po AL + P Bl o AL, 1Bl (6)
= utAln—1 ut Pln—1 ‘PULA‘nfl |PuiB|n*1 7

which is (5) for n = 2. The fact that (1) is true in dimension 2 and in the case when
one of the bodies is an Euclidean ball inspires the natural conjecture that (1) holds for
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zonoids. Recall that zonoids are Hausdorff limits of zonotopes and that zonotopes are
Minkowski sums of segments. Our main goal, in this paper, is to study a weaker version
of this conjecture: is it true that for two zonoids A, B in R™ we have

|A + B| \A|
> ? 7
P (A1 B = [Prdls @)

Note that (7) is again not true for general convex bodies in dimension n > 3. We prove
it for zonoids in R? (Theorem 5.1). We also present a number of equivalent and useful
restatements of (7) (Theorems 3.6, 3.9 and 5.3).

The second main contribution of this paper has to do with an analogue of the
Pliinnecke-Ruzsa [47,50] inequality for zonoids, or equivalently, the log-submodularity
property of volume on the space of zonoids with respect to Minkowski summation. More
precisely, we study the following conjecture from [28]: given zonoids A, By, B in R™, one
has

|A||A+ By + By| < |A+ By||A+ Byl (8)

This conjecture was inspired by Bobkov and the second-named author [8] who proved
that for convex bodies A, By, Bs in R™, one has

|A[|A+ By + Bs| < 3"|A+ By||A+ Bl

Recently, it was proved in [28] that the constant 3" in the preceding inequality may be
replaced by ¢", where ¢ = (1 4+ 1/5)/2 is the golden ratio, that the best constant c,
is lower bounded by (4/3 + o(1))™ and that co = 1 and c3 = 4/3. These observations
imply that, for general convex bodies in dimensions n > 3, it is impossible to have (8).
In this paper, we prove that (8) holds in R? for zonoids. We explore related questions
for Gaussian and more general measures in [25,26].

The log-submodularity property of volume is tightly connected with the submodular-
ity of entropy proved in [39], which asserts that

NX)N(X+Y +2Z) < N(X +Y)N(X + 2), (9)

for independent R™-valued random variables X, Y, Z. This inequality may be thought of
as an entropic analogue of the Pliinnecke-Ruzsa inequality. It was observed in [41] that
(9), applied to Gaussian random vectors, immediately implies log-submodularity of the
determinant for positive-definite matrices 11,15, T53:

det(T1 + 15 + T3)d€t(T1> < det(Tl + Tg)det(Tl + Tg).

A much more general inequality, however, has a long history in functional analysis. The
Grothendieck determinant inequality asserts that if 77,75 are trace-class operators on a
separable Hilbert space, then
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det(I + |Ty + Tz|) < det(I + |T1|)det(I + |T3|),

where we use I for the identity operator on the Hilbert space, det for the Fredholm
determinant, and |T| = (T*T)%. This inequality first appeared in unpublished notes of
Grothendieck in 1955, and was rediscovered by Rotfel’d [49], and by Seiler and Simon
[52] motivated by questions in quantum field theory (our approach to volume inequalities
is akin to the proof of [52] in that they use the polynomial expansion of determinants).
Another proof was given by Lieb [35] and a further generalization to an arbitrary von
Neumann algebra equipped with a faithful semifinite trace (which had been conjectured
by Grothendieck) was obtained by Fack [20].

Inequality (9) was later modified by Courtade in [16], who established that if X is a
Gaussian random vector then one has the reinforced inequality

NY)N(Z)+ N(X) NX+Y+Z)< NX+Y)NX + 2).

Again, when applied for independent Gaussian random vectors, this immediately implies
that for any symmetric positive semidefinite matrices 17,75, T3, one has

det(Ty) ™ det(Ts) ™ + det(T1) = det(Ty + T + Ts)* < det(Ty + To) = det(Ty + T5). (10)

During the 2017 workshop on Information-Theoretic Inequalities at the University
of Delaware, Courtade conjectured that the analogous inequality is true for any convex
bodies B,C in R™

|BIY/"|C|Y" + | By Y| BY + B+ C|Y"™ < |By + BIY"|By + C|Y",

where By is the Euclidean unit ball. In Theorem 4.1, we confirm this conjecture in the
plane, moreover, we show that B in the above inequality may be replaced by a general
planar convex body.

We would like to also illustrate an application of (10) to volume inequalities. For this,
let us recall Firey’s [22] one-parameter extension of the concept of Minkowski sum: for
any real number p > 1, the so-called £,-sum K @, L of convex bodies K and L containing
the origin is defined by:

hico,1() = (hic(z)” + he(2))7 , Va €R™,

where hg is the support function of K. In particular, for the case p = 2, the class of
ellipsoids is closed with respect of f3-sum and if & = T1BY and & = T5BY, for some
positive-definite symmetric matrices T1,Ts, then & @2 E = \/TF + T3 BY. Thus (10),
immediately gives

|Ea| 7 || + |E1]7 |E1 Do Ea B2 Es|7 < |E1 Do Eo| ™ |Er B2 Es|7 .
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In addition to the above inequality, in this paper, we establish the /5-version of the
Dembo-Cover-Thomas conjecture (1) for ellipsoids and discuss other possible ¢,,- exten-
sions of inequality (5) (see Theorem 6.2 and Corollary 6.7).

This paper is organized as follows. In Section 2, we collect background material on
mixed volumes. Numerous equivalent descriptions of log-submodularity, on a given class
of convex bodies, are explored in Section 3. In Section 4, we first prove the planar case
of the conjecture of Courtade, and we then prove inequality (7) in the special case of
paralleletopes. Section 5 explores log-submodularity of volume on the class of zonoids
— we first prove that this holds in R?, and then discuss an array of inequalities that
are equivalent to log-submodularity for zonoids in arbitrary dimension (all of which
therefore now hold in R3). Along the way, we answer a question of Adam Marcus about
Steiner polynomials of zonoids. Finally, in Section 6, inspired by a work of Brazitikos
and Mclntyre [13] on vector-valued Maclaurin inequalities and the inequality (10), we
discuss possible extensions of our results to the more general class of £,-zonoids, which
appear in the more general L,-Brunn-Minkowski theory.

Acknowledgments. We are indebted to Shiri Artstein-Avidan, Guillaume Aubrun,
Silouanos Brazitikos, Dan Florentin, Dylan Langharst, Auttawich Manui, Ivan Soprunov,
and Ramon Van Handel, for a number of valuable discussions and suggestions. We are
grateful to the anonymous referee for their valuable suggestions which helped us to im-
prove the exposition.

2. Preliminaries on mixed volumes

In this section, we introduce basic notations and collect essential facts and definitions
from convex geometry that are used in the paper. As a general reference on the theory,
we use [51]. We write (z,y) for the inner product of vectors x and y in R™ and by |z| the
Euclidean norm of a vector x € R™. The closed Euclidean ball in R™ is denoted by BY,
and its boundary by S"~!. We also denote by ey, ..., e, the standard orthonormal basis
in R™. Moreover, for any set in K C R"™, we denote its boundary by 0K. A compact set
K in R" is called star-shaped if, for every « € K, the segment [0, z] is a subset of K;
its radial function pg is then defined by px(z) = sup{a;az € K}. When 0 belongs to
the interior of K then |z||x = pj'(z) is the Minkowski functional of K. A convex body
is a convex, compact set with non-empty interior. For a convex body K, we define its
support function by hg(x) = maxycx (z,y).

We write | K|, for the m-dimensional Hausdorff measure of a measurable set K C
R"™. In the case where K is a convex set, the typical use of this notation will involve
the dimension m € {1,...,n} of the minimal affine space containing K, so that |K]|,,
is just the Lebesgue measure (volume) of the “correct” dimension. We often use the
shorter notation |K| for n-dimensional volume; also, for the sake of convenience, we
define |K|p = 1. From [51, Theorem 5.1.6], for any compact convex sets Kj,..., K, in
R"™ and any non-negative numbers ¢4, ..., t., one has
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r

‘thl++trKr| - Z til"'tinV(Ki17~"7Ki )a (11)

n

i1y00yin =1

for some non-negative numbers V(Kj,,...,K; ), which are the mixed volumes of
Ki,... . K; .
We also often use the version of (11) for two bodies:

n

A+1B| = ")thAnk,Bk : 12

| > () v . 59) (12)
for any t > 0 and compact, convex sets A, B in R™, where for simplicity we use notation
Alm)] for a convex set A repeated m times. Mixed volumes satisfy a number of extremely
useful inequalities. The first one is the Brunn-Minkowski inequality |K +L|Y/"™ > |K|*/"+
|L|*/", whenever K, L and K 4 L are measurable. A direct consequence is Minkowski’s
first inequality

V(L,K[n —1]) = ||/ K| =D/ (13)
and Minkowski’s second inequality
V(L, K[n —1])* > |[K|V(L[2], K[n - 2]), (14)

for two convex, compact subsets K and L in R™. We will use the classical integral
representation for the mixed volume:

V(L Kn—1]) = % / hi(w)dSk (u), (15)
S’!Lfl

where Sk is the surface area measure of K [51]. Mixed volumes are also useful to study
the volume of the orthogonal projections of convex bodies. Let E be an m-dimensional
subspace of R”, for 1 < m < n and let Pg : R" — E be the orthogonal projection onto
E. Then for any convex body K we have (see [51] Theorem 5.3.1)

n
Ul PRy = (1 )V (T, U = ), (16)
where U is any convex body in the subspace E+ orthogonal to E. It follows from (16)
that for any orthonormal system uq,...,u,., 1 <r <n we get
n!

\P[UIP‘WUT]LKLL_T = V(K[n—7],[0,u1],...,[0,u]). (17)

(n—rm)!

For example, denote by ut = {z € R" : (z,u) = 0} the hyperplane orthogonal to a
vector u € S"~!, we obtain
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|Pyr K|p—1 = nV(K[n —1],[0,u]). (18)

Another useful formula is connected with the computation of surface area and mixed
volumes:

|OK| =nV(K[n — 1], BY), (19)

where by |0K| we denote the surface area of the convex body K in R™.

A polytope which is the Minkowski sum of finitely many line segments is called a
zonotope. Limits of zonotopes in the Hausdorff metric are called zonoids, see [51, Section
3.2] for details. Consider zonotopes Z; = Zgj:l[O,wijj], where, j =1,...,n and w;,; €
R™. Using the linearity of mixed volumes, we get that

V(Zl, ey Zn) = Z V([O, will], P [07 wznn}) = % Z |det({wijj}?:1)|, (20)

where the sums run over the integers i; € {1,...,N;}, for j € {1,...,n}. Notice that,
if Z; = [0,u], with u € S"~!, we may use the basic properties of determinants to show
that

1
V([O7 U], Z2a cey ZTL) = ﬁ Z |det({Puiwijj}?:2)|7

where the sum is taken over all integer i; € {1,...,N;}, for j € {2,...,n}. We mainly
use the following particular case: for Z = [0, u1] + - - - + [0, up,], then

|Z] = > det(ui, - .., ug,)| (21)
1<i1 < <ip <m

|P..Z| = > |det(P.ruy, ..., Poriuy,)

1<iz < <ip, <m

3. Equivalent forms of the log-submodularity of volume
3.1. Submodularity

Let us recall the notion of submodular set functions and some of their basic properties;
see [40,55,23,28] for more information on this subject and the proofs of the theorems.
We denote [n] = {1,--- ,n} and let 2["] be the family of subsets of [n].

Definition 3.1. A set function F : 2" — R is submodular if

F(SUT)+ F(SNT) < F(S)+ F(T) for all subsets S, T of [n]. (22)
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Submodularity is closely related to a partial ordering on hypergraphs [19,11,4]. Let
M(n,m) be the following family of multi-hypergraphs: each consists of non-empty sub-
sets S; of [n], >, 15| = m, with S; = S; allowed. Consider a given multi-hypergraph
C = {S1,...,5} € M(n,m). Take any pair of non-nested sets {S;,S5;} C C and let
C’' = C(i,j) be obtained from C by replacing S; and S; by S; N S; and S; U S;, keeping
only S; US; if S;NS; = 0. C' is called an elementary compression of C. The result of a
sequence of elementary compressions is called a compression. Define a partial order on
M(n,m) by setting A > A" if A’ is a compression of A. Using transitivity of the partial
order and reducing to elementary compressions, we get the following theorem (see [4]).

Theorem 3.2. Suppose F is a submodular function on [n]. Let A and B be finite multi-
hypergraph of subsets of [n]|, with A > B. Then

Y F(S)= > F(T).

SeA TEB

For every multi-hypergraph A € M(n, m) there is a unique minimal multi-hypergraph
A# dominated by A consisting of the sets Sf = {i € [n] : ¢ lies in at least j of the sets
S € A}. One implication of Theorem 3.2 is that submodular functions F with F(¢) =0
are “fractionally subadditive” (see, e.g., [45])— this property has also been investigated
in connection with volumes of Minkowski sums [9,27,6].

We also have a notion of submodularity on the positive octant of the Euclidean space;
such functions also arise naturally in probability, see, e.g., [42].

Definition 3.3. A function f : R — R is submodular if, for any z,y € R},

flavy)+ fxAy) < fx) + f(y),

where z V y (resp. x A y) denotes the componentwise maximum (resp. minimum) of x
and y.

The next very simple lemma connects submodularity for functions defined on R’} to
submodularity for set functions. For a set S C {1,...,n}, let 15 be the vector in R™ such
that for each i € {1,...,n}, the i-th coordinate of 15 is 1, for ¢ € S and 0, for i ¢ S.

Lemma 3.4. If f : R — R is submodular, and we set F(S) := f(lg) for each S C

{1,...,n}, then F is a submodular set function.

The fact that submodular functions are closely related to functions with decreasing
differences is classical (see, e.g., [40] or [55], which describes more general results involving
arbitrary lattices). We denote by 3Z ; the second derivative with respect to coordinates

%, 7.
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Proposition 3.5. Let f : R} — R be a C? function. Then f is submodular if and only if
81-27jf <0 on RY, for every i # j.

3.2. Classes closed under sums and dilation

Let us now show the various forms that the notions of submodularity and log-
submodularity can have applied to volume of convex compact sets.

Theorem 3.6. Consider a collection IC of compact convez sets in R™ stable by sums and
dilation. Then the following statements are equivalent:

1. For everym > 1 and every A, By,..., By, in K

A"‘iBi

i=1

§ﬁ|A+B,»|. (23)

i=1

A=

2. For everym >1 and A, B, ..., By, € K, the function @ : 2™ — R defined by

A—l—ZBi

i€S

w(S) = log (24)

for each S € 2" is a submodular.
3. For every m > 1 and any multi-hypergraphs A, B on [m] with A > B,

> w(S) = > w(T),
SeA TeB
where w is defined by (24).
4. For everym > 1 and every A, By, ..., By, € K, the function w : R" — R defined, for
T = (7317 cee 7xm) € RT7 by

w(z) = log ’A + Z x;B;l, (25)

i=1

is submodular.
5. For every A,B1,Bs € K

AV (Aln = 21, By, By) € ——V(Aln — 1], B)V(Aln — 1], Ba).

n—
Proof. 2. = 1. This follows directly from the definition.

1. = 2.: We use (23) with A+, B, ZieS\T B; and ZieT\S’ B;.

2. <= 3.: This follows from Theorem 3.2 applied to w.

2. <= 4.: This comes from Lemma 3.4 and the fact that I is dilation invariant.
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4. <= 5.: We apply Proposition 3.5 to f = w. Let K, = A+ >, x;B; and v(z) = | K,|.
Then,

iy K 2By~ ||

ajv(x) - :TLV(KI[TL—l],B]),

e—0 IS

and, for k # j,

8ikv(x) =no,V (K[n — 1], Bj)

i V(U eBy)[n— 1], By) = V(Ky[n — 1], By)
e—0 c

=n(n—1)V(K[n — 2|, By, Bj).

By Proposition 3.5, the submodularity of w is equivalent to 97w (x) < 0. But w = log(v)
0

vﬁjkv — 8jv8kv

a§7kw($) - 2 )

v
which is non-positive if and only if

n

| K|V (Kg[n —2], Bj, Bi) < 1V(Kx[n — 1], B;)V(Kz[n — 1], Bg).

Thus plugging ¢ = 0 we get 4. = 5. and using 4. with K, instead of A gives
5. = 4. O

We note that it is enough to check property 1. in Theorem 3.6, just in the case m = 2.
Indeed the case of general m > 2 follows by an iteration argument.

We also note that, in dimension 2, property 5. of Theorem 3.6 holds for any convex
bodies by the classical local version of Alexandrov’s inequality that was proved by W.
Fenchel (see [21], also [51] and discussion in Section 4.1 below) and further generalized
in [24,2,53]: for any convex compact sets A, By, B2 in R we have

|AIV(A[n — 2], By, Ba) < 2V(A[n — 1], B)V (Aln — 1], By). (26)
The constant 2 is sharp in any dimension (see [31] and [28]). This shows also that log-
submodularity doesn’t hold in the set of compact convex sets in R™, for n > 3. From
(26) and Theorem 3.6, the following theorem holds.

Theorem 3.7. For every convex compact A, By, By in R? it holds

|A||A+ By + By| < |A+ By||A+ Bl
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Note that the inequality from Theorem 3.7 holds also in R. Moreover, the inequality
in R and R? can be improved as shown in Theorem 4.1, in particular in the class of
convex bodies the inequality is strict.

It is easy to see that 1. from Theorem 3.6 works well with direct sums, more precisely
if AL, B,...,B C R™ and A% B?,..., B2, C R™ satisfy (23), then A = A x A% C
R™*"2 and B; = B} x B2 in R™m™™2 4 =1,... m satisfy (23). This fact can be used to
create different classes of compact convex sets stable by sum and dilations which satisfy
the properties of Theorem 3.6.

Remark 3.8. Minkowski’s second inequality gives that, for any compact convex sets A
and B, one has

|A|V(An — 2, B[2]) < V(A[n — 1], B)2. (27)

Theorem 3.6 implies that if K is a class of convex bodies on which log-submodularity
holds (property 1. of Theorem 3.6), then for bodies in I, a Fenchel type inequality similar
o (26) holds with a dimensional factor —" instead of 2.

Let us, also, note that the same proof shows that for a fixed compact convex set A

not necessarily belonging to K, if, for every By, By in IC, one has
|Al[A+ By + Ba| < |A+ By||[A+ Bal, (28)
then, for every By, Bs € IC, one has

|A|V (A[n — 2], By, Bg) < %V(A[n — 1], B1)V(A[n — 1], Ba).
3.8. Classes closed under linear transformations

Theorem 3.9. Let L be a class of a compact convex sets in R™ stable under any linear
transformations. The following are equivalent:

1. |Al10(A+[0,u])| < |0A||A+[0,u]|, for any A € L and any v € R™.

2. |A||0(P,L A)| < |0A||Pyr Aln_1, for any A € L and any u € S™~ 1.

3. |Al Pyt Aln—2y/1 — (u,v)? < [Py Al 1|Pyr Alp—1, for any A € L and any u,v €
St

4. |JA+10,u] +[0,v]| |A] < |A+[0,u]| |A+ [0,v]|, for any A € L and any u,v € R™.

5. |AIV(Aln = 2], 21, Z2) < 725V (Aln — 1], Z1)V(A[n — 1], Z2), for any A € L and any
zonoids Zv, Zs.

6. For any A € L and any u,v € R™, let us define P(t) = |A+t([0,u]+[0,v])|, fort > 0.

Then P(t) is the restriction to Ry of a polynomial on R, which has only real roots.

Proof. 1. <= 2.: This was observed in [2]. It is true even for fixed A and u. For u # 0,
it follows from the identities |A + [0, u]| = |A| + |u||P,+ A| and
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[0(A+[0,u))| = nV((A+[0,u])[n — 1, BY) = [0A] + |ul[0(P, - A)].

2. = 3.: Define 7, : R® — R™ by T.z = ex + (x,v)v. Notice that To(BY) = [—v, v].
From (2) applied to 7- 1A and T 'u we have

[T AV(T  Aln — 20,0, T ], BY)

n

— V(T Aln — 1], BY)V (T Aln — 1], [0, T M),

Thus

n

‘A|V(A[n - 2]7 [O,U],TSBS) < 1V(A[n - 1]7TEB§L)V(A[’”’ - 1]7 [O,U])

When ¢ — 0, we get

[ AV (Aln = 2], [0, u], [0,]) < V(A[n =1}, [0, o)V (A[n — 1], [0,u]). — (29)

n—1

From (16) and (17), we get |P,+ Aln—1 = nV(A[n — 1], ]0,u]) and

‘P[uaU]LA|”—2 \% 1- <U’U>2 = n(n - 1)V(A[n - 2]’ [07 u]’ [0’ U])

3. <= 4.: We may assume that u is not colinear with v. Applying a linear transforma-
tion to A, u and v, we may assume that u,v are orthonormal. Expanding both sides of
the inequality in 4. and using (11), we get 3.

3. = 5.: As noticed above, 3. is equivalent to (29). From the linearity of mixed
volumes, we deduce that for every zonotopes Z; and Zs, one has

AV (Aln — 2], 24, Zs) < %V(A[n —1], Z1)V(A[n — 1], Zs). (30)

Taking limits, we conclude that (30) is valid for every zonoids Z7, Zs.

5. = 2.: Applying (30) to Z; = [0,u] and Zy = B and using that V(A[n —
2],[0,u], BY) = mW(PuLA)L V(Aln —1],[0,u]) = L|P,. A],_1 and (19), we con-
clude.

3. <= 6.: We may assume that u is not colinear with v. Applying a linear transforma-
tion, to (3) and (6), it is enough to assume that u,v are orthonormal. Then

P(t) = |A| + t<|PuJ-A|n71 + ‘P’L)J'A"ﬂfl) + ‘P[u,v]J-A|n72t2~
The equation
|A| 4+ t(|Pyr Aln—1 + | Pyr Aln—1) + [Py o) Aln—2t® = 0

has real roots is equivalent to
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(|PuLA|n—l + |P’UJ‘A|TL—1
2

2
> 2 |A‘|P[u,v]lA‘n727 (31)

which follows immediately from 3. To show that 6. = 3., assume (31) is true for all A
in £ and u,v € S"~!. Consider the linear operator 7" such that Tu = tu and Tv =t~ v
for t > 0 and Tx = x for x € [u,v]*. Taking t = (|Py1 Aln_1/|Pyr Al,_1])Y/?, we get

|PyrTAl—1 = |Pyr TA|n—1.
Applying (31) to T A, we get
|Pys TAl 1| Pys TA 1 > [T APy TAl o,
Since [T'A| = |Al, | Py TAlp—2 = | Py )t Aln—2 and
Py TAl 1| Py TA 1 = [Pyt Al 1| Pys Al 1,
we get 3. O

Remark 3.10. Notice that, if £ is the class of zonoids, then 1. from Theorem 3.9

A+ 0]l |4
|8(A+ [O7u])|n—1 o ‘6A|n—1

for every zonoid A and every u € R"™ is equivalent to

A+B A
|8(A+B)‘n—l N |8A|n—1

for all zonoids A and B. Similarly, from 4., we deduce that these inequalities are equiv-
alent to

A+B A
‘PuL(A+B)‘n*1 - |PuiA|n*1

for all zonoids A and B, as stated in the introduction. Similarly, using also the methods
of the proof of Corollary 6.7, we deduce that the stronger conjectures
A+Bl |4 1B

+
[0(A+ B)[n—1 ~ |0A]n—1 |0Bn—1

for all zonoids A and B, and

A+Bl AL B
‘Pul(A"‘B)‘nfl N |PuJ-A|nfl |PuJ-B|nfl

for all zonoids A and B, are equivalent.
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Remark 3.11. It was proved in [53] that 5. in Theorem 3.9 is satisfied when A is a simplex
(actually, even without constant n/(n—1)), thus all of the properties in Theorem 3.9 are

true for simplices. Actually, the inequalities of statements 2. and 3. hold with an extra
n—1

factor *— on the right hand side.

Remark 3.12. Notice that the inequality (26) shows that the property 5. of Theorem 3.9
holds true for the class £ of compact convex sets in R? and doesn’t hold in the class of
compact convex sets in R", for n > 3.

4. Some special cases

4.1. An improved inequality in R?

Inspired by an analogous result [16, Theorem 3] in Information Theory, T. Courtade
asked if

|BIY™ O™ 4+ |AY A+ B+ CIY™ < |A+ BV A+ C)V (32)

for A = B% being the Euclidean ball, and any convex bodies B, C' in R™. Here we confirm
Courtade’s conjecture in R? in a more general setting.

Theorem 4.1. Consider convez bodies A, B,C C R?, then

|A[Y2|A+ B+ C|'? + |B|'?|CV? < |A + B|'?|A+C|'/2. (33)
Proof. The main tool to prove the above inequality is the following classical inequality
of Fenchel that we have already used. We will need now to use the most general form of
this inequality (see [51, (7.69) pp. 401]):

(IAV(B,C) = V(A, B)V(A,C))* < (V(A,B)* — |A[|B|)(V(4,C)? — |A]|C]).
Note that the above can be rewritten as
|CIV(A, B)? +|B|V(A,C)* + |A|V*(B,C) — |A|| B||C| - 2V (4, B)V(A,C)V(B,C) < 0.
(34)
Squaring both sides of (33), we get
2(|AllA+ B+ C||BI[C])"* +|AllA+ B+C| +|B|IC| < |A+ B||A+C|.

We use that |A + B| = |A| + 2V (A, B) + | B| to rewrite the above as

(|A][BIIC||A + B+ C|)?+|A|V(B,C) < 2V (4, B)V(4,C)+V (4, B)|C|+|B|V (A, C).
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Using (26), in order to prove the above inequality, it is enough to establish
|A||B||C||[A+ B+ C| < (2V(A,B)V(A,C)+ V(A,B)|C|+ |B|V(A,C) — |A|V (B, C’))2 .
Consider rB, r > 0, instead of B:

|A||B||C||A+rB+C| < (2V (A, B)V(A,C) + V(A, B)|C| + 7|B|V(A,C) — |A|V(B,C))*.
The above represents a quadratic inequality ar? 4+ Br +~ > 0, with

o = [BPV2(A,C) - |A|IBPIC],
8 = 2(2V (A, B)V(A,C)+V (4, B)|C|-|A|V(B, C))|B|V (4, C)=2|A||BI|C|V (B, A+C),
— (2V(A, B)V(A,C) + V(A, B)[C| - [A[V(B,C))* ~ |A||BI|C]|A+ C|.

It follows from (13) that o > 0. It turns out 8 may be negative and thus we need to
show that D = 32 — 4ay < 0, which after division by |B|? becomes

[QVQLBNQAxn+vpmBﬂcpqmvuac»vpgcqumnvgaA+cﬁ2
~(V2(4,C)-|AlIC) [ (2V (A BV(A,0)+V (4, BY|CI-AV(B,C)) | A|IBl|C]|A+C]]
<0.

Simplifying the above inequality and dividing it by |A||C| we may rearrange the terms
to get that our goal is to show that

(IC1V(A, B)? = 2V (A, B)V(A,C)V(B,C) + |AIVA(B,C) ) (4] + 2V (4,C) + [C)
+(V2(4,0) - 4]|C))|BI(|A +C]) < 0.

Factoring out |A + C| we get that our goal is to show that

(|C|V(A, B)?—2V (A, B)V(A,C)V(B,C)+|A|V3(B,0)+|B|V*(A,C)—|A] \C||BD |A+C|
<0.

Finally, the above inequality follows from (34). O

From the failure of log-submodularity on the space of convex bodies for n > 3 (ob-
served independently by Nayar and Tkocz [46] and a subset of the authors [28]), we know
that inequality (32) cannot possibly hold for n > 3 if A is an arbitrary convex body. Of
course, Courtade’s conjecture could still be true since it only considers the case A = Bj'.
We note that a weaker version of the conjecture, namely,
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|Bz[|Bs + B+ C| <[By + B||By + (]

was proved in [28, Theorem 4.12] in the special case when B is a zonoid and C' is an
arbitrary convex body.

4.2. Parallelotopes in general dimension

It is clear that 3. from Theorem 3.9 holds for ellipsoids. Indeed, after applying a linear
transformation, it reduces to the following inequality: |By||By 2| < |By~'[?, which
follows from the log-convexity of the Gamma function. In the next theorem, we prove
that 3. from Theorem 3.9 holds for the class of parallelotopes.

Theorem 4.2. Let A be parallelotope in R™ and u,v € S* 1, then
|A| |P[u,v]iA|n—2V 1-— <U,, 1}>2 S |PuLA|n—1 |Pq)LA|n—l- (35)
Moreover, suppose A is full dimensional and A = a + Y. ,[0,w;], for some
a,wi, ..., w, in R™. Then there is equality in (35) if and only if u € span{w;,i € I} and

v € span{w;,i ¢ I¢} for some I C {1,...,n}.

Proof. We use the representation of the volume of projections using mixed volumes (16)
to restate the above statement as

|A‘V(A[n - 2]7 [O,U], [0’ U]) < V(A[n - 1]7 [O,UDV(A[TL - 1]7 [0,’[1])

n—1

Applying an affine transformation, we may assume A = [0,1]" = Y7 [0, ¢;]. Thus,

V(A[n—l],[O,u]):% S [det(u, (e:)ier) Zmz

|[I|=n—1
V(A[n—Q},[O,u],[O,v})zﬁ > det(u, v, (e:)ier)|= Z\uzv] ujvg).
[I|=n—2 Z<]

Finally we need to show

D vy —ugvi <Y sl Y vl (36)
1<j
which follows from the triangle inequality. The equality in (36) is only possible if and
only if w;u; = 0 for every ¢ € {1,...,n}, which implies the desired equality case. O

We note that every zonotope A can be seen as an orthogonal projection of a high
dimensional cube. Unfortunately, Theorem 4.2 can not be generalized directly to the
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case of projection of higher co-dimensions (as it is done in 3. from Theorem 5.3 below),
indeed such direct generalization requires Theorem 4.2 for all zonotopes in place of the
cube. Thus we prove this property directly for the case of parallelotopes in the next
theorem, which extends the previous one.

Theorem 4.3. Let A be a full dimensional parallelotope in R™ and let E, F be two sub-
spaces of R™ such that E+ C F, then

|Al[Perr Al < |PpA||PrA] (37)

where we understand | - | to mean Lebesgue measure on the subspace of appropriate
dimension in each instance. Moreover, there is equality in (37) if and only if there exists
two complementary subspaces G1, Go of R™ such that Ay := ANGy and As := ANGs
are two lower dimensional parallelotopes, A = Ay + As, B+ C Gy and F+ C Gs.

Proof. Notice that (37) is invariant under application of rotation S € O(n) to the
parallelotope A and subspaces E and F. Thus, without loss of generality, we may
assume A = T (31 ,[0,¢;]), for some T € GL(n) and E = {e1,...,en}" and
F={emt1,- ..eerj}L7 with m + 7 < m. Then

n

> [0, P(Te;)]

i=1

[07 ek] )

1 n

> [0, PeTe;] +

i=1 k

where the last equality follows from Y [0, Pp(Te;)]ln—m C E = {e1,...,em}*. Thus,
using (21),

n m

n—m n—m

= Z \det(el,...,em,{PETei}iEﬂ

i=1 n—m [I|=n—m
= > |det(er,... em, {Teitici]
| I|=n—m
=|det(T)] > |det(T 'er,..., T e, {eitict]
[ I|=n—m
=[det(T)] Y [det({w;})], (38)
|J|=m
where we denote by w; = T 'e;, i = 1,...,n and by u’/ we denote the orthogonal

projection of vector u onto span{e; }ics. We apply (38) to get that

| Penr Z[O, Te)|

i=1

n—j—m
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=|det(T)] D ldet({w]}17)]

[N|=m+j

= |det(T)] ) Y eV Ddet({w] figm)det({wf ™ s

|N|=m+j ||[I|=m,ICN

where in the last step we have used the Laplace formula. Finally,

|Pear Y [0.Te], . <ldet(T)] > > ldet({w] }izm)lldet({w} ™ }inp)

i=1 N=m+j |I[|=m,ICN

=[det(T)| Y D Idet({w/icm)lldet({w] ™ Yism)]

|I|l=m N=m+j,ICN

= [des(T)| ) > [det({w] }i<m)lldet({w] }ism)]

[I|=m IUJ,|J|=4,INnJ=0
< |det(T)] D |det({w] }icm)| Y |det({w] }ism)]
[I|=m [J|=3

Pg (Tzn:[o,eio Pr (Ti[&a]) ’

where the last equality, again, follows from (38). If there is equality in (37), then there is
equality in the last inequality above, thus for every I,J C {1,...,n} such that IN.J #
one has

= [det(T)| "

det({w! Yizm)det({w] }ism) = 0 (39)

Since w; = T~ te;, i = 1,...,n and T € GL(n), the vectors wi,...,wy,+; are linearly
independent. Hence, there exists I;,Io C {1,...,n}, with |I;| = m, |I2] = j such that
det({w/" }i<m) # 0 and det({w{*}ism) # 0. Hence, det({w]* }icm)det({w* }ism) # 0,
which implies, from (39), that Iy N Is = 0. Let us prove that, for any k € I;, one has
(w™
by the Steinitz exchange lemma, there exists I C I, with |I}| = j — 1 such that
det({wi[éu{k}}bm) # 0. Since (15 U {k}) N I; # 0, this contradicts (39). Hence, for any
k € I, one has (wik )i>m = 0. In the same way, for any k € I, one has (wi{k})igm =0.
Now, let k € {1,...,n}\([1Uly). If (wi{k})bm = 0 then, by the Steinitz exchange lemma,
there exists I, C I, with |I5] = j — 1 such that det({wiléu{k}}i>m) # 0. Applying the
preceding result to I5 U {k} instead of Is, we deduce that (wz{k})igm = 0. We conclude

that, for any k € {1,...,n}, one has either (w{k})igm =0or (w.{k}

) + " )ism = 0. Denoting
I ={k e {1,...,n};(wi{k})i§m # 0}, we get that span(wi,...,w,) C span(e;)ier
and span(Wp41, ..., Wmj) C span(e;);gr. Thus denoting Gy = span(T'(e;))icr, A1 =

C
>ierl0,T(ei)], G2 = span(T'(€i))igr and Ay =3 _,4,[0,T(e;)], we conclude. O

)ism = 0. By contradiction if, for some k € I;, one has (w{k})bm # 0 then,

K2
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5. Inequalities for zonoids
5.1. Zonoids in R3

Zonoids form a natural class of bodies which is stable under addition and linear
transformations. In this section, we confirm property (4) from Theorem 3.9 in the class
of 3-dimensional zonoids. Thus, using Theorem 5.1, we get that all properties described
in Theorems 3.6 and 3.9 are true for this class.

Theorem 5.1. Let A be a zonoid in R3 and u,v € S%. Then

| A3 Plu,v)r Al1v/1 = (u,0)* < [Py Al2| P, s Al (40)

Proof. Using (17), inequality (40) is equivalent to

|[Als[V (A, [0,u], [0,0]) < SV(A[2], [0,u])V(A[2], [0, v]). (41)

N W

We assume that u,v are linearly independent (otherwise the inequality is trivial) and
note that it is enough to prove (41) in the case of u = €1, v = es and any zonoid A.
Indeed, the more general case then follows by applying the inequality to 7~'A, where
T € GL(3) is such that Te; = u and Tes = v. Thus our goal is to prove that, for any
zonoid A C R3,

|Al3|Pley o)+ Alt < |Per Al2| Py Al (42)

By approximation, it is enough to prove (42) when A is a zonotope. Suppose that A =
Zj‘il[o,ui], where u; = (x;,y;,2;) € R3. Using (21), we get that (42) is equivalent to

T X Tg M
Z det ( wi y; Wk lez\
1<i<j<k<M Zi 2 Rk i=1
Yi Yj Ti X
S Z det <Zi Zj) Z det(zi Zb)‘ (43)
1<i<j<M 1<i<j<M

We consider yi,...,ya and z1,..., 25 as fixed, we write x = (21,...,23) € RM and

we define f,g: RM — R by
Ty Ty Tk
det | wi ¥ Yk ||-
Zg Zj Zk

We note that f and g are piecewise affine and convex with respect to x;, for any 1 <1 <

fl@y=

1<i<j<M

Ty Ty _
dEt(zi zj)‘ and g(x) = Z

1<i<j<k<M

M. We use the following elementary lemma.
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Lemma 5.2. Let ¢ : R — R be a convex function. Fix some positive numbers {aj}jK:l,
d € R and real numbers {c;}I<,. To prove that, for all t € R,

K
D(t) < p(t) =Y ailt + il +d,

j=1

it is enough to prove the inequality at all critical points t = —c; of ¢ and at the limit
t — £oo.

We shall apply the above argument inductively to f and g as functions of z;, for
i€ {l,..., M}, successively, with x; fixed for j # i.

We start with 27 and first check the limiting behavior at infinity (we also prove the
limit at infinity argument as a part of a more general statement below). We note that,
as x1 — 0o, the left hand side of (43) behaves like

|21 >

1<j<k<M

M
Yi Yk
aer (U 0] (S
j=1

and the right hand side of (43) behaves like

|21 >

1<j<k<M

M
Yi Yk
det(z; zk)‘ Z|Z]‘
i=2

Thus, (43) becomes

IN

>

1<j<k<M

>

1<j<k<M

M M
Yi Yk . Yi Yk .
det(zj Zk)‘ Z\m det(zj Zk)‘ Zw
Jj=1 j=2

or

>

1<j<k<M

o (W 0| 1< | 32

1<k<M

M
Y1 Yk
det(zl Zk)’ >zl
j=2

The above equation is exactly the R? analog of (40), with A = 2?12[0, (yi, zi)]; w=1[1,0]
and v = (y1,21)/|(y1, 21)|, thus it holds.
Our next goal is to study the critical points of f with respect to x1, which satisfy

x xXq .
det<zi Zj) =0, for z; #0, 2<j < M.

When z is a solution of the above equation, then (z;, z;) is parallel to (z1, z1). Assume
(without loss of generality) that j = 2 and (x1,21) = A(x2,22). We study (43), with
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respect to o, under the assumption that (1, 21) = A(a2, 22) and continue this algorithm
inductively (we will show the general step below).
We must also consider the case when z; = 0, for all j > 2. In this case (43) becomes

1Y

1<j<k<M

M M
Tj Tk ) .
det(yj y)\ a1l < |zl|j§:;|yj| 'Zl';'%'

or

D

1<j<k<M

M M
d T; Tk
t{ Y ye <Al | D Nl ]

Jj=2

<.
||
N

which follows immediately from

Ti T
det (yj y:)‘ <lzjyr| + |zry;|- (44)

Continuing this process, we arrive to the case
(131’ Zl) = Al(mma Zm)v sy (zm—h Zm—l) = /\m—l(xmv Zm)v (45)

for some 2 < m < M. We also denote \,,, = 1 and we study f and g as functions of z,,.
Again, our first step is to confirm (43), when x,, — +o00. To do so, let us see how the
functions f and g changed under (45). Let us first consider the terms appearing in g:

Ty Tj Tk
det | i v; wk
Zi Zj Zk

when ¢ < 7 < k. For m < 7, the above determinant doesn’t depend on z,,, so we only

)

consider the case when m > 7.

o If m > k, then the determinant is zero.
e if i <m < j then, when |z,,| = 0

Ty Tj Tk . '
det | wi Yj U det (gﬂ Z’“)' = |Ail|zm| |det <Zz/y 2Z/k>’
Zi Zi 0z J k j k
(3 J k

e j <m < k then, when |z,,| — 0o, observing that \; = 2z;/2,, and \; = z;/z,, we get

Ty Tj Tk
det | vi y; Uk
Zi Zj Zk

~ |zl

~

. Yi Y\ _ . Yi Yk
Azxmdet (Zj Z}g) )\]l‘mdet <Zi Zk)’
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We also need to compute the behavior of the terms appearing in f:

det | ¥
Zi Zj

for i < j. When m > j, it is zero and when m < i, it does not dependent on z,,. So we

)

assume that i < m < j. We get

Xr; Xj
‘d t( ; zj)‘ ~ il || [25]-

Thus to show that the (43) is true, as |z,,| — 0o, we need to prove that

o ()
Zj 2k

Qo Yo

i<m m<j<k<M
M
| | <Z |zk|> Z det (y’ Zj)' (Z Zz)
Zm m<k 1<i<j<m i=1

IN

D

1<i<j<M

det@z g;)’ ST S 15l

i<m j>m

Multiplying both sides by |z,|, we are reduced to

det (%7 Yk
Zj Rk

i<m m<j<k<M
M
Yi Yy )
() [ 2 f (2 2)])] ()
m<k 1<i<j<m i=1

IN

D

1<i<j<M

det(yz Zﬂ)’ EADME

! i<m j>m
Let A’ = Zﬁ‘imﬂ[o, (yi» ;)] and B =" 1[0, (yi, z;)], then the above becomes:

[Py BT + \PefA'IIB’I} [Py (A" + B')| < |A"+ B'|| Py B|| Py A'l.

This is Bonnesen’s inequality (6) in R?
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[A"[2 Bl A+ B
|PorAl |Pep By~ [Pt (A + Bl

Our next step (if m < M) is to consider the critical points of f, as a function of x,,;

det (xm xj) =0,
Zm Zj

for z; # 0, 7 > m 4 1, if such z; exists and repeat the process for all m < M. If z; = 0,
for all j > m + 1, let us confirm the inequality directly (as for the case m = 1). To

Ty Ty Tk
det | vi v; wk
Z; Zj Zk

we may consider cases: if 4,7,k < m, then the rank of the above matrix is at most to
2 and the determinant is zero; if 7,5,k < m, the matrix has a row of zeros and the
determinant is again zero. In the case when i < m < j < k, we get

T, Tj Tk i Tk
det i i ' = |z |det [ =7 .
et | vi Yi Uk || |de (yj yk>’

Zi Zj Zk
When ¢ < j < m < k, we use that (x;,z;) is parallel to (z;, z;) to get that

T; T Tk o
det | vi ;i Yk det (g’ g? ) ' .
. . T J
2 Zj 2k

We make a similar analysis on the right hand side of (43) which becomes

() (k) 3 et (2 )]

they are given by the equations

calculate

= |z

det(zj z:)’—F Slml Y

i=1 i=1 m<j<k k>m i<j<m
m m

< (zw) Swl] e ¥ Jaer(22)| (zw) 5 I
=1 j>m i<j<m =1 j>m

The above inequality follows directly by simplification and application of (44).

We repeat the above process until we have m = M, thus (z;,2;) = \i(zm, 2m) for
each i = 1,..., M — 1. Thus, the left hand side of the inequality (43) is equal to zero.
Indeed, each of the following matrices

Ty Tj Tk
Yi Yi Yk
Zi Zj Zk
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has rank less or equal then 2. O
5.2. More equivalent formulations for zonoids

Let us repeat again that the class of zonoids is closed under the linear transformations
and addition. Thus all equivalences proved in Theorems 3.6 and 3.9 hold for the class
of zonoids. In this section, we show some additional equivalences (which thus hold in
dimension 3).

It should be noted that when we write |PgA| for a subspace E below, this refers to
the use of Lebesgue measure on the subspace E (typically of lower dimension than n
though we sometimes skip the subscript).

Theorem 5.3. Let n € N, then the following are equivalent.

1. For every k > n and for every family of vectors uy,...,ur in R™ the function f :
2kl — R U {—o0} defined, for S C [k], by

f(S) =log

i€S

=log Y |det({ui}ies)|

ICS,|I|=n

is submodular: for all zonoids A, B,C one has
|A||[A+ B+ C| < |A+ B||[A+C].

2. For every k > n and for every family of vectors uy ..., u; in R™, for every u,v € R™

> (det({uitier)| Y |det(u, v, (ui)ier)|

[I]=n |I|=n—2
< >0 det(u, (ui)ier)l Y Idet(v, (wi)ier)|-
[I|=n—1 |[Il=n—1

3. For every zonoid A in R™ and all subspaces E, F of R™ such that E+ C F we have
|A||PenrA| < |PeA||PrAl.

4. For every m = 1,....n, for every zonoid A and every orthonormal sequence
ULy e ey U, ONE has

P, A

uj

|A|m71 |p[“17~--»um]LA|n7m S H

=1

n—1
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5. For everym =1,...,n and all zonoids A, By, ..., By in R™, one has
|A™ 2V (A[n —m], By, ..., Bn) < —— "0 Hv n — 1], B;).

Proof. The proof is based on translations of the properties described in Theorems 3.6
and 3.9 to the properties of zonoids.

We first show that 1. in Theorem 5.3 is equivalent to 1. in Theorem 3.6 in the class
of zonotopes. Indeed, f is submodular if and only if for every S, T C {1,...,k}

i€SUT

Z [O,Ui]

i€SNT

<

Z[O, ui]

€S

Z[O, ;]

€T

)

which is 1. in Theorem 5.3 for zonotopes A = 3, gp[0, us], Br = 3,26\ 1[0, u;] and
By =3 ,em\s[0,ui]. We use (21) to finish the proof.

We next note that 2. in Theorem 5.3 is equivalent to 3. of Theorem 3.9 in the case of
zonotopes. Assume by homogeneity that u,v € S?~1. Then we apply (21) to get:

S0wlf= > |det(ui)ies| and

i=1 IC[m],|I|=n

P,. <Z[O,ui]> = > [det(v, (u)icr)l
i=1 Icm],|I|=n—1

and the similar formula for the volume of Py, ;o (372[0, us]).
Next, we show that 3. is equivalent to 3. from Theorem 3.9, which can be restated as

|Al[Pe, ;14 Aln—2 < [Per Aln—1[Pos Aln—1, (46)

for any zonoid A and i # j, where (e1,...,e,) is any orthonormal basis. Moreover 3.
from Theorem 5.3 is equivalent to

|A||P[61,‘~~61«,]J'A|n*k < |P[61,~~,6i]i'A|Tl*i|P[8i+1,m,8k]J'A‘n*(k*i)' (47)

for any i« < k < n and any zonoid A in R™. Thus (46) is a particular case of (47).
To prove the reverse, we first notice that if (46) holds for any zonoid A in R™, then it
also must hold for zonoids in any dimension m < n. Indeed, for any zonoid A in R™,
the cylinder A x [0,1]"™ is a zonoid. Next, we may prove property (47) by induction.
Indeed, using (46), it is true for k = 2 and ¢ = 1, any n € N and any zonoid A in R™.
Assume the statement is true for some k£ € N any ¢ < k < n. Let us apply the statement
to the zonoid PekLHA to get
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|Peki+1A‘n*1|P[C1,--~76k>6k+1]LA|n—(k+1) (48)

< |P[81,,..,ei,ek+1]i-A|n7(i+1)‘P[ei_H ..... ek,ek_‘_l]J-A'nf(kJrlfi)-
In addition, we apply the inductive hypothesis to A and the subspace spanned by
{e1,...,¢€;, ext1} and the subspace spanned by ej41 to get

[AllP

1 Aln—(i+1) < |Ppes, et Alnil Puz Alno1. (49)

€1,.-,€5,€k+1 €1,.ery [t

Finally, we multiply (48) and (49) to finish the proof.
To prove that 3. implies 4., we apply (47) to k =m and i = 1, we get that

|P[u1,...,um}iA| < |Pqu|
[Plus,umt AL~ 4]

In the same way, for every 1 < i < m, one has

..... um]J-A| < |Puf'A|
‘P[ui+1,...,u7n]J‘A| - |A‘

Taking the product of these inequalities, we get the result.
To prove that 4. implies 5., we use (17). Thus (4) gives that for every orthonormal
family of vectors w1, ..., u,,, one has

T v A — 1, [0, w1).

i=1

APV (Al = m], [0, ), 0,um]) € ==

Since this inequality is invariant with respect to any linear image of A by an invertible
map, it holds also for any independent ug,...,u,,. Then, we deduce that 5. holds for
any sums of segments. The inequality for zonoids follows by taking limits.

Finally, 5. with m = 2 is equivalent to 5. in Theorem 3.9. O

Notice that 3. of Theorem 5.3 can be rephrased by saying that, for any zonoid A in
R", the function f : 2"l — R defined by f(S) = log(|Pe,.ic5)4) is submodular.

The inequalities analogous to 3. in Theorems 3.9 and 5.3 belong to the class of local
Loomis-Whitney type inequalities and were studied in many works, including [31,24,53,
2,1], for general classes of convex bodies.

In the next lemma, we present a new proof of a result from [31], which uses the same
approach as our proof of Theorem 3.9.

Lemma 5.4. Consider a convex body K in R™ and a pair of orthogonal vectors u,v €
Sn1 then

2n — 1
k<2 b ke k)
K| P, K (
n
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Proof. Let L = [0,u] + «[0,v], where a = |P,. K|/|P,. K|, noticing that the case
|P,. K| = 0 is trivial. Then

nV(K[n—1),L) = |Py+ K|p—1 + a|P,. K|,—1 and

n(n—1)

5 V(K[n —2],L[2]) = a|Py, - K.

Using Minkowski’s second inequality (14), we get

<|PULK| +04|PUJ<|>2 .

200
n -1

n(n—1)

we substitute « = | P, K|/| P, K| to finish the proof. O

|K||P[u,v]LK|

The main tool in the proof of Lemma 5.4 is Minkowski’s second inequality, which relies
on the fact that the polynomial Q(¢) = |K + tL| raised to the power 1/n is a concave
function for t > 0. We conjecture that the concavity properties of this polynomial can
be improved for Z being a zonoid and L being a finite sum of m < n segments:

Conjecture 5.5. Let 1 < m < n, let Z be a zonoid in R™ and let uy,...,u, € R™. Set
P(t)=|Z +t>,[0,u]|, then t — PY™(t) is concave on R.

Conjecture 5.5 clearly holds for m = 1 and m = n. In particular, the conjecture holds
in R2. Conjecture 5.5 would follow if the statements of Theorem 5.3 or Theorem 3.9 were
true. Moreover, the following proposition shows that the conjecture also holds in R3.

Proposition 5.6. Let Z be a zonoid in R® and u,v be two vectors from R3. Let P(t) =
|Z +t([0,u] + [0,v])|, then t — PY/2(t) is concave on R.

Proof. We may assume that the vectors u, v are linearly independent. Then, applying a
linear transformation T to Z and u,v we may assume that vectors u,v are orthogonal
to each other and belong to S2. Using that Z + ([0, u] + [0,v]) is again a zonoid, it is
enough for us to show that (P/2(0))” <0, or 2P(0)P"(0) < P’(0)2. Using that

P(0)=1Z|, P'(0)=|P,rZ|+|P,nZ| and P"(0)=2|Py . Z|
and Theorem 5.1, we get
2P(0)P"(0) = 4|Z||Py, )+ Z| < 4P, Z||P,2 Z| < (P, K|+ | P, K|)* = P'(0)>. O
It follows from part 6. of Theorem 3.9 and Theorem 5.1 that if P(t) = |Z + ([0, u] +

[0,v])], then P(t), as a polynomial on R, has only real roots, for any zonoid Z and any
u,v € R3. Thus another way to prove Proposition 5.6 is to notice the following simple
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property. Consider a quadratic polynomial P with positive coefficients, then /P(t) is
concave for ¢ > 0 if and only if P has only real roots. Thus, to study concavity of

Po(t) = |Z +tC|*/?, when C is two dimensional, one may study the roots of P. The
subject of roots of Steiner-type polynomials has attracted a fair bit of attention in the
literature, see, e.g., [33] and references therein. Since zonoids in dimension 2 are precisely
the symmetric convex bodies, Proposition 5.6 makes the following conjecture plausible.

Question 5.7. Let Z be a zonoid in R™. Then is it true that the polynomial Pc(t) =
|Z + tC| has only real Toots for every symmetric convex body C of dimension 27

This question is directly connected to a question of Adam Marcus that we learned
from Guillaume Aubrun [3] about the roots of Steiner polynomials of zonoids, and, in
fact, it was one of the starting points of this investigation.

Question 5.8. Let Z be a zonoid in R™. Then is it true that the Steiner polynomial
Py (t) = |Z + tB7| has only real roots?

Observe that, in the plane, even more is true: for any convex bodies K, L, the poly-
nomial Pk 1(t) = |K +tL| has only real roots. Indeed, 1/ Pk 1, (t) is concave for ¢t > 0 by
Brunn-Minkowski inequality. This can be also seen from the computing the discriminant
and noticing that V (K, L) — |K||L| > 0.

Analogously, Question 5.7 is equivalent to the following question for mixed volumes:
fix n > 3, and let K a zonoid in R™ and L be a two dimensional zonoid, is it true that

K|V (K[n —2],L[2]) < =—

< mV(K[n —1),L)2?

The above inequality is true for L being a parallelogram, as follows from Theorem 3.6.
However, it is not true for general zonoids, as we show in the following proposition
inspired by work of V. Katsnelson [34].

Proposition 5.9. Let n > 3. Then there exists a zonoid Z in R™ such that the Steiner
polynomial Pz (t) = |Z +tBY| and the polynomial Qz(t) = |tZ 4+ BY| has roots which are
not real.

Proof. Noticing that Qz(t) = t"Pz(1/t), it is enough to show that Pz(t) has a non-real
root. Consider Z = B3 x {0} C R? x R"~2. Integrating on sections parallel to R? x {0}
and changing variable, we get that, for ¢ > 0,

2
Py(t) = |Z +tBy| = |BY| / (14 VE—P) dr

tBy 2

— 2| B2| / (1+t\/1—|x\2)2dx.

n—2
B2
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Since this last expression is the restriction of a polynomial to t > 0, the equality between
P7(t) and the last term is valid on whole R. Let ¢t € R be fixed. For almost all z € B;’fz,
(1 +ty/1 —|x]2)2 > 0, thus Pz(t) > 0, for t # 0, so the only real root of Pz is 0 and it
is of order n — 2. Hence Pz has exactly 2 non-real roots. 0O

Proposition 5.9 shows that the answers to both Question 5.7 and Question 5.8 are
negative.

Note that the example of the zonoid Z created in Proposition 5.9 is flat (i.e., has an
affine hull of lower dimension than the ambient space), but one can replace it by a non-flat
zonoid by using a small perturbation and the continuity of the roots of polynomials.

6. Inequalities for L,-zonoids

Firey [22] extended the concept of Minkowski sum and introduced, for each real p > 1,
a p-linear combination of convex bodies, the so-called ¢,-sum K @, L of the convex bodies
K and L containing the origin by:

hie,i(®) = (hi ()P + hp(@)P)?, Vo e R"

For any linear transform T on R”, one has T(K @, L) = (TK) &, (I'L). In a series of
papers, Lutwak [36,37] showed that the Firey sums lead to a Brunn-Minkowski theory
for each p > 1, including L,-Brunn-Minkowski inequality, definition and inequalities for
L,-mixed volumes, L,-Minkowski problem, as well as many other applications. In this
section, we show the connection of the discussion from previous sections to this theory.

An L,-zonotope is the £,-sum of centered segments and an L,-zonoid is the Hausdorff
limit of L,-zonotopes. For p = 2, an Ly-zonoid is always an ellipsoid, possibly living in
a lower-dimensional subspace, thus it can be written as the sum of m < n orthogonal
segments and is therefore an Lo-zonotope. The following extension of Conjecture 5 is
thus natural.

Question 6.1. Let p > 1 and consider Ly-zonoids A, B in R™ is it true that

|PuJ-(A Dp B)|n71 N |PuJ-A|n71 ‘Pu¢B|n71

6.1. The case p =2

The next theorem gives an affirmative answer to this question in the case p = 2.

Theorem 6.2. Let A, B be a pair of full dimensional Lo-zonoids in R™ and let u in S™~'.

Then
( |A @, B >2> ( |A| )2+< |B| )2
[Py (A®2 B)ln-1 | Py Aln—1 |PyiBln1) '
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with equality if and only if A and B have parallel tangent hyperplanes at pa(u)u and

pe(u)u.
We first give two proofs of the inequality and then prove the equality case.

Proof 1. For m > n and uq,...,u, € R”, let U be the n X m matrix whose columns are
Uty ...y Um. One has [—uy,u1] g - Do [—Um, ] = UBY = VUU*BY. Indeed,

m m m

h’2—u1,ul]@2~~~@2[—um,um](x) = Z(Uz',@Q = Z(U%@z = Z<6“ U*z)® = |U*z|?

i=1 i=1 i=1
= h%}Bgﬂ(x) =({U*z,U*z) = (VUU*z,VUU*x)
= VUU 2 = 1 e ().

Using this and the Cauchy-Binet formula, one has

[~ w] @a - Ba [ty ]| = [UBS'[, = det(UU™)|By > = B3> Y (det(ui)ier)*.

[I|=n
(51)
Next, using
PUL([f’U,l,Ul] @2 s @2 [fum,um]) = [7PuLul, PuLuﬂ @2 e EBQ [7Pul’um, PuLUm],
we get that
|Pus ([—un, ua] @2 -+ @2 [t um))* = [BETH* Y (det(Pyrus)icr).
[I|l=n—1
Thus our goal is to prove that, for m >k, with m —k > n, k > n and A = [—uy, u1] B2
o Do [—up, ug] and B = [—ugq1, Up41] B2 - - D2 [~Um, um] We have
> |det ({tm }menrr|? > |det ({u }ier]?
Mc{1,...,k},|M|=n n LC{k+1,....m},|L|=n
> |det({ P witienm)]? > det({ P wi ier|?
McC{1,...k},|M|=n—1 LC{k+1,...,m},|L|=n—1

|det ({uitien|?
Mc{1,. m},|M|=n

|det({ Pes (ui) biem|?
McA{1,....m},|M|=n—1

<

(52)

For I C {1,...,m} let U; be the n x n submatrix built from U by taking the columns
with indices in I. Denote by z1,...,2, € R™ the rows of the matrix U. Since n < m,
the set Y i [0, 2] is a parallelotope leaving in a n-dimensional subspace of R™. Thus,
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2

= > (det Up)*.

n [I|=n

n

Z[O, i

i=1

Therefore, we get that, for m > n, an n X m matrix U whose rows are z1,...,2, € R™
and columns uq, ..., u, € R™

n

2[07 Zz]

=1

[[=u1,u1] D2 - - D2 [~Um, Um]|n = | B3|

n

Let us write U as a block matrix with two blocks U = (U1]0) 4 (0|Us), with U; being an
n X k matrix and Uy an n x (m — k) matrix and we denote V' = (U1]0) and W = (0|Us).
Moreover, denote by U’, V', W’ the matrices obtained from U, V, W by erasing the n'"
row. Then we only need to prove that

Z\I\:n(det UI)2 S Z\H:n(det VI)2 Z|I|:n(det WI)2
E\I\:nﬂ(det Up)? — 2:|1|:nf1(det Vi)? Zm:nq(det Wi

Recall that z1,...,2, € R™ are the rows of U. Thus the rows of V are Pgz1,..., Pz,
where Pg denotes the projection on the first k& coordinates and the rows of W are
Pgizy,...,Pgiz,, where Ppi denotes the projection on the n — k last coordinates.
Thus we only need to show the following relationship for low-dimensional parallelotopes

2 2 2

DI UL | Iy 1[0 Peaill |, [ 12X 1[0 Py zi|
[Si 0,4 (05 [0, Pz |05 [0, Pes 2]

Using that the volume of a parallelotope is the product of the volume of one of its face
and its height, we get that, if H,, = span(zy,...,2,-1), then

|Z? 1[0 zi]|

= d(zn, Hp).
’ZZ 110, 2]

So we are reduced to prove that
d(2n, Hn)? > d(Pgzy, PgHy)? + d(Pps 2y, PpyHy)?.
Let h,, € H, such that d(z,, H,) = |z, — hy|- By Pythagoras’ theorem,
d(zn, Hn)? = |2, — ha|* = | Ppzn — Pghy||® + | Peizn — Peohy ||,

Since Pgh,, € PpH, and Pg.z, € Pg. H,, we conclude. O
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Second proof of the inequality. We give another proof of Theorem 6.2, using the com-
parison of the 5 sum and the radial 2-sum. For any symmetric convex bodies K and L
in R™, one has

K@y LD K¥oL :=Uycgn1 {0, p3-(u) + p%(u)u} . (53)

Indeed, using support functions, the fact that K D px(u)[—u, u| implies that hg(x) >
px (u)|[{(x, u)|, for any x € R™ and thus

hica,r(z) = Vhi (2)? + hp ()2 > Vpr (0)? + pr(w)?|(z, u)]
= /i (W) + pr(w)2h(_y (7).

The formula (53) can be also restated in the language of radial functions:

prcens () > \/p3 (u) + p3.(u), for all u e 571, (54)

Next, we notice a formula for the volume of the orthogonal hyperplane projection of an
ellipsoid (see, for example, [14,48]), to which we give a very simple proof. Let £ = T BY,
for some positive definite T" then

P&l nV(TBgn—1],[0,u]) _ nV(Byn—1],[0,7""u]) _ |By™|

€] lulle [ TBy| [T~ ul | B3 [T~ | B3| (%)

Using the above we get

€l _ 1B
P B Y’*

pe(u). (56)

Thus, using this formula and (53), we deduce that for any ellipsoids A, B

|A@2 B|2 — |B£L|2 (u)Q
P.(A@y B2 By 12 A%0
|B3|? 5 o AP |B|?
> |BS,1|2(pA(u) + pp(u)?) = AP + POE o (57)

Proof of the equality case. This second proof also helps us to treat the equality case.
From (56) there is equality if and only if

pac,B(w) = pa(u)® + pp(u)’.

The above is equivalent to the (pa(u)? + pp(u)?)/?u € (A @2 B). From here we get
that, if n is a normal vector to (A ® B) at (pa(u)? + pp(u)?)'/?u then
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haw,5(n) = (pa(u)? + pp(u)?) /> (u,n).

The above is equivalent to ha(n) = pa(u){(u,n) and hg(n) = pp(u){u,n), or simply to
say that the normal vector to A at pa(u)u is the normal vector to 9B at pp(u)u. O

Remark 6.3. In the proof of the equality case in the Theorem 6.2, suppose we represent
A =T,BY and B = Ty, BY, where T1,T» are symmetric positive-definite matrices. Then
llz||3 = (T; *x,z), and the normal vector to OA at pa(u)u is parallel to T; %u; a similar
statement is true for B. Thus our condition on parallel tangent hyperplanes is equivalent
to the fact that there is a A > 0 such that (7] % — ATy ?)u = 0 or simply that u is an
eigenvector for matrix T2T; 2.

Let us now present some consequences or Theorem 6.2.

Corollary 6.4. Let n be a positive integer. Let A and B be full dimensional Lo-zonoids
in R™ and u in S™~'. Then, the function h defined, for t >0, by

Aoy (WIB)P
") = b (Awa VIB)E

is concave on R .
Proof. For any A € [0, 1], one has A = (v/1 — AA) @3 (VAA). Thus one deduces that
A®y ( 1—N)s+ AtB) - (M(A ®2 \/EB)) B2 (\/X(A @2 \/EB)) .
Using Theorem 6.2 and the homogeneity of volume, we deduce that ho is concave. O
Next we show that Theorem 6.2 has the following additional applications:

Theorem 6.5. Let n be an integer, then for any 1 < k < n and for every pair of full
dimensional La-zonoids A and B in R™ and any (n — k)-dimensional subspace E of R™

|A®; B ) ( 4] ) ( |B] )
> | = + | —— . 58
(|PE<A@QB>|M =\ [Podlnn PoBlos (58)

Proof. The proof goes by induction on k. Theorem 6.2 establishes the case £k = 1 and

one has

any n > 1. We assume that the inequality holds for some 1 < k < n — 1 for all Lo-
zonoids A, B in R™ and all n — k dimensional subspace of R™. Let £ be an —k — 1
dimensional subspace of R™. Then one may write £ = FNu™, for some n—k dimensional
subspace I and u € F*. Then, applying Theorem 6.2 to PrA and PrB and using that
P, o Pr = Pg we get
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( Pr(A @ B)s )22< \PrAlp_i >2+< | PpBlo_i )2. (50)

|Pe(A @2 B)|n—k-1 |PEA|n—k-1 |PEB|n—k-1

Applying (58) to E = F, raising the equation to power k/2 and taking the product with
(59), we get

|A ®2 B
|Pe(A @2 B)ln—k—1

(Letocs )+( [PrBlu—t ) : (it ) (Y ’
|PEA|n—k—1 | PEB|n—k-1 |PrAl|n_k | PrB|n—k ’

From Hélder’s inequality, we conclude that

A2 B >< 4] >+< B )
|Pe(A®2 B)|ln—k-1 |PEAln—k—1 |PEB|n—k-1 ’

which is (58) for k+1. O

(60)

Remark 6.6. Note that the projection of a L, zonoid is again a L, zonoid. Thus, the
proof of Theorem 6.5 can be used directly to prove the following claim: If the answer to
Question 6.1 is positive for some p > 1, then for any 1 < k < n and for every pair of
L,-zonoids A and B in R™ and any (n — k)-dimensional subspace E of R™ one has

( A @, B )i’ . < 4] )i . ( Bl )i

|Pe(A®p B)ln-r) ~— \|PeAln—k |PEBln—r)

Corollary 6.7. Let k,n be a integer with 1 < k < n. Then, for all Ly-zonoids A and B
in R™, and all zonoids Z1,...,Z, in R",

kI

|A @2 B )
> 61
(Ve nz) ® (61)
4] P 5] ‘
V(A[nik]vzl)"'azk) V(B[TL* 1]3217"'3216) 7
and thus the function f defined, for t > 0, by
A&,y ViB|F
£lt) = Az VIB .
V((A@2 VIB)[n — k], Z1, ..., Zk)| )}y,
is concave on Ry . Moreover
A @, B|? Al? BJ?
AaBE AP B )

0(A @2 B)]? — [0A]  |0B*
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and thus the function g defined, for t > 0, by

|A &y VB

90 = (5 a0, ViB)P,

is concave on R.

Proof. First notice that Theorem 6.5 may be reformulated in the following way. Let

uq,...,u be an orthonormal system in R™. Then using (17) we have
|A @, B
2
> 63
(rosmr A e ) o)

(V(A[n k], [Jﬁlﬂ,...,[@,uk])y * (V(B[n k], [oill],...,[o,uzﬁ]))z '

Applying a linear transform, (63) holds for any linearly independent system uq, ..., u.
Then, for z,y > 0, define

_z2 _2\ &
plr,y) =@ % +y F)72 = [l(z,9)]-2. (64)
For a compact convex set A and uq,...,ur € R™, let
V(Aln — k], [0,u1],...,[0,u
Gl ug) = (Afn — £, [0,w1],. .., [0, u]) (65)
A
From (63) we know that, if uq,...,u, are linearly independent, then

Yaw,p(ut, .. ur) < @Walug, ..., u), ¥p(ut, ..., ug)).

Fori=1,...,k, let Z, = [0,u;1] B2 - - P2 [0, u; m,] be a 2-zonotope. Assume that for
any set of distinct k vectors from the set {u; ;} is an independent sequence (this can
be achieved by a small perturbation of vectors u; ;). Using that ¢, being a —%—norm,
satisfies the reverse Minkowski inequality, we deduce that

k my
Z Z wAEBgB(uLjU s ’uk’jk)

i=1 j;=1

m;

Z (p(wA(ule’ ) uk,jk)v wB(u1,j1’ ) uk‘,jk))

=1 j;=

IN

k. my

k  m;
¥ ZZwA(ul’jU"'?uk’jk)?ZZwB(ulajl7"'7ukvjk)

=1 j;=1 i=1j;=1

IN
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Thus we get
V((A D2 B)[n — k]azla .. aZk)
|A@2 B|
< <V(A[n— K, Z1,...,Zx) V(Bln— k;],Zl,...,Zk)>
- Al ’ |B| ’

which is (61), for Zy,...,Z being a zonotopes. The result for zonoids follows by ap-
proximation. We apply (61) with £ = 1 and Z; = Bj to prove (62). The concavity of f
and g is proved with the method used for Corollary 6.4. O

6.2. The case p # 2

Proposition 6.8. The answer to Question 6.1 is negative when p > 2 and n > 2: a
1
counterexample is given by A = BY and B = e» [—v,v], for some € > 0.

Proof. Let p > 2. We disprove the weaker statement

Ao, B A
|Pui(A Dp B)‘n—l B |PuLA|n—1

(66)

We restate (66) with B = e [—v,v], v € S~ and € — 0. For this we use the extension
of the classical notion of the mixed volumes introduced by Lutwak [36,37], who proved
that

. JA®, (7 B)| -4 1 -
iy 420 E BN 2 [ g asia(o,

Sn—1

e—0 3

for p > 1 and all convex compact sets A, B, containing the origin and defined
1 _
Vo(An =11, B) = — / B2 (u)h ' PdS A (u).
Snfl

Taking B = 5%[—1)71)] for some v € S, we get
A, B|= |41+ / ((0,2) PR dS A (z) + ofe)
Sn—l

€

Assuming v in u—, we get

PoiA®, PoB| = P Al + % / (0, 2} PRSP (@)dSp, . a(x) + o(e).

Sn—1mqL
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Assume, by way of contradiction, that (66) is true for all L,-zonoids A C R™. Then,

AL [ R @S, a@) < P Al [ @) Ph @dSa@. (67

Sn=Tnut Sn-

Now we take A = By, u = ez and v = e;. Notice that B3 is an L, zonoid for all p > 1.
Next (67) becomes

B3] [ loPaSpa@ < (B3 [ leaPdSey @) (63)
Snf? Snfl

Using polar coordinates and Fubini’s theorem, we get

[ 1aiPass @ =mrp) [ lapd-
Sn—l

n—1
B2

Thus (68) becomes

(e () o () (7).

Using the strict log-convexity of I" function the above is only true if and only if p < 2. O

Proposition 6.9. Fizp > 1. Then (50) does not hold in the class of all convex symmetric
bodies in R™.

Proof. Let us first construct an example in R?. We note that
1 2¢e 1—
Py A, P,ich [—v,v]‘ = 2ha(v) + ~ha(®)' P + ofc).
Thus (66), for n = 2, would imply

4] < hA(v)”/|<v,$>|”hifp($)dSA(w)- (69)
Sl

Consider a € (0,1),let A = {(x1,22) € R?, |z;| < 1,|z1E22| < 2—a}. Then |A| = 4—2a2.
We check (69) with v = e;. We first note that ha(e;) = 1. Next we compute

f(z) = l{er, 2)[Phy P (@) Sa(x)

for different normal vectors x of A. We first note that f(+es) = 0, f(£e1) = 2(1 —a)
and f((£1/v2,41/v/2)) = a(2 — a)'~P. Thus to contradict (69) we must select a such
that



M. Fradelizi et al. / Journal of Functional Analysis 286 (2024) 110247 39

4—2a® > 4(1 —a) +4a(2 — a)* 7P,

or a < 2 — 2P which is possible for every p > 1.
To build a counterexample in R™ for n > 3, we use the fact that if K is a convex body
in span{ey,...,e,, } and L is a convex body in span{e,, 11, ...,€n,+n, |, then

I+ D052 + 1)

F(nlznl + 1)

|K ©p L = [K|IL| = ¢nyna o KL, (70)

where 1/p+1/¢=1. Let A, = 33_2 @), Az, where Ay C span{e;, es} is the counterex-

ample created above, and B]'~? C span{es, ..., e, }. Then (70) gives
[An @p [—v, ]| 15772 @p (A2 ®p [0, 0D |Ay .
[Pt (A @y =0, 0Dt~ By 7 @y Pog (A2 @y [0, 0ot [Peg Anbns

Let us note that the direct interpretation of the volume of L,-zonotopes in terms of
determinants is only possible in the case when p = 1 or p = 2 [32]. Thus it is natural
to ask if the determinant inequality that we proved in the case p = 2 is still true in the
case p # 2.

Question 6.10. Let p € [1,2). Consider N > N' > n and a sequence of vectors {u;}¥,
in R™. Is it true that

2 |det({um tmen|? 2 |det({wi }ierl”

McC{1,...,N'},|M|=n L LC{N’+1,...,N},|L|=n
|det({ P tim fmens)[P > |det({ P uitier|P
McC{1,..,N'},|M|=n—1 LC{N’+1,...N},|L|=n—1

|det({wm fmenr|P
Mc{1,..N},|M|=n

?
- > |det({ Py (tm) menr [P
Mc{1,..,N},|M|=n—1

(71)

The reason that we only ask Question 6.10 for p € [1,2) is because we have already
proved it for p = 2, and the question has a negative answer when p > 2. To see why, let
N =n=2and N’ =1, and consider the matrix

1 -1 0
1 1 1)

2p <2p+1—|-1
1417 1+1+1°

Then (71) becomes

which is false for p > 2.
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