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1. Introduction

The deep parallels between inequalities in Information Theory and Convex Geom-

etry have been explored intensively. The recognition of these parallels goes back to 

at least 1984, when Costa and Cover [15] observed the formal resemblance between 

the Brunn-Minkowski inequality in Convex Geometry and the entropy power inequal-

ity in Information Theory. The Brunn-Minkowski inequality (see, e.g., [30,51]) states 

that for all compact sets A, B in Rn, |A + B|1/n ≥ |A|1/n + |B|1/n, where we write |A|
for the volume of A. The entropy power inequality (see, e.g., [17]) states that for any 

pair of independent random vectors X, Y in R
n, N(X + Y ) ≥ N(X) + N(Y ), where 

N(X) = e
2h(X)

n denotes the entropy power of X, and h(X) = − 
∫

f(x) log f(x)dx is 

the entropy of X if X has density f (and h(X) = −∞ if not). Despite the apparent 

distinctness of the settings, a compelling case can be made (see, e.g., [18,54,30,56,43]) 

that these inequalities are deeply connected – in particular, it is now well understood 

that the functional A �→ |A|1/n in the geometry of compact subsets of R
n, and the 

functional fX �→ N(X) in probability are analogous in many (but not all) ways. In the 

last decade, several further developments have been made that link Information Theory 

to the Brunn-Minkowski theory, including entropy analogues of Blaschke-Santaló’s in-

equality [38], reverse Brunn-Minkowski’s inequality [7,8], Rogers-Shephard’s inequality 

[10,41] and Busemann’s inequality [5]. Indeed, volume inequalities and entropy inequal-

ities (and also certain small ball inequalities [44]) can be unified using the framework of 

Rényi entropies; this framework and the relevant literature is surveyed in [43].

The analogies between Information Theory and Convex Geometry are not so direct 

when one moves to second-order functionals. In particular, convex geometry analogues 

of Fisher information inequalities hold sometimes but not always [24,2,29]. Motivated by 
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these analogies, Dembo, Cover and Thomas [18] proposed the inequality, called concavity 

of the ratio of volume to the surface area,

|A + B|
|∂(A + B)|n−1

≥ |A|
|∂A|n−1

+
|B|

|∂B|n−1
(1)

as a natural analogue dual to the Fisher information inequality; here and in the sequel, 

|A|m will mean the m-dimensional Hausdorff measure of the set A. It was noticed already 

in [18] (see also [31]) that (1) is true when A (or B) is an Euclidean Ball, moreover, in 

[24], it was proved that this last inequality holds for any convex bodies A and B in R2. 

It is interesting to note that even a weaker conjecture, called monotonicity of the ratio 

of volume to the surface area,

|A + B|
|∂(A + B)|n−1

≥ |A|
|∂A|n−1

(2)

is not trivial. The case of B being a segment already gives another natural conjecture

|∂(Pu⊥A)|n−2

|Pu⊥A|n−1
≤ |∂A|n−1

|A| , (3)

where Pu⊥A denotes the orthogonal projection A onto the hyperplane with normal vector 

u ∈ Sn−1. We explain in details the relationships between the above conjectures as parts 

of Theorems 3.6, 3.9 and Remark 3.10 below. It was proved in [31] (see also Lemma 5.4

for a simple proof) that (3) holds with a multiplicative constant:

|∂(Pu⊥A)|n−2

|Pu⊥A|n−1
≤ 2(n − 1)

n

|∂A|n−1

|A| . (4)

Moreover, it was shown in [24] that the constant is sharp. Thus, there are counterexam-

ples to (3) in Rn for any n ≥ 3 and inequalities (1) and (2) are not true in general for 

the whole class of convex bodies in Rn, n ≥ 3.

Conjecture (1) is connected with the following conjecture for the volume of projections 

(see Remark 3.10 below):

|A + B|
|Pu⊥(A + B)|n−1

≥ |A|
|Pu⊥A|n−1

+
|B|

|Pu⊥B|n−1
. (5)

Bonnesen proved in [12] (see [51, eq. (7.196)]) that, for any convex bodies A, B in Rn,

|A + B| ≥
(

|Pu⊥A|
1

n−1

n−1 + |Pu⊥B|
1

n−1

n−1

)n−1 ( |A|
|Pu⊥A|n−1

+
|B|

|Pu⊥B|n−1

)
, (6)

which is (5) for n = 2. The fact that (1) is true in dimension 2 and in the case when 

one of the bodies is an Euclidean ball inspires the natural conjecture that (1) holds for 
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zonoids. Recall that zonoids are Hausdorff limits of zonotopes and that zonotopes are 

Minkowski sums of segments. Our main goal, in this paper, is to study a weaker version 

of this conjecture: is it true that for two zonoids A, B in Rn we have

|A + B|
|Pu⊥(A + B)|n−1

≥ |A|
|Pu⊥A|n−1

? (7)

Note that (7) is again not true for general convex bodies in dimension n ≥ 3. We prove 

it for zonoids in R3 (Theorem 5.1). We also present a number of equivalent and useful 

restatements of (7) (Theorems 3.6, 3.9 and 5.3).

The second main contribution of this paper has to do with an analogue of the 

Plünnecke-Ruzsa [47,50] inequality for zonoids, or equivalently, the log-submodularity 

property of volume on the space of zonoids with respect to Minkowski summation. More 

precisely, we study the following conjecture from [28]: given zonoids A, B1, B2 in Rn, one 

has

|A| |A + B1 + B2| ≤ |A + B1| |A + B2|. (8)

This conjecture was inspired by Bobkov and the second-named author [8] who proved 

that for convex bodies A, B1, B2 in Rn, one has

|A| |A + B1 + B2| ≤ 3n|A + B1| |A + B2|.

Recently, it was proved in [28] that the constant 3n in the preceding inequality may be 

replaced by ϕn, where ϕ = (1 +
√

5)/2 is the golden ratio, that the best constant cn

is lower bounded by (4/3 + o(1))n and that c2 = 1 and c3 = 4/3. These observations 

imply that, for general convex bodies in dimensions n ≥ 3, it is impossible to have (8). 

In this paper, we prove that (8) holds in R3 for zonoids. We explore related questions 

for Gaussian and more general measures in [25,26].

The log-submodularity property of volume is tightly connected with the submodular-

ity of entropy proved in [39], which asserts that

N(X)N(X + Y + Z) ≤ N(X + Y )N(X + Z), (9)

for independent Rn-valued random variables X, Y, Z. This inequality may be thought of 

as an entropic analogue of the Plünnecke-Ruzsa inequality. It was observed in [41] that 

(9), applied to Gaussian random vectors, immediately implies log-submodularity of the 

determinant for positive-definite matrices T1, T2, T3:

det(T1 + T2 + T3)det(T1) ≤ det(T1 + T2)det(T1 + T3).

A much more general inequality, however, has a long history in functional analysis. The 

Grothendieck determinant inequality asserts that if T1, T2 are trace-class operators on a 

separable Hilbert space, then
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det(I + |T1 + T2|) ≤ det(I + |T1|)det(I + |T2|),

where we use I for the identity operator on the Hilbert space, det for the Fredholm 

determinant, and |T | = (T ∗T )
1
2 . This inequality first appeared in unpublished notes of 

Grothendieck in 1955, and was rediscovered by Rotfel’d [49], and by Seiler and Simon 

[52] motivated by questions in quantum field theory (our approach to volume inequalities 

is akin to the proof of [52] in that they use the polynomial expansion of determinants). 

Another proof was given by Lieb [35] and a further generalization to an arbitrary von 

Neumann algebra equipped with a faithful semifinite trace (which had been conjectured 

by Grothendieck) was obtained by Fack [20].

Inequality (9) was later modified by Courtade in [16], who established that if X is a 

Gaussian random vector then one has the reinforced inequality

N(Y )N(Z) + N(X)N(X + Y + Z) ≤ N(X + Y )N(X + Z).

Again, when applied for independent Gaussian random vectors, this immediately implies 

that for any symmetric positive semidefinite matrices T1, T2, T3, one has

det(T2)
1
n det(T3)

1
n + det(T1)

1
n det(T1 + T2 + T3)

1
n ≤ det(T1 + T2)

1
n det(T1 + T3)

1
n . (10)

During the 2017 workshop on Information-Theoretic Inequalities at the University 

of Delaware, Courtade conjectured that the analogous inequality is true for any convex 

bodies B, C in Rn

|B|1/n|C|1/n + |Bn
2 |1/n|Bn

2 + B + C|1/n ≤ |Bn
2 + B|1/n|Bn

2 + C|1/n,

where Bn
2 is the Euclidean unit ball. In Theorem 4.1, we confirm this conjecture in the 

plane, moreover, we show that Bn
2 in the above inequality may be replaced by a general 

planar convex body.

We would like to also illustrate an application of (10) to volume inequalities. For this, 

let us recall Firey’s [22] one-parameter extension of the concept of Minkowski sum: for 

any real number p ≥ 1, the so-called �p-sum K ⊕p L of convex bodies K and L containing 

the origin is defined by:

hK⊕pL(x) = (hK(x)p + hL(x)p)
1
p , ∀x ∈ R

n,

where hK is the support function of K. In particular, for the case p = 2, the class of 

ellipsoids is closed with respect of �2-sum and if E1 = T1Bn
2 and E2 = T2Bn

2 , for some 

positive-definite symmetric matrices T1, T2, then E1 ⊕2 E2 =
√

T 2
1 + T 2

2 Bn
2 . Thus (10), 

immediately gives

|E2| 2
n |E3| 2

n + |E1| 2
n |E1 ⊕2 E2 ⊕2 E3| 2

n ≤ |E1 ⊕2 E2| 2
n |E1 ⊕2 E3| 2

n .
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In addition to the above inequality, in this paper, we establish the �2-version of the 

Dembo-Cover-Thomas conjecture (1) for ellipsoids and discuss other possible �p- exten-

sions of inequality (5) (see Theorem 6.2 and Corollary 6.7).

This paper is organized as follows. In Section 2, we collect background material on 

mixed volumes. Numerous equivalent descriptions of log-submodularity, on a given class 

of convex bodies, are explored in Section 3. In Section 4, we first prove the planar case 

of the conjecture of Courtade, and we then prove inequality (7) in the special case of 

paralleletopes. Section 5 explores log-submodularity of volume on the class of zonoids 

– we first prove that this holds in R
3, and then discuss an array of inequalities that 

are equivalent to log-submodularity for zonoids in arbitrary dimension (all of which 

therefore now hold in R3). Along the way, we answer a question of Adam Marcus about 

Steiner polynomials of zonoids. Finally, in Section 6, inspired by a work of Brazitikos 

and McIntyre [13] on vector-valued Maclaurin inequalities and the inequality (10), we 

discuss possible extensions of our results to the more general class of �p-zonoids, which 

appear in the more general Lp-Brunn-Minkowski theory.

Acknowledgments. We are indebted to Shiri Artstein-Avidan, Guillaume Aubrun, 

Silouanos Brazitikos, Dan Florentin, Dylan Langharst, Auttawich Manui, Ivan Soprunov, 

and Ramon Van Handel, for a number of valuable discussions and suggestions. We are 

grateful to the anonymous referee for their valuable suggestions which helped us to im-

prove the exposition.

2. Preliminaries on mixed volumes

In this section, we introduce basic notations and collect essential facts and definitions 

from convex geometry that are used in the paper. As a general reference on the theory, 

we use [51]. We write 〈x, y〉 for the inner product of vectors x and y in Rn and by |x| the 

Euclidean norm of a vector x ∈ R
n. The closed Euclidean ball in Rn is denoted by Bn

2 , 

and its boundary by Sn−1. We also denote by e1, . . . , en the standard orthonormal basis 

in Rn. Moreover, for any set in K ⊂ R
n, we denote its boundary by ∂K. A compact set 

K in Rn is called star-shaped if, for every x ∈ K, the segment [0, x] is a subset of K; 

its radial function ρK is then defined by ρK(x) = sup{a; ax ∈ K}. When 0 belongs to 

the interior of K then ‖x‖K = ρ−1
K (x) is the Minkowski functional of K. A convex body 

is a convex, compact set with non-empty interior. For a convex body K, we define its 

support function by hK(x) = maxy∈K〈x, y〉.
We write |K|m for the m-dimensional Hausdorff measure of a measurable set K ⊂

R
n. In the case where K is a convex set, the typical use of this notation will involve 

the dimension m ∈ {1, . . . , n} of the minimal affine space containing K, so that |K|m
is just the Lebesgue measure (volume) of the “correct” dimension. We often use the 

shorter notation |K| for n-dimensional volume; also, for the sake of convenience, we 

define |K|0 = 1. From [51, Theorem 5.1.6], for any compact convex sets K1, . . . , Kr in 

R
n and any non-negative numbers t1, . . . , tr, one has
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|t1K1 + · · · + trKr| =
r∑

i1,...,in=1

ti1
· · · tin

V (Ki1
, . . . , Kin

), (11)

for some non-negative numbers V (Ki1
, . . . , Kin

), which are the mixed volumes of 

Ki1
, . . . , Kin

.

We also often use the version of (11) for two bodies:

|A + tB| =
n∑

k=0

(
n

k

)
tkV (A[n − k], B[k]), (12)

for any t > 0 and compact, convex sets A, B in Rn, where for simplicity we use notation 

A[m] for a convex set A repeated m times. Mixed volumes satisfy a number of extremely 

useful inequalities. The first one is the Brunn-Minkowski inequality |K+L|1/n ≥ |K|1/n+

|L|1/n, whenever K, L and K + L are measurable. A direct consequence is Minkowski’s 

first inequality

V (L, K[n − 1]) ≥ |L|1/n|K|(n−1)/n, (13)

and Minkowski’s second inequality

V (L, K[n − 1])2 ≥ |K|V (L[2], K[n − 2]), (14)

for two convex, compact subsets K and L in R
n. We will use the classical integral 

representation for the mixed volume:

V (L, K[n − 1]) =
1

n

∫

Sn−1

hL(u)dSK(u), (15)

where SK is the surface area measure of K [51]. Mixed volumes are also useful to study 

the volume of the orthogonal projections of convex bodies. Let E be an m-dimensional 

subspace of Rn, for 1 ≤ m ≤ n and let PE : R
n → E be the orthogonal projection onto 

E. Then for any convex body K we have (see [51] Theorem 5.3.1)

|U |n−m|PEK|m =

(
n

m

)
V (K[m], U [n − m]), (16)

where U is any convex body in the subspace E⊥ orthogonal to E. It follows from (16)

that for any orthonormal system u1, . . . , ur, 1 ≤ r ≤ n we get

∣∣P[u1,...,ur]⊥K
∣∣
n−r

=
n!

(n − r)!
V (K[n − r], [0, u1], . . . , [0, ur]). (17)

For example, denote by u⊥ = {x ∈ R
n : 〈x, u〉 = 0} the hyperplane orthogonal to a 

vector u ∈ Sn−1, we obtain
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|Pu⊥K|n−1 = nV (K[n − 1], [0, u]). (18)

Another useful formula is connected with the computation of surface area and mixed 

volumes:

|∂K| = nV (K[n − 1], Bn
2 ), (19)

where by |∂K| we denote the surface area of the convex body K in Rn.

A polytope which is the Minkowski sum of finitely many line segments is called a 

zonotope. Limits of zonotopes in the Hausdorff metric are called zonoids, see [51, Section 

3.2] for details. Consider zonotopes Zj =
∑Nj

ij=1[0, wijj ], where, j = 1, . . . , n and wijj ∈
R

n. Using the linearity of mixed volumes, we get that

V (Z1, . . . , Zn) =
∑

V ([0, wi11], . . . [0, winn]) =
1

n!

∑
|det({wijj}n

j=1)|, (20)

where the sums run over the integers ij ∈ {1, . . . , Nj}, for j ∈ {1, . . . , n}. Notice that, 

if Z1 = [0, u], with u ∈ Sn−1, we may use the basic properties of determinants to show 

that

V ([0, u], Z2, . . . , Zn) =
1

n!

∑
|det({Pu⊥wijj}n

j=2)|,

where the sum is taken over all integer ij ∈ {1, . . . , Nj}, for j ∈ {2, . . . , n}. We mainly 

use the following particular case: for Z = [0, u1] + · · · + [0, um], then

|Z| =
∑

1≤i1<···<in≤m

|det(ui1
, . . . , uin

)| (21)

|Pe⊥Z| =
∑

1≤i2<···<in≤m

|det(Pe⊥ui2
, . . . , Pe⊥uin

)|.

3. Equivalent forms of the log-submodularity of volume

3.1. Submodularity

Let us recall the notion of submodular set functions and some of their basic properties; 

see [40,55,23,28] for more information on this subject and the proofs of the theorems. 

We denote [n] = {1, · · · , n} and let 2[n] be the family of subsets of [n].

Definition 3.1. A set function F : 2[n] → R is submodular if

F (S ∪ T ) + F (S ∩ T ) ≤ F (S) + F (T ) for all subsets S, T of [n]. (22)
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Submodularity is closely related to a partial ordering on hypergraphs [19,11,4]. Let 

M(n, m) be the following family of multi-hypergraphs: each consists of non-empty sub-

sets Si of [n], 
∑

i |Si| = m, with Si = Sj allowed. Consider a given multi-hypergraph 

C = {S1, . . . , Sl} ∈ M(n, m). Take any pair of non-nested sets {Si, Sj} ⊂ C and let 

C′ = C(i, j) be obtained from C by replacing Si and Sj by Si ∩ Sj and Si ∪ Sj , keeping 

only Si ∪ Sj if Si ∩ Sj = ∅. C′ is called an elementary compression of C. The result of a 

sequence of elementary compressions is called a compression. Define a partial order on 

M(n, m) by setting A > A′ if A′ is a compression of A. Using transitivity of the partial 

order and reducing to elementary compressions, we get the following theorem (see [4]).

Theorem 3.2. Suppose F is a submodular function on [n]. Let A and B be finite multi-

hypergraph of subsets of [n], with A > B. Then

∑

S∈A
F (S) ≥

∑

T ∈B
F (T ).

For every multi-hypergraph A ∈ M(n, m) there is a unique minimal multi-hypergraph 

A# dominated by A consisting of the sets S#
j = {i ∈ [n] : i lies in at least j of the sets 

S ∈ A}. One implication of Theorem 3.2 is that submodular functions F with F (ϕ) = 0

are “fractionally subadditive” (see, e.g., [45])– this property has also been investigated 

in connection with volumes of Minkowski sums [9,27,6].

We also have a notion of submodularity on the positive octant of the Euclidean space; 

such functions also arise naturally in probability, see, e.g., [42].

Definition 3.3. A function f : R
n
+ → R is submodular if, for any x, y ∈ R

n
+,

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y),

where x ∨ y (resp. x ∧ y) denotes the componentwise maximum (resp. minimum) of x

and y.

The next very simple lemma connects submodularity for functions defined on Rn
+ to 

submodularity for set functions. For a set S ⊂ {1, . . . , n}, let 1S be the vector in Rn such 

that for each i ∈ {1, . . . , n}, the i-th coordinate of 1S is 1, for i ∈ S and 0, for i /∈ S.

Lemma 3.4. If f : R
n
+ → R is submodular, and we set F (S) := f(1S) for each S ⊂

{1, . . . , n}, then F is a submodular set function.

The fact that submodular functions are closely related to functions with decreasing 

differences is classical (see, e.g., [40] or [55], which describes more general results involving 

arbitrary lattices). We denote by ∂2
i,j the second derivative with respect to coordinates 

i, j.
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Proposition 3.5. Let f : R
n
+ → R be a C2 function. Then f is submodular if and only if 

∂2
i,jf ≤ 0 on Rn

+, for every i �= j.

3.2. Classes closed under sums and dilation

Let us now show the various forms that the notions of submodularity and log-

submodularity can have applied to volume of convex compact sets.

Theorem 3.6. Consider a collection K of compact convex sets in Rn stable by sums and 

dilation. Then the following statements are equivalent:

1. For every m ≥ 1 and every A, B1, . . . , Bm in K

|A|m−1

∣∣∣∣∣A +
m∑

i=1

Bi

∣∣∣∣∣ ≤
m∏

i=1

|A + Bi|. (23)

2. For every m ≥ 1 and A, B1, . . . , Bm ∈ K, the function w̄ : 2[m] → R defined by

w̄(S) = log

∣∣∣∣A +
∑

i∈S

Bi

∣∣∣∣ (24)

for each S ∈ 2[m], is a submodular.

3. For every m ≥ 1 and any multi-hypergraphs A, B on [m] with A > B,

∑

S∈A
w̄(S) ≥

∑

T ∈B
w̄(T ),

where w̄ is defined by (24).

4. For every m ≥ 1 and every A, B1, . . . , Bm ∈ K, the function w : R
m
+ → R defined, for 

x = (x1, . . . , xm) ∈ R
m
+ , by

w(x) = log

∣∣∣∣A +

m∑

i=1

xiBi

∣∣∣∣, (25)

is submodular.

5. For every A, B1, B2 ∈ K

|A|V (A[n − 2], B1, B2) ≤ n

n − 1
V (A[n − 1], B1)V (A[n − 1], B2).

Proof. 2. =⇒ 1. This follows directly from the definition.

1. =⇒ 2.: We use (23) with A +
∑

i∈S∩T Bi, 
∑

i∈S\T Bi and 
∑

i∈T \S Bi.

2. ⇐⇒ 3.: This follows from Theorem 3.2 applied to w̄.

2. ⇐⇒ 4.: This comes from Lemma 3.4 and the fact that K is dilation invariant.
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4. ⇐⇒ 5.: We apply Proposition 3.5 to f = w. Let Kx = A +
∑

i xiBi and v(x) = |Kx|. 
Then,

∂jv(x) = lim
ε→0

|Kx + εBj | − |Kx|
ε

= nV (Kx[n − 1], Bj),

and, for k �= j,

∂2
j,kv(x) = n∂kV (Kx[n − 1], Bj)

= n lim
ε→0

V ((Kx + εBk)[n − 1], Bj) − V (Kx[n − 1], Bj)

ε

= n(n − 1)V (Kx[n − 2], Bk, Bj).

By Proposition 3.5, the submodularity of w is equivalent to ∂2
j,kw(x) ≤ 0. But w = log(v)

so

∂2
j,kw(x) =

v∂jkv − ∂jv∂kv

v2
,

which is non-positive if and only if

|Kx|V (Kx[n − 2], Bj , Bk) ≤ n

n − 1
V (Kx[n − 1], Bj)V (Kx[n − 1], Bk).

Thus plugging x = 0 we get 4. =⇒ 5. and using 4. with Kx instead of A gives 

5. =⇒ 4. �

We note that it is enough to check property 1. in Theorem 3.6, just in the case m = 2. 

Indeed the case of general m > 2 follows by an iteration argument.

We also note that, in dimension 2, property 5. of Theorem 3.6 holds for any convex 

bodies by the classical local version of Alexandrov’s inequality that was proved by W. 

Fenchel (see [21], also [51] and discussion in Section 4.1 below) and further generalized 

in [24,2,53]: for any convex compact sets A, B1, B2 in Rn we have

|A|V (A[n − 2], B1, B2) ≤ 2V (A[n − 1], B1)V (A[n − 1], B2). (26)

The constant 2 is sharp in any dimension (see [31] and [28]). This shows also that log-

submodularity doesn’t hold in the set of compact convex sets in Rn, for n ≥ 3. From 

(26) and Theorem 3.6, the following theorem holds.

Theorem 3.7. For every convex compact A, B1, B2 in R2 it holds

|A| |A + B1 + B2| ≤ |A + B1| |A + B2|.
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Note that the inequality from Theorem 3.7 holds also in R. Moreover, the inequality 

in R and R
2 can be improved as shown in Theorem 4.1, in particular in the class of 

convex bodies the inequality is strict.

It is easy to see that 1. from Theorem 3.6 works well with direct sums, more precisely 

if A1, B1
1 , . . . , B1

m ⊂ R
n1 and A2, B2

1 , . . . , B2
m ⊂ R

n2 satisfy (23), then A = A1 × A2 ⊂
R

n1+n2 and Bi = B1
i × B2

i in Rn1+n2 , i = 1, . . . , m satisfy (23). This fact can be used to 

create different classes of compact convex sets stable by sum and dilations which satisfy 

the properties of Theorem 3.6.

Remark 3.8. Minkowski’s second inequality gives that, for any compact convex sets A

and B, one has

|A|V (A[n − 2], B[2]) ≤ V (A[n − 1], B)2. (27)

Theorem 3.6 implies that if K is a class of convex bodies on which log-submodularity 

holds (property 1. of Theorem 3.6), then for bodies in K, a Fenchel type inequality similar 

to (26) holds with a dimensional factor n
n−1 instead of 2.

Let us, also, note that the same proof shows that for a fixed compact convex set A

not necessarily belonging to K, if, for every B1, B2 in K, one has

|A| |A + B1 + B2| ≤ |A + B1| |A + B2|, (28)

then, for every B1, B2 ∈ K, one has

|A|V (A[n − 2], B1, B2) ≤ n

n − 1
V (A[n − 1], B1)V (A[n − 1], B2).

3.3. Classes closed under linear transformations

Theorem 3.9. Let L be a class of a compact convex sets in Rn stable under any linear 

transformations. The following are equivalent:

1. |A| |∂(A + [0, u])| ≤ |∂A| |A + [0, u]|, for any A ∈ L and any u ∈ R
n.

2. |A| |∂(Pu⊥A)| ≤ |∂A| |Pu⊥A|n−1, for any A ∈ L and any u ∈ Sn−1.

3. |A| |P[u,v]⊥A|n−2

√
1 − 〈u, v〉2 ≤ |Pu⊥A|n−1|Pv⊥A|n−1, for any A ∈ L and any u, v ∈

Sn−1.

4. |A + [0, u] + [0, v]| |A| ≤ |A + [0, u]| |A + [0, v]|, for any A ∈ L and any u, v ∈ R
n.

5. |A|V (A[n − 2], Z1, Z2) ≤ n
n−1 V (A[n − 1], Z1)V (A[n − 1], Z2), for any A ∈ L and any 

zonoids Z1, Z2.

6. For any A ∈ L and any u, v ∈ R
n, let us define P (t) = |A +t([0, u] +[0, v])|, for t > 0. 

Then P (t) is the restriction to R+ of a polynomial on R, which has only real roots.

Proof. 1. ⇐⇒ 2.: This was observed in [2]. It is true even for fixed A and u. For u �= 0, 

it follows from the identities |A + [0, u]| = |A| + |u||Pu⊥A| and
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|∂(A + [0, u])| = nV ((A + [0, u])[n − 1], Bn
2 ) = |∂A| + |u||∂(Pu⊥A)|.

2. =⇒ 3.: Define Tε : R
n → R

n by Tεx = εx + 〈x, v〉v. Notice that T0(Bn
2 ) = [−v, v]. 

From (2) applied to T −1
ε A and T −1

ε u we have

|T −1
ε A|V (T −1

ε A[n − 2], [0, T −1
ε u], Bn

2 )

≤ n

n − 1
V (T −1

ε A[n − 1], Bn
2 )V (T −1

ε A[n − 1], [0, T −1
ε u]).

Thus

|A|V (A[n − 2], [0, u], TεBn
2 ) ≤ n

n − 1
V (A[n − 1], TεBn

2 )V (A[n − 1], [0, u]).

When ε → 0, we get

|A|V (A[n − 2], [0, u], [0, v]) ≤ n

n − 1
V (A[n − 1], [0, v])V (A[n − 1], [0, u]). (29)

From (16) and (17), we get |Pu⊥A|n−1 = nV (A[n − 1], [0, u]) and

|P[u,v]⊥A|n−2

√
1 − 〈u, v〉2 = n(n − 1)V (A[n − 2], [0, u], [0, v]).

3. ⇐⇒ 4.: We may assume that u is not colinear with v. Applying a linear transforma-

tion to A, u and v, we may assume that u, v are orthonormal. Expanding both sides of 

the inequality in 4. and using (11), we get 3.

3. =⇒ 5.: As noticed above, 3. is equivalent to (29). From the linearity of mixed 

volumes, we deduce that for every zonotopes Z1 and Z2, one has

|A|V (A[n − 2], Z1, Z2) ≤ n

n − 1
V (A[n − 1], Z1)V (A[n − 1], Z2). (30)

Taking limits, we conclude that (30) is valid for every zonoids Z1, Z2.

5. =⇒ 2.: Applying (30) to Z1 = [0, u] and Z2 = Bn
2 and using that V (A[n −

2], [0, u], Bn
2 ) = 1

n(n−1) |∂(Pu⊥A)|, V (A[n − 1], [0, u]) = 1
n |Pu⊥A|n−1 and (19), we con-

clude.

3. ⇐⇒ 6.: We may assume that u is not colinear with v. Applying a linear transforma-

tion, to (3) and (6), it is enough to assume that u, v are orthonormal. Then

P (t) = |A| + t(|Pu⊥A|n−1 + |Pv⊥A|n−1) + |P[u,v]⊥A|n−2t2.

The equation

|A| + t(|Pu⊥A|n−1 + |Pv⊥A|n−1) + |P[u,v]⊥A|n−2t2 = 0

has real roots is equivalent to
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( |Pu⊥A|n−1 + |Pv⊥A|n−1

2

)2

≥ |A||P[u,v]⊥A|n−2, (31)

which follows immediately from 3. To show that 6. =⇒ 3., assume (31) is true for all A

in L and u, v ∈ Sn−1. Consider the linear operator T such that Tu = tu and Tv = t−1v

for t > 0 and Tx = x for x ∈ [u, v]⊥. Taking t = (|Pu⊥A|n−1/|Pv⊥A|n−1|)1/2, we get

|Pv⊥TA|n−1 = |Pu⊥TA|n−1.

Applying (31) to TA, we get

|Pu⊥TA|n−1|Pv⊥TA|n−1 ≥ |TA||P[u,v]⊥TA|n−2.

Since |TA| = |A|, |P[u,v]⊥TA|n−2 = |P[u,v]⊥A|n−2 and

|Pu⊥TA|n−1|Pv⊥TA|n−1 = |Pu⊥A|n−1|Pv⊥A|n−1,

we get 3. �

Remark 3.10. Notice that, if L is the class of zonoids, then 1. from Theorem 3.9

|A + [0, u]|
|∂(A + [0, u])|n−1

≥ |A|
|∂A|n−1

for every zonoid A and every u ∈ R
n is equivalent to

|A + B|
|∂(A + B)|n−1

≥ |A|
|∂A|n−1

for all zonoids A and B. Similarly, from 4., we deduce that these inequalities are equiv-

alent to

|A + B|
|Pu⊥(A + B)|n−1

≥ |A|
|Pu⊥A|n−1

for all zonoids A and B, as stated in the introduction. Similarly, using also the methods 

of the proof of Corollary 6.7, we deduce that the stronger conjectures

|A + B|
|∂(A + B)|n−1

≥ |A|
|∂A|n−1

+
|B|

|∂B|n−1

for all zonoids A and B, and

|A + B|
|Pu⊥(A + B)|n−1

≥ |A|
|Pu⊥A|n−1

+
|B|

|Pu⊥B|n−1

for all zonoids A and B, are equivalent.
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Remark 3.11. It was proved in [53] that 5. in Theorem 3.9 is satisfied when A is a simplex 

(actually, even without constant n/(n −1)), thus all of the properties in Theorem 3.9 are 

true for simplices. Actually, the inequalities of statements 2. and 3. hold with an extra 

factor n−1
n on the right hand side.

Remark 3.12. Notice that the inequality (26) shows that the property 5. of Theorem 3.9

holds true for the class L of compact convex sets in R2 and doesn’t hold in the class of 

compact convex sets in Rn, for n ≥ 3.

4. Some special cases

4.1. An improved inequality in R2

Inspired by an analogous result [16, Theorem 3] in Information Theory, T. Courtade 

asked if

|B|1/n|C|1/n + |A|1/n|A + B + C|1/n ≤ |A + B|1/n|A + C|1/n (32)

for A = Bn
2 being the Euclidean ball, and any convex bodies B, C in Rn. Here we confirm 

Courtade’s conjecture in R2 in a more general setting.

Theorem 4.1. Consider convex bodies A, B, C ⊂ R
2, then

|A|1/2|A + B + C|1/2 + |B|1/2|C|1/2 ≤ |A + B|1/2|A + C|1/2. (33)

Proof. The main tool to prove the above inequality is the following classical inequality 

of Fenchel that we have already used. We will need now to use the most general form of 

this inequality (see [51, (7.69) pp. 401]):

(|A|V (B, C) − V (A, B)V (A, C))2 ≤ (V (A, B)2 − |A||B|)(V (A, C)2 − |A||C|).

Note that the above can be rewritten as

|C|V (A, B)2 + |B|V (A, C)2 + |A|V 2(B, C) − |A||B||C| − 2V (A, B)V (A, C)V (B, C) ≤ 0.

(34)

Squaring both sides of (33), we get

2
(
|A||A + B + C||B||C|

)1/2
+ |A||A + B + C| + |B||C| ≤ |A + B||A + C|.

We use that |A + B| = |A| + 2V (A, B) + |B| to rewrite the above as

(|A||B||C||A + B + C|)1/2
+|A|V (B, C) ≤ 2V (A, B)V (A, C)+V (A, B)|C|+|B|V (A, C).
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Using (26), in order to prove the above inequality, it is enough to establish

|A||B||C||A + B + C| ≤ (2V (A, B)V (A, C) + V (A, B)|C| + |B|V (A, C) − |A|V (B, C))
2

.

Consider rB, r ≥ 0, instead of B:

|A||B||C||A+rB+C|≤(2V (A, B)V (A, C) + V (A, B)|C| + r|B|V (A, C) − |A|V (B, C))
2

.

The above represents a quadratic inequality αr2 + βr + γ ≥ 0, with

α = |B|2V 2(A, C) − |A||B|2|C|,
β = 2

(
2V (A, B)V (A, C)+V (A, B)|C|−|A|V (B, C)

)
|B|V (A, C)−2|A||B||C|V (B, A+C),

γ =
(
2V (A, B)V (A, C) + V (A, B)|C| − |A|V (B, C)

)2 − |A||B||C||A + C|.

It follows from (13) that α ≥ 0. It turns out β may be negative and thus we need to 

show that D = β2 − 4αγ ≤ 0, which after division by |B|2 becomes

[(
2V (A, B)V (A, C) + V (A, B)|C| − |A|V (B, C)

)
V (A, C) − |A||C|V (B, A + C)

]2

−
(
V 2(A, C)−|A||C|

)[(
2V (A, B)V (A, C)+V (A, B)|C|−|A|V (B, C)

)2

−|A||B||C||A+C|
]

≤ 0.

Simplifying the above inequality and dividing it by |A||C| we may rearrange the terms 

to get that our goal is to show that

(
|C|V (A, B)2 − 2V (A, B)V (A, C)V (B, C) + |A|V 2(B, C)

)(
|A| + 2V (A, C) + |C|

)

+
(
V 2(A, C) − |A||C|

)
|B|(|A + C|) ≤ 0.

Factoring out |A + C| we get that our goal is to show that

(
|C|V (A, B)2−2V (A, B)V (A, C)V (B, C)+|A|V 2(B, C)+|B|V 2(A, C)−|A||C||B|

)
|A+C|

≤ 0.

Finally, the above inequality follows from (34). �

From the failure of log-submodularity on the space of convex bodies for n ≥ 3 (ob-

served independently by Nayar and Tkocz [46] and a subset of the authors [28]), we know 

that inequality (32) cannot possibly hold for n ≥ 3 if A is an arbitrary convex body. Of 

course, Courtade’s conjecture could still be true since it only considers the case A = Bn
2 . 

We note that a weaker version of the conjecture, namely,
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|Bn
2 ||Bn

2 + B + C| ≤ |Bn
2 + B||Bn

2 + C|

was proved in [28, Theorem 4.12] in the special case when B is a zonoid and C is an 

arbitrary convex body.

4.2. Parallelotopes in general dimension

It is clear that 3. from Theorem 3.9 holds for ellipsoids. Indeed, after applying a linear 

transformation, it reduces to the following inequality: |Bn
2 ||Bn−2

2 | ≤ |Bn−1
2 |2, which 

follows from the log-convexity of the Gamma function. In the next theorem, we prove 

that 3. from Theorem 3.9 holds for the class of parallelotopes.

Theorem 4.2. Let A be parallelotope in Rn and u, v ∈ Sn−1, then

|A| |P[u,v]⊥A|n−2

√
1 − 〈u, v〉2 ≤ |Pu⊥A|n−1 |Pv⊥A|n−1. (35)

Moreover, suppose A is full dimensional and A = a +
∑n

i=1[0, wi], for some 

a, w1, . . . , wn in Rn. Then there is equality in (35) if and only if u ∈ span{wi, i ∈ I} and 

v ∈ span{wi, i /∈ Ic} for some I ⊂ {1, . . . , n}.

Proof. We use the representation of the volume of projections using mixed volumes (16)

to restate the above statement as

|A|V (A[n − 2], [0, u], [0, v]) ≤ n

n − 1
V (A[n − 1], [0, u])V (A[n − 1], [0, v]).

Applying an affine transformation, we may assume A = [0, 1]n =
∑n

i=1[0, ei]. Thus,

V (A[n − 1], [0, u]) =
1

n

∑

|I|=n−1

|det(u, (ei)i∈I)| =
1

n

n∑

i=1

|ui|,

V (A[n − 2], [0, u], [0, v])=
1

n(n − 1)

∑

|I|=n−2

|det(u, v, (ei)i∈I)|= 1

n(n − 1)

∑

i<j

|uivj −ujvi|.

Finally we need to show

∑

i<j

|uivj − ujvi| ≤
∑

|ui|
∑

|vj |, (36)

which follows from the triangle inequality. The equality in (36) is only possible if and 

only if uivi = 0 for every i ∈ {1, . . . , n}, which implies the desired equality case. �

We note that every zonotope A can be seen as an orthogonal projection of a high 

dimensional cube. Unfortunately, Theorem 4.2 can not be generalized directly to the 
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case of projection of higher co-dimensions (as it is done in 3. from Theorem 5.3 below), 

indeed such direct generalization requires Theorem 4.2 for all zonotopes in place of the 

cube. Thus we prove this property directly for the case of parallelotopes in the next 

theorem, which extends the previous one.

Theorem 4.3. Let A be a full dimensional parallelotope in Rn and let E, F be two sub-

spaces of Rn such that E⊥ ⊂ F , then

|A||PE∩F A| ≤ |PEA||PF A|, (37)

where we understand | · | to mean Lebesgue measure on the subspace of appropriate 

dimension in each instance. Moreover, there is equality in (37) if and only if there exists 

two complementary subspaces G1, G2 of Rn such that A1 := A ∩ G1 and A2 := A ∩ G2

are two lower dimensional parallelotopes, A = A1 + A2, E⊥ ⊂ G1 and F ⊥ ⊂ G2.

Proof. Notice that (37) is invariant under application of rotation S ∈ O(n) to the 

parallelotope A and subspaces E and F . Thus, without loss of generality, we may 

assume A = T (
∑n

i=1[0, ei]), for some T ∈ GL(n) and E = {e1, . . . , em}⊥ and 

F = {em+1, . . . em+j}⊥, with m + j ≤ m. Then

∣∣∣∣PE

(
T

n∑

i=1

[0, ei]

) ∣∣∣∣
n−m

=

∣∣∣∣
n∑

i=1

[0, PE(Tei)]

∣∣∣∣
n−m

=

∣∣∣∣
n∑

i=1

[0, PETei] +
m∑

k=1

[0, ek]

∣∣∣∣
n

,

where the last equality follows from 
∑n

i=1[0, PE(Tei)]|n−m ⊂ E = {e1, . . . , em}⊥. Thus, 

using (21),

∣∣∣∣PE

(
T

n∑

i=1

[0, ei]

) ∣∣∣∣
n−m

=
∑

|I|=n−m

|det(e1, . . . , em, {PETei}i∈I |

=
∑

|I|=n−m

|det(e1, . . . , em, {Tei}i∈I |

=|det(T )|
∑

|I|=n−m

|det(T −1e1, . . . , T −1em, {ei}i∈I |

=|det(T )|
∑

|J|=m

|det({wJ
i }m

i=1)|, (38)

where we denote by wi = T −1ei, i = 1, . . . , n and by uJ we denote the orthogonal 

projection of vector u onto span{ei}i∈J . We apply (38) to get that

∣∣PE∩F

n∑

i=1

[0, T ei]
∣∣
n−j−m
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= |det(T )|
∑

|N |=m+j

|det({wN
i }m+j

i=1 )|

= |det(T )|
∑

|N |=m+j

∣∣∣∣∣∣

∑

|I|=m,I⊂N

ε(N, I)det({wI
i }i≤m)det({wN∩Ic

i }i>m)

∣∣∣∣∣∣
,

where in the last step we have used the Laplace formula. Finally,

∣∣PE∩F

n∑

i=1

[0, T ei]
∣∣
n−j−m

≤ |det(T )|
∑

N=m+j

∑

|I|=m,I⊂N

|det({wI
i }i≤m)||det({wN∩Ic

i }i>m)|

= |det(T )|
∑

|I|=m

∑

N=m+j,I⊂N

|det({wI
i }i≤m)||det({wN∩Ic

i }i>m)|

= |det(T )|
∑

|I|=m

∑

I∪J,|J|=j,I∩J=∅
|det({wI

i }i≤m)||det({wJ
i }i>m)|

≤ |det(T )|
∑

|I|=m

|det({wI
i }i≤m)|

∑

|J|=j

|det({wJ
i }i>m)|

= |det(T )|−1

∣∣∣∣∣PE

(
T

n∑

i=1

[0, ei]

)∣∣∣∣∣

∣∣∣∣∣PF

(
T

n∑

i=1

[0, ei]

)∣∣∣∣∣ ,

where the last equality, again, follows from (38). If there is equality in (37), then there is 

equality in the last inequality above, thus for every I, J ⊂ {1, . . . , n} such that I ∩ J �= ∅
one has

det({wI
i }i≤m)det({wJ

i }i>m) = 0 (39)

Since wi = T −1ei, i = 1, . . . , n and T ∈ GL(n), the vectors w1, . . . , wm+j are linearly 

independent. Hence, there exists I1, I2 ⊂ {1, . . . , n}, with |I1| = m, |I2| = j such that 

det({wI1
i }i≤m) �= 0 and det({wI2

i }i>m) �= 0. Hence, det({wI1
i }i≤m)det({wI2

i }i>m) �= 0, 

which implies, from (39), that I1 ∩ I2 = ∅. Let us prove that, for any k ∈ I1, one has 

(w
{k}
i )i>m = 0. By contradiction if, for some k ∈ I1, one has (w

{k}
i )i>m �= 0 then, 

by the Steinitz exchange lemma, there exists I ′
2 ⊂ I2, with |I ′

2| = j − 1 such that 

det({w
I′

2∪{k}
i }i>m) �= 0. Since (I ′

2 ∪ {k}) ∩ I1 �= ∅, this contradicts (39). Hence, for any 

k ∈ I1, one has (w
{k}
i )i>m = 0. In the same way, for any k ∈ I2, one has (w

{k}
i )i≤m = 0. 

Now, let k ∈ {1, . . . , n} \(I1∪I2). If (w
{k}
i )i>m �= 0 then, by the Steinitz exchange lemma, 

there exists I ′
2 ⊂ I2, with |I ′

2| = j − 1 such that det({w
I′

2∪{k}
i }i>m) �= 0. Applying the 

preceding result to I ′
2 ∪ {k} instead of I2, we deduce that (w

{k}
i )i≤m = 0. We conclude 

that, for any k ∈ {1, . . . , n}, one has either (w
{k}
i )i≤m = 0 or (w

{k}
i )i>m = 0. Denoting 

I = {k ∈ {1, . . . , n}; (w
{k}
i )i≤m �= 0}, we get that span(w1, . . . , wm) ⊂ span(ei)i∈I

and span(wm+1, . . . , wm+j) ⊂ span(ei)i/∈I . Thus denoting G1 = span(T (ei))i∈I , A1 =∑
i∈I [0, T (ei)], G2 = span(T (ei))i/∈I and A1 =

∑
i/∈I [0, T (ei)], we conclude. �
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5. Inequalities for zonoids

5.1. Zonoids in R3

Zonoids form a natural class of bodies which is stable under addition and linear 

transformations. In this section, we confirm property (4) from Theorem 3.9 in the class 

of 3-dimensional zonoids. Thus, using Theorem 5.1, we get that all properties described 

in Theorems 3.6 and 3.9 are true for this class.

Theorem 5.1. Let A be a zonoid in R3 and u, v ∈ S2. Then

|A|3|P[u,v]⊥A|1
√

1 − 〈u, v〉2 ≤ |Pu⊥A|2|Pv⊥A|2. (40)

Proof. Using (17), inequality (40) is equivalent to

|A|3|V (A, [0, u], [0, v]) ≤ 3

2
V (A[2], [0, u])V (A[2], [0, v]). (41)

We assume that u, v are linearly independent (otherwise the inequality is trivial) and 

note that it is enough to prove (41) in the case of u = e1, v = e2 and any zonoid A. 

Indeed, the more general case then follows by applying the inequality to T −1A, where 

T ∈ GL(3) is such that Te1 = u and Te2 = v. Thus our goal is to prove that, for any 

zonoid A ⊂ R
3,

|A|3|P[e1,e2]⊥A|1 ≤ |Pe⊥
1

A|2|Pe⊥
2

A|2. (42)

By approximation, it is enough to prove (42) when A is a zonotope. Suppose that A =∑M
i=1[0, ui], where ui = (xi, yi, zi) ∈ R

3. Using (21), we get that (42) is equivalent to

∑

1≤i<j<k≤M

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣

M∑

i=1

|zi|

≤
∑

1≤i<j≤M

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣
∑

1≤i<j≤M

∣∣∣∣det

(
xi xj

zi zj

)∣∣∣∣ (43)

We consider y1, . . . , yM and z1, . . . , zM as fixed, we write x = (x1, . . . , xM ) ∈ R
M and 

we define f, g : R
M → R by

f(x) =
∑

1≤i<j≤M

∣∣∣∣det

(
xi xj

zi zj

)∣∣∣∣ and g(x) =
∑

1≤i<j<k≤M

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ .

We note that f and g are piecewise affine and convex with respect to xi, for any 1 ≤ i ≤
M . We use the following elementary lemma.
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Lemma 5.2. Let ψ : R → R be a convex function. Fix some positive numbers {aj}K
j=1, 

d ∈ R and real numbers {cj}K
j=1. To prove that, for all t ∈ R,

ψ(t) ≤ ϕ(t) :=
K∑

j=1

ai|t + ci| + d,

it is enough to prove the inequality at all critical points t = −ci of ϕ and at the limit 

t → ±∞.

We shall apply the above argument inductively to f and g as functions of xi, for 

i ∈ {1, . . . , M}, successively, with xj fixed for j �= i.

We start with x1 and first check the limiting behavior at infinity (we also prove the 

limit at infinity argument as a part of a more general statement below). We note that, 

as x1 → ∞, the left hand side of (43) behaves like

|x1|

⎛
⎝

∑

1<j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

⎞
⎠

⎛
⎝

M∑

j=1

|zj |

⎞
⎠

and the right hand side of (43) behaves like

|x1|

⎛
⎝

∑

1≤j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

⎞
⎠

⎛
⎝

M∑

j=2

|zj |

⎞
⎠ .

Thus, (43) becomes

⎛
⎝

∑

1<j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

⎞
⎠

⎛
⎝

M∑

j=1

|zj |

⎞
⎠ ≤

⎛
⎝

∑

1≤j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

⎞
⎠

⎛
⎝

M∑

j=2

|zj |

⎞
⎠

or

⎛
⎝

∑

1<j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

⎞
⎠ |z1| ≤

⎛
⎝

∑

1<k≤M

∣∣∣∣det

(
y1 yk

z1 zk

)∣∣∣∣

⎞
⎠

⎛
⎝

M∑

j=2

|zj |

⎞
⎠ .

The above equation is exactly the R2 analog of (40), with A =
∑M

i=2[0, (yi, zi)]; u = [1, 0]

and v = (y1, z1)/|(y1, z1)|, thus it holds.

Our next goal is to study the critical points of f with respect to x1, which satisfy

det

(
x1 xj

z1 zj

)
= 0, for zj �= 0, 2 ≤ j ≤ M.

When x1 is a solution of the above equation, then (xj, zj) is parallel to (x1, z1). Assume 

(without loss of generality) that j = 2 and (x1, z1) = λ(x2, z2). We study (43), with 
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respect to x2, under the assumption that (x1, z1) = λ(x2, z2) and continue this algorithm 

inductively (we will show the general step below).

We must also consider the case when zj = 0, for all j ≥ 2. In this case (43) becomes

⎛
⎝|z1|

∑

1<j<k≤M

∣∣∣∣det

(
xj xk

yj yk

)∣∣∣∣

⎞
⎠ |z1| ≤

⎛
⎝|z1|

M∑

j=2

|yj |

⎞
⎠

⎛
⎝|z1|

M∑

j=2

|xj |

⎞
⎠

or

⎛
⎝

∑

1<j<k≤M

∣∣∣∣det

(
xj xk

yj yk

)∣∣∣∣

⎞
⎠ ≤

⎛
⎝

M∑

j=2

|yj |

⎞
⎠

⎛
⎝

M∑

j=2

|xj |

⎞
⎠ ,

which follows immediately from

∣∣∣∣det

(
xj xk

yj yk

)∣∣∣∣ ≤ |xjyk| + |xkyj |. (44)

Continuing this process, we arrive to the case

(x1, z1) = λ1(xm, zm), . . . , (xm−1, zm−1) = λm−1(xm, zm), (45)

for some 2 ≤ m ≤ M . We also denote λm = 1 and we study f and g as functions of xm.

Again, our first step is to confirm (43), when xm → ±∞. To do so, let us see how the 

functions f and g changed under (45). Let us first consider the terms appearing in g:

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ ,

when i < j < k. For m < i, the above determinant doesn’t depend on xm, so we only 

consider the case when m ≥ i.

• If m ≥ k, then the determinant is zero.

• if i ≤ m < j then, when |xm| → ∞
∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ ∼ |xi|
∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣ = |λi||xm|
∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

• j ≤ m < k then, when |xm| → ∞, observing that λi = zi/zm and λj = zj/zm we get

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ ∼
∣∣∣∣λixmdet

(
yj yk

zj zk

)
− λjxmdet

(
yi yk

zi zk

)∣∣∣∣
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= |xm| |zk|
|zm|

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣ .

We also need to compute the behavior of the terms appearing in f :

∣∣∣∣det

(
xi xj

zi zj

)∣∣∣∣ ,

for i < j. When m ≥ j, it is zero and when m < i, it does not dependent on xm. So we 

assume that i ≤ m < j. We get

∣∣∣∣det

(
xi xj

zi zj

)∣∣∣∣ ∼ |λi| |xm| |zj |.

Thus to show that the (43) is true, as |xm| → ∞, we need to prove that

⎡
⎣(

∑

i≤m

|λi|)
∑

m<j<k≤M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

+
1

|zm|

(
∑

m<k

|zk|
) ⎛

⎝
∑

1≤i<j≤m

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎞
⎠

⎤
⎦

(
M∑

i=1

|zi|
)

≤

⎛
⎝

∑

1≤i<j≤M

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎞
⎠

⎛
⎝

∑

i≤m

|λi|

⎞
⎠

∑

j>m

|zj |.

Multiplying both sides by |zm|, we are reduced to

⎡
⎣(

∑

i≤m

|zi|)
∑

m<j<k<M

∣∣∣∣det

(
yj yk

zj zk

)∣∣∣∣

+

(
∑

m<k

|zk|
) ⎛

⎝
∑

1≤i<j≤m

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎞
⎠

⎤
⎦

(
M∑

i=1

|zi|
)

≤

⎛
⎝

∑

1≤i<j≤M

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎞
⎠

⎛
⎝

∑

i≤m

|zi|

⎞
⎠

∑

j>m

|zj |

Let A′ =
∑M

i=m+1[0, (yi, zi)] and B′ =
∑m

i=1[0, (yi, zi)], then the above becomes:

[
|Pe⊥

1
B′||A′| + |Pe⊥

1
A′||B′|

]
|Pe⊥

1
(A′ + B′)| ≤ |A′ + B′||Pe⊥

1
B′||Pe⊥

1
A′|.

This is Bonnesen’s inequality (6) in R2
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|A′|2
|Pe⊥

1
A|1

+
|B′|2

|Pe⊥
1

B′|1
≤ |A′ + B′|2

|Pe⊥
1

(A′ + B′)|1
.

Our next step (if m < M) is to consider the critical points of f , as a function of xm; 

they are given by the equations

det

(
xm xj

zm zj

)
= 0,

for zj �= 0, j ≥ m + 1, if such zj exists and repeat the process for all m < M . If zj = 0, 

for all j ≥ m + 1, let us confirm the inequality directly (as for the case m = 1). To 

calculate

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣

we may consider cases: if i, j, k ≤ m, then the rank of the above matrix is at most to 

2 and the determinant is zero; if i, j, k ≤ m, the matrix has a row of zeros and the 

determinant is again zero. In the case when i ≤ m < j < k, we get

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ = |zi|
∣∣∣∣det

(
xj xk

yj yk

)∣∣∣∣ .

When i < j ≤ m < k, we use that (xi, xj) is parallel to (zi, zj) to get that

∣∣∣∣∣det

(
xi xj xk

yi yj yk

zi zj zk

)∣∣∣∣∣ = |xk|
∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣ .

We make a similar analysis on the right hand side of (43) which becomes

(
m∑

i=1

|zi|
) ⎡

⎣
(

m∑

i=1

|zi|
)

∑

m<j<k

∣∣∣∣det

(
xj xk

yj yk

)∣∣∣∣ +
∑

k>m

|xk|
∑

i<j≤m

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎤
⎦

≤

⎡
⎣

(
m∑

i=1

|zi|
) ⎛

⎝
∑

j>m

|yj |

⎞
⎠ +

∑

i<j≤m

∣∣∣∣det

(
yi yj

zi zj

)∣∣∣∣

⎤
⎦

⎡
⎣

(
m∑

i=1

|zi|
) ⎛

⎝
∑

j>m

|xj |

⎞
⎠

⎤
⎦

The above inequality follows directly by simplification and application of (44).

We repeat the above process until we have m = M , thus (xi, zi) = λi(xM , zM ) for 

each i = 1, . . . , M − 1. Thus, the left hand side of the inequality (43) is equal to zero. 

Indeed, each of the following matrices

(
xi xj xk

yi yj yk

zi zj zk

)
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has rank less or equal then 2. �

5.2. More equivalent formulations for zonoids

Let us repeat again that the class of zonoids is closed under the linear transformations 

and addition. Thus all equivalences proved in Theorems 3.6 and 3.9 hold for the class 

of zonoids. In this section, we show some additional equivalences (which thus hold in 

dimension 3).

It should be noted that when we write |PEA| for a subspace E below, this refers to 

the use of Lebesgue measure on the subspace E (typically of lower dimension than n

though we sometimes skip the subscript).

Theorem 5.3. Let n ∈ N, then the following are equivalent.

1. For every k ≥ n and for every family of vectors u1, . . . , uk in R
n the function f :

2[k] → R ∪ {−∞} defined, for S ⊂ [k], by

f(S) = log

∣∣∣∣∣
∑

i∈S

[0, ui]

∣∣∣∣∣ = log
∑

I⊂S,|I|=n

|det({ui}i∈I)|

is submodular: for all zonoids A, B, C one has

|A||A + B + C| ≤ |A + B||A + C|.

2. For every k ≥ n and for every family of vectors u1 . . . , uk in Rn, for every u, v ∈ R
n

∑

|I|=n

|det({ui}i∈I)|
∑

|I|=n−2

|det(u, v, (ui)i∈I)|

≤
∑

|I|=n−1

|det(u, (ui)i∈I)|
∑

|I|=n−1

|det(v, (ui)i∈I)|.

3. For every zonoid A in Rn and all subspaces E, F of Rn such that E⊥ ⊆ F we have

|A||PE∩F A| ≤ |PEA||PF A|.

4. For every m = 1, . . . , n, for every zonoid A and every orthonormal sequence 

u1, . . . , um, one has

|A|m−1
∣∣P[u1,...,um]⊥A

∣∣
n−m

≤
m∏

i=1

∣∣∣Pu⊥

i
A

∣∣∣
n−1

.
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5. For every m = 1, . . . , n and all zonoids A, B1, . . . , Bm in Rn, one has

|A|m−1V (A[n − m], B1, . . . , Bm) ≤ nm(n − m)!

n!

m∏

i=1

V (A[n − 1], Bi).

Proof. The proof is based on translations of the properties described in Theorems 3.6

and 3.9 to the properties of zonoids.

We first show that 1. in Theorem 5.3 is equivalent to 1. in Theorem 3.6 in the class 

of zonotopes. Indeed, f is submodular if and only if for every S, T ⊂ {1, . . . , k}
∣∣∣∣∣

∑

i∈S∪T

[0, ui]

∣∣∣∣∣

∣∣∣∣∣
∑

i∈S∩T

[0, ui]

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

i∈S

[0, ui]

∣∣∣∣∣

∣∣∣∣∣
∑

i∈T

[0, ui]

∣∣∣∣∣ ,

which is 1. in Theorem 5.3 for zonotopes A =
∑

i∈S∩T [0, ui], B1 =
∑

i∈S\T [0, ui] and 

B2 =
∑

i∈T \S [0, ui]. We use (21) to finish the proof.

We next note that 2. in Theorem 5.3 is equivalent to 3. of Theorem 3.9 in the case of 

zonotopes. Assume by homogeneity that u, v ∈ Sn−1. Then we apply (21) to get:

∣∣∣∣∣

m∑

i=1

[0, ui]

∣∣∣∣∣ =
∑

I⊂[m],|I|=n

|det(ui)i∈I | and

∣∣∣∣∣Pv⊥

(
m∑

i=1

[0, ui]

)∣∣∣∣∣ =
∑

I⊂[m],|I|=n−1

|det(v, (ui)i∈I)|

and the similar formula for the volume of P[u,v]⊥ (
∑m

i=1[0, ui]).

Next, we show that 3. is equivalent to 3. from Theorem 3.9, which can be restated as

|A||P[ei,ej ]⊥A|n−2 ≤ |Pe⊥

i
A|n−1|Pe⊥

j
A|n−1, (46)

for any zonoid A and i �= j, where (e1, . . . , en) is any orthonormal basis. Moreover 3. 

from Theorem 5.3 is equivalent to

|A||P[e1,...ek]⊥A|n−k ≤ |P[e1,...,ei]⊥A|n−i|P[ei+1,...,ek]⊥A|n−(k−i). (47)

for any i < k ≤ n and any zonoid A in R
n. Thus (46) is a particular case of (47). 

To prove the reverse, we first notice that if (46) holds for any zonoid A in Rn, then it 

also must hold for zonoids in any dimension m ≤ n. Indeed, for any zonoid A in Rm, 

the cylinder A × [0, 1]n−m is a zonoid. Next, we may prove property (47) by induction. 

Indeed, using (46), it is true for k = 2 and i = 1, any n ∈ N and any zonoid A in Rn. 

Assume the statement is true for some k ∈ N any i < k ≤ n. Let us apply the statement 

to the zonoid Pe⊥

k+1
A to get
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|Pe⊥

k+1
A|n−1|P[e1,...,ek,ek+1]⊥A|n−(k+1) (48)

≤ |P[e1,...,ei,ek+1]⊥A|n−(i+1)|P[ei+1,...,ek,ek+1]⊥A|n−(k+1−i).

In addition, we apply the inductive hypothesis to A and the subspace spanned by 

{e1, . . . , ei, ek+1} and the subspace spanned by ek+1 to get

|A||P[e1,...,ei,ek+1]⊥A|n−(i+1) ≤ |P[e1,...,ei]⊥A|n−i|Pe⊥

k+1
A|n−1. (49)

Finally, we multiply (48) and (49) to finish the proof.

To prove that 3. implies 4., we apply (47) to k = m and i = 1, we get that

|P[u1,...,um]⊥A|
|P[u2,...,um]⊥A| ≤

|Pu⊥
1

A|
|A| .

In the same way, for every 1 ≤ i ≤ m, one has

|P[ui,...,um]⊥A|
|P[ui+1,...,um]⊥A| ≤

|Pu⊥

i
A|

|A| .

Taking the product of these inequalities, we get the result.

To prove that 4. implies 5., we use (17). Thus (4) gives that for every orthonormal 

family of vectors u1, . . . , um, one has

|A|m−1V (A[n − m], [0, u1], . . . , [0, um]) ≤ nm(n − m)!

n!

m∏

i=1

V (A[n − 1], [0, ui]).

Since this inequality is invariant with respect to any linear image of A by an invertible 

map, it holds also for any independent u1, . . . , um. Then, we deduce that 5. holds for 

any sums of segments. The inequality for zonoids follows by taking limits.

Finally, 5. with m = 2 is equivalent to 5. in Theorem 3.9. �

Notice that 3. of Theorem 5.3 can be rephrased by saying that, for any zonoid A in 

R
n, the function f : 2[n] → R defined by f(S) = log(|P[ei;i∈S]A|) is submodular.

The inequalities analogous to 3. in Theorems 3.9 and 5.3 belong to the class of local 

Loomis-Whitney type inequalities and were studied in many works, including [31,24,53,

2,1], for general classes of convex bodies.

In the next lemma, we present a new proof of a result from [31], which uses the same 

approach as our proof of Theorem 3.9.

Lemma 5.4. Consider a convex body K in R
n and a pair of orthogonal vectors u, v ∈

Sn−1, then

|K||P[u,v]⊥K| ≤ 2(n − 1)

n
|Pu⊥K||Pv⊥K|.
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Proof. Let L = [0, u] + α[0, v], where α = |Pu⊥K|/|Pv⊥K|, noticing that the case 

|Pv⊥K| = 0 is trivial. Then

nV (K[n − 1], L) = |Pu⊥K|n−1 + α|Pv⊥K|n−1 and

n(n − 1)

2
V (K[n − 2], L[2]) = α|P[u,v]⊥K|.

Using Minkowski’s second inequality (14), we get

( |Pu⊥K| + α|Pv⊥K|
n

)2

≥ 2α

n(n − 1)
|K||P[u,v]⊥K|

we substitute α = |Pu⊥K|/|Pv⊥K| to finish the proof. �

The main tool in the proof of Lemma 5.4 is Minkowski’s second inequality, which relies 

on the fact that the polynomial Q(t) = |K + tL| raised to the power 1/n is a concave 

function for t ≥ 0. We conjecture that the concavity properties of this polynomial can 

be improved for Z being a zonoid and L being a finite sum of m ≤ n segments:

Conjecture 5.5. Let 1 ≤ m ≤ n, let Z be a zonoid in Rn and let u1, . . . , um ∈ R
n. Set 

P (t) = |Z + t 
∑m

i=1[0, ui]|, then t �→ P 1/m(t) is concave on R+.

Conjecture 5.5 clearly holds for m = 1 and m = n. In particular, the conjecture holds 

in R2. Conjecture 5.5 would follow if the statements of Theorem 5.3 or Theorem 3.9 were 

true. Moreover, the following proposition shows that the conjecture also holds in R3.

Proposition 5.6. Let Z be a zonoid in R3 and u, v be two vectors from R3. Let P (t) =

|Z + t([0, u] + [0, v])|, then t �→ P 1/2(t) is concave on R+.

Proof. We may assume that the vectors u, v are linearly independent. Then, applying a 

linear transformation T to Z and u, v we may assume that vectors u, v are orthogonal 

to each other and belong to S2. Using that Z + t([0, u] + [0, v]) is again a zonoid, it is 

enough for us to show that (P 1/2(0))′′ ≤ 0, or 2P (0)P ′′(0) ≤ P ′(0)2. Using that

P (0) = |Z|, P ′(0) = |Pu⊥Z| + |Pv⊥Z| and P ′′(0) = 2|P[u,v]⊥Z|

and Theorem 5.1, we get

2P (0)P ′′(0) = 4|Z||P[u,v]⊥Z| ≤ 4|Pu⊥Z||Pv⊥Z| ≤ (|Pu⊥K| + |Pv⊥K|)2 = P ′(0)2. �

It follows from part 6. of Theorem 3.9 and Theorem 5.1 that if P (t) = |Z + t([0, u] +

[0, v])|, then P (t), as a polynomial on R, has only real roots, for any zonoid Z and any 

u, v ∈ R
3. Thus another way to prove Proposition 5.6 is to notice the following simple 
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property. Consider a quadratic polynomial P with positive coefficients, then 
√

P (t) is 

concave for t ≥ 0 if and only if P has only real roots. Thus, to study concavity of √
PC(t) = |Z + tC|1/2, when C is two dimensional, one may study the roots of P . The 

subject of roots of Steiner-type polynomials has attracted a fair bit of attention in the 

literature, see, e.g., [33] and references therein. Since zonoids in dimension 2 are precisely 

the symmetric convex bodies, Proposition 5.6 makes the following conjecture plausible.

Question 5.7. Let Z be a zonoid in R
n. Then is it true that the polynomial PC(t) =

|Z + tC| has only real roots for every symmetric convex body C of dimension 2?

This question is directly connected to a question of Adam Marcus that we learned 

from Guillaume Aubrun [3] about the roots of Steiner polynomials of zonoids, and, in 

fact, it was one of the starting points of this investigation.

Question 5.8. Let Z be a zonoid in R
n. Then is it true that the Steiner polynomial 

PZ(t) = |Z + tBn
2 | has only real roots?

Observe that, in the plane, even more is true: for any convex bodies K, L, the poly-

nomial PK,L(t) = |K + tL| has only real roots. Indeed, 
√

PK,L(t) is concave for t ≥ 0 by 

Brunn-Minkowski inequality. This can be also seen from the computing the discriminant 

and noticing that V (K, L)2 − |K||L| ≥ 0.

Analogously, Question 5.7 is equivalent to the following question for mixed volumes: 

fix n ≥ 3, and let K a zonoid in Rn and L be a two dimensional zonoid, is it true that

|K|V (K[n − 2], L[2]) ≤ n

2(n − 1)
V (K[n − 1], L)2?

The above inequality is true for L being a parallelogram, as follows from Theorem 3.6. 

However, it is not true for general zonoids, as we show in the following proposition 

inspired by work of V. Katsnelson [34].

Proposition 5.9. Let n ≥ 3. Then there exists a zonoid Z in R
n such that the Steiner 

polynomial PZ(t) = |Z + tBn
2 | and the polynomial QZ(t) = |tZ + Bn

2 | has roots which are 

not real.

Proof. Noticing that QZ(t) = tnPZ(1/t), it is enough to show that PZ(t) has a non-real 

root. Consider Z = B2
2 × {0} ⊂ R

2 × R
n−2. Integrating on sections parallel to R2 × {0}

and changing variable, we get that, for t ≥ 0,

PZ(t) = |Z + tBn
2 | = |B2

2 |
∫

tBn−2
2

(
1 +

√
t2 − |x|2

)2

dx

= tn−2|B2
2 |

∫

Bn−2
2

(
1 + t

√
1 − |x|2

)2

dx.
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Since this last expression is the restriction of a polynomial to t ≥ 0, the equality between 

PZ(t) and the last term is valid on whole R. Let t ∈ R be fixed. For almost all x ∈ Bn−2
2 , 

(1 + t
√

1 − |x|2)2 > 0, thus PZ(t) > 0, for t �= 0, so the only real root of PZ is 0 and it 

is of order n − 2. Hence PZ has exactly 2 non-real roots. �

Proposition 5.9 shows that the answers to both Question 5.7 and Question 5.8 are 

negative.

Note that the example of the zonoid Z created in Proposition 5.9 is flat (i.e., has an 

affine hull of lower dimension than the ambient space), but one can replace it by a non-flat 

zonoid by using a small perturbation and the continuity of the roots of polynomials.

6. Inequalities for Lp-zonoids

Firey [22] extended the concept of Minkowski sum and introduced, for each real p ≥ 1, 

a p-linear combination of convex bodies, the so-called �p-sum K⊕pL of the convex bodies 

K and L containing the origin by:

hK⊕pL(x) = (hK(x)p + hL(x)p)
1
p , ∀x ∈ R

n.

For any linear transform T on Rn, one has T (K ⊕p L) = (TK) ⊕p (TL). In a series of 

papers, Lutwak [36,37] showed that the Firey sums lead to a Brunn-Minkowski theory 

for each p ≥ 1, including Lp-Brunn-Minkowski inequality, definition and inequalities for 

Lp-mixed volumes, Lp-Minkowski problem, as well as many other applications. In this 

section, we show the connection of the discussion from previous sections to this theory.

An Lp-zonotope is the �p-sum of centered segments and an Lp-zonoid is the Hausdorff 

limit of Lp-zonotopes. For p = 2, an L2-zonoid is always an ellipsoid, possibly living in 

a lower-dimensional subspace, thus it can be written as the sum of m ≤ n orthogonal 

segments and is therefore an L2-zonotope. The following extension of Conjecture 5 is 

thus natural.

Question 6.1. Let p ≥ 1 and consider Lp-zonoids A, B in Rn is it true that

( |A ⊕p B|
|Pu⊥(A ⊕p B)|n−1

)p

≥
( |A|

|Pu⊥A|n−1

)p

+

( |B|
|Pu⊥B|n−1

)p

? (50)

6.1. The case p = 2

The next theorem gives an affirmative answer to this question in the case p = 2.

Theorem 6.2. Let A, B be a pair of full dimensional L2-zonoids in Rn and let u in Sn−1. 

Then

( |A ⊕2 B|
|Pu⊥(A ⊕2 B)|n−1

)2

≥
( |A|

|Pu⊥A|n−1

)2

+

( |B|
|Pu⊥B|n−1

)2

,
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with equality if and only if A and B have parallel tangent hyperplanes at ρA(u)u and 

ρB(u)u.

We first give two proofs of the inequality and then prove the equality case.

Proof 1. For m ≥ n and u1, . . . , um ∈ R
n, let U be the n × m matrix whose columns are 

u1, . . . , um. One has [−u1, u1] ⊕2 · · · ⊕2 [−um, um] = UBm
2 =

√
UU∗Bn

2 . Indeed,

h2
[−u1,u1]⊕2···⊕2[−um,um](x) =

m∑

i=1

〈ui, x〉2 =
m∑

i=1

〈Uei, x〉2 =
m∑

i=1

〈ei, U∗x〉2 = |U∗x|2

= h2
UBm

2
(x) = 〈U∗x, U∗x〉 = 〈

√
UU∗x,

√
UU∗x〉

= |
√

UU∗x|2 = h2√
UU∗Bn

2
(x).

Using this and the Cauchy-Binet formula, one has

|[−u1, u1] ⊕2 · · · ⊕2 [−um, um]|2 = |UBm
2 |2n = det(UU∗)|Bn

2 |2 = |Bn
2 |2

∑

|I|=n

(det(ui)i∈I)2.

(51)

Next, using

Pu⊥([−u1, u1] ⊕2 · · · ⊕2 [−um, um]) = [−Pu⊥u1, Pu⊥u1] ⊕2 · · · ⊕2 [−Pu⊥um, Pu⊥um],

we get that

|Pu⊥([−u1, u1] ⊕2 · · · ⊕2 [−um, um])|2 = |Bn−1
2 |2

∑

|I|=n−1

(det(Pu⊥ui)i∈I)2.

Thus our goal is to prove that, for m ≥ k, with m − k ≥ n, k ≥ n and A = [−u1, u1] ⊕2

· · · ⊕2 [−uk, uk] and B = [−uk+1, uk+1] ⊕2 · · · ⊕2 [−um, um] we have

∑
M⊂{1,...,k},|M |=n

|det({um}m∈M |2
∑

M⊂{1,...,k},|M |=n−1

|det({Pe⊥
n

ui}i∈M )|2 +

∑
L⊂{k+1,...,m},|L|=n

|det({ul}l∈L|2
∑

L⊂{k+1,...,m},|L|=n−1

|det({Pe⊥
n

ul}l∈L|2

≤

∑
M⊂{1,...,m},|M |=n

|det({ui}i∈M |2
∑

M⊂{1,...,m},|M |=n−1

|det({Pe⊥
n

(ui)}i∈M |2 .

(52)

For I ⊂ {1, . . . , m} let UI be the n × n submatrix built from U by taking the columns 

with indices in I. Denote by z1, . . . , zn ∈ R
m the rows of the matrix U . Since n ≤ m, 

the set 
∑n

i=1[0, zi] is a parallelotope leaving in a n-dimensional subspace of Rm. Thus,
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∣∣∣∣∣

n∑

i=1

[0, zi]

∣∣∣∣∣

2

n

=
∑

|I|=n

(det UI)2.

Therefore, we get that, for m ≥ n, an n × m matrix U whose rows are z1, . . . , zn ∈ R
m

and columns u1, . . . , um ∈ R
n:

|[−u1, u1] ⊕2 · · · ⊕2 [−um, um]|n = |Bn
2 |

∣∣∣∣∣

n∑

i=1

[0, zi]

∣∣∣∣∣
n

.

Let us write U as a block matrix with two blocks U = (U1|0) + (0|U2), with U1 being an 

n × k matrix and U2 an n × (m − k) matrix and we denote V = (U1|0) and W = (0|U2). 

Moreover, denote by U ′, V ′, W ′ the matrices obtained from U, V, W by erasing the nth

row. Then we only need to prove that

∑
|I|=n(det UI)2

∑
|I|=n−1(det U ′

I)2
≥

∑
|I|=n(det VI)2

∑
|I|=n−1(det V ′

I )2
+

∑
|I|=n(det WI)2

∑
|I|=n−1(det W ′

I)2
.

Recall that z1, . . . , zn ∈ R
m are the rows of U . Thus the rows of V are PEz1, . . . , PEzn, 

where PE denotes the projection on the first k coordinates and the rows of W are 

PE⊥z1, . . . , PE⊥zn, where PE⊥ denotes the projection on the n − k last coordinates. 

Thus we only need to show the following relationship for low-dimensional parallelotopes

⎛
⎝ |∑n

i=1[0, zi]|∣∣∣
∑n−1

i=1 [0, zi]
∣∣∣

⎞
⎠

2

≥

⎛
⎝ |∑n

i=1[0, PEzi]|∣∣∣
∑n−1

i=1 [0, PEzi]
∣∣∣

⎞
⎠

2

+

⎛
⎝ |∑n

i=1[0, PE⊥zi]|∣∣∣
∑n−1

i=1 [0, PE⊥zi]
∣∣∣

⎞
⎠

2

.

Using that the volume of a parallelotope is the product of the volume of one of its face 

and its height, we get that, if Hn = span(z1, . . . , zn−1), then

|∑n
i=1[0, zi]|∣∣∣

∑n−1
i=1 [0, zi]

∣∣∣
= d(zn, Hn).

So we are reduced to prove that

d(zn, Hn)2 ≥ d(PEzn, PEHn)2 + d(PE⊥zn, PE⊥Hn)2.

Let hn ∈ Hn such that d(zn, Hn) = |zn − hn|. By Pythagoras’ theorem,

d(zn, Hn)2 = |zn − hn|2 = ‖PEzn − PEhn‖2 + ‖PE⊥zn − PE⊥hn‖2.

Since PEhn ∈ PEHn and PE⊥zn ∈ PE⊥Hn, we conclude. �
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Second proof of the inequality. We give another proof of Theorem 6.2, using the com-

parison of the �2 sum and the radial 2-sum. For any symmetric convex bodies K and L

in Rn, one has

K ⊕2 L ⊃ K+̃2L := ∪u∈Sn−1

[
0,

√
ρ2

K(u) + ρ2
L(u)u

]
. (53)

Indeed, using support functions, the fact that K ⊃ ρK(u)[−u, u] implies that hK(x) ≥
ρK(u)|〈x, u〉|, for any x ∈ R

n and thus

hK⊕2L(x) =
√

hK(x)2 + hL(x)2 ≥
√

ρK(u)2 + ρL(u)2|〈x, u〉|
=

√
ρK(u)2 + ρL(u)2h[−u,u](x).

The formula (53) can be also restated in the language of radial functions:

ρK⊕2L(u) ≥
√

ρ2
K(u) + ρ2

L(u), for all u ∈ Sn−1. (54)

Next, we notice a formula for the volume of the orthogonal hyperplane projection of an 

ellipsoid (see, for example, [14,48]), to which we give a very simple proof. Let E = TBn
2 , 

for some positive definite T then

|Pu⊥E|
|E| ‖u‖E

=
nV (TBn

2 [n − 1], [0, u])

|TBn
2 | |T −1u| =

nV (Bn
2 [n − 1], [0, T −1u])

|Bn
2 | |T −1u| =

|Bn−1
2 |

|Bn
2 | . (55)

Using the above we get

|E|
|PuE| =

|Bn
2 |

|Bn−1
2 |ρE(u). (56)

Thus, using this formula and (53), we deduce that for any ellipsoids A, B

|A ⊕2 B|2
|Pu(A ⊕2 B)|2 =

|Bn
2 |2

|Bn−1
2 |2 ρA⊕2B(u)2

≥ |Bn
2 |2

|Bn−1
2 |2 (ρA(u)2 + ρB(u)2) =

|A|2
|PuA|2 +

|B|2
|PuB|2 . � (57)

Proof of the equality case. This second proof also helps us to treat the equality case. 

From (56) there is equality if and only if

ρA⊕2B(u)2 = ρA(u)2 + ρB(u)2.

The above is equivalent to the (ρA(u)2 + ρB(u)2)1/2u ∈ ∂(A ⊕2 B). From here we get 

that, if n is a normal vector to ∂(A ⊕2 B) at (ρA(u)2 + ρB(u)2)1/2u then
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hA⊕2B(n) = (ρA(u)2 + ρB(u)2)1/2〈u, n〉.

The above is equivalent to hA(n) = ρA(u)〈u, n〉 and hB(n) = ρB(u)〈u, n〉, or simply to 

say that the normal vector to ∂A at ρA(u)u is the normal vector to ∂B at ρB(u)u. �

Remark 6.3. In the proof of the equality case in the Theorem 6.2, suppose we represent 

A = T1Bn
2 and B = T2Bn

2 , where T1, T2 are symmetric positive-definite matrices. Then 

‖x‖2
A = 〈T −2

1 x, x〉, and the normal vector to ∂A at ρA(u)u is parallel to T −2
1 u; a similar 

statement is true for B. Thus our condition on parallel tangent hyperplanes is equivalent 

to the fact that there is a λ > 0 such that (T −2
1 − λT −2

2 )u = 0 or simply that u is an 

eigenvector for matrix T 2
1 T −2

2 .

Let us now present some consequences or Theorem 6.2.

Corollary 6.4. Let n be a positive integer. Let A and B be full dimensional L2-zonoids 

in Rn and u in Sn−1. Then, the function h defined, for t ≥ 0, by

h2(t) =
|A ⊕2 (

√
tB)|2

|Pu⊥(A ⊕2 (
√

tB))|2n−1

is concave on R+.

Proof. For any λ ∈ [0, 1], one has A = (
√

1 − λA) ⊕2 (
√

λA). Thus one deduces that

A ⊕2

(√
(1 − λ)s + λtB

)
=

(√
1 − λ(A ⊕2

√
sB)

)
⊕2

(√
λ(A ⊕2

√
tB)

)
.

Using Theorem 6.2 and the homogeneity of volume, we deduce that h2 is concave. �

Next we show that Theorem 6.2 has the following additional applications:

Theorem 6.5. Let n be an integer, then for any 1 ≤ k ≤ n and for every pair of full 

dimensional L2-zonoids A and B in Rn and any (n − k)-dimensional subspace E of Rn

one has

( |A ⊕2 B|
|PE(A ⊕2 B)|n−k

) 2
k

≥
( |A|

|PEA|n−k

) 2
k

+

( |B|
|PEB|n−k

) 2
k

. (58)

Proof. The proof goes by induction on k. Theorem 6.2 establishes the case k = 1 and 

any n ≥ 1. We assume that the inequality holds for some 1 ≤ k ≤ n − 1 for all L2-

zonoids A, B in Rn and all n − k dimensional subspace of Rn. Let E be a n − k − 1

dimensional subspace of Rn. Then one may write E = F ∩u⊥, for some n −k dimensional 

subspace F and u ∈ F ⊥. Then, applying Theorem 6.2 to PF A and PF B and using that 

Pu⊥ ◦ PF = PE we get
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( |PF (A ⊕2 B)|n−k

|PE(A ⊕2 B)|n−k−1

)2

≥
( |PF A|n−k

|PEA|n−k−1

)2

+

( |PF B|n−k

|PEB|n−k−1

)2

. (59)

Applying (58) to E = F , raising the equation to power k/2 and taking the product with 

(59), we get

|A ⊕2 B|
|PE(A ⊕2 B)|n−k−1

≥ (60)

(( |PF A|n−k

|PEA|n−k−1

)2

+

( |PF B|n−k

|PEB|n−k−1

)2
) 1

2
(( |A|

|PF A|n−k

) 2
k

+

( |B|
|PF B|n−k

) 2
k

) k
2

.

From Hölder’s inequality, we conclude that

|A ⊕2 B|
|PE(A ⊕2 B)|n−k−1

≥
(( |A|

|PEA|n−k−1

) 2
k+1

+

( |B|
|PEB|n−k−1

) 2
k+1

) k+1
2

,

which is (58) for k + 1. �

Remark 6.6. Note that the projection of a Lp zonoid is again a Lp zonoid. Thus, the 

proof of Theorem 6.5 can be used directly to prove the following claim: If the answer to 

Question 6.1 is positive for some p ≥ 1, then for any 1 ≤ k ≤ n and for every pair of 

Lp-zonoids A and B in Rn and any (n − k)-dimensional subspace E of Rn one has

( |A ⊕p B|
|PE(A ⊕p B)|n−k

) p
k

≥
( |A|

|PEA|n−k

) p
k

+

( |B|
|PEB|n−k

) p
k

.

Corollary 6.7. Let k, n be a integer with 1 ≤ k ≤ n. Then, for all L2-zonoids A and B

in Rn, and all zonoids Z1, . . . , Zk in Rn,

( |A ⊕2 B|
V ((A ⊕2 B)[n − k], Z1, . . . , Zk)

) 2
k

≥ (61)

( |A|
V (A[n − k], Z1, . . . , Zk)

) 2
k

+

( |B|
V (B[n − 1], Z1, . . . , Zk)

) 2
k

,

and thus the function f defined, for t ≥ 0, by

f(t) =
|A ⊕2

√
tB| 2

k

|V ((A ⊕2

√
tB)[n − k], Z1, . . . , Zk)|

2
k

n−k

is concave on R+. Moreover

|A ⊕2 B|2
|∂(A ⊕2 B)|2 ≥ |A|2

|∂A|2 +
|B|2

|∂B|2 , (62)
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and thus the function g defined, for t ≥ 0, by

g(t) =
|A ⊕2

√
tB|2

|∂(A ⊕2

√
tB)|2n−1

is concave on R+.

Proof. First notice that Theorem 6.5 may be reformulated in the following way. Let 

u1, . . . , uk be an orthonormal system in Rn. Then using (17) we have

( |A ⊕2 B|
V ((A ⊕2 B)[n − k], [0, u1], . . . , [0, uk])

) 2
k

≥ (63)

( |A|
V (A[n − k], [0, u1], . . . , [0, uk])

) 2
k

+

( |B|
V (B[n − k], [0, u1], . . . , [0, uk])

) 2
k

.

Applying a linear transform, (63) holds for any linearly independent system u1, . . . , uk. 

Then, for x, y ≥ 0, define

ϕ(x, y) = (x− 2
k + y− 2

k )− k
2 = ‖(x, y)‖− 2

k
. (64)

For a compact convex set A and u1, . . . , uk ∈ R
n, let

ψA(u1, . . . , uk) =
V (A[n − k], [0, u1], . . . , [0, uk])

|A| . (65)

From (63) we know that, if u1, . . . , uk are linearly independent, then

ψA⊕2B(u1, . . . , uk) ≤ ϕ(ψA(u1, . . . , uk), ψB(u1, . . . , uk)).

For i = 1, . . . , k, let Zi = [0, ui,1] ⊕2 · · · ⊕2 [0, ui,mi
] be a 2-zonotope. Assume that for 

any set of distinct k vectors from the set {ui,j} is an independent sequence (this can 

be achieved by a small perturbation of vectors ui,j). Using that ϕ, being a − 2
k -norm, 

satisfies the reverse Minkowski inequality, we deduce that

k∑

i=1

mi∑

ji=1

ψA⊕2B(u1,j1
, . . . , uk,jk

)

≤
k∑

i=1

mi∑

ji=1

ϕ(ψA(u1,j1
, . . . , uk,jk

), ψB(u1,j1
, . . . , uk,jk

))

≤ ϕ

⎛
⎝

k∑

i=1

mi∑

ji=1

ψA(u1,j1
, . . . , uk,jk

),
k∑

i=1

mi∑

ji=1

ψB(u1,j1
, . . . , uk,jk

)

⎞
⎠ .
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Thus we get

V ((A ⊕2 B)[n − k], Z1, . . . , Zk)

|A ⊕2 B|

≤ ϕ

(
V (A[n − k], Z1, . . . , Zk)

|A| ,
V (B[n − k], Z1, . . . , Zk)

|B|

)
,

which is (61), for Z1, . . . , Zk being a zonotopes. The result for zonoids follows by ap-

proximation. We apply (61) with k = 1 and Z1 = Bn
2 to prove (62). The concavity of f

and g is proved with the method used for Corollary 6.4. �

6.2. The case p �= 2

Proposition 6.8. The answer to Question 6.1 is negative when p > 2 and n ≥ 2: a 

counterexample is given by A = Bn
2 and B = ε

1
p [−v, v], for some ε > 0.

Proof. Let p > 2. We disprove the weaker statement

|A ⊕p B|
|Pu⊥(A ⊕p B)|n−1

≥ |A|
|Pu⊥A|n−1

. (66)

We restate (66) with B = ε
1
p [−v, v], v ∈ Sn−1 and ε → 0. For this we use the extension 

of the classical notion of the mixed volumes introduced by Lutwak [36,37], who proved 

that

lim
ε→0

|A ⊕p (ε
1
p B)| − |A|
ε

=
1

p

∫

Sn−1

hp
B(u)h1−p

A dSA(u),

for p > 1 and all convex compact sets A, B, containing the origin and defined

Vp(A[n − 1], B) =
1

n

∫

Sn−1

hp
B(u)h1−p

A dSA(u).

Taking B = ε
1
p [−v, v] for some v ∈ Sn−1, we get

∣∣∣A ⊕p B
∣∣∣ = |A| +

ε

p

∫

Sn−1

|〈v, x〉|ph1−p
A dSA(x) + o(ε)

Assuming v in u⊥, we get

∣∣∣Pu⊥A ⊕p Pu⊥B
∣∣∣ = |Pu⊥A| +

ε

p

∫

Sn−1∩u⊥

|〈v, x〉|ph1−p
A (x)dSP

u⊥ A(x) + o(ε).
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Assume, by way of contradiction, that (66) is true for all Lp-zonoids A ⊂ R
n. Then,

|A|
∫

Sn−1∩u⊥

|〈v, x〉|ph1−p
A (x)dSP

u⊥ A(x) ≤ |Pu⊥A|
∫

Sn−1

|〈v, x〉|ph1−p
A (x)dSA(x). (67)

Now we take A = Bn
2 , u = e2 and v = e1. Notice that Bn

2 is an Lp zonoid for all p ≥ 1. 

Next (67) becomes

|Bn
2 |

∫

Sn−2

|x1|pdSBn−1
2

(x) ≤ |Bn−1
2 |

∫

Sn−1

|x1|pdSBn
2

(x). (68)

Using polar coordinates and Fubini’s theorem, we get

∫

Sn−1

|x1|pdSBn
2

(x) = (n + p)

∫

Bn−1
2

|z1|pdz =
2π

n−1
2 Γ

(
p+1

2

)

Γ
(

p+n
2

) .

Thus (68) becomes

Γ

(
n + 1

2

)
Γ

(
p + n

2

)
≤ Γ

(
n + 2

2

)
Γ

(
p + n − 1

2

)
.

Using the strict log-convexity of Γ function the above is only true if and only if p ≤ 2. �

Proposition 6.9. Fix p > 1. Then (50) does not hold in the class of all convex symmetric 

bodies in Rn.

Proof. Let us first construct an example in R2. We note that

∣∣∣Pu⊥A ⊕p Pu⊥ε
1
p [−v, v]

∣∣∣ = 2hA(v) +
2ε

p
hA(v)1−p + o(ε).

Thus (66), for n = 2, would imply

|A| ≤ hA(v)p

∫

S1

|〈v, x〉|ph1−p
A (x)dSA(x). (69)

Consider a ∈ (0, 1), let A = {(x1, x2) ∈ R
2, |xi| ≤ 1, |x1±x2| ≤ 2 −a}. Then |A| = 4 −2a2. 

We check (69) with v = e1. We first note that hA(e1) = 1. Next we compute

f(x) = |〈e1, x〉|ph1−p
A (x)SA(x)

for different normal vectors x of A. We first note that f(±e2) = 0, f(±e1) = 2(1 − a)

and f((±1/
√

2, ±1/
√

2)) = a(2 − a)1−p. Thus to contradict (69) we must select a such 

that
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4 − 2a2 > 4(1 − a) + 4a(2 − a)1−p,

or a < 2 − 21/p, which is possible for every p > 1.

To build a counterexample in Rn for n ≥ 3, we use the fact that if K is a convex body 

in span{e1, . . . , en1
} and L is a convex body in span{en1+1, . . . , en1+n2

}, then

|K ⊕p L| =
Γ(n1

q + 1)Γ(n2

q + 1)

Γ(n1+n1

q + 1)
|K||L| = cn1,n2,q|K||L|, (70)

where 1/p + 1/q = 1. Let An = Bn−2
q ⊕p A2, where A2 ⊂ span{e1, e2} is the counterex-

ample created above, and Bn−2
q ⊂ span{e3, . . . , en}. Then (70) gives

|An ⊕p [−v, v]|
|Pe⊥

1
(An ⊕p [−v, v])|n−1

=
|Bn−2

q ⊕p (A2 ⊕p [−v, v])|
|Bn−2

q ⊕p Pe⊥
1

(A2 ⊕p [−v, v])|n−1

<
|An|

|Pe⊥
1

An|n−1
. �

Let us note that the direct interpretation of the volume of Lp-zonotopes in terms of 

determinants is only possible in the case when p = 1 or p = 2 [32]. Thus it is natural 

to ask if the determinant inequality that we proved in the case p = 2 is still true in the 

case p �= 2.

Question 6.10. Let p ∈ [1, 2). Consider N ≥ N ′ ≥ n and a sequence of vectors {ui}N
i=1

in Rn. Is it true that

∑
M⊂{1,...,N ′},|M |=n

|det({um}m∈M |p
∑

M⊂{1,...,N ′},|M |=n−1

|det({Pe⊥
1

um}m∈M )|p +

∑
L⊂{N ′+1,...,N},|L|=n

|det({ul}l∈L|p
∑

L⊂{N ′+1,...,N},|L|=n−1

|det({Pe⊥
1

ul}l∈L|p

≤

∑
M⊂{1,...,N},|M |=n

|det({um}m∈M |p
∑

M⊂{1,...,N},|M |=n−1

|det({Pe⊥
1

(um)}m∈M |p ?

(71)

The reason that we only ask Question 6.10 for p ∈ [1, 2) is because we have already 

proved it for p = 2, and the question has a negative answer when p > 2. To see why, let 

N = n = 2 and N ′ = 1, and consider the matrix

(
1 −1 0
1 1 1

)
.

Then (71) becomes

2p

1 + 1
≤ 2p + 1 + 1

1 + 1 + 1
,

which is false for p > 2.
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