J. Math. Anal. Appl. 529 (2024) 127519

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Weighted Brunn-Minkowski Theory I: o |
On weighted surface area measures e

Matthieu Fradelizi ', Dylan Langharst »"?, Mokshay Madiman ©,
Artem Zvavitch P52

# Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, LAMA UMRS8050, F-77447 Marne-la-Vallée, France
b Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

¢ University of Delaware, Department of Mathematical Sciences, 501 Ewing Hall, Newark, DE 19716,
USA

ARTICLE INFO ABSTRACT

Article history:

Received 26 December 2022
Available online 14 June 2023
Submitted by J. Bastero

The Brunn-Minkowski theory in convex geometry concerns, among other things, the
volumes, mixed volumes, and surface area measures of convex bodies. We study gen-
eralizations of these concepts to Borel measures with density in R™ — in particular,
the weighted versions of mixed volumes (the so-called mixed measures) when dealing
with up to three distinct convex bodies. We then formulate and analyze weighted

Keywords:

Brunn-Minkowski theory
Surface area

Gaussian measure
Zonoids

Mixed volumes

Mixed measures

versions of classical surface area measures, and obtain a new integral formula for
the mixed measure of three bodies. As an application, we prove a Bézout-type
inequality for rotational invariant log-concave measures, generalizing a result by
Artstein-Avidan, Florentin and Ostrover. The results are new and interesting even
for the special case of the standard Gaussian measure.

Published by Elsevier Inc.

Contents
1. Introduction . . . . . . . 2
1.1, Background . . . . . .. .. 2
1.2.  Representation formulae for mixed measures . . ... ... ... ... .. 3
1.3.  Weighted versions of Minkowski’s inequalities . ... ... ... .. . . . ... . . . ... 5
1.4. Bezout-type inequalities and local log-submodularity . ........... ... . ... .. . . ... . ... 7
2. Mixed measures and weighted surface area . .. ... ... .. ... . 9
2.1.  Properties of mixed mMeaSUIES . . . . . . . .. 9
2.2.  Weighted surface area and mixed measure of two bodies . . .. ... ... ... ... 10
2.3.  Integral representation formula for pu(A; B,C) . ... ... . 13

* Corresponding author.

E-mail addresses: matthicu.fradelizi@Quniv-eiffel.fr (M. Fradelizi), dlanghar@kent.edu (D. Langharst), madiman@udel.edu
(M. Madiman), azvavitc@kent.edu (A. Zvavitch).
1 Supported in part by the Bézout Labex funded by ANR, reference ANR-10-LABX-58.
2 Supported in part by the U.S.-Israel Binational Science Foundation (BSF) Grant 2018115, and completed while the authors were
in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Harmonic
Analysis and Convexity program; this residency was supported by the National Science Foundation under Grant DMS-1929284.

https://doi.org/10.1016/j.jmaa.2023.127519
0022-247X /Published by Elsevier Inc.



2 M. Fradelizi et al. / J. Math. Anal. Appl. 529 (2024) 127519

2.4.  Weighted versions of Minkowski’s first and second inequalities . . ... ..... ... ... .. ... . ... ..., . 16

2.5.  The Gaussian measure in the plane. . . ... ... . .. L 19

3. Local log-submodularity . .. ... ... .. 20
3.1. Inequalities for rotationally invariant log-concave measures ... .......... ... ... . ... ... ... 20

3.2.  Improved inequalities for a special class of measures . . . .. ... ... ... 25

4. Concluding remarks . . . . . . 28
References . . . . . 28

1. Introduction
1.1. Background

The study of convex bodies (compact, convex sets in R™ with non-empty interior) goes back over one
hundred years, to the works of Minkowski [44], Fenchel [14], and Aleksandrov [1], among others. One of the
core theories in this study is the Brunn-Minkowski theory, which focuses on the interaction of the volume
of convex bodies and their Minkowski sums. The Brunn-Minkowski theory is thoroughly detailed in the
textbook of Schneider [50], and we will make frequent reference to it. For compact sets K, L C R™, their
Minkowski sum, or just sum, is precisely K + L = {a+b: a € K,b € L}. Denoting by Vol,, the Lebesgue
measure on R™, the Brunn-Minkowski inequality states that for ¢ € (0,1) and compact, convex sets K and L

Vol,, (1 — t)K + tL)Y™ > (1 — t)Vol,, (K)/™ + tVol,, (L)*/™,

with equality if, and only if, K and L are homothetic, i.e. K = aL + b for some a € R,;b € R". One says
that Vol,, is 1/n-concave with respect to Minkowski summation; more generally, a function is a-concave for
a > 0 if f* is concave. Since a weighted arithmetic mean always dominates a weighted geometric mean,
one obtains that the volume is also log-concave:

Vol,, (1 = t)K +tL) > Vol,,(K)'~*Vol, (L),

and, in fact, this is equivalent to the Brunn-Minkowski inequality.

It has been of significant interest to understand convex geometry as being embedded in some more
general analytical framework. One such program, dubbed the “geometrization of probability” program by
V. Milman, has seen two complementary approaches adopted — involving log-concave functions (see, e.g.,
[25,9]) and log-concave measures (see, e.g., [5,41]). In another direction, the fact that the Brunn-Minkowski
inequality is intimately related to the interaction between the metric and the canonical measure on a
FEuclidean space has led to vast generalization in the theory of metric measure spaces and their synthetic
geometry (see, e.g., [57]).

The goal of this work is to explore yet another analytic generalization of Brunn-Minkowski theory —
namely, how other measures on R™ (specifically, measures with certain concavity properties akin to those
possessed by the Lebesgue measure) interact with Minkowski sums of convex bodies, in what we call the
weighted Brunn-Minkowski Theory. As an example, we will consider log-concave measures, where y is log-
concave if, for any ¢ € [0, 1] and for any compact K and L,

p((1 = t)K +tL) > p(K)' (L)

The inequality of Prékopa-Leindler [47,31,32] in conjunction with a result of Borell [7] classifies the log-
concave measures by showing that a measure is log-concave if, and only if, its density is a log-concave
function on its support. The standard Gaussian measure on R”, which is given by
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dn () = 1ol g,

(2m)"/2
where | - | denotes the standard Euclidean norm, is such a measure.

Now that we have given an example of a measure with a concavity property, we discuss some concepts
from the Brunn-Minkowski theory and their weighted analogues; several of these will be new. Many of the
analogues hold for measures with a concavity property in a very general sense, as explored later in this
paper. However, for the sake of readability, we focus on the Gaussian measure in the introduction.

1.2. Representation formulae for mized measures

Let us review some well known facts from convex geometry, which may be found in the textbook of
Schneider [50]. Steiner’s formula states that the volume of the Minkowski sum of two compact, convex sets
can be expanded as a polynomial of degree n: for every ¢ > 0, convex body K and compact, convex set L,
both in R™, one has

n

n
Vol,, (K + tL) = (
— \J

>ﬁVuﬂn—jLLM%

where V(K [n — j], L[j]) is the mized volume of (n— j) copies of K and j copies of L. When j = 1, one often
writes V(K[n — 1], L). By taking the derivative, one obtains

V(K —1],L) = L i Yon(E Fel) = Voln(K) _ % / o (u)dS (1), (1)

n e—=0 €

Sn—l

where hp(z) = sup,c,(y, ) is the support function of L, and Sk is the surface area measure of K. We will
discuss the formal definition of the surface area measure below (see Section 2.2); essentially, if the Gauss
map ng : 0K — S"! associates a vector in the boundary 0K of K with its outer unit normal on the unit
sphere (S"~1), then Sk is a Borel measure on the sphere induced by the Gauss map. Let us mention here
that Ci convex bodies are those with positive curvature and C? support function.

The first step in a weighted Brunn-Minkowski theory is to generalize mixed volumes. Since (1) has nothing
to do with the concavity of the volume, when given an arbitrary Borel measure i, and Borel sets K and L,
the p-mixed measure of K and L can be defined as

(K + L) — u(K)

p(K5 L) = lim inf & : , 2)

when the lim inf is finite. Heuristically, if the limit exists, this is precisely the first coefficient in the Taylor
series expansion of u(K +tL) (in the variable t). This terminology was introduced by Livshyts in [37], and has
been used in other works recently, see e.g. [23,26,29,37]. It has appeared previously in many works without
being explicitly given the name mixed measures, see e.g. [10,27,43,46,54]. For Borel sets K and L containing
the origin with finite ; measure, the limit exists when p has continuous density. If A,, denotes the Lebesgue
measure, then (2) is consistent with mixed volumes up to a factor n i.e. A, (K;L) =nV(K[n — 1], L).

We emphasize that we deliberately avoid using the notation u(K[n — 1], L), which some authors have
used for u(K; L) in the past to allude to the notation for mixed volumes, because the dimension n plays a
distinctive role only in the case of the volume (more precisely, the volume of a Minkowski sum of convex
sets is a homogeneous polynomial of degree n, but this polynomiality generally fails for other measures,
where the best we can do is look for coefficients of a putative power series expansion).

One would like to prove an integral representation of mixed measures. The first step, therefore, is to
introduce weighted surface area measures. As usual, H"~! will denote the (n — 1)-dimensional Hausdorff
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measure of a given surface. However, for brevity, we may abuse notation to write dx for dH"~*(z); this is
to be understood by context. We will discuss in Section 2.2 the formal definition of weighted surface area;
let us now just explain why it exists. Let K be a convex set; for a Borel measure p on R™ with density ¢,
denote the py-measure of 9K, or the weighted surface area, as

it (OK) = lim inf p(K *635) —nE) _ / o(y)dy, (3)
0K

where the second equality holds if there exists some canonical way to select how ¢ behaves on K. A large
class of functions consistent with (3) is when ¢ is continuous. That is, if x4 has continuous density ¢ on R™,
then it will induce a Borel measure on 0K which has density ¢ with respect to the (n — 1)-dimensional
Hausdorff measure on K. Therefore, one can define the weighted surface area measure, denoted S, for any
Borel measure p on R™ with continuous density ¢ via the Riesz-Markov-Kakutani representation theorem,
since, for a continuous f € C(S"1),

f= | fnx(y)e(y)dy
/

is a positive linear functional. That is, by definition S satisfies the following change of variables formula:

/ F (s () (y)dy = / F(u)dSt (u).
OK

Sn—1

Notationally, one has Sk (S"~!) = u*(9K). An early work that used T for the weighted surface area is
K. Ball’s work [3] on Gaussian measure 7y,. For a compact set K,

W (K + eBY) — (K _ -
v (OK) = lim inf 22+ €BE) = ):(gﬂ) n/2/6 2[2/2
e—0 €
oK

K. Ball showed [3] that for a compact, convex set K, one has v, (0K) < 4n'/4, and F. Nazarov proved
[46] that this bound is asymptotically sharp. Livshyts obtained bounds similar to that of K. Ball for other
classes of rotational invariant log-concave measures [33-35,38].

With this rigorous definition of weighted surface area available, one can prove (see [28]), using Lemma 2.4
below, the following integral representation of mixed measures by setting f = hp for some compact, convex
set L C R™ (see [37] for an alternative proof).

Proposition 1.1 (Representation of mixed measures). Let L be a compact, conver set and K a convex body
with the origin in its interior in R™. Suppose u is a Borel measure on R™ with continuous density. Then,

WD) = [ hu(u)asi ). (4)

Sn—1

In general p(K) # p(K; K), unlike in the volume case (though see the beginning of Section 2.2 for a different
relation between these quantities).

It turns out there exists also a Steiner formula for Vol,, (K + t1 L + toLs); the coefficient of ¢1¢5 in the
corresponding polynomial expansion is the mixed volume of (n — 2)-copies of K, one copy of Ly, and one
copy Lo and is given by
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VK= 2 LiLo) = [ e (dSicpzn0) = [ b, (0)dSioa, . w) (5)

Sn—1 Sn—1

3

where dSk(n—2),r,(u) and dSk{,—2),1,(u) are the mized area measures, and the second equality is to em-
phasize that the mixed volume is invariant under permutation of the compact, convex sets L1 and Ly. The
surface area measure of the Minkowski sum of compact, convex sets is related to the mixed area measures
via a polynomial structure in the same way that volume and mixed volume are related (see [50, Section
5.1]).

Our first (new) contribution to what we call the weighted Brunn-Minkowski theory is the weighted
analogue of (5).

Definition 1.2. Let p be a Borel measure on R™. Then, for Borel sets A, B,C C R™ with finite y-measure,
the mixed measure of (n — 2) copies of A, one copy of B and one copy of C is given by

32
WA B,C) = 5 (A + 5B +1C)(0,0)

whenever the mixed derivative exists.

In general u(K) # u(K; K, K) # p(K; K). However, from the Schwarz theorem of standard multi-variable
calculus, one has that u(A; B,C) = u(A; C, B). For the Lebesgue measure, one has

An(K:; L, M) =n(n— 1)V (K[n—2],L, M).

We will show below in Remark 2.9 that, if A is a convex body, B and C are compact, convex sets and
1 has a C? smooth density, then the mixed derivative exists. Furthermore, if A is of the class C’_2H then we
obtain an integral formula for p(A4; B, C). We state the result for the standard Gaussian measure here.

Theorem 1.3. If A is a convex body of the class Cf_, and B,C are compact convex sets in R™, then

(2m)"/ %4 (A; B,C) = (n— 1) / e Va2 (u)dS g1, 51y (1)
Snfl
— /<VhA(u),VhB(u)>hc(u)e—‘VhA(u”z/?dsA(u).
Sn—l

Our first main result, Theorem 2.7, is a generalization of this formula for more general Borel measures
with smooth densities.
As an example of how this quantity differs from the volume case, let B = [—¢,¢] for some £ € S~ 1.
a. a.e.

Then hp(u) = [(€,u)] yields Vhp(u) = sgn(€, u)é, where =" denotes equality up to a set of zero volume
and sgn(a) = a/|a| for a € R\ {0} and sgn(0) = 0. Therefore, we see from (6) that

(2m)" 2y (A5 [€, €], [€,€)) = — /<VhA(U),§><€7U>€_'VhA(“)'2/2dSA(U)a (7)

Sn—1

in contrast with the volume case where V(A[n — 2], [=¢&,¢],[=¢&,&]) = 0.
1.3. Weighted versions of Minkowski’s inequalities

The Brunn-Minkowski inequality implies various inequalities for the mixed volumes. Minkowski’s first
and second inequality for volume state that, for compact, convex sets K and L in R™,
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V(K[n —1],L)" > Vol, (K)"*Vol, (L), (8)
and
V(K[n —1],L)* > Vol,,(K)V(K[n — 2], L[2]). (9)

Equality holds in inequality (8) if and only if K and L are homothetic. We remark that Vol,,(K) = V(K[n—
1], K) = V(K[n — 2], K[2]). Minkowski’s second inequality is merely a special case of Minkowski’s quadratic
inequality: for A, B, C' compact, convex sets, one has

V(Aln —2],B,C)* = V(Aln —2],B, B)V(A[n —2],C,C) > 0.

This, in turn, is a special case of the Aleksandrov-Fenchel inequality (which we do not discuss). We do
mention however that despite having existed in the literature for over a century, the full equality conditions
to Minkowski’s second and quadratic inequalities were only established very recently by R. van Handel and
Y. Shenfeld [51].

In Theorem 2.12, we generalize the inequalities (8) and (9). We only discuss the Gaussian case here; the
general results can be found in Section 2. The log-concavity of -, over the set of Borel sets yields for such
K and L that the following Minkowski’s first inequality for the Gaussian measure holds:

n).

Y (K3 L) — 7 (K5 K) > 4, (K) log (

with equality if, and only if, K = L. This had been obtained previously in [37].
However, the Gaussian measure actually has other types of concavity than just log-concavity. Indeed, the
Ehrhard inequality states for 0 <t < 1, Borel sets K and L in R™, and the Gaussian measure ~,:

O (L= t)K +tL)) = (1 = )27 (4 (K)) + 27" (1 (L)), (10)

ie. @1 o, is concave, where ®(z) = 71((—o0,z)). It was first proven by Ehrhard for the case of two
closed, convex sets [12]. Latala [30] generalized Ehrhard’s result to the case of an arbitrary Borel set K and
a convex set L; the general case for two Borel sets of the Ehrhard’s inequality was proven by Borell [8].
Since @ is log-concave, the Ehrhard inequality is strictly stronger than the log-concavity of the Gaussian
measure, and yields the following analogue of Minkowski’s first inequality for Gaussian measure.

Theorem 1.4. For Borel sets K and L in R™, we have

i) 20 K) > [ e ) s ) 0100 (1)

™

The Gaussian measure satisfies other types of concavity if one restricts the sets under consideration.
Kolesnikov and Livshyts showed that the Gaussian measure is %—concave on the class of convex bodies
containing the origin in their interior [26]. If one further restricts the admissible sets, one can do even better.
A compact, convex set K is said to be symmetric if K = —K. Gardner and Zvavitch [22] conjectured that,

for symmetric convex bodies K and L and t € [0, 1],
Yo (1=K +¢L)"" > (1= )y (K" + 19 (D)7, (12)

i.e. v, is 1/n-concave over the class of symmetric convex bodies. An example given in [45] shows that
assumption on K and L having some symmetry is necessary. Important progress was made in [26], which
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led to the proof of the inequality (12) by Eskenazis and Moschidis in [13] for symmetric convex bodies.
Using this, we obtain the following analogue of Minkowski’s first inequality for Gaussian measure when we
restrict to symmetric convex bodies.

Theorem 1.5. For symmetric convex bodies K and L in R™, one has

n—1

V(K3 L) = (K3 K) 2 0y (D) (K) 5 = ny(K), (13)
with equality if, and only if, K = L.

Notice that (13) is very similar to Minkowski’s first inequality (8). Unfortunately, one cannot improve
(13) to obtain (8) for the Gaussian measure; we show below that for a convex body K containing the origin
in its interior, one always has v, (K; K) = nv,(K) — [} |[2[2dy,(x) < ny,(K). Both (11) and (13) imply an
isoperimetric-type result: if v, (K) = v, (L), then v, (K; L) > v,(K; K).

Define the following class of Borel measures

M := { ;1 Borel measure onR": dy = e~V (2D,

(14)
W :(0,00) = (—o00,00], ¢ — W (e") is convex} .

This class contains every rotational invariant, log-concave measure as well as the Cauchy measures. Recently,
Cordero-Erasquin and Rotem [11] extended the result by Eskenazis and Moschidis to every measure u € M,
i.e. every Borel measure p € M is 1/n-concave over the same class of symmetric convex bodies. Thus the
analogue of Minkowski’s first inequality contained in Theorem 1.5 actually extends to all u € M, which is
the content of Theorem 2.13.

We, as mentioned, also obtain Minkowski’s second inequality for p(A; B,C). We present here the case
of the Gaussian measure using (12); the reader can deduce from the result in Theorem 2.12 other such
inequalities for the Gaussian measure and other measures with concavity.

Theorem 1.6. Let K and L be symmetric convex bodies in R™. Then,

(’Yn(KvL) - ’Yn(K;K))2 > %Vn(K) ('Yn(K; LvL) - 27n(K;K7 L) +’Vn(K; K7 K))

1.4. Bezout-type inequalities and local log-submodularity

Despite being a very old tool, new facts about the volume of Minkowski sums and mixed volumes are still
being discovered. One such area of interest is the study of the reverse of Minkowski’s quadratic inequality,
in what is known as Bézout-type inequalities. More precisely, if C is a class of compact, convex sets closed
under Minkowski summation, and given a fixed compact, convex set A € C, what is the smallest constant
Be(A) such that every B, C € C the following inequality holds

Vol (A)V(Aln — 2], B, C) < Be(A)V(A[n — 1], B)YV (A[n — 1], C)?

One then sets Be = sup g¢¢ Be(A). Let K™ denote the class of all compact, convex subsets of R™. Then,
Fenchel’s inequality is precisely that Bixn = 2. This inequality was first established by Fenchel [14], and a
more accessible proof is in [15]. However, both those proofs use the Aleksandrov-Fenchel inequality. In the
sequel to this work [16], we establish Fenchel’s inequality directly from the Brunn-Minkowski inequality and
the limit definition of mixed volumes.
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The study of these inequalities started with the Bézout inequality for mixed volume, which asserts that
Bicn (Ay) = 1, where A, is the regular n-dimensional simplex. It was conjectured by Soprunov and the
last named author [52] that this characterizes the simplex, and this conjecture was confirmed in R? R?
and when B,C € P", the class of polytopes in R™ [48,49]. Recent progress has been made towards this
conjecture [55,56].

T

has gained a lot of interest as of late [6,19,20]. This special case is therefore sometimes known as local

It turns out that showing Be = is equivalent to volume being log-submodular over that class, which

log-submodularity since it follows from differentiation; that is, volume is local log-submodular over a class
C of compact, convex sets if for every A, B,C € C one has

n—1

V(A[n—1],B)V(A[n—1],C) >

Vol,,(A)V (A[n — 2], B, 0). (15)

A centered zonotope Z is the Minkowski sum of symmetric line-segments, i.e. it can be written in the
form

Z = Zai[—ui7ui], u; € Sn_l, a; € R. (16)

i=1

Furthermore, a centered zonoid is the limit, with respect to the Hausdorff metric, of a sequence of centered
zonotopes; Z™ denotes the set of centered zonoids in R™. A zonoid (resp. zonotope) is merely a translation of
a centered zonoid (resp. zonotope). Due to the translation invariance of the Lebesgue measure, all mentioned
results that hold for centered zonoids hold for zonoids; as we will see, the distinction becomes crucial in the
weighted case.

A subset of the authors, working with Meyer, showed that Bz» = "5 in R? and R? [19]; the 2-dimensional
case follows from [52]. Since every symmetric convex body in R? is a zonoid, this means that (15) holds
for all A, B,C € K? [52]. Prior to this work, the case where A = B} and B,C € Z" was established by
Hug and Schneider [24]. Artstein-Avidan, Florentin, and Ostrover [2] extended this result to the case where
A =B}, Be€ Z" and C € K". In fact, they showed the following sharper inequality, with &, = Vol (B%)
and B =2:

n—1 k2_,
Vol,,(A)V (A[n — 2], Z,C), (17)

n - RKp-2kn

V(B3[n—1],Z)V(Bgn—1],C) >

which is sharper since

2
1§£§1+ 1 )
Kn—2Kn n—1

Unfortunately, since these results hold only for the fixed body A = Bj, the equivalence between local
log-submodularity and log-submodularity does not hold. If we replace mixed volumes with mixed measures
when the measure p is the Lebesgue measure \,,, (17) becomes

2
An(BE: Z)An (B C) > —1=L Vol (A)An(A4; Z, C). (18)

Rp—2Kn

As an application of our formulas for mixed measures, we extend (18) to the setting of rotational invariant
log-concave measures in Theorem 3.4 below, and this result reduces directly to (18) when the measure is set
to be the Lebesgue measure. However, an interesting phenomenon occurs; due to the fact that general log-
concave measures are not necessarily homogeneous, we replace By with RB3, R > 0, and, as a consequence
of the proof of Theorem 3.4, we can obtain a constant that is monotonically increasing in R, whose minimum
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value is obtained as R — 01; as R — 0T, the constant reduces to the same constant from the volume case
(see (50)). That is, for every R > 0, we obtain an inequality sharper than the volume case. However, we can
do even better. If one knows a bit about the structure of a given log-concave measure, the constant can be
further improved, see Theorem 3.6. The Gaussian measure is a special case, see Corollary 3.7. That being
said, if we know from the beginning we are working with the Gaussian measure and the unit Euclidean ball,
we obtain this final result.

Theorem 1.7. Fiz n > 2. Let Z be a centered zonoid in R™ and C' a compact, convez set in R™. Then, one
has
N N _Gnty o K2 N N
V(B33 Z) (B33 C) > e 20D mm’Yn(Bz ) (B33 Z,C).

This paper is organized as follows. Section 2 is dedicated to deriving some basic of properties of mixed
measures, explored further in the sequel [16] (in Section 2.1), deriving formulas for mixed measures (in
Section 2.2) and exerting some effort to further establish the theory in the case of the Gaussian measure in
the plane (Section 2.5). In Section 3, we establish, as an application of our formulas, a Gaussian counterpart
to a reverse Aleksandrov-Fenchel type inequality originally done in the volume case by Artstein-Avidan,
Florentin, and Ostrover [2]. Finally, in Section 4, we list some concluding remarks concerning connections
between the measure of Minkowski sums of compact sets and mixed measures, which are explored in the
companion paper [16].

2. Mixed measures and weighted surface area
2.1. Properties of mized measures

In this section, we establish some properties for mixed measures. For a convex set K containing the
origin, notice that, for ¢ € [0,1], (2) yields p(tK; K) = 4 (tK), where the limit exists almost everywhere
since the function u(¢K) is monotonic in t. Consequently, integrating yields

W) = [ e K. (19)

We also note, by writing out the limit definition of the derivative, that for a Borel measure p on R™ and
Borel sets A, B and C in R™ such that u(A; B, C) from Definition 1.2 exists, one has

1(A; B, C) = Tim AT 3B C) = (A €) (20)

s—0 S

In particular, one sees that if A is convex

(e 4,0) = PEAC)
We therefore deduce that
1
w(A4;C) :/,u(tA;A,C)dt. (21)
0

Notice that if A and B are convex, then
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2

2 d2
= 636t'u(A + (s +1)B)(0,0) = @“(A +5B)|,_,- (22)

The above second derivative of pu(A + sB) was discussed in [27].
2.2. Weighted surface area and mixed measure of two bodies

The formal definition of the surface area measure is the following, for K C R™ a compact, convex set:

Sk (E) = / " () (23)

ny' ()

for every Borel measure E C S"~!, where H"~! is the (n — 1) dimensional Hausdorff measure. Here, the
Gauss map nx : 0K — S™~! associates an element on the boundary of K with its outer unit normal. The
Gauss map is unique for almost all z € K. A convex body is said to be strictly convez if K does not
contain a line segment, in which case the Gauss map is an injection between 0K \ {z : nx (x) is not unique}
and S"~!. The Gauss map is related to the support function: fix v € S*~1. Then, Vhg (u) exists if, and
only if, ny'(u) is a single point z € 9K, and, furthermore, Vh(u) = = = ngx'(u) [50, Corollary 1.7.3].
Hence, K is strictly convex if, and only if, hx € C! [50, Page 115].

If a convex body K has positive radii of curvature everywhere, we say K has positive curvature. In this
instance, there exists a continuous, strictly positive function fx (u), the curvature function of K, such that
one has dSk(u) = frx(u)du. It is standard to denote strictly convex bodies with positive curvature and
twice differentiable support functions as being of the class C’i. From [50, Theorem 2.7.1], every compact,
convex set can be uniformly approximated by convex bodies that are Ci. Next, we define the weighted
surface area measure of a Borel measure m defined on the boundary of a convex body K.

Definition 2.1. For a compact, convex set K C R™ and a Borel measure m on 0K, the m-surface area of K
is the pushforward of m by nk : 0K — S"™! (i.e., S® = nk tm). In the case where m has a density ¢,
then

Sp(E) = mln (E) = [ pla)an @ 29

i (B)
for every Borel measurable E C S"~1. If K is C2 then dS7(u) = ¢ (ng' (u)) fx (w)du.

As discussed in the introduction, given a Borel measure . on R™ with continuous density, there exists a
canonical way to select how it behaves on 0K . Therefore, the measure S, satisfies (24) when m is identified
with p. In other words, S% as shown to exist in the introduction is the same as S as defined in Definition 2.1
with dm = pdH" 1.

Recalling that pu(tK;K) = %,u(tK ) when K is a convex set, we can use (4) in conjunction with (19)
when K is a convex body to obtain

1

w0 = [ [ hac(wstiw. (25)

0 Sn—1

Note that if K is of class C% with the origin in its interior, then (4) becomes
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WD) = [ buuong! () fic(u)du
Sn—1

and (25) becomes

1
w(K) = t" Lo (tng' (v)) dtdu. (26)
J e [

We now show that if a measure u has radially decreasing density (where ¢ is said to be radially non-
increasing if p(tz) > ¢(x) for every t € [0, 1], and is radially decreasing if the inequality is strict), then one
can relate u(K; K) and p(K). In the proposition below, (0,y] denotes the line segment from the origin to
a vector y, which does not contain the origin.

Proposition 2.2. Let p be a Borel measure on R™ with radially non-increasing density p. Then, for every
convex body K in R™ containing the origin in its interior such that ¢ is defined on 0K, one has

nu(K) > n(K; K),
with equality if, and only if, for almost every y € 0K, ¢ is a constant almost everywhere on (0,y].

Proof. The result follows from formula (25), as applying the change of variable formula satisfied by S.
yields

w(K) = / / hic(nex (y))e(y)dydt = /1 gt / hi(n o(ty)dydt,
0 oK

where, in the second step, a variable substitution y — ty was done. Next, Fubini’s theorem yields

1

uw(K) = /hK ni(y /t" Lo(ty)dtdy.

0K 0

The hypothesis that ¢ is radially non-increasing yields

1
/ nt"o(ty)dt > o(y);
0

this estimate, combined with another use of formula (25), completes the proof. Equality occurs if, and only
if, ¢(ty) is a constant for almost every ¢t € (0, 1]. Notice that (0,y] = {ty : ¢t € (0,1]}. Thus, equality implies
that ¢ is constant almost everywhere on (0,y]. O

To elaborate on the equality conditions of the above proposition, it is possible that, for two different
y1,y2 € OK, ¢ is constant on (0,y1] and (0, y2], but the value of ¢ on each segment is different. That is,
equality occurs if, and only if, ¢ is the 0-homogeneous extension of a function on 0K.

Proposition 2.2 implies that n~v, (K) > 7, (K; K). However, we can do better in this case. We will use
the notation Af for the Laplacian of a twice-differentiable function f.
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Proposition 2.3. Let K be a convex body containing the origin in its interior. Then,
K K) = 13, (K) = [ [ofda (o).
K
Proof. From (4) we have that

(K K) = / hK(u)dS}Y("(u):(27r)*"/2/hK(nK(y))ef\ylgﬂdy’
Sn—t oK

where the second equality follows from the change of variables formula satisfied by S};*. However, from the
convexity of K, the supremum in the definition of support function will be obtained at y, i.e. hx(ng(y)) =
(nk(y),y). Let g(y) = —e~lul*/2, Then, we have

I K) = (2m) /2 / (Vo(y), ni (v))dy.
oK

From Green’s first identity, this is
(K K) = (20) " [ Agla)da.
K

But,
Ag(x) = (n — [z|?)e71=1/2,
and so the claim follows. 0O

Now that we have explored properties of mixed measures, we work towards our first main result, The-
orem 2.7. We recall that, for every positive f € C(S™™1), the Wulff shape of f is the convex body given
by

[f] ={z € R™: (z,u) < f(u) Yu € S"'}. (27)

One has, for a convex body K containing the origin in its interior, [hx] = K. Since f is positive, [f] is such
a convex body. Furthermore, if f is even, then [f] is symmetric. In [28], the following was shown, expanding
on the results from [36,37].

Lemma 2.4 (Aleksandrov’s variational formula for arbitrary measures). Let u be a Borel measure on R™
with locally integrable density p. Let K be a convex body containing the origin in its interior, such that 0K,
up to set of (n— 1)-dimensional Hausdorff measure zero, is in the Lebesgue set of . Then, for a continuous
function f on S™1, one has that

Ll 1) — p(K)

t—0 t

— [ rwist .
Snfl

Remark 2.5. Fix a convex body K containing the origin in its interior, a compact, convex set L and some
Ao > 0. Notice that hx + (A 4+ No)hr = hiyar + Ahr. Hence, an immediate consequence of Lemma 2.4 is
that
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. K+ (t+ty)Ll) — u(K +toL
}I_%M( ( O) t) :u( 0 ): / hL(U)dS;L(+tOL(u)~

Sn—1

Moreover, we can also calculate the variation of the convex combination of K and L. For a fixed A\g €
(0,1), write that (1 — XAo)hx + Aohr = hx + Mo(hr — hi). Then, perturb Ag by a small A > 0 and write
hi + (Mo + A)(hr — hr) = ha—xg)k+r,L + A(hz — hi). Hence, from Lemma 2.4, we can conclude that

d
(L= AK +AL) N = ([ha-aoyxarer + Mhe — hi)]) o
= / (hL — hK)dSl;(Ao (U) (28)
Sn—1

= M(K)\O;L) - M(K)\O;K)a

where Ky, = (1 — \g)K + AoL and the last equality follows from (4). We will have occasion to use this
observation later.

2.8. Integral representation formula for u(A; B,C)

We are now ready to obtain an integral representation for u(A; B, C') defined in Definition 1.2. For our
purposes, we need only the case where A is Cf_. First we define the weighted analog of the mixed surface
area measure S4[,_2],g[1], Which we denote SZ;B.

Definition 2.6. Let A be a C’i convex body and B be an arbitrary compact, convex set in R”, n > 2, and p

be a Borel measure with C! density ¢. The weighted mixed surface area measure S’ is the signed measure
on S™ ! defined by

4845 (0) = p(n 3" () S a2y 51 (0) + —— (Vi3 (), Vs () dS ().

Observe that if we naively define dS'iB = p(ny" (u))dSap—2,50)(w) in analogy with the weighted surface
area, then we can write

dSﬁ,B(U) = d§ﬁ73(u) +

1 <w<nA1(u)>

P 1\ i) ,VhB(u)>dSi§(u). (29)

Clearly, when ¢ = 1, the second term vanishes and the weighted mixed surface area measure becomes the
(usual) mixed surface area measure. We emphasize that, in general, Sff‘; g is only guaranteed to be a signed
measure, and may not be a measure.

Theorem 2.7. Let i be a Borel measure on R™, n > 2, with C? density ¢. For a C’i convex body A and
compact, convex sets B and C, one has

WA B,C) = (n=1) [ heu)dSt (). (30)
Snfl

Proof. We first consider the case when B is a C’i convex body. Using (20), we compute

du(A+ sB; C) d

PrRo= 4| [ emismmemisiast ||

n—
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where n:‘i_s () is well defined as the Minkowski sum of C% bodies is also C%. From [50, Theorem 5.1.7],
we obtain that

Satsp =5Sa+s(n— 1)514[”,2],3[1] + 0(82). (31)

Therefore, when taking the derivative in s at s = 0 of ga(nZiSB (u))dSatsp(u), only the first two terms in
(31) contribute.

All that remains is to take derivative of cp(ng_l‘_SB (u)). We recall that if K is Oy , then ny'(u) = Vhg (u)
for all w € S”1, and thus n:‘_li_sB(u) = V(hatsp(u)) = Vha(u)+sVhg(u), for all u € S*~!. Therefore, we
obtain for all u € S"~! that

dp(nyy  p(u))

o = (V(p(ngl(u)), Vhgp(u)). (32)

s=0

Thus, we have shown (30) in the case when B is C%. We also notice that, for s > 0, by setting K (s) = A+sB,
we obtain

Sn—1
b [ (Volnick (), Vhis(a))ho (w)dSicc w).

Sn—1

We next consider the general case when B is a compact, convex set. First, approximate B by a sequence of
C? convex bodies {B;}, such that B; — B uniformly in the Hausdorff metric (see [50, Theorem 2.7.1]; in
particular note that this means hp, converges to hp uniformly on S"~1). For s small (say s € [0, 1]), and
i € N, let K;(s) = A+ sB; and consider the function

5(6) = n(E(s):C) = [ howds . (w)
Sn—l

We show that, for fixed s, g;(s) = g(s) = u(K(s); C). First, observe that

19:(s) |</|hc WISt ) () — dSt ) (W]

Since C'is a compact, convex set, |h¢c(u)] is bounded and consequently it suffices to show that S’;(i(s) — S’;((é)
weakly. Notice for every Borel E C S"~!, one has

Sk (B) = Sk Bl = | [ etwas= [ gty

iy (o) (B) () (B)

From [50, Theorem 4.11], one has dSk,(s) — dSk(s) weakly, as K;(s) — K(s) in the Hausdorff metric.
Therefore, since ¢ is bounded on compact sets, the convergence of S}‘{i (S)(E) to S” ( ) follows. Since F
was an arbitrary Borel subset of S*~!, we have the weak convergence of dS?{i( )( ) to ast, K(s) ( ), therefore
the uniform convergence of g;(s) to g(s).
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Next, our goal is to show the uniform convergence of g;(s). Notice that

9i(s) = n(Ki(s); B;, C) = (n — 1) / p(ng o (W)he (W) dSk, (5)in-2),5:0) ()
Sn—l

b [ (T @), Vi, () he(w)dSic ) w).
Sn—l

Note that n;&s) may not be well-defined for s # 0. Therefore, we shall show that {g}(s)} is a Cauchy
sequence, to obtain that it has a limiting function z(s). Then, using a standard theorem from classical
analysis, we get that g must be differentiable and ¢'(s) = z(s), in particular, u(4; B,C) = ¢’(0) = z(0). On
the other-hand, by computing z(0) via convergence of the integral formula for ¢;(0), we will finish the proof.

Consider € > 0, fix some N = N(¢) (to be determined later), and pick ¢,j > N. Then, it suffices to bound
the following five integrals:

1. fSn 1 L)O(nK s)( ))hc( ) (dSK (8)[n—2],B;[1] (U) - dSKj(s)[n72],B_7»[1] (u>) '7
2. fgn—l | ( nK.(s)( u)) — (nK S)( u))|[he (u )|dSKj(s)[”_2]aBj[1](u)’
3. | Jon1 (Vep(ng () (), Vhp, (w)he () (dSk,(s)(u) — dSk; (s)(w)) |,

4 font V(0 (g (W), VhB (w) = Vhp, (u))|[he(u)|dSk; s)(u),
. fgn—l VSO(”K (s) (u)) (nKj(s)(u))7VhBi(u)>||hc(u)|dSKi(5)(u)'

ot

Since h¢ is bounded on S"~1, we shall not discuss h¢c(u) for the rest of the argument.

The easiest integral is the third one. We recall that, since hp, is convex and C?, it has bounded derivative
on S"~ 1. Also, since Vi is bounded, all K;(s) can be taken to belong to some large ball for all i and s € [0, 1],
to obtain that |<V<p(n;<1(s)(u)), Vhp,(u))| is bounded and the bound can be taken to be independent of
i. Since dSk, sy — dSk(s) weakly, fS"_l dSk,(s)(u) is a Cauchy sequence. Combining all of this, the third
integral is bounded, i.e. we can pick N large enough so the third integral is bounded by €/5.

We next bound the first integral. The argument is exactly the same as the previous one, except that
we appeal to the proof of [50, Theorem 5.1.7], which shows that dSk,(s)n—2),B,1] converges weakly to
dSk(s)[n—2),B11] and so fS"71 dSk,(s)in—2],B,[1)(u) is also a Cauchy sequence, and, by making N larger if
need be, the first integral is also bounded by €/5.

For the fourth integral, we have that |V<p(n;(11_(s) (uw))| < L, for some positive constant L,. Thus, it suffices
to show that ||Vhp, (u) — Vhp, (u)||L,sn-1) goes to zero. This follows from the classical analysis fact that if
a sequence of convex, differentiable functions converges to some convex function, then their derivatives also
converge almost everywhere. Consequently, dominated convergence theorem yields the result, and, thus for
N large enough, the fourth integral is bounded by €/5.

For the second integral, we use that ¢, being C*, is Lipschitz on compact sets, thus, for s € [0, 1],

(g (W) — Pz (o) ()] < Lolnigl ) () = g ) ()| = Lys|Vhs, (uw) = Vhg, (). (33)

Thus, like in the previous argument, the second integral is bounded by €/5. Finally, for the fifth integral,
we use that ¢ being C? yields Vi is a Lipschitz map on compact sets, and we argue similarly to (33).
Consequently, the fifth integral can also be bounded by €/5.

Thus, we have shown that for all s € [0,1], u € S*~', and 7,7 > N, that |gj(s) — gj(s)] <e. O
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Remark 2.8. In the above, all we actually require is that the density of p is C? in a neighborhood of A.
Furthermore, in the case when B is of the class C’_2H we can weaken the condition on the density of u to
only being Lipschitz in a neighborhood of A.

Remark 2.9. In fact, we can define the weighted mixed surface area measure even when A is not Ci. Inspired
by Lemma 2.4, we first define u(K; f) := [qu—1 f(u)dS% (u) for any f € C(S™™'), so that the representation
formula for the mixed measure pu(K; L) may be written concisely as pu(K; L) = pu(K;hy). Now define, for
any f € C(S"™1), the quantity

p(4: B, f) = lin MATIBD AT, (31)

this definition is, of course, inspired by (20). We observe that for any fixed convex body A containing the
origin in its interior and compact, convex set B, u(A; B,-) is a continuous linear functional on C(S™71),
and the Riesz-Markov-Kakutani representation theorem therefore guarantees that it can be written as
an integral with respect to a signed measure on the sphere. This signed measure is what we define as
(n— 1)d551; 5, to be consistent with Theorem 2.7. Note that unlike the weighted surface area, which was
defined as the pushforward of a measure on K by the Gauss map in Definition 2.1, we have not given an
explicit description for the weighted mixed surface area measure sz; p; this is, however, not surprising since
such an explicit description is not available even in the case of Lebesgue measure.

Remark 2.10. We note that the expression (29) for Si‘,; p is particularly nice in the case of a probability
measure p on R™, because in this case, the function Vi /e that appears in the second term is the so-called
score function that arises naturally in the definition of Fisher information. The score function is central in
the study of entropy power inequalities (see, e.g., [40,39,53]). For example, when u = =, is the Gaussian

measure, the score function Vo(x)/¢(x) = —z, so that we have the pleasant form
~ 1 _ _
4S5 () = A5 () — {3 () mi () ST (), (35)
with
- 1 ot
dSX;IB(u) = —(27-()"/26 Ini”(u)l /2d5,4[n_2]73[1] (u),

when A and B are both Cf_ convex bodies.

We note that combining (22) with Theorem 2.7 yields

d2
LA+ sB) = (- 1) / s ()4, (1),
STL*I

which is reminiscent of [26, Proposition 3.2].
2.4. Weighted versions of Minkowski’s first and second inequalities

We conclude this section by establishing Minkowski’s first and second inequalities. In the introduction, we
discussed the many different types of concavity satisfied by the Gaussian measure. These different types of
concavities can be expressed in one definition. A Borel measure p on R™ is said to be F-concave on a class C
of Borel subsets of R™ if there exists a continuous, invertible, monotonic function F : (0, u(R™)) — (—o0, 00)
such that, for every pair K, L € C and every A € [0, 1], one has p(K), u(L) < co and
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u((1= VK +AL) > F~ (1= N F(u(K)) + AF(u(L)). (36)

The case when F'(z) = 2%, s € R\ {0}, is known as s-concavity. Borell’s hierarchy completely characterizes
s-concave Borel measures p when the class C is all compact subsets of R™ [7, Theorem 3.2]. Notice that
the 1/n-concavity of the Guassian measure over symmetric convex bodies is strictly outside of Borell’s
classification. We emphasis that, if F' is increasing, like z°, s > 0, then F o u is a concave function over C.
Likewise, if F' is decreasing, like 2°, s < 0, then F o is a convex function over C. Additionally, it is not hard
to show that, if there is equality in (36) for a single A € (0,1), then there is equality for every A € (0, 1).

Proposition 2.11. Let p be F-concave on a class of Borel sets C. Suppose we have A,B € C and some
A € (0,1) such that

p((1=NK +AL) = F~H (1 = M F(u(K)) + AF(u(L)))
Then, equality holds for all X € [0,1].

Proof. Since F' is monotone and invertible, it is either increasing or decreasing, and so the function given by
f(®)=F(p((1 —t)K +tL)) is either concave or convex. Denote the linear function g(t) = (1—¢)F(u(K))+
tF(u(L)). We have that g(0) = f(0) = u(K) and g(1) = f(1) = pu(L). By hypothesis however, we also have
F(A) = g(A\). But, since either f or —f is concave, this implies f = g on all of [0,1]. O

We now establish Minkowski’s first and second inequality for F-concave measure of a class of compact,
convex sets, using the formulas established. The case of Minkowski’s first inequality had been previously
established without equality conditions by Livshyts [37].

Theorem 2.12 (Minkowski’s first and second inequalities for F-concave measures and convex bodies). Let
be a Borel measure on R™ that is F-concave on a class of compact, convex sets C. Then, for a convex body
K containing the origin in its interior, such that F(x) is differentiable at x = pu(K), and a compact, convex
set L, both in C, one has Minkowski’s first inequality:

u(K; L) > p(K; K) +

)

F(u(L)) — F(p(K))
F(u(K))

with equality if, and only if, there is equality in (36) for some A € (0,1).
Furthermore, if u has C? density and F(x) is twice differentiable at x = u(K), then:

_F(uK))
F(u(K))

Proof. Consider the function given by

(WKL) — (K K))? > (u(K; L, L) — 2u(K; K, L) + u(K; K, K))

H(A) = F (u((1 = VK +AL)) = (1= NF(u(K)) — AF(u(L)).

Thus H(0) = H(1) = 0. Furthermore, if F is an increasing function, then H is concave and H'(0) > 0.
Similarly, if F' is a decreasing function, then H is convex and H'(0) < 0.
Computing the derivative from (28) and the chain rule, we obtain directly that

H'(0) = F'(u(K)) ((E; L) = (K3 K)) = (F(u(L)) = F(u(K)). (37)

Assume F'(u(K)) # 0. If F is increasing, setting this greater than zero and dividing through by F’(u(K))
yields the first claim. Similarly, if F' is decreasing, setting this less than zero and dividing through by
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the (negative) term F’(u(K)) yields the same result. Now, suppose F'(u(K)) = 0. Then, from (37), one
obtains in both cases of the monotonicity of F' that pu(K) > p(L) for all L € C. From (2), this yields
w(K; L) = p(K; K) = 0. Thus, Minkowski’s first inequality is trivial in this case.

Suppose that there is equality in (36). Then,

F(u((1=MNK+ ML) — (1 =MNF(u(K)) — AF(u(L)) =0, for all X € [0,1].
Differentiating in A yields

d

o F W@ =NK +AL)) = F(u(L)) - F(u(K)).
Using the chain rule and evaluating at A = 0 yields

F/(u(K) (1= N+ AL)

T F(u(L)) — F(u(K)).

Inserting (28), we have equality in Minkowski’s first inequality. Conversely, suppose that we have equality
in Minkowski’s first inequality. Then, running the argument backwards, we get

DF (- NK AL | = F(u(1) ~ F(u(K).

A=0

This implies equality in (36). Indeed, let f(t) = F' (1 ((1 — ¢)K + tL)), which is either concave or convex on
[0, 1] by hypothesis, and denote the linear function g(¢) = (1 —t)F(u(K)) 4+ tF(u(L)). We have f(0) = g(0)
and f(1) = g(1). However, we have also shown that f/(0) = ¢’(0). From the concavity of f or —f, it follows
that f = g on [0, 1] via Proposition 2.11.

As for the second inequality, we suppose that F' is increasing; the case when F' is decreasing is similar.
By way of approximation, we first suppose that K is Ci. We take yet another derivative of H and use that
H"(0) <0 in this instance. One obtains, using (28), that

P () (03 1) = 5 K0P + P ) | g [ (= st @ | <00 @)

Sn—1 A=0
where K, = (1 — A\)K + AL. Next, suppose L is C3 and so K) is also C%. Hence, one has deQ (u) =
go(n(_ll_/\)KJr)\L(u))dSKA (u). Now, observe that for almost all u € S*~1

dp(nG 3 s (W)

o = (Vip(ny' (w), Vhe(w)) = (Vep(ni' (w), Vhic (). (39)

A=0

In order to take the weak derivative of dSk, (u), we expand Sk, as a polynomial in the variable A, and
obtain from [50, Theorem 5.1.7] that

SKA = SK + A(?’L - 1) (SK[nf2],L[1] - SK) + O(AZ) (40)

We deduce that the weak derivative of dSk, (u) at A =01is (n — 1) (dSk{n—2),10](v) — dSk (u)). Using the
product rule on gp(n;& (u))dSk, (u) yields the result. For general compact, convex L, we conclude by the
linearity of (30) in the third variable and the approximation argument in the proof of Theorem 2.7. Finally, to
remove the assumption that K is C%, we appeal to Remark 2.9, which explains that p(K; K, K), u(K; K, L)
and p(K; L, L) still exist in this instance. 0O
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We list as a special case of Theorem 2.12 the case for measures in M given by (14), where we recall that
Cordero-Erasquin and Rotem [11] showed every Borel measure u € M is 1/n-concave over the class of
symmetric convex bodies.

Theorem 2.13. For symmetric convex bodies K and L in R™ and p € M, one has
n—1
p(K; L) — (K K) > np(L)Y"p(K) ™ = np(K),

with equality if, and only if, K = L. Additionally, if u has C? density, then

n

(WK L) — p(KG K > " u(K) (u(K; L, L) — 20(K: K, L) + p(G K, K)).

n—1
2.5. The Gaussian measure in the plane

We conclude this section by exerting some effort to study 7». Upon observation of (6), it is not clear
that v, (A4; B,C) = v,(A; C, B) without appealing to the Schwarz theorem. We will show explicitly that
this is true, and furthermore, use this opportunity to further develop the theory of mixed measures in the
plane. We recall that in the plane one has V2(A[0], B[1], C[1]) = Va(B, C); this does not happen with mixed
measures in general, since the inverse Gauss map of A appears in the density of the measure. To emphasis
the difference between mixed volume and mixed measures, we will show that mixed measures for v, can be
negative.

Henceforth, we write u € S as u = u() = (cos(#),sin(#)) for § € [0,2n]. Additionally, we view the
support function of a compact, convex set as a function in 6. Formally, let A be a convex body and set
ha(6) := ha(u(f)). It is beneficial to relate Vhy4(u) with h/4(6). Notice that w(f) is perpendicular to
u/'(0) = (—sin(d), cos(8)). Then, one has

COhaluey)) o Oa(u(r,y))

By (0) = (Vha(u),u'(0)) = e sin(0) + 9y cos(6).
On the other hand, h4(u) is 1-homogeneous. Thus,
ha(u) = (Tha(u),u) = 2AWE@ D) gy 4 Fhale@ ) o)

ox dy

Writing the vector Vi (u) in the basis spanned by w and ', we obtain
Vha(u) = (Vha(u),u)u+ (Vha(u), v Yu = ha(0)u(@)+ 1’4 (0)u'(0); u = (cos(f),sin(0)). (41)
Note, additionally, that, for compact, convex sets A and B, one has for almost all u € S*
(Vha(u), Vhp(u) = ha(0)hp(0) + hs(0)h5(0). (42)
We now use the fact that A is Ci; we observe that our situation simplifies quite a bit in this instance.

Firstly, the Monge-Ampeére equation, which relates the support and curvature functions of a convex body,
simplifies to a simple second order, linear, ordinary differential equation in the variable 6 [21]:

R4 (0) + ha(0) = fa(0).
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- (W4 (0)%+(h 4 (0)*
Since A is C2, we also obtain, for u = (cos(),sin(9)), e~ WP/2 = e*( B ). Inserting the

above two formulae and (41) into (6), one obtains, in the case where B and C' are compact, convex sets and
A is a convex body with Cf_ boundary,

(W4 (0))2+(h 4 (0))2)
LA ABAC)T)

2
9o (A: B, C) = / ¢ he (0)dS5(0)
. (43)
, , (g 0)%+(ha(0)?)
= [ @) + RAOHp @) ho@) T dsa(6)
0
Arguing by approximation, suppose that B is also Ci. Then,
(hB(0) + hp(9))d0 = dSp(9).
Thus (43) becomes
2
((hy(0))2+(h 4 (0))2) 9
20 (4:B,C) = [T heO)5(6) + ha(0)(1 ~ 14(6) ~ 13 (6)ha(6)))d0
0
27
, , _ (@2 +na)?)
= [Hn@he@ryE T 1 6) + ha(6))ds
0
Next, observe that
(14 092+ 4(0)?) (W4 (9)2+(h 4 (9)?)
d (e 2 ) =—e" 2 Ry ()[R} (0) + ha(6)]d6.
Consequently, integration by parts yields, with fa(6) = h/4(0) + ha(6),
2m
(g 0)%+(ha(0)2) , , do
72(4; B,C) = /6 2 [h5(0)hc (0)(1 = ha(0)fa(0)) — hip(O)hc (0)] 5 (44)
0

Since (6) is independent of the second derivative of the support function of B, the assumption that B is
Ci in (44) can be dropped via an approximation argument. If A is a ball of radius R, then hy = f4 = R.
Therefore, a remarkable consequence of (44) is the following: given compact, convex sets B, C' C R?, there
exists R such that

v (RB%; B,C) < 0.
3. Local log-submodularity
3.1. Inequalities for rotationally invariant log-concave measures
We next generalize inequality (18) to the case of rotational invariant log-concave measures. We remind
the reader that u is a rotational invariant log-concave measure if there exists a non-decreasing, convex

function W : RT — R U {400} such that du = e~ =D dz. The goal of this section is to find a quantity A
such that, for every rotational invariant u, one has
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2
Ki_

u(A; B)u(A;C) > Aﬁu(A)u(A; B,C), (45)
where we consider the case when B is replaced in the above by some centered zonoid Z, C' is an arbitrary
compact, convex set, and A = RBY, R > 0. In the case of volume (that is, (18), where A = 1), this is the
same as considering A = BY; both sides of the inequality in (18) being homogeneous of degree 2n — 2 in the
variable A. As we will see, this is not true for (45).

Proposition 3.1. Let yu be a Borel measure on R™ such that du(z) = e~V =Ddx for some convex function
W :[0,00) = R that is differentiable at R > 0. Then, for A = RBY, and compact, convex sets B,C C R™,
(45) is equivalent to

2

V(B2 — 1], B)V(By[n — 1],0) > AL L fn-1

1.(R)

n - Kp—2kn

RW'(R) (46)

V(B =2,B,0) — [

/ (u, Vhp(u))he(u)du

Sn—1

where

L(R) = /ewm)_wmwd%
By

Proof. Observe that, for a compact, convex set B C R™, one has

uw(RBY; B) = e~ W (R gn—1 / hp(u)du = eV BRIV (BY[n — 1], B).
Sn—l

We next compute:

u(RB3; B,C)

— W [ g2, _q) / he(w)dS g u_s).5(u) — R W/(R) / (, Vo (1) heo () du
S’nfl

Sn—1

RW'(R)

— pn—2_,-W(R) _ nio _
R"%e n(n—1)[V(Bg[n—-2],B,C) Y p—

/ (w, Vi (w)yho (u)du | |

Sn—1
where, in the last line, we used that [g, 1 ho(u)dSpyp—9,p(u) = nV(By[n — 2], B,C). Next, we write
w(RBY) in the following way:
w(RBY) = / e_W”I')dx:R"e—W(R)/eW(R)—W(RIw\)dx.
RBY By

Inserting each term into (45) yields the result. O

Proposition 3.1 shows that A4 = 1 corresponds to the known case of volume. We now substitute a centered
zonoid Z in place of B in Proposition 3.1 and we additionally assume that W is increasing (i.e. the measure
i is log-concave). We first need a preliminary lemma.
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Lemma 3.2. Let f € LY(R"™,,,) be k-homogeneous, for some k > —n. Then, one has

/f Yy (2 72 . FénTk) / F(u)du.

R Sn—1

Proof. Integrating in polar coordinates, we directly compute:

/ f<x>d%<x>:+/ kL= / fw)du. O
R» 0

Lemma 3.3 (Proposition 3.1 for centered zonoids). Let p be a Borel measure on R™ such that du(x) =
e WD dy for some increasing, convex function W : [0,00) = R that is differentiable at R > 0. Then, for
A= RBY, Be Z" and a compact, conver set C C R™, (45) holds if A satisfies

1
.An/eW(R)_W(Rt)t"_ldt (1 — LW/(R)) <1.

n =

Proof. Notice that in (46) we may assume that B = Z is a centered zonotope, and the general case
of centered zonoids follows by approximation. Notice also that the expression is dilation invariant in Z.
Therefore, using the additivity of both mixed volumes and the support function, we may assume that
Z := [0, 0] for some § € S"~. One has hz(u) = |(u,8)|. Furthermore (see for example [50]), for compact,
convex sets Ko, ..., K, one has

2
Vo([-0,0], Ko, ..., K,,) = E‘/n_l(PgLKQ, e Pel Ky,

where the subscripts emphasis that the first mixed volume is n-dimensional, the second mixed volume is
n — 1 dimensional, and the notation Py K; denotes the orthogonal projection of K; onto the hyperplane
through the origin orthogonal to the direction 6. Therefore, we have

V(Bin~2,2,0) = 2V 1(By'n 2},1@0):% [ hetwan. (47)
Sn—1no+

Notice that Vhz(u) = 0X(u,6)>0 — 0X(u,6)<0; inserting this, (47), V(Bg[n — 1], 2) = 2”:;1, and V(BY[n —
1], C) into (46), our inequality becomes

/hc Jdu > AL 1 (R) / hc(u’)du’—RW /\ w, 0)|he(u)du | . (48)

Rn—2kn

n—1ngpL

Now, arguing like in [2], let Ty denote the reflection operator with respect to the hyperplane #+. Ex-
plicitly, Ilg(x) = o — 20(x,0). Then, consider the symmetrization SpC of C' in the direction 6 to be the
compact, convex set given by SpC := % Notice that Py.C C SyC. Furthermore, fSH he(u)du =
Jsn-1 hsyc(u)du > g, -1 hp,, o(u)du. Hence, the quantity

roudu+ AR Tt gy | o) lhc (i

Sn—1 Sn—1
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is bounded from below by the same quantity, but with C replaced by P,.C. Consequently, it suffices to
consider (48) only for the case when C C 6.

It is known, (see, for example, [21, page 404, eq. (A.29)]), that if K is a k < n dimensional compact,
convex set in R", then, for 0 <7 < k, one has

! Vi, (K[i], B[k —4]) = 1 Vi, (K[i], B2n — i]), where cij, = Kk—i

) I 5 .
Cik Cin k
)

Using this, if C C 8+ then

/ he(u)du = nV, (By[n —1],C) = nccivn_l (By~'[n—2],0C)
1,n—1
Sn

Rn—1
Kn—2
Sn=1ng+

We now focus on the quantity [q.1 [(u,0)|hc(u)du. Due to the fact that C' C 6+, it simplifies greatly.
Apply Lemma 3.2 to the 2-homogeneous function |{u, 8)|hc(u) to obtain

[ 1w Ollhetdu =, [ 1.0 ke @)
Sn—1 R~
Using Fubini’s theorem and rotation invariance to compute this last integral, we get
(.0} e (@) /mmww/%mw“ /M s (2).
J ) -7

Now apply Lemma 3.2 to h¢(u), which is 1-homogeneous, but defined in dimension n — 1,

/hC(x)d'Yn—l(x) = \/I;ﬂ_%w);l / hc(u/)du’.

0+ Sn—1qgL

‘We thus obtain

nI'(5 2
/ [{u, 0)|he (u)du = ~ W%(2) / he(u')du' = - / he(u)du'.
Sn—tno+ Sn—1no+

When inserting the above relations for [q,_, [(u,0)|hc(u)du and [g,_, he(u)du into (48), we see that every
term has fSnflmei he(u')du' in it. Tt then cancels, and so it suffices to show

1= 2w 0 RW(R))

n

Writing I,,(R) in polar coordinates, we obtain that HLI = nf W (R)=W(Rt =14t Inserting this into
the above yields the claim. O

We now state the main result of this section, which is that A = 1 when B is a centered zonoid and p is
rotational invariant, log-concave Borel measure.
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Theorem 3.4. Let j1 be a rotational invariant measure on R™ of the form du = e~V =Dda for an increasing,
conver W : [0,00) — R. Then, for every R > 0, a centered zonoid Z and a compact, conver set C, one has

2
——j(RB3)(RB; Z,C).

Rnp—2Kn

u(RBg; Z)u(RBy; C) =

Proof. Since the function W is convex, it is differentiable almost everywhere; by approximation, we can
assume W is differentiable. Then, from Lemma 3.3, it suffices to show that

1
1> n/ewm)—W(Rt)tn—ldt (1 _ M) _
- n

If R is so that RW’(R) > n then we are done, as the right-hand-side is non-positive. So, suppose RW’(R) <
n. Notice, from convexity, one has

Therefore, we see that

1 1
(1 _ RW/(R)) n/EW(RyW(Rt)tnth < (1 _ RW/(R)) n/ew’(R)R(kt)tnth.
n n
0 0

Next, using the Taylor series expansion of the exponential function, we use uniform convergence to inter-
change the integral and the summation:

1

( ) Rwyl(m) w3 TR U fo - whar—tau= ( - %'(R)) i(RW’(R))k(kZi!n)!,

k=0 0 k=0

where we computed that nf01(1 —wku"ldu = nB(k+1,n) = %7 with B(z,y) the Beta function.
Next,

Sy ey (). (B,

k=0

But, notice that, since W/ (R)R<n <n+1,

RW'(R RW'(R) =< (W'(R)R\" 1 n+1
+Z( 14+n ) ( k+n );_()( n+1 1_% n+1—-W/(R)R

Consequently,

<1_RW’(R)> n+1 n+1 n—RW'(R) n+1(1_ 1 )

n ntl-W/(RR n n+tl-W(RR n n+tl1-W/(RR

But W/(R)R increases with R, and thus the quantity above decreases with R. Therefore, the quantity is
maximized when R = 0, which is precisely 1. O
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Let us show a general approach to obtain sharper constants. Suppose one considered finding A, r such
that, for a Borel measure p on R™ of the form du(z) = e~V =D dz for W : [0, 00) — R, and a fixed R > 0,
one has for every compact, convex set C and Z € Z" that

2
Ko
W(RBY; Z)u(RBY; C) > Ay r—"——p(RB3)u(RBY; Z,C).

Rp—2Kn

One sees from Lemma 3.3 that, if du(z) = e =D dz with W : [0,00) — R differentiable, increasing, and
convex, then one needs

1
1> A#,R/eWR)—W(Rt)t”—ldt (n — RW'(R)). (49)
0

Ifn < RW'(R), then (49) is non-positive and so any choice of A, r works (this implies that u(RB%; Z,C) <0
in this case, so the bound is trivial). If n > RW’(R), then, from the end of the proof of Theorem 3.4, we
are able to set A, g to be the reciprocal of the final bound, that is

n 1
Aur =7 (1 gy W’(R)R) ' (50)

Notice (50) is increasing in R; where the value of 1 corresponds to limgr_,0.A, r = 1. So, for an arbitrary
R>0,A, r>1,and equals 1 if, and only if, 11 is a constant multiple of the Lebesgue measure.

3.2. Improved inequalities for a special class of measures

We see, however, that we can do even better by avoiding the estimate W < W/(R) in Theo-
rem 3.4. While we cannot avoid this for general rotational invariant u, we avoid this in the Gaussian case,
and also, in general, in the case of measures of the form du = ae™*I"/#dz for some a, > 0 and p > 1. We

first start with a technical lemma.

Lemma 3.5. Let 5 >0, p,n>1 and R > 0 so that RP € (0,5 + %’) Then,

In particular, for R=1 and p = =2,

1
+n—|—1_

Proof. Start by writing the right-hand side as

1
n /e%p(l_rp)pr"_ldr.
p
0

Next, let u = rP. Then, wr tdu = pr"~ldr, and the right-hand side becomes
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1
R 3
[eF 0

0

Using the Taylor series expansion of the exponential function, and then the uniform convergence to inter-

SERS

change the integral and the summation, yields:

N — Rkp/ 1

—E (1 —w)kur tdu
k

pk:oﬂ k!o

Notice that

1
k!r(ﬂ+1)
/1—u upldu:ﬁB(k+17ﬁ> =\ 7
p
0

P/ T (k+1+2)

SHRS

where I'(z) is the Gamma function. Inserting this computation into the above series yields
)
AN A (e

But this can be written as

> /Rr\* 1 . pRP pRP
;;(5) <k+%)~-(1+%> ;pﬂk+ﬁn pB+ Bn

But, notice that, from our choice of R,

. pRP pRP = ( pRP )k 1
+ . < _— = %5,
ZpﬁkJrﬁn pﬁ+6n_,§ pB+ fbn 1- B

which yields our result. O

L] P
Theorem 3.6. Fizn >2,p>1, and a, 3 > 0. Let v be the Borel measure on R™ given by dv = ae™ # dx.
Fiz R > 0. For a centered zonoid Z and a compact, convex set C,

2
V(RBY; Z)v(RBy; C) > Ay, n—"=1y(A)w(RBY; Z,C),

Rn—2Kn

_(,__DpR" _pR?
Avr = (1 pﬁ+5n> (” 5n—pRp>'

Proof. From Lemma 3.3 one needs to show that A, g satisfies

1
/ BP(1—rP) n—1 ( pRP)

g r"dr (n——|.
) B

If RP > %" then the right-hand side is non-positive, and we are done. Otherwise, one obtains the result

where

I \/

from Lemma 3.5, which we can use since RP < % < B+ %”. ]
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We next apply Theorem 3.6 to the case of the Gaussian measure and the unit ball, to demonstrate
straight explicitly how the bounds we obtain improve the volume case and (50).

Corollary 3.7. Fix n > 2. Let Z be a centered zonoid and C a compact, convex set. Then,

n n+1 miﬂ

Yn(B3'; Z)ym(By;C) >

BY BY; Z,C). 51
n_1n+2,€n_2/{n7n( 5 )y (B3 ) (51)

From using a geometric series to approximate the Taylor series in Lemma 3.5, the above result is still
not sharp. If we allow 3 to depend on p, then we can improve our bound by using Jensen’s inequality. For
simplicity, we consider only the case when R = 1. For general R, the quantities § and p would depend on
R as well.

Lemma 3.8. Suppose p,n > 1 and pick 8 so that 5> 1+ p—il. Then,

Proof. Observe that nr™"~!dr is a probability measure on [0, 1]. Furthermore,

d2 (1—=rP) (1—rP)
WGIT = %elTrp_2 |:%Tp — (p— 1>:| .

From the choice of 3, this is less than 0 for all r € [0,1]. Hence, from Jensen’s inequality

1 p

1
(a=rP) n—1 1 n
n|e 7 r"idr <exp B 1—1|n [ r"dr ,
0 0

which is our claim. O

Corollary 3.9. Fixn > 2, p> 1, a > 0, and > 1 + p%l. Let v be the Borel measure on R™ given by

_lef? ,
dv =ae” 7 dx. For Z a centered zonoid and C a compact, convez set,

2
"L y(A)(B}; Z,0),

v
Rn—2Kn

K

v(By; Z)v(By;C) = A

where

It is not true a priori that the constant in Corollary 3.9 is sharper than in Theorem 3.6. This is true in
the case of the Gaussian measure.

Theorem 1.7. Fix n > 2. Let Z be a centered zonoid in R™ and C' a compact, conver set in R™. Then,

_ (2n+1) 2
V(B Z)yn(By; C) > ¢ 2z =L gy, (B 7. 0).
n—1Kk,_2kn

Furthermore, this inequality is sharper than in Corollary 3.7.
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Proof. The first claim follows from Lemma 3.8, Lemma 3.3 and the fact that

1_(_n_\2 n
BM = 62(2”:11)2 .
Now, we must show that
e% < n——i_Q = + L7
“n+1 n+1
2x+41
which is true, as the function given by 1+ ELH — e2@tD? s positive for all 2 € RT and decreases to 0

asymptotically as  — co. O
4. Concluding remarks

There are questions related to those discussed in this paper that we briefly comment on. Firstly, it was
noticed by [18] that the supermodularity property

Vol,, (A) + Vol, (A + B + C) > Vol,,(A + B) + Vol,,(A + C) (52)

holds for any convex bodies A, B,C' in R™ (in fact, they also conjectured that it should hold for arbitrary
compact sets B, C' when A is convex, and proved this in dimension 1). It turns out that the possible negativity
of the mixed measure v,(A4; B,C) immediately implies (by using an equivalence theorem discussed, for
example, in [20], where the inequality (52) was shown to be equivalent to nonnegativity of certain mixed
volumes) that such a supermodularity property cannot hold when volume is replaced by Gaussian measure.
Further details may be found in the companion paper [16].

In another direction, although Volgll/ ™) is not fractionally superadditive on the set of compact sets in R™
thanks to the counterexample of [17] (and hence is neither supermodular nor Schur-concave, as observed
in [42]), it was proved recently by [4] that Vol,, is fractionally superadditive on compact sets in R™. Such
questions for more general measures than volume are also discussed in the companion paper [16].
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