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1. Introduction

1.1. Background

The study of convex bodies (compact, convex sets in Rn with non-empty interior) goes back over one 

hundred years, to the works of Minkowski [44], Fenchel [14], and Aleksandrov [1], among others. One of the 

core theories in this study is the Brunn-Minkowski theory, which focuses on the interaction of the volume 

of convex bodies and their Minkowski sums. The Brunn-Minkowski theory is thoroughly detailed in the 

textbook of Schneider [50], and we will make frequent reference to it. For compact sets K, L ⊂ R
n, their 

Minkowski sum, or just sum, is precisely K + L = {a + b : a ∈ K, b ∈ L}. Denoting by Voln the Lebesgue 

measure on Rn, the Brunn-Minkowski inequality states that for t ∈ (0, 1) and compact, convex sets K and L

Voln((1 − t)K + tL)1/n ≥ (1 − t)Voln(K)1/n + tVoln(L)1/n,

with equality if, and only if, K and L are homothetic, i.e. K = aL + b for some a ∈ R, b ∈ R
n. One says 

that Voln is 1/n-concave with respect to Minkowski summation; more generally, a function is α-concave for 

α > 0 if fα is concave. Since a weighted arithmetic mean always dominates a weighted geometric mean, 

one obtains that the volume is also log-concave:

Voln((1 − t)K + tL) ≥ Voln(K)1−tVoln(L)t,

and, in fact, this is equivalent to the Brunn-Minkowski inequality.

It has been of significant interest to understand convex geometry as being embedded in some more 

general analytical framework. One such program, dubbed the “geometrization of probability” program by 

V. Milman, has seen two complementary approaches adopted – involving log-concave functions (see, e.g., 

[25,9]) and log-concave measures (see, e.g., [5,41]). In another direction, the fact that the Brunn-Minkowski 

inequality is intimately related to the interaction between the metric and the canonical measure on a 

Euclidean space has led to vast generalization in the theory of metric measure spaces and their synthetic 

geometry (see, e.g., [57]).

The goal of this work is to explore yet another analytic generalization of Brunn-Minkowski theory – 

namely, how other measures on Rn (specifically, measures with certain concavity properties akin to those 

possessed by the Lebesgue measure) interact with Minkowski sums of convex bodies, in what we call the 

weighted Brunn-Minkowski Theory. As an example, we will consider log-concave measures, where μ is log-

concave if, for any t ∈ [0, 1] and for any compact K and L,

μ((1 − t)K + tL) ≥ μ(K)1−tμ(L)t.

The inequality of Prékopa-Leindler [47,31,32] in conjunction with a result of Borell [7] classifies the log-

concave measures by showing that a measure is log-concave if, and only if, its density is a log-concave 

function on its support. The standard Gaussian measure on Rn, which is given by
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dγn(x) =
1

(2π)n/2
e−|x|2/2dx,

where | · | denotes the standard Euclidean norm, is such a measure.

Now that we have given an example of a measure with a concavity property, we discuss some concepts 

from the Brunn-Minkowski theory and their weighted analogues; several of these will be new. Many of the 

analogues hold for measures with a concavity property in a very general sense, as explored later in this 

paper. However, for the sake of readability, we focus on the Gaussian measure in the introduction.

1.2. Representation formulae for mixed measures

Let us review some well known facts from convex geometry, which may be found in the textbook of 

Schneider [50]. Steiner’s formula states that the volume of the Minkowski sum of two compact, convex sets 

can be expanded as a polynomial of degree n: for every t ≥ 0, convex body K and compact, convex set L, 

both in Rn, one has

Voln(K + tL) =

n
∑

j=0

(

n

j

)

tjV (K[n − j], L[j]),

where V (K[n − j], L[j]) is the mixed volume of (n − j) copies of K and j copies of L. When j = 1, one often 

writes V (K[n − 1], L). By taking the derivative, one obtains

V (K[n − 1], L) :=
1

n
lim
ε→0

Voln(K + εL) − Voln(K)

ε
=

1

n

∫

Sn−1

hL(u)dSK(u), (1)

where hL(x) = supy∈L〈y, x〉 is the support function of L, and SK is the surface area measure of K. We will 

discuss the formal definition of the surface area measure below (see Section 2.2); essentially, if the Gauss 

map nK : ∂K → S
n−1 associates a vector in the boundary ∂K of K with its outer unit normal on the unit 

sphere (Sn−1), then SK is a Borel measure on the sphere induced by the Gauss map. Let us mention here 

that C2
+ convex bodies are those with positive curvature and C2 support function.

The first step in a weighted Brunn-Minkowski theory is to generalize mixed volumes. Since (1) has nothing 

to do with the concavity of the volume, when given an arbitrary Borel measure μ, and Borel sets K and L, 

the μ-mixed measure of K and L can be defined as

μ(K; L) = lim inf
ε→0

μ(K + εL) − μ(K)

ε
, (2)

when the lim inf is finite. Heuristically, if the limit exists, this is precisely the first coefficient in the Taylor 

series expansion of μ(K+tL) (in the variable t). This terminology was introduced by Livshyts in [37], and has 

been used in other works recently, see e.g. [23,26,29,37]. It has appeared previously in many works without 

being explicitly given the name mixed measures, see e.g. [10,27,43,46,54]. For Borel sets K and L containing 

the origin with finite μ measure, the limit exists when μ has continuous density. If λn denotes the Lebesgue 

measure, then (2) is consistent with mixed volumes up to a factor n i.e. λn(K; L) = nV (K[n − 1], L).

We emphasize that we deliberately avoid using the notation μ(K[n − 1], L), which some authors have 

used for μ(K; L) in the past to allude to the notation for mixed volumes, because the dimension n plays a 

distinctive role only in the case of the volume (more precisely, the volume of a Minkowski sum of convex 

sets is a homogeneous polynomial of degree n, but this polynomiality generally fails for other measures, 

where the best we can do is look for coefficients of a putative power series expansion).

One would like to prove an integral representation of mixed measures. The first step, therefore, is to 

introduce weighted surface area measures. As usual, Hn−1 will denote the (n − 1)-dimensional Hausdorff 
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measure of a given surface. However, for brevity, we may abuse notation to write dx for dHn−1(x); this is 

to be understood by context. We will discuss in Section 2.2 the formal definition of weighted surface area; 

let us now just explain why it exists. Let K be a convex set; for a Borel measure μ on Rn with density ϕ, 

denote the μ-measure of ∂K, or the weighted surface area, as

μ+(∂K) := lim inf
ε→0

μ (K + εBn
2 ) − μ(K)

ε
=

∫

∂K

ϕ(y)dy, (3)

where the second equality holds if there exists some canonical way to select how ϕ behaves on ∂K. A large 

class of functions consistent with (3) is when ϕ is continuous. That is, if μ has continuous density ϕ on Rn, 

then it will induce a Borel measure on ∂K which has density ϕ with respect to the (n − 1)-dimensional 

Hausdorff measure on ∂K. Therefore, one can define the weighted surface area measure, denoted Sμ
K, for any 

Borel measure μ on Rn with continuous density ϕ via the Riesz-Markov-Kakutani representation theorem, 

since, for a continuous f ∈ C(Sn−1),

f �→
∫

∂K

f(nK(y))ϕ(y)dy

is a positive linear functional. That is, by definition Sμ
K satisfies the following change of variables formula:

∫

∂K

f(nK(y))ϕ(y)dy =

∫

Sn−1

f(u)dSμ
K(u).

Notationally, one has Sμ
K(Sn−1) = μ+(∂K). An early work that used μ+ for the weighted surface area is 

K. Ball’s work [3] on Gaussian measure γn. For a compact set K,

γ+
n (∂K) := lim inf

ε→0

γn(K + εBn
2 ) − γn(K)

ε
= (2π)−n/2

∫

∂K

e−|x|2/2dx.

K. Ball showed [3] that for a compact, convex set K, one has γ+
n (∂K) ≤ 4n1/4, and F. Nazarov proved 

[46] that this bound is asymptotically sharp. Livshyts obtained bounds similar to that of K. Ball for other 

classes of rotational invariant log-concave measures [33–35,38].

With this rigorous definition of weighted surface area available, one can prove (see [28]), using Lemma 2.4

below, the following integral representation of mixed measures by setting f = hL for some compact, convex 

set L ⊂ R
n (see [37] for an alternative proof).

Proposition 1.1 (Representation of mixed measures). Let L be a compact, convex set and K a convex body 

with the origin in its interior in Rn. Suppose μ is a Borel measure on Rn with continuous density. Then,

μ(K; L) =

∫

Sn−1

hL(u)dSμ
K(u). (4)

In general μ(K) 
= μ(K; K), unlike in the volume case (though see the beginning of Section 2.2 for a different 

relation between these quantities).

It turns out there exists also a Steiner formula for Voln(K + t1L1 + t2L2); the coefficient of t1t2 in the 

corresponding polynomial expansion is the mixed volume of (n − 2)-copies of K, one copy of L1, and one 

copy L2 and is given by
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V (K[n − 2], L1, L2) =
1

n

∫

Sn−1

hL2
(u)dSK[n−2],L1

(u) =
1

n

∫

Sn−1

hL1
(u)dSK[n−2],L2

(u), (5)

where dSK[n−2],L1
(u) and dSK[n−2],L2

(u) are the mixed area measures, and the second equality is to em-

phasize that the mixed volume is invariant under permutation of the compact, convex sets L1 and L2. The 

surface area measure of the Minkowski sum of compact, convex sets is related to the mixed area measures 

via a polynomial structure in the same way that volume and mixed volume are related (see [50, Section 

5.1]).

Our first (new) contribution to what we call the weighted Brunn-Minkowski theory is the weighted 

analogue of (5).

Definition 1.2. Let μ be a Borel measure on Rn. Then, for Borel sets A, B, C ⊂ R
n with finite μ-measure, 

the mixed measure of (n − 2) copies of A, one copy of B and one copy of C is given by

μ(A; B, C) =
∂2

∂s∂t
μ(A + sB + tC)(0, 0)

whenever the mixed derivative exists.

In general μ(K) 
= μ(K; K, K) 
= μ(K; K). However, from the Schwarz theorem of standard multi-variable 

calculus, one has that μ(A; B, C) = μ(A; C, B). For the Lebesgue measure, one has

λn(K; L, M) = n(n − 1)V (K[n − 2], L, M).

We will show below in Remark 2.9 that, if A is a convex body, B and C are compact, convex sets and 

μ has a C2 smooth density, then the mixed derivative exists. Furthermore, if A is of the class C2
+, then we 

obtain an integral formula for μ(A; B, C). We state the result for the standard Gaussian measure here.

Theorem 1.3. If A is a convex body of the class C2
+, and B, C are compact convex sets in Rn, then

(2π)n/2γn(A; B, C) = (n − 1)

∫

Sn−1

e−|∇hA(u)|2/2hC(u)dSA[n−2],B[1](u)

−
∫

Sn−1

〈∇hA(u), ∇hB(u)〉hC(u)e−|∇hA(u)|2/2dSA(u).

(6)

Our first main result, Theorem 2.7, is a generalization of this formula for more general Borel measures 

with smooth densities.

As an example of how this quantity differs from the volume case, let B = [−ξ, ξ] for some ξ ∈ S
n−1. 

Then hB(u) = |〈ξ, u〉| yields ∇hB(u) 
a.e.
= sgn〈ξ, u〉ξ, where 

a.e.
= denotes equality up to a set of zero volume 

and sgn(a) = a/|a| for a ∈ R \ {0} and sgn(0) = 0. Therefore, we see from (6) that

(2π)n/2γn(A; [−ξ, ξ], [−ξ, ξ]) = −
∫

Sn−1

〈∇hA(u), ξ〉〈ξ, u〉e−|∇hA(u)|2/2dSA(u), (7)

in contrast with the volume case where V (A[n − 2], [−ξ, ξ], [−ξ, ξ]) = 0.

1.3. Weighted versions of Minkowski’s inequalities

The Brunn-Minkowski inequality implies various inequalities for the mixed volumes. Minkowski’s first 

and second inequality for volume state that, for compact, convex sets K and L in Rn,



6 M. Fradelizi et al. / J. Math. Anal. Appl. 529 (2024) 127519

V (K[n − 1], L)n ≥ Voln(K)n−1Voln(L), (8)

and

V (K[n − 1], L)2 ≥ Voln(K)V (K[n − 2], L[2]). (9)

Equality holds in inequality (8) if and only if K and L are homothetic. We remark that Voln(K) = V (K[n −
1], K) = V (K[n − 2], K[2]). Minkowski’s second inequality is merely a special case of Minkowski’s quadratic 

inequality: for A, B, C compact, convex sets, one has

V (A[n − 2], B, C)2 − V (A[n − 2], B, B)V (A[n − 2], C, C) ≥ 0.

This, in turn, is a special case of the Aleksandrov-Fenchel inequality (which we do not discuss). We do 

mention however that despite having existed in the literature for over a century, the full equality conditions 

to Minkowski’s second and quadratic inequalities were only established very recently by R. van Handel and 

Y. Shenfeld [51].

In Theorem 2.12, we generalize the inequalities (8) and (9). We only discuss the Gaussian case here; the 

general results can be found in Section 2. The log-concavity of γn over the set of Borel sets yields for such 

K and L that the following Minkowski’s first inequality for the Gaussian measure holds:

γn(K; L) − γn(K; K) ≥ γn(K) log

(

γn(L)

γn(K)

)

,

with equality if, and only if, K = L. This had been obtained previously in [37].

However, the Gaussian measure actually has other types of concavity than just log-concavity. Indeed, the 

Ehrhard inequality states for 0 ≤ t ≤ 1, Borel sets K and L in Rn, and the Gaussian measure γn:

Φ−1 (γn((1 − t)K + tL)) ≥ (1 − t)Φ−1 (γn(K)) + tΦ−1 (γn(L)) , (10)

i.e. Φ−1 ◦ γn is concave, where Φ(x) = γ1((−∞, x)). It was first proven by Ehrhard for the case of two 

closed, convex sets [12]. Latała [30] generalized Ehrhard’s result to the case of an arbitrary Borel set K and 

a convex set L; the general case for two Borel sets of the Ehrhard’s inequality was proven by Borell [8]. 

Since Φ is log-concave, the Ehrhard inequality is strictly stronger than the log-concavity of the Gaussian 

measure, and yields the following analogue of Minkowski’s first inequality for Gaussian measure.

Theorem 1.4. For Borel sets K and L in Rn, we have

γn(K; L) − γn(K; K) ≥
√

1

2π
e

−

(

Φ−1(γn(K))2

2

)

[

Φ−1(γn(L)) − Φ−1(γn(K))
]

. (11)

The Gaussian measure satisfies other types of concavity if one restricts the sets under consideration. 

Kolesnikov and Livshyts showed that the Gaussian measure is 1
2n -concave on the class of convex bodies 

containing the origin in their interior [26]. If one further restricts the admissible sets, one can do even better. 

A compact, convex set K is said to be symmetric if K = −K. Gardner and Zvavitch [22] conjectured that, 

for symmetric convex bodies K and L and t ∈ [0, 1],

γn ((1 − t)K + tL)
1/n ≥ (1 − t)γn(K)1/n + tγn(L)1/n, (12)

i.e. γn is 1/n-concave over the class of symmetric convex bodies. An example given in [45] shows that 

assumption on K and L having some symmetry is necessary. Important progress was made in [26], which 
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led to the proof of the inequality (12) by Eskenazis and Moschidis in [13] for symmetric convex bodies. 

Using this, we obtain the following analogue of Minkowski’s first inequality for Gaussian measure when we 

restrict to symmetric convex bodies.

Theorem 1.5. For symmetric convex bodies K and L in Rn, one has

γn(K; L) − γn(K; K) ≥ nγn(L)1/nγn(K)
n−1

n − nγn(K), (13)

with equality if, and only if, K = L.

Notice that (13) is very similar to Minkowski’s first inequality (8). Unfortunately, one cannot improve 

(13) to obtain (8) for the Gaussian measure; we show below that for a convex body K containing the origin 

in its interior, one always has γn(K; K) = nγn(K) −
∫

K
|x|2dγn(x) < nγn(K). Both (11) and (13) imply an 

isoperimetric-type result: if γn(K) = γn(L), then γn(K; L) ≥ γn(K; K).

Define the following class of Borel measures

M := {μ Borel measure on R
n : dμ = e−W (|x|),

W : (0, ∞) → (−∞, ∞], t �→ W (et) is convex
}

.
(14)

This class contains every rotational invariant, log-concave measure as well as the Cauchy measures. Recently, 

Cordero-Erasquin and Rotem [11] extended the result by Eskenazis and Moschidis to every measure μ ∈ M, 

i.e. every Borel measure μ ∈ M is 1/n-concave over the same class of symmetric convex bodies. Thus the 

analogue of Minkowski’s first inequality contained in Theorem 1.5 actually extends to all μ ∈ M, which is 

the content of Theorem 2.13.

We, as mentioned, also obtain Minkowski’s second inequality for μ(A; B, C). We present here the case 

of the Gaussian measure using (12); the reader can deduce from the result in Theorem 2.12 other such 

inequalities for the Gaussian measure and other measures with concavity.

Theorem 1.6. Let K and L be symmetric convex bodies in Rn. Then,

(γn(K; L) − γn(K; K))
2 ≥ n

n − 1
γn(K)

(

γn(K; L, L) − 2γn(K; K, L) + γn(K; K, K)

)

.

1.4. Bezout-type inequalities and local log-submodularity

Despite being a very old tool, new facts about the volume of Minkowski sums and mixed volumes are still 

being discovered. One such area of interest is the study of the reverse of Minkowski’s quadratic inequality, 

in what is known as Bézout-type inequalities. More precisely, if C is a class of compact, convex sets closed 

under Minkowski summation, and given a fixed compact, convex set A ∈ C, what is the smallest constant 

BC(A) such that every B, C ∈ C the following inequality holds

Voln(A)V (A[n − 2], B, C) ≤ BC(A)V (A[n − 1], B)V (A[n − 1], C)?

One then sets BC = supA∈C BC(A). Let Kn denote the class of all compact, convex subsets of Rn. Then, 

Fenchel’s inequality is precisely that BKn = 2. This inequality was first established by Fenchel [14], and a 

more accessible proof is in [15]. However, both those proofs use the Aleksandrov-Fenchel inequality. In the 

sequel to this work [16], we establish Fenchel’s inequality directly from the Brunn-Minkowski inequality and 

the limit definition of mixed volumes.
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The study of these inequalities started with the Bézout inequality for mixed volume, which asserts that 

BKn(�n) = 1, where �n is the regular n-dimensional simplex. It was conjectured by Soprunov and the 

last named author [52] that this characterizes the simplex, and this conjecture was confirmed in R
2, R3

and when B, C ∈ Pn, the class of polytopes in Rn [48,49]. Recent progress has been made towards this 

conjecture [55,56].

It turns out that showing BC = n
n−1 is equivalent to volume being log-submodular over that class, which 

has gained a lot of interest as of late [6,19,20]. This special case is therefore sometimes known as local 

log-submodularity since it follows from differentiation; that is, volume is local log-submodular over a class 

C of compact, convex sets if for every A, B, C ∈ C one has

V (A[n − 1], B)V (A[n − 1], C) ≥ n − 1

n
Voln(A)V (A[n − 2], B, C). (15)

A centered zonotope Z is the Minkowski sum of symmetric line-segments, i.e. it can be written in the 

form

Z =
m

∑

i=1

ai[−ui, ui], ui ∈ S
n−1, ai ∈ R. (16)

Furthermore, a centered zonoid is the limit, with respect to the Hausdorff metric, of a sequence of centered 

zonotopes; Zn denotes the set of centered zonoids in Rn. A zonoid (resp. zonotope) is merely a translation of 

a centered zonoid (resp. zonotope). Due to the translation invariance of the Lebesgue measure, all mentioned 

results that hold for centered zonoids hold for zonoids; as we will see, the distinction becomes crucial in the 

weighted case.

A subset of the authors, working with Meyer, showed that BZn = n
n−1 in R2 and R3 [19]; the 2-dimensional 

case follows from [52]. Since every symmetric convex body in R2 is a zonoid, this means that (15) holds 

for all A, B, C ∈ K2 [52]. Prior to this work, the case where A = Bn
2 and B, C ∈ Zn was established by 

Hug and Schneider [24]. Artstein-Avidan, Florentin, and Ostrover [2] extended this result to the case where 

A = Bn
2 , B ∈ Zn and C ∈ Kn. In fact, they showed the following sharper inequality, with κn = Voln(Bn

2 )

and B = Z:

V (Bn
2 [n − 1], Z)V (Bn

2 [n − 1], C) ≥ n − 1

n

κ2
n−1

κn−2κn
Voln(A)V (A[n − 2], Z, C), (17)

which is sharper since

1 ≤ κ2
n−1

κn−2κn
≤ 1 +

1

n − 1
.

Unfortunately, since these results hold only for the fixed body A = Bn
2 , the equivalence between local 

log-submodularity and log-submodularity does not hold. If we replace mixed volumes with mixed measures 

when the measure μ is the Lebesgue measure λn, (17) becomes

λn(Bn
2 ; Z)λn(Bn

2 ; C) ≥ κ2
n−1

κn−2κn
Voln(A)λn(A; Z, C). (18)

As an application of our formulas for mixed measures, we extend (18) to the setting of rotational invariant 

log-concave measures in Theorem 3.4 below, and this result reduces directly to (18) when the measure is set 

to be the Lebesgue measure. However, an interesting phenomenon occurs; due to the fact that general log-

concave measures are not necessarily homogeneous, we replace Bn
2 with RBn

2 , R > 0, and, as a consequence 

of the proof of Theorem 3.4, we can obtain a constant that is monotonically increasing in R, whose minimum 
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value is obtained as R → 0+; as R → 0+, the constant reduces to the same constant from the volume case 

(see (50)). That is, for every R > 0, we obtain an inequality sharper than the volume case. However, we can 

do even better. If one knows a bit about the structure of a given log-concave measure, the constant can be 

further improved, see Theorem 3.6. The Gaussian measure is a special case, see Corollary 3.7. That being 

said, if we know from the beginning we are working with the Gaussian measure and the unit Euclidean ball, 

we obtain this final result.

Theorem 1.7. Fix n ≥ 2. Let Z be a centered zonoid in Rn and C a compact, convex set in Rn. Then, one 

has

γn(Bn
2 ; Z)γn(Bn

2 ; C) ≥ e
− (2n+1)

2(n+1)2
n

n − 1

κ2
n−1

κn−2κn
γn(Bn

2 )γn(Bn
2 ; Z, C).

This paper is organized as follows. Section 2 is dedicated to deriving some basic of properties of mixed 

measures, explored further in the sequel [16] (in Section 2.1), deriving formulas for mixed measures (in 

Section 2.2) and exerting some effort to further establish the theory in the case of the Gaussian measure in 

the plane (Section 2.5). In Section 3, we establish, as an application of our formulas, a Gaussian counterpart 

to a reverse Aleksandrov-Fenchel type inequality originally done in the volume case by Artstein-Avidan, 

Florentin, and Ostrover [2]. Finally, in Section 4, we list some concluding remarks concerning connections 

between the measure of Minkowski sums of compact sets and mixed measures, which are explored in the 

companion paper [16].

2. Mixed measures and weighted surface area

2.1. Properties of mixed measures

In this section, we establish some properties for mixed measures. For a convex set K containing the 

origin, notice that, for t ∈ [0, 1], (2) yields μ(tK; K) = d
dt μ(tK), where the limit exists almost everywhere 

since the function μ(tK) is monotonic in t. Consequently, integrating yields

μ(K) =

1
∫

0

μ(tK; K)dt. (19)

We also note, by writing out the limit definition of the derivative, that for a Borel measure μ on Rn and 

Borel sets A, B and C in Rn such that μ(A; B, C) from Definition 1.2 exists, one has

μ(A; B, C) = lim
s→0

μ(A + sB; C) − μ(A; C)

s
. (20)

In particular, one sees that if A is convex

μ(tA; A, C) =
dμ(tA; C)

dt
.

We therefore deduce that

μ(A; C) =

1
∫

0

μ(tA; A, C)dt. (21)

Notice that if A and B are convex, then
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μ(A; B, B) =
∂2

∂s∂t
μ(A + sB + tB)(0, 0)

=
∂2

∂s∂t
μ(A + (s + t)B)(0, 0) =

d2

ds2
μ(A + sB)

∣

∣

s=0
. (22)

The above second derivative of μ(A + sB) was discussed in [27].

2.2. Weighted surface area and mixed measure of two bodies

The formal definition of the surface area measure is the following, for K ⊂ R
n a compact, convex set:

SK(E) =

∫

n−1
K (E)

dHn−1(x) (23)

for every Borel measure E ⊂ S
n−1, where Hn−1 is the (n − 1) dimensional Hausdorff measure. Here, the 

Gauss map nK : ∂K → S
n−1 associates an element on the boundary of K with its outer unit normal. The 

Gauss map is unique for almost all x ∈ ∂K. A convex body is said to be strictly convex if ∂K does not 

contain a line segment, in which case the Gauss map is an injection between ∂K \{x : nK(x) is not unique}
and Sn−1. The Gauss map is related to the support function: fix u ∈ S

n−1. Then, ∇hK(u) exists if, and 

only if, n−1
K (u) is a single point x ∈ ∂K, and, furthermore, ∇hK(u) = x = n−1

K (u) [50, Corollary 1.7.3]. 

Hence, K is strictly convex if, and only if, hK ∈ C1 [50, Page 115].

If a convex body K has positive radii of curvature everywhere, we say K has positive curvature. In this 

instance, there exists a continuous, strictly positive function fK(u), the curvature function of K, such that 

one has dSK(u) = fK(u)du. It is standard to denote strictly convex bodies with positive curvature and 

twice differentiable support functions as being of the class C2
+. From [50, Theorem 2.7.1], every compact, 

convex set can be uniformly approximated by convex bodies that are C2
+. Next, we define the weighted 

surface area measure of a Borel measure m defined on the boundary of a convex body K.

Definition 2.1. For a compact, convex set K ⊂ R
n and a Borel measure m on ∂K, the m-surface area of K

is the pushforward of m by nK : ∂K → S
n−1 (i.e., Sm

K = nK � m). In the case where m has a density ϕ, 

then

Sm
K (E) = m(n−1

K (E)) =

∫

n−1
K (E)

ϕ(x)dHn−1(x) (24)

for every Borel measurable E ⊂ S
n−1. If K is C2

+ then dSm
K (u) = ϕ 

(

n−1
K (u)

)

fK(u)du.

As discussed in the introduction, given a Borel measure μ on Rn with continuous density, there exists a 

canonical way to select how it behaves on ∂K. Therefore, the measure Sμ
K satisfies (24) when m is identified 

with μ. In other words, Sμ
K as shown to exist in the introduction is the same as Sm

K as defined in Definition 2.1

with dm = ϕdHn−1.

Recalling that μ(tK; K) = d
dtμ(tK) when K is a convex set, we can use (4) in conjunction with (19)

when K is a convex body to obtain

μ(K) =

1
∫

0

∫

Sn−1

hK(u)dSμ
tK(u). (25)

Note that if K is of class C2
+ with the origin in its interior, then (4) becomes
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μ(K; L) =

∫

Sn−1

hL(u)ϕ(n−1
K (u))fK(u)du,

and (25) becomes

μ(K) =

∫

Sn−1

hK(u)fK(u)

1
∫

0

tn−1ϕ
(

tn−1
K (u)

)

dtdu. (26)

We now show that if a measure μ has radially decreasing density (where ϕ is said to be radially non-

increasing if ϕ(tx) ≥ ϕ(x) for every t ∈ [0, 1], and is radially decreasing if the inequality is strict), then one 

can relate μ(K; K) and μ(K). In the proposition below, (0, y] denotes the line segment from the origin to 

a vector y, which does not contain the origin.

Proposition 2.2. Let μ be a Borel measure on Rn with radially non-increasing density ϕ. Then, for every 

convex body K in Rn containing the origin in its interior such that ϕ is defined on ∂K, one has

nμ(K) ≥ μ(K; K),

with equality if, and only if, for almost every y ∈ ∂K, ϕ is a constant almost everywhere on (0, y].

Proof. The result follows from formula (25), as applying the change of variable formula satisfied by Sμ
tK

yields

μ(K) =

1
∫

0

∫

∂tK

hK(ntK(y))ϕ(y)dydt =

1
∫

0

tn−1

∫

∂K

hK(nK(y))ϕ(ty)dydt,

where, in the second step, a variable substitution y → ty was done. Next, Fubini’s theorem yields

μ(K) =

∫

∂K

hK(nK(y))

1
∫

0

tn−1ϕ(ty)dtdy.

The hypothesis that ϕ is radially non-increasing yields

1
∫

0

ntn−1ϕ(ty)dt ≥ ϕ(y);

this estimate, combined with another use of formula (25), completes the proof. Equality occurs if, and only 

if, ϕ(ty) is a constant for almost every t ∈ (0, 1]. Notice that (0, y] = {ty : t ∈ (0, 1]}. Thus, equality implies 

that ϕ is constant almost everywhere on (0, y]. �

To elaborate on the equality conditions of the above proposition, it is possible that, for two different 

y1, y2 ∈ ∂K, ϕ is constant on (0, y1] and (0, y2], but the value of ϕ on each segment is different. That is, 

equality occurs if, and only if, ϕ is the 0-homogeneous extension of a function on ∂K.

Proposition 2.2 implies that nγn(K) > γn(K; K). However, we can do better in this case. We will use 

the notation Δf for the Laplacian of a twice-differentiable function f .
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Proposition 2.3. Let K be a convex body containing the origin in its interior. Then,

γn(K; K) = nγn(K) −
∫

K

|x|2dγn(x).

Proof. From (4) we have that

γn(K; K) =

∫

Sn−1

hK(u)dSγn

K (u) = (2π)−n/2

∫

∂K

hK(nK(y))e−|y|2/2dy,

where the second equality follows from the change of variables formula satisfied by Sγn

K . However, from the 

convexity of K, the supremum in the definition of support function will be obtained at y, i.e. hK(nK(y)) =

〈nK(y), y〉. Let g(y) = −e−|y|2/2. Then, we have

γn(K; K) = (2π)−n/2

∫

∂K

〈∇g(y), nK(y)〉dy.

From Green’s first identity, this is

γn(K; K) = (2π)−n/2

∫

K

Δg(x)dx.

But,

Δg(x) = (n − |x|2)e−|x|2/2,

and so the claim follows. �

Now that we have explored properties of mixed measures, we work towards our first main result, The-

orem 2.7. We recall that, for every positive f ∈ C(Sn−1), the Wulff shape of f is the convex body given 

by

[f ] = {x ∈ R
n : 〈x, u〉 ≤ f(u) ∀u ∈ S

n−1}. (27)

One has, for a convex body K containing the origin in its interior, [hK ] = K. Since f is positive, [f ] is such 

a convex body. Furthermore, if f is even, then [f ] is symmetric. In [28], the following was shown, expanding 

on the results from [36,37].

Lemma 2.4 (Aleksandrov’s variational formula for arbitrary measures). Let μ be a Borel measure on R
n

with locally integrable density ϕ. Let K be a convex body containing the origin in its interior, such that ∂K, 

up to set of (n − 1)-dimensional Hausdorff measure zero, is in the Lebesgue set of ϕ. Then, for a continuous 

function f on Sn−1, one has that

lim
t→0

μ([hK + tf ]) − μ(K)

t
=

∫

Sn−1

f(u)dSμ
K(u).

Remark 2.5. Fix a convex body K containing the origin in its interior, a compact, convex set L and some 

λ0 > 0. Notice that hK + (λ + λ0)hL = hK+λ0L + λhL. Hence, an immediate consequence of Lemma 2.4 is 

that
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lim
t→0

μ(K + (t + t0)L) − μ(K + t0L)

t
=

∫

Sn−1

hL(u)dSμ
K+t0L(u).

Moreover, we can also calculate the variation of the convex combination of K and L. For a fixed λ0 ∈
(0, 1), write that (1 − λ0)hK + λ0hL = hK + λ0(hL − hK). Then, perturb λ0 by a small λ > 0 and write 

hK + (λ0 + λ)(hL − hK) = h(1−λ0)K+λ0L + λ(hL − hK). Hence, from Lemma 2.4, we can conclude that

d

dλ
μ ((1 − λ)K + λL)

∣

∣

∣

∣

λ0

=
d

dλ
μ

([

h(1−λ0)K+λ0L + λ(hL − hK)
])

∣

∣

∣

∣

λ=0

=

∫

Sn−1

(hL − hK)dSμ
Kλ0

(u)

= μ(Kλ0
; L) − μ(Kλ0

; K),

(28)

where Kλ0
= (1 − λ0)K + λ0L and the last equality follows from (4). We will have occasion to use this 

observation later.

2.3. Integral representation formula for μ(A; B, C)

We are now ready to obtain an integral representation for μ(A; B, C) defined in Definition 1.2. For our 

purposes, we need only the case where A is C2
+. First we define the weighted analog of the mixed surface 

area measure SA[n−2],B[1], which we denote Sμ
A;B.

Definition 2.6. Let A be a C2
+ convex body and B be an arbitrary compact, convex set in Rn, n ≥ 2, and μ

be a Borel measure with C1 density ϕ. The weighted mixed surface area measure Sμ
A;B is the signed measure 

on Sn−1 defined by

dSμ
A;B(u) = ϕ(n−1

A (u))dSA[n−2],B[1](u) +
1

n − 1
〈∇ϕ(n−1

A (u)), ∇hB(u)〉dSA(u).

Observe that if we naïvely define dS̃μ
A;B = ϕ(n−1

A (u))dSA[n−2],B[1](u) in analogy with the weighted surface 

area, then we can write

dSμ
A;B(u) = dS̃μ

A;B(u) +
1

n − 1

〈∇ϕ(n−1
A (u))

ϕ(n−1
A (u))

, ∇hB(u)

〉

dSμ
A(u). (29)

Clearly, when ϕ ≡ 1, the second term vanishes and the weighted mixed surface area measure becomes the 

(usual) mixed surface area measure. We emphasize that, in general, Sμ
A;B is only guaranteed to be a signed 

measure, and may not be a measure.

Theorem 2.7. Let μ be a Borel measure on R
n, n ≥ 2, with C2 density ϕ. For a C2

+ convex body A and 

compact, convex sets B and C, one has

μ(A; B, C) = (n − 1)

∫

Sn−1

hC(u)dSμ
A;B(u). (30)

Proof. We first consider the case when B is a C2
+ convex body. Using (20), we compute

dμ(A + sB; C)

ds
(0) =

d

ds

⎛

⎝

∫

Sn−1

ϕ(n−1
A+sB(u))hC(u)dSA+sB(u)

⎞

⎠

∣

∣

∣

∣

s=0

,
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where n−1
A+sB(u) is well defined as the Minkowski sum of C2

+ bodies is also C2
+. From [50, Theorem 5.1.7], 

we obtain that

SA+sB = SA + s(n − 1)SA[n−2],B[1] + O(s2). (31)

Therefore, when taking the derivative in s at s = 0 of ϕ(n−1
A+sB(u))dSA+sB(u), only the first two terms in 

(31) contribute.

All that remains is to take derivative of ϕ(n−1
A+sB(u)). We recall that if K is C+

2 , then n−1
K (u) = ∇hK(u)

for all u ∈ S
n−1, and thus n−1

A+sB(u) = ∇(hA+sB(u)) = ∇hA(u) + s∇hB(u), for all u ∈ S
n−1. Therefore, we 

obtain for all u ∈ S
n−1 that

dϕ(n−1
A+sB(u))

ds

∣

∣

∣

∣

s=0

= 〈∇ϕ(n−1
A (u)), ∇hB(u)〉. (32)

Thus, we have shown (30) in the case when B is C2
+. We also notice that, for s > 0, by setting K(s) = A +sB, 

we obtain

dμ(A + sB; C)

ds
(s) =

dμ(K(s) + s̃B; C)

ds̃
(0) = (n − 1)

∫

Sn−1

ϕ(n−1
K(s)(u))hC(u)dSK(s)[n−2],B[1](u)

+

∫

Sn−1

〈∇ϕ(n−1
K(s)(u)), ∇hB(u)〉hC(u)dSK(s)(u).

We next consider the general case when B is a compact, convex set. First, approximate B by a sequence of 

C2
+ convex bodies {Bi}, such that Bi → B uniformly in the Hausdorff metric (see [50, Theorem 2.7.1]; in 

particular note that this means hBi
converges to hB uniformly on Sn−1). For s small (say s ∈ [0, 1]), and 

i ∈ N, let Ki(s) = A + sBi and consider the function

gi(s) = μ(Ki(s); C) =

∫

Sn−1

hC(u)dSμ
Ki(s)(u).

We show that, for fixed s, gi(s) → g(s) = μ(K(s); C). First, observe that

|gi(s) − g(s)| ≤
∫

Sn−1

|hC(u)||dSμ
Ki(s)(u) − dSμ

K(s)(u)|.

Since C is a compact, convex set, |hC(u)| is bounded and consequently it suffices to show that Sμ
Ki(s) → Sμ

K(s)

weakly. Notice for every Borel E ⊂ S
n−1, one has

|Sμ
Ki(s)(E) − Sμ

K(s)(E)| =

∣

∣

∣

∣

∫

n−1
Ki(s)(E)

ϕ(x)dx −
∫

n−1
K(s)(E)

ϕ(x)dx

∣

∣

∣

∣

.

From [50, Theorem 4.11], one has dSKi(s) → dSK(s) weakly, as Ki(s) → K(s) in the Hausdorff metric. 

Therefore, since ϕ is bounded on compact sets, the convergence of Sμ
Ki(s)(E) to Sμ

K(s)(E) follows. Since E

was an arbitrary Borel subset of Sn−1, we have the weak convergence of dSμ
Ki(s)(u) to dSμ

K(s)(u), therefore 

the uniform convergence of gi(s) to g(s).
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Next, our goal is to show the uniform convergence of g′
i(s). Notice that

g′
i(s) = μ(Ki(s); Bi, C) = (n − 1)

∫

Sn−1

ϕ(n−1
Ki(s)(u))hC(u)dSKi(s)[n−2],Bi[1](u)

+

∫

Sn−1

〈∇ϕ(n−1
Ki(s)(u)), ∇hBi

(u)〉hC(u)dSKi(s)(u).

Note that n−1
K(s) may not be well-defined for s 
= 0. Therefore, we shall show that {g′

i(s)} is a Cauchy 

sequence, to obtain that it has a limiting function z(s). Then, using a standard theorem from classical 

analysis, we get that g must be differentiable and g′(s) = z(s), in particular, μ(A; B, C) = g′(0) = z(0). On 

the other-hand, by computing z(0) via convergence of the integral formula for g′
i(0), we will finish the proof.

Consider ε > 0, fix some N = N(ε) (to be determined later), and pick i, j > N . Then, it suffices to bound 

the following five integrals:

1.

∣

∣

∣

∣

∫

Sn−1 ϕ(n−1
Ki(s)(u))hC(u) 

(

dSKi(s)[n−2],Bi[1](u) − dSKj(s)[n−2],Bj [1](u)
)

∣

∣

∣

∣

,

2.
∫

Sn−1 |ϕ(n−1
Ki(s)(u)) − ϕ(n−1

Kj(s)(u))||hC(u)|dSKj(s)[n−2],Bj [1](u),

3.

∣

∣

∣

∣

∫

Sn−1〈∇ϕ(n−1
Kj(s)(u)), ∇hBi

(u)〉hC(u) 
(

dSKi(s)(u) − dSKj(s)(u)
)

∣

∣

∣

∣

,

4.
∫

Sn−1 |〈∇ϕ(n−1
Kj(s)(u)), ∇hBi

(u) − ∇hBj
(u)〉||hC(u)|dSKj(s)(u),

5.
∫

Sn−1 |〈∇ϕ(n−1
Ki(s)(u)) − ∇ϕ(n−1

Kj(s)(u)), ∇hBi
(u)〉||hC(u)|dSKi(s)(u).

Since hC is bounded on Sn−1, we shall not discuss hC(u) for the rest of the argument.

The easiest integral is the third one. We recall that, since hBi
is convex and C2, it has bounded derivative 

on Sn−1. Also, since ∇ϕ is bounded, all Ki(s) can be taken to belong to some large ball for all i and s ∈ [0, 1], 

to obtain that |〈∇ϕ(n−1
Ki(s)(u)), ∇hBi

(u)〉| is bounded and the bound can be taken to be independent of 

i. Since dSKi(s) → dSK(s) weakly, 
∫

Sn−1 dSKi(s)(u) is a Cauchy sequence. Combining all of this, the third 

integral is bounded, i.e. we can pick N large enough so the third integral is bounded by ε/5.

We next bound the first integral. The argument is exactly the same as the previous one, except that 

we appeal to the proof of [50, Theorem 5.1.7], which shows that dSKi(s)[n−2],Bi[1] converges weakly to 

dSK(s)[n−2],B[1] and so 
∫

Sn−1 dSKi(s)[n−2],Bi[1](u) is also a Cauchy sequence, and, by making N larger if 

need be, the first integral is also bounded by ε/5.

For the fourth integral, we have that |∇ϕ(n−1
Ki(s)(u))| ≤ Lϕ for some positive constant Lϕ. Thus, it suffices 

to show that ‖∇hBi
(u) − ∇hBj

(u)‖L2(Sn−1) goes to zero. This follows from the classical analysis fact that if 

a sequence of convex, differentiable functions converges to some convex function, then their derivatives also 

converge almost everywhere. Consequently, dominated convergence theorem yields the result, and, thus for 

N large enough, the fourth integral is bounded by ε/5.

For the second integral, we use that ϕ, being C1, is Lipschitz on compact sets, thus, for s ∈ [0, 1],

|ϕ(n−1
Ki(s)(u)) − ϕ(n−1

Kj(s)(u))| ≤ Lϕ|n−1
Ki(s)(u) − n−1

Kj(s)(u)| = Lϕs|∇hBi
(u) − ∇hBj

(u)|. (33)

Thus, like in the previous argument, the second integral is bounded by ε/5. Finally, for the fifth integral, 

we use that ϕ being C2 yields ∇ϕ is a Lipschitz map on compact sets, and we argue similarly to (33). 

Consequently, the fifth integral can also be bounded by ε/5.

Thus, we have shown that for all s ∈ [0, 1], u ∈ S
n−1, and i, j > N , that |g′

i(s) − g′
j(s)| ≤ ε. �
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Remark 2.8. In the above, all we actually require is that the density of μ is C2 in a neighborhood of A. 

Furthermore, in the case when B is of the class C2
+, we can weaken the condition on the density of μ to 

only being Lipschitz in a neighborhood of A.

Remark 2.9. In fact, we can define the weighted mixed surface area measure even when A is not C2
+. Inspired 

by Lemma 2.4, we first define μ(K; f) :=
∫

Sn−1 f(u)dSμ
K(u) for any f ∈ C(Sn−1), so that the representation 

formula for the mixed measure μ(K; L) may be written concisely as μ(K; L) = μ(K; hL). Now define, for 

any f ∈ C(Sn−1), the quantity

μ(A; B, f) = lim
s→0

μ(A + sB; f) − μ(A; f)

s
; (34)

this definition is, of course, inspired by (20). We observe that for any fixed convex body A containing the 

origin in its interior and compact, convex set B, μ(A; B, ·) is a continuous linear functional on C(Sn−1), 

and the Riesz-Markov-Kakutani representation theorem therefore guarantees that it can be written as 

an integral with respect to a signed measure on the sphere. This signed measure is what we define as 

(n − 1)dSμ
A;B , to be consistent with Theorem 2.7. Note that unlike the weighted surface area, which was 

defined as the pushforward of a measure on ∂K by the Gauss map in Definition 2.1, we have not given an 

explicit description for the weighted mixed surface area measure Sμ
A;B; this is, however, not surprising since 

such an explicit description is not available even in the case of Lebesgue measure.

Remark 2.10. We note that the expression (29) for Sμ
A;B is particularly nice in the case of a probability 

measure μ on Rn, because in this case, the function ∇ϕ/ϕ that appears in the second term is the so-called 

score function that arises naturally in the definition of Fisher information. The score function is central in 

the study of entropy power inequalities (see, e.g., [40,39,53]). For example, when μ = γn is the Gaussian 

measure, the score function ∇ϕ(x)/ϕ(x) = −x, so that we have the pleasant form

dSγn

A;B(u) = dS̃γn

A;B(u) − 1

n − 1
〈n−1

A (u)), n−1
B (u))〉dSγn

A (u), (35)

with

dS̃γn

A;B(u) =
1

(2π)n/2
e−|n−1

A (u))|2/2dSA[n−2],B[1](u),

when A and B are both C2
+ convex bodies.

We note that combining (22) with Theorem 2.7 yields

d2

ds2
μ(A + sB)

∣

∣

s=0
= (n − 1)

∫

Sn−1

hB(u)dSμ
A;B(u),

which is reminiscent of [26, Proposition 3.2].

2.4. Weighted versions of Minkowski’s first and second inequalities

We conclude this section by establishing Minkowski’s first and second inequalities. In the introduction, we 

discussed the many different types of concavity satisfied by the Gaussian measure. These different types of 

concavities can be expressed in one definition. A Borel measure μ on Rn is said to be F -concave on a class C
of Borel subsets of Rn if there exists a continuous, invertible, monotonic function F : (0, μ(Rn)) → (−∞, ∞)

such that, for every pair K, L ∈ C and every λ ∈ [0, 1], one has μ(K), μ(L) < ∞ and
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μ((1 − λ)K + λL) ≥ F −1 ((1 − λ)F (μ(K)) + λF (μ(L))) . (36)

The case when F (x) = xs, s ∈ R \ {0}, is known as s-concavity. Borell’s hierarchy completely characterizes 

s-concave Borel measures μ when the class C is all compact subsets of Rn [7, Theorem 3.2]. Notice that 

the 1/n-concavity of the Guassian measure over symmetric convex bodies is strictly outside of Borell’s 

classification. We emphasis that, if F is increasing, like xs, s > 0, then F ◦ μ is a concave function over C. 

Likewise, if F is decreasing, like xs, s < 0, then F ◦μ is a convex function over C. Additionally, it is not hard 

to show that, if there is equality in (36) for a single λ ∈ (0, 1), then there is equality for every λ ∈ (0, 1).

Proposition 2.11. Let μ be F -concave on a class of Borel sets C. Suppose we have A, B ∈ C and some 

λ ∈ (0, 1) such that

μ ((1 − λ)K + λL) = F −1 ((1 − λ)F (μ(K)) + λF (μ(L)))

Then, equality holds for all λ ∈ [0, 1].

Proof. Since F is monotone and invertible, it is either increasing or decreasing, and so the function given by 

f(t) = F (μ ((1 − t)K + tL)) is either concave or convex. Denote the linear function g(t) = (1 −t)F (μ(K)) +

tF (μ(L)). We have that g(0) = f(0) = μ(K) and g(1) = f(1) = μ(L). By hypothesis however, we also have 

f(λ) = g(λ). But, since either f or −f is concave, this implies f = g on all of [0, 1]. �

We now establish Minkowski’s first and second inequality for F -concave measure of a class of compact, 

convex sets, using the formulas established. The case of Minkowski’s first inequality had been previously 

established without equality conditions by Livshyts [37].

Theorem 2.12 (Minkowski’s first and second inequalities for F -concave measures and convex bodies). Let μ

be a Borel measure on Rn that is F -concave on a class of compact, convex sets C. Then, for a convex body 

K containing the origin in its interior, such that F (x) is differentiable at x = μ(K), and a compact, convex 

set L, both in C, one has Minkowski’s first inequality:

μ(K; L) ≥ μ(K; K) +
F (μ(L)) − F (μ(K))

F ′(μ(K))
,

with equality if, and only if, there is equality in (36) for some λ ∈ (0, 1).

Furthermore, if μ has C2 density and F (x) is twice differentiable at x = μ(K), then:

−F ′′(μ(K))

F ′(μ(K))
(μ(K; L) − μ(K; K))

2 ≥ (μ(K; L, L) − 2μ(K; K, L) + μ(K; K, K)) .

Proof. Consider the function given by

H(λ) = F (μ((1 − λ)K + λL)) − (1 − λ)F (μ(K)) − λF (μ(L)).

Thus H(0) = H(1) = 0. Furthermore, if F is an increasing function, then H is concave and H ′(0) ≥ 0. 

Similarly, if F is a decreasing function, then H is convex and H ′(0) ≤ 0.

Computing the derivative from (28) and the chain rule, we obtain directly that

H ′(0) = F ′(μ(K))(μ(K; L) − μ(K; K)) − (F (μ(L)) − F (μ(K)). (37)

Assume F ′(μ(K)) 
= 0. If F is increasing, setting this greater than zero and dividing through by F ′(μ(K))

yields the first claim. Similarly, if F is decreasing, setting this less than zero and dividing through by 
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the (negative) term F ′(μ(K)) yields the same result. Now, suppose F ′(μ(K)) = 0. Then, from (37), one 

obtains in both cases of the monotonicity of F that μ(K) ≥ μ(L) for all L ∈ C. From (2), this yields 

μ(K; L) = μ(K; K) = 0. Thus, Minkowski’s first inequality is trivial in this case.

Suppose that there is equality in (36). Then,

F (μ((1 − λ)K + λL)) − (1 − λ)F (μ(K)) − λF (μ(L)) = 0, for all λ ∈ [0, 1].

Differentiating in λ yields

d

dλ
F (μ((1 − λ)K + λL)) = F (μ(L)) − F (μ(K)).

Using the chain rule and evaluating at λ = 0 yields

F ′(μ(K))
d

dλ
μ ((1 − λ)K + λL)

∣

∣

∣

∣

λ=0

= F (μ(L)) − F (μ(K)).

Inserting (28), we have equality in Minkowski’s first inequality. Conversely, suppose that we have equality 

in Minkowski’s first inequality. Then, running the argument backwards, we get

d

dλ
F (μ((1 − λ)K + λL)

∣

∣

∣

∣

λ=0

= F (μ(L)) − F (μ(K)).

This implies equality in (36). Indeed, let f(t) = F (μ ((1 − t)K + tL)), which is either concave or convex on 

[0, 1] by hypothesis, and denote the linear function g(t) = (1 − t)F (μ(K)) + tF (μ(L)). We have f(0) = g(0)

and f(1) = g(1). However, we have also shown that f ′(0) = g′(0). From the concavity of f or −f , it follows 

that f = g on [0, 1] via Proposition 2.11.

As for the second inequality, we suppose that F is increasing; the case when F is decreasing is similar. 

By way of approximation, we first suppose that K is C2
+. We take yet another derivative of H and use that 

H ′′(0) ≤ 0 in this instance. One obtains, using (28), that

F ′′(μ(K)) (μ(K; L) − μ(K; K))
2

+ F ′(μ(K))

⎛

⎝

d

dλ

∫

Sn−1

(hL − hK)dSμ
Kλ

(u)

⎞

⎠

∣

∣

∣

∣

λ=0

≤ 0, (38)

where Kλ = (1 − λ)K + λL. Next, suppose L is C2
+ and so Kλ is also C2

+. Hence, one has dSμ
Kλ

(u) =

ϕ(n−1
(1−λ)K+λL(u))dSKλ

(u). Now, observe that for almost all u ∈ S
n−1,

dϕ(n−1
(1−λ)K+λL(u))

dλ

∣

∣

∣

∣

λ=0

= 〈∇ϕ(n−1
K (u)), ∇hL(u)〉 − 〈∇ϕ(n−1

K (u)), ∇hK(u)〉. (39)

In order to take the weak derivative of dSKλ
(u), we expand SKλ

as a polynomial in the variable λ, and 

obtain from [50, Theorem 5.1.7] that

SKλ
= SK + λ(n − 1)

(

SK[n−2],L[1] − SK

)

+ O(λ2). (40)

We deduce that the weak derivative of dSKλ
(u) at λ = 0 is (n − 1) 

(

dSK[n−2],L[1](u) − dSK(u)
)

. Using the 

product rule on ϕ(n−1
Kλ

(u))dSKλ
(u) yields the result. For general compact, convex L, we conclude by the 

linearity of (30) in the third variable and the approximation argument in the proof of Theorem 2.7. Finally, to 

remove the assumption that K is C2
+, we appeal to Remark 2.9, which explains that μ(K; K, K), μ(K; K, L)

and μ(K; L, L) still exist in this instance. �
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We list as a special case of Theorem 2.12 the case for measures in M given by (14), where we recall that 

Cordero-Erasquin and Rotem [11] showed every Borel measure μ ∈ M is 1/n-concave over the class of 

symmetric convex bodies.

Theorem 2.13. For symmetric convex bodies K and L in Rn and μ ∈ M, one has

μ(K; L) − μ(K; K) ≥ nμ(L)1/nμ(K)
n−1

n − nμ(K),

with equality if, and only if, K = L. Additionally, if μ has C2 density, then

(μ(K; L) − μ(K; K))
2 ≥ n

n − 1
μ(K)

(

μ(K; L, L) − 2μ(K; K, L) + μ(K; K, K)

)

.

2.5. The Gaussian measure in the plane

We conclude this section by exerting some effort to study γ2. Upon observation of (6), it is not clear 

that γn(A; B, C) = γn(A; C, B) without appealing to the Schwarz theorem. We will show explicitly that 

this is true, and furthermore, use this opportunity to further develop the theory of mixed measures in the 

plane. We recall that in the plane one has V2(A[0], B[1], C[1]) = V2(B, C); this does not happen with mixed 

measures in general, since the inverse Gauss map of A appears in the density of the measure. To emphasis 

the difference between mixed volume and mixed measures, we will show that mixed measures for γ2 can be 

negative.

Henceforth, we write u ∈ S
1 as u = u(θ) = (cos(θ), sin(θ)) for θ ∈ [0, 2π]. Additionally, we view the 

support function of a compact, convex set as a function in θ. Formally, let A be a convex body and set 

hA(θ) := hA(u(θ)). It is beneficial to relate ∇hA(u) with h′
A(θ). Notice that u(θ) is perpendicular to 

u′(θ) = (− sin(θ), cos(θ)). Then, one has

h′
A(θ) = 〈∇hA(u), u′(θ)〉 = −∂hA(u(x, y))

∂x
sin(θ) +

∂hA(u(x, y))

∂y
cos(θ).

On the other hand, hA(u) is 1-homogeneous. Thus,

hA(u) = 〈∇hA(u), u〉 =
∂hA(u(x, y))

∂x
cos(θ) +

∂hA(u(x, y))

∂y
sin(θ).

Writing the vector ∇hA(u) in the basis spanned by u and u′, we obtain

∇hA(u) = 〈∇hA(u), u〉u+ 〈∇hA(u), u′〉u′ = hA(θ)u(θ)+ h′
A(θ)u′(θ); u = (cos(θ), sin(θ)). (41)

Note, additionally, that, for compact, convex sets A and B, one has for almost all u ∈ S
1

〈∇hA(u), ∇hB(u)〉 = hA(θ)hB(θ) + h′
A(θ)h′

B(θ). (42)

We now use the fact that A is C2
+; we observe that our situation simplifies quite a bit in this instance. 

Firstly, the Monge-Ampère equation, which relates the support and curvature functions of a convex body, 

simplifies to a simple second order, linear, ordinary differential equation in the variable θ [21]:

h′′
A(θ) + hA(θ) = fA(θ).
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Since A is C2
+, we also obtain, for u = (cos(θ), sin(θ)), e−|n−1

A (u)|2/2 = e−

(

(h′
A(θ))2+(hA(θ))2

)

2 . Inserting the 

above two formulae and (41) into (6), one obtains, in the case where B and C are compact, convex sets and 

A is a convex body with C2
+ boundary,

2πγ2(A; B, C) =

2π
∫

0

e−

(

(h′
A(θ))2+(hA(θ))2

)

2 hC(θ)dSB(θ)

−
2π
∫

0

[hA(θ)hB(θ) + h′
A(θ)h′

B(θ)] hC(θ)e−

(

(h′
A(θ))2+(hA(θ))2

)

2 dSA(θ).

(43)

Arguing by approximation, suppose that B is also C2
+. Then,

(h′′
B(θ) + hB(θ))dθ = dSB(θ).

Thus (43) becomes

2πγ2(A; B, C) =

2π
∫

0

e−

(

(h′
A(θ))2+(hA(θ))2

)

2 hC(θ)[h′′
B(θ) + hB(θ)(1 − h2

A(θ) − h′′
A(θ)hA(θ))]dθ

−
2π
∫

0

h′
B(θ)hC(θ)h′

A(θ)e−

(

(h′
A(θ))2+(hA(θ))2

)

2 [h′′
A(θ) + hA(θ)]dθ.

Next, observe that

d

(

e−

(

(h′
A(θ))2+(hA(θ))2

)

2

)

= −e−

(

(h′
A(θ))2+(hA(θ))2

)

2 h′
A(θ)[h′′

A(θ) + hA(θ)]dθ.

Consequently, integration by parts yields, with fA(θ) = h′′
A(θ) + hA(θ),

γ2(A; B, C) =

2π
∫

0

e−

(

(h′
A(θ))2+(hA(θ))2

)

2 [hB(θ)hC(θ)(1 − hA(θ)fA(θ)) − h′
B(θ)h′

C(θ)]
dθ

2π
. (44)

Since (6) is independent of the second derivative of the support function of B, the assumption that B is 

C2
+ in (44) can be dropped via an approximation argument. If A is a ball of radius R, then hA = fA = R. 

Therefore, a remarkable consequence of (44) is the following: given compact, convex sets B, C ⊂ R
2, there 

exists R such that

γ2(RBn
2 ; B, C) < 0.

3. Local log-submodularity

3.1. Inequalities for rotationally invariant log-concave measures

We next generalize inequality (18) to the case of rotational invariant log-concave measures. We remind 

the reader that μ is a rotational invariant log-concave measure if there exists a non-decreasing, convex 

function W : R
+ → R ∪ {+∞} such that dμ = e−W (|x|)dx. The goal of this section is to find a quantity A

such that, for every rotational invariant μ, one has
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μ(A; B)μ(A; C) ≥ A κ2
n−1

κn−2κn
μ(A)μ(A; B, C), (45)

where we consider the case when B is replaced in the above by some centered zonoid Z, C is an arbitrary 

compact, convex set, and A = RBn
2 , R > 0. In the case of volume (that is, (18), where A = 1), this is the 

same as considering A = Bn
2 ; both sides of the inequality in (18) being homogeneous of degree 2n − 2 in the 

variable A. As we will see, this is not true for (45).

Proposition 3.1. Let μ be a Borel measure on Rn such that dμ(x) = e−W (|x|)dx for some convex function 

W : [0, ∞) → R that is differentiable at R > 0. Then, for A = RBn
2 , and compact, convex sets B, C ⊂ R

n, 

(45) is equivalent to

V (Bn
2 [n − 1], B)V (Bn

2 [n − 1], C) ≥ An − 1

n

κ2
n−1

κn−2κn
Iμ(R)

⎛

⎝V (Bn
2 [n − 2], B, C) − RW ′(R)

n(n − 1)

∫

Sn−1

〈u, ∇hB(u)〉hC(u)du

⎞

⎠

(46)

where

Iμ(R) =

∫

Bn
2

eW (R)−W (R|x|)dx.

Proof. Observe that, for a compact, convex set B ⊂ R
n, one has

μ(RBn
2 ; B) = e−W (R)Rn−1

∫

Sn−1

hB(u)du = e−W (R)Rn−1nV (Bn
2 [n − 1], B).

We next compute:

μ(RBn
2 ; B, C)

= e−W (R)

⎛

⎝Rn−2(n − 1)

∫

Sn−1

hC(u)dSBn
2 [n−2],B(u) − Rn−1W ′(R)

∫

Sn−1

〈u, ∇hB(u)〉hC(u)du

⎞

⎠

= Rn−2e−W (R)n(n − 1)

⎛

⎝V (Bn
2 [n − 2], B, C) − RW ′(R)

n(n − 1)

∫

Sn−1

〈u, ∇hB(u)〉hC(u)du

⎞

⎠ ,

where, in the last line, we used that 
∫

Sn−1 hC(u)dSBn
2 [n−2],B(u) = nV (Bn

2 [n − 2], B, C). Next, we write 

μ(RBn
2 ) in the following way:

μ(RBn
2 ) =

∫

RBn
2

e−W (|x|)dx = Rne−W (R)

∫

Bn
2

eW (R)−W (R|x|)dx.

Inserting each term into (45) yields the result. �

Proposition 3.1 shows that A = 1 corresponds to the known case of volume. We now substitute a centered 

zonoid Z in place of B in Proposition 3.1 and we additionally assume that W is increasing (i.e. the measure 

μ is log-concave). We first need a preliminary lemma.
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Lemma 3.2. Let f ∈ L1(Rn, γn) be k-homogeneous, for some k > −n. Then, one has

∫

Rn

f(x)dγn(x) =
2

k−2
2 Γ(n+k

2 )

π
n
2

∫

Sn−1

f(u)du.

Proof. Integrating in polar coordinates, we directly compute:

∫

Rn

f(x)dγn(x) =

+∞
∫

0

rn+k−1e− r2

2
dr

(2π)
n
2

∫

Sn−1

f(u)du =
2

k−2
2 Γ(n+k

2 )

π
n
2

∫

Sn−1

f(u)du. �

Lemma 3.3 (Proposition 3.1 for centered zonoids). Let μ be a Borel measure on R
n such that dμ(x) =

e−W (|x|)dx for some increasing, convex function W : [0, ∞) → R that is differentiable at R > 0. Then, for 

A = RBn
2 , B ∈ Zn and a compact, convex set C ⊂ R

n, (45) holds if A satisfies

An

1
∫

0

eW (R)−W (Rt)tn−1dt

(

1 − RW ′(R)

n

)

≤ 1.

Proof. Notice that in (46) we may assume that B = Z is a centered zonotope, and the general case 

of centered zonoids follows by approximation. Notice also that the expression is dilation invariant in Z. 

Therefore, using the additivity of both mixed volumes and the support function, we may assume that 

Z := [−θ, θ] for some θ ∈ S
n−1. One has hZ(u) = |〈u, θ〉|. Furthermore (see for example [50]), for compact, 

convex sets K2, . . . , Kn one has

Vn([−θ, θ], K2, . . . , Kn) =
2

n
Vn−1(Pθ⊥K2, . . . , Pθ⊥Kn),

where the subscripts emphasis that the first mixed volume is n-dimensional, the second mixed volume is 

n − 1 dimensional, and the notation Pθ⊥Ki denotes the orthogonal projection of Ki onto the hyperplane 

through the origin orthogonal to the direction θ. Therefore, we have

V (Bn
2 [n − 2], Z, C) =

2

n
Vn−1(Bn−1

2 [n − 2], Pθ⊥C) =
2

n(n − 1)

∫

Sn−1∩θ⊥

hC(u′)du′. (47)

Notice that ∇hZ(u) = θχ〈u,θ〉>0 − θχ〈u,θ〉<0; inserting this, (47), V (Bn
2 [n − 1], Z) = 2κn−1

n , and V (Bn
2 [n −

1], C) into (46), our inequality becomes

∫

Sn−1

hC(u)du ≥ A κn−1

κn−2κn
Iμ(R)

⎡

⎣

∫

Sn−1∩θ⊥

hC(u′)du′ − RW ′(R)

2

∫

Sn−1

|〈u, θ〉|hC(u)du

⎤

⎦. (48)

Now, arguing like in [2], let Πθ denote the reflection operator with respect to the hyperplane θ⊥. Ex-

plicitly, Πθ(x) = x − 2θ〈x, θ〉. Then, consider the symmetrization SθC of C in the direction θ to be the 

compact, convex set given by SθC := C+ΠθC
2 . Notice that Pθ⊥C ⊂ SθC. Furthermore, 

∫

Sn−1 hC(u)du =
∫

Sn−1 hSθC(u)du ≥
∫

Sn−1 hP
θ⊥ C(u)du. Hence, the quantity

∫

Sn−1

hC(u)du +
ARW ′(R)

2

κn−1

κn−2κn
Iμ(R)

∫

Sn−1

|〈u, θ〉|hC(u)du
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is bounded from below by the same quantity, but with C replaced by Pθ⊥C. Consequently, it suffices to 

consider (48) only for the case when C ⊂ θ⊥.

It is known, (see, for example, [21, page 404, eq. (A.29)]), that if K is a k < n dimensional compact, 

convex set in Rn, then, for 0 ≤ i ≤ k, one has

1

ci,k
Vk

(

K[i], Bk
2 [k − i]

)

=
1

ci,n
Vn (K[i], Bn

2 [n − i]) , where ci,k =
κk−i
(

k

i

) .

Using this, if C ⊂ θ⊥ then

∫

Sn−1

hC(u)du = nVn (Bn
2 [n − 1], C) = n

c1,n

c1,n−1
Vn−1

(

Bn−1
2 [n − 2], C

)

=
κn−1

κn−2

∫

Sn−1∩θ⊥

hC(u′)du′.

We now focus on the quantity 
∫

Sn−1 |〈u, θ〉|hC(u)du. Due to the fact that C ⊂ θ⊥, it simplifies greatly. 

Apply Lemma 3.2 to the 2-homogeneous function |〈u, θ〉|hC(u) to obtain

∫

Sn−1

|〈u, θ〉|hC(u)du = κn

∫

Rn

|〈x, θ〉|hC(x)dγn(x).

Using Fubini’s theorem and rotation invariance to compute this last integral, we get

∫

Rn

|〈x, θ〉|hC(x)dγn(x) =

∫

R

|x1|dγ1(x1)

∫

θ⊥

hC(x)dγn−1(x) =
2√
2π

∫

θ⊥

hC(x)dγn−1(x).

Now apply Lemma 3.2 to hC(u), which is 1-homogeneous, but defined in dimension n − 1,

∫

θ⊥

hC(x)dγn−1(x) =
Γ(n

2 )
√

2π
n−1

2

∫

Sn−1∩θ⊥

hC(u′)du′.

We thus obtain

∫

Sn−1

|〈u, θ〉|hC(u)du =
κnΓ(n

2 )

π
n
2

∫

Sn−1∩θ⊥

hC(u′)du′ =
2

n

∫

Sn−1∩θ⊥

hC(u′)du′.

When inserting the above relations for 
∫

Sn−1 |〈u, θ〉|hC(u)du and 
∫

Sn−1 hC(u)du into (48), we see that every 

term has 
∫

Sn−1∩θ⊥ hC(u′)du′ in it. It then cancels, and so it suffices to show

1 ≥ A
κn

Iμ(R)

(

1 − RW ′(R)

n

)

.

Writing Iμ(R) in polar coordinates, we obtain that 1
κn

Iμ(R) = n 
∫ 1

0
eW (R)−W (Rt)tn−1dt. Inserting this into 

the above yields the claim. �

We now state the main result of this section, which is that A = 1 when B is a centered zonoid and μ is 

rotational invariant, log-concave Borel measure.
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Theorem 3.4. Let μ be a rotational invariant measure on Rn of the form dμ = e−W (|x|)dx for an increasing, 

convex W : [0, ∞) → R. Then, for every R > 0, a centered zonoid Z and a compact, convex set C, one has

μ(RBn
2 ; Z)μ(RBn

2 ; C) ≥ κ2
n−1

κn−2κn
μ(RBn

2 )μ(RBn
2 ; Z, C).

Proof. Since the function W is convex, it is differentiable almost everywhere; by approximation, we can 

assume W is differentiable. Then, from Lemma 3.3, it suffices to show that

1 ≥ n

1
∫

0

eW (R)−W (Rt)tn−1dt

(

1 − RW ′(R)

n

)

.

If R is so that RW ′(R) ≥ n then we are done, as the right-hand-side is non-positive. So, suppose RW ′(R) <

n. Notice, from convexity, one has

W (R) − W (Rt)

R − Rt
≤ W ′(R).

Therefore, we see that

(

1 − RW ′(R)

n

)

n

1
∫

0

eW (R)−W (Rt)tn−1dt ≤
(

1 − RW ′(R)

n

)

n

1
∫

0

eW ′(R)R(1−t)tn−1dt.

Next, using the Taylor series expansion of the exponential function, we use uniform convergence to inter-

change the integral and the summation:

(

1 − RW ′(R)

n

)

n
∞

∑

k=0

(RW ′(R))k

k!

1
∫

0

(1 − u)kun−1du=

(

1 − RW ′(R)

n

) ∞
∑

k=0

(RW ′(R))k n!

(k + n)!
,

where we computed that n 
∫ 1

0
(1 − u)kun−1du = nB (k + 1, n) = k!n!

(k+n)! , with B(x, y) the Beta function. 

Next,

∞
∑

k=0

(RW ′(R))k n!

(k + n)!
= 1 +

∞
∑

k=1

(

RW ′(R)

1 + n

)

· · ·
(

RW ′(R)

k + n

)

.

But, notice that, since W ′(R)R < n < n + 1,

1 +

∞
∑

k=1

(

RW ′(R)

1 + n

)

· · ·
(

RW ′(R)

k + n

)

≤
∞

∑

k=0

(

W ′(R)R

n + 1

)k

=
1

1 − W ′(R)R
n+1

=
n + 1

n + 1 − W ′(R)R
.

Consequently,

(

1 − RW ′(R)

n

)

n + 1

n + 1 − W ′(R)R
=

n + 1

n

n − RW ′(R)

n + 1 − W ′(R)R
=

n + 1

n

(

1 − 1

n + 1 − W ′(R)R

)

.

But W ′(R)R increases with R, and thus the quantity above decreases with R. Therefore, the quantity is 

maximized when R = 0, which is precisely 1. �
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Let us show a general approach to obtain sharper constants. Suppose one considered finding Aμ,R such 

that, for a Borel measure μ on Rn of the form dμ(x) = e−W (|x|)dx for W : [0, ∞) �→ R, and a fixed R > 0, 

one has for every compact, convex set C and Z ∈ Zn that

μ(RBn
2 ; Z)μ(RBn

2 ; C) ≥ Aμ,R
κ2

n−1

κn−2κn
μ(RBn

2 )μ(RBn
2 ; Z, C).

One sees from Lemma 3.3 that, if dμ(x) = e−W (|x|)dx with W : [0, ∞) → R differentiable, increasing, and 

convex, then one needs

1 ≥ Aμ,R

1
∫

0

eW (R)−W (Rt)tn−1dt (n − RW ′(R)) . (49)

If n ≤ RW ′(R), then (49) is non-positive and so any choice of Aμ,R works (this implies that μ(RBn
2 ; Z, C) ≤ 0

in this case, so the bound is trivial). If n > RW ′(R), then, from the end of the proof of Theorem 3.4, we 

are able to set Aμ,R to be the reciprocal of the final bound, that is

Aμ,R =
n

n + 1

(

1 +
1

n − W ′(R)R

)

. (50)

Notice (50) is increasing in R; where the value of 1 corresponds to limR→0 Aμ,R = 1. So, for an arbitrary 

R > 0, Aμ,R ≥ 1, and equals 1 if, and only if, μ is a constant multiple of the Lebesgue measure.

3.2. Improved inequalities for a special class of measures

We see, however, that we can do even better by avoiding the estimate W (R)−W (Rt)
R−Rt ≤ W ′(R) in Theo-

rem 3.4. While we cannot avoid this for general rotational invariant μ, we avoid this in the Gaussian case, 

and also, in general, in the case of measures of the form dμ = αe−|x|p/βdx for some α, β > 0 and p ≥ 1. We 

first start with a technical lemma.

Lemma 3.5. Let β > 0, p, n ≥ 1 and R > 0 so that Rp ∈
(

0, β + βn
p

)

. Then,

1 +
pRp

pβ + βn − pRp
≥ n

1
∫

0

e
Rp

β
(1−rp)rn−1dr.

In particular, for R = 1 and p = β = 2,

1 +
1

n + 1
≥ n

1
∫

0

e
(1−r2)

2 rn−1dr.

Proof. Start by writing the right-hand side as

n

p

1
∫

0

e
Rp

β
(1−rp)prn−1dr.

Next, let u = rp. Then, u
n
p

−1du = prn−1dr, and the right-hand side becomes
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n

p

1
∫

0

e
Rp

β
(1−u)u

n
p

−1du.

Using the Taylor series expansion of the exponential function, and then the uniform convergence to inter-

change the integral and the summation, yields:

n

p

∞
∑

k=0

Rkp

βkk!

1
∫

0

(1 − u)ku
n
p

−1du.

Notice that

n

p

1
∫

0

(1 − u)ku
n
p

−1du =
n

p
B

(

k + 1,
n

p

)

=
k!Γ

(

n
p + 1

)

Γ
(

k + 1 + n
p

) ,

where Γ(x) is the Gamma function. Inserting this computation into the above series yields

∞
∑

k=0

(

Rp

β

)k Γ
(

1 + n
p

)

Γ
(

k + 1 + n
p

) .

But this can be written as

1 +

∞
∑

k=1

(

Rp

β

)k
1

(

k + n
p

)

· · ·
(

1 + n
p

) = 1 +

∞
∑

k=1

pRp

pβk + βn
· · · pRp

pβ + βn
.

But, notice that, from our choice of R,

1 +
∞

∑

k=1

pRp

pβk + βn
· · · pRp

pβ + βn
≤

∞
∑

k=0

(

pRp

pβ + βn

)k

=
1

1 − pRp

pβ+βn

,

which yields our result. �

Theorem 3.6. Fix n ≥ 2, p ≥ 1, and α, β > 0. Let ν be the Borel measure on Rn given by dν = αe− |x|p

β dx. 

Fix R > 0. For a centered zonoid Z and a compact, convex set C,

ν(RBn
2 ; Z)ν(RBn

2 ; C) ≥ Aν,R
κ2

n−1

κn−2κn
ν(A)ν(RBn

2 ; Z, C),

where

Aν,R =

(

1 − pRp

pβ + βn

) (

1 +
pRp

βn − pRp

)

.

Proof. From Lemma 3.3 one needs to show that Aν,R satisfies

1 ≥ Aν,R

1
∫

0

e
Rp

β
(1−rp)rn−1dr

(

n − pRp

β

)

.

If Rp ≥ βn
p then the right-hand side is non-positive, and we are done. Otherwise, one obtains the result 

from Lemma 3.5, which we can use since Rp ≤ βn
p < β + βn

p . �
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We next apply Theorem 3.6 to the case of the Gaussian measure and the unit ball, to demonstrate 

straight explicitly how the bounds we obtain improve the volume case and (50).

Corollary 3.7. Fix n ≥ 2. Let Z be a centered zonoid and C a compact, convex set. Then,

γn(Bn
2 ; Z)γn(Bn

2 ; C) ≥ n

n − 1

n + 1

n + 2

κ2
n−1

κn−2κn
γn(Bn

2 )γn(Bn
2 ; Z, C). (51)

From using a geometric series to approximate the Taylor series in Lemma 3.5, the above result is still 

not sharp. If we allow β to depend on p, then we can improve our bound by using Jensen’s inequality. For 

simplicity, we consider only the case when R = 1. For general R, the quantities β and p would depend on 

R as well.

Lemma 3.8. Suppose p, n ≥ 1 and pick β so that β ≥ 1 + 1
p−1 . Then,

n

1
∫

0

e
(1−rp)

β rn−1dr ≤ e
1−

(

n
n+1

)p

β .

Proof. Observe that nrn−1dr is a probability measure on [0, 1]. Furthermore,

d2

dr2
e

(1−rp)
β =

p

β
e

(1−rp)
β rp−2

[

p

β
rp − (p − 1)

]

.

From the choice of β, this is less than 0 for all r ∈ [0, 1]. Hence, from Jensen’s inequality

n

1
∫

0

e
(1−rp)

β rn−1dr ≤ exp

⎛

⎝

1

β

⎡

⎣1 −

⎛

⎝n

1
∫

0

rndr

⎞

⎠

p⎤

⎦

⎞

⎠,

which is our claim. �

Corollary 3.9. Fix n ≥ 2, p ≥ 1, α > 0, and β ≥ 1 + 1
p−1 . Let ν be the Borel measure on R

n given by 

dν = αe− |x|p

β dx. For Z a centered zonoid and C a compact, convex set,

ν(Bn
2 ; Z)ν(Bn

2 ; C) ≥ Aν
κ2

n−1

κn−2κn
ν(A)ν(Bn

2 ; Z, C),

where

Aν =
n

n − 1
e

(

n
n+1

)p
−1

β .

It is not true a priori that the constant in Corollary 3.9 is sharper than in Theorem 3.6. This is true in 

the case of the Gaussian measure.

Theorem 1.7. Fix n ≥ 2. Let Z be a centered zonoid in Rn and C a compact, convex set in Rn. Then,

γn(Bn
2 ; Z)γn(Bn

2 ; C) ≥ e
− (2n+1)

2(n+1)2
n

n − 1

κ2
n−1

κn−2κn
γn(Bn

2 )γn(Bn
2 ; Z, C).

Furthermore, this inequality is sharper than in Corollary 3.7.
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Proof. The first claim follows from Lemma 3.8, Lemma 3.3 and the fact that

e
1−

(

n
n+1

)2

2 = e
2n+1

2(n+1)2 .

Now, we must show that

e
2n+1

2(n+1)2 ≤ n + 2

n + 1
= 1 +

1

n + 1
,

which is true, as the function given by 1 + 1
x+1 − e

2x+1

2(x+1)2 is positive for all x ∈ R
+ and decreases to 0

asymptotically as x → ∞. �

4. Concluding remarks

There are questions related to those discussed in this paper that we briefly comment on. Firstly, it was 

noticed by [18] that the supermodularity property

Voln(A) + Voln(A + B + C) ≥ Voln(A + B) + Voln(A + C) (52)

holds for any convex bodies A, B, C in Rn (in fact, they also conjectured that it should hold for arbitrary 

compact sets B, C when A is convex, and proved this in dimension 1). It turns out that the possible negativity 

of the mixed measure γn(A; B, C) immediately implies (by using an equivalence theorem discussed, for 

example, in [20], where the inequality (52) was shown to be equivalent to nonnegativity of certain mixed 

volumes) that such a supermodularity property cannot hold when volume is replaced by Gaussian measure. 

Further details may be found in the companion paper [16].

In another direction, although Vol(1/n)
n is not fractionally superadditive on the set of compact sets in Rn

thanks to the counterexample of [17] (and hence is neither supermodular nor Schur-concave, as observed 

in [42]), it was proved recently by [4] that Voln is fractionally superadditive on compact sets in Rn. Such 

questions for more general measures than volume are also discussed in the companion paper [16].
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