
Multi-agent Path Finding for Timed Tasks
Using Evolutionary Games

Sheryl Paul(B), Anand Balakrishnan, Xin Qin, and Jyotirmoy V. Deshmukh

University of Southern California, Los Angeles, CA 90007, USA
{sherylpa,anandbal,xinqin,jdeshmuk}@usc.edu

Abstract. Autonomous multi-agent systems such as hospital robots and
package delivery drones often operate in highly uncertain environments
and are expected to achieve complex temporal task objectives while
ensuring safety. While learning-based methods such as reinforcement
learning are popular methods to train single and multi-agent autonomous
systems under user-specified and state-based reward functions, applying
these methods to satisfy trajectory-level task objectives is a challeng-
ing problem. Our first contribution is the use of weighted automata to
specify trajectory-level objectives, such that, maximal paths induced in
the weighted automaton correspond to desired trajectory-level behaviors.
We show how weighted automata-based specifications go beyond time-
liness properties focused on deadlines to performance properties such
as expeditiousness. Our second contribution is the use of evolutionary
game theory (EGT) principles to train homogeneous multi-agent teams
targeting homogeneous task objectives. We show how shared experiences
of agents and EGT-based policy updates allow us to outperform state-of-
the-art reinforcement learning (RL) methods in minimizing path length
by nearly 30% in large spaces. We also show that our algorithm is compu-
tationally faster than deep RL methods by at least an order of magnitude.
Additionally our results indicate that it scales better with an increase in
the number of agents as compared to other methods.

1 Introduction

Large-scale deployment of multi-agent autonomous mobile systems is becom-
ing a reality in many sectors such as automated warehouses [9,57], surveillance
and patrolling [1,19], package delivery [50], and logistics support for cargo in
aviation, and railways [6,40]. On the one hand, these autonomous systems are
safety-critical and require careful planning to avoid unsafe events such as colli-
sions with other agents or the environment, transgressing zoning restrictions, etc.
On the other hand, the deployed systems are expected to be high-performing;
for instance, where performance is measured in the number of tasks performed,
task completion times, and load balancing across agents. This is an especially
difficult challenge when the agents do not know the location of the goal (making
it difficult to use heuristic search methods). The core technical challenge for such
systems is the planning problem: how do we synthesize plans for the agents to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Hillston et al. (Eds.): QEST+FORMATS 2024, LNCS 14996, pp. 302–321, 2024.
https://doi.org/10.1007/978-3-031-68416-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68416-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-68416-6_18

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 303

move in their environment while satisfying safety specifications and task objec-
tives with unknown goal locations, while simultaneously ensuring performance
or throughput of the overall system?

Fig. 1. Shortest paths in the grid envi-
ronment: agents a1 and a2 must get
to designated final states (black circles)
while avoiding red obstacle regions. Red
dashed trajectories τ1

1 of agent a1 and
τ2
1 of a2 satisfy the task but are not the

shortest paths, green solid trajectories
τ1
2 and τ2

2 are the shortest paths. Arrows
point towards goals.

Traditional AI approaches such as the
multi-agent pathfinding (MAPF) problem
use various heuristic methods in combi-
natorial optimization and graph search
to plan paths for many agents to reach
their respective goals while avoiding col-
lisions [55]. However, these approaches
involve a centralized planner with full
observability of the system, as well as full
knowledge of the goal locations. These
techniques usually suffer from poor scal-
ability with increasing numbers of agents
and world sizes. For highly uncertain
environments, an alternative is to endow
agents with autonomy that allows them
to navigate an environment with the help
of sensors. In this setting, each individ-
ual agent has a control policy to deter-
mine the optimal action to perform based
on its sensor observations. Reinforcement
learning (RL) has emerged as a promising approach to learning such control
policies in uncertain environments modeled as Markov decision processes. The
main idea in RL is to use hand-crafted and state-based rewards, and learn poli-
cies that optimize the cumulative long-term rewards. An important assumption
is that additive long-term rewards capture desired global behavior. There are
many instances of reward hacking, where myopic rewards for contrasting objec-
tives lead to undesired long-term behaviors [5].

An approach to tackle this problem of specifying time-sensitive and sequen-
tial tasks with complex dependencies is to use logic-based specifications like
in Linear Temporal Logic (LTL) [45] or its extensions, including Signal Tem-
poral Logic (STL) [36] and Mission-time Linear Temporal Logic (MLTL) [48].
Moreover, such specification languages can be used to define complex tasks for
multi-agent systems [32]. In recent years, reward shaping using temporal logic-
based objectives [17,24,35,46] has emerged as a promising approach to address
the problem of defining state-based rewards to satisfy complex spatiotemporal
tasks. A prevailing theme in many reward shaping papers is to utilize either the
Boolean satisfaction semantics for LTL [6] or quantitative satisfaction semantics
(i.e., robustness values for STL) [7,16] as reward signals.

However, while these logical specifications are well-suited for specifying time-
liness properties such as deadlines, they are not as effective at specifying perfor-
mance properties such as expeditiousness. For example, consider the environment
shown in Fig. 1 and the trajectories shown in green and red, respectively. Let ai

304 S. Paul et al.

denote the position of the ith agent, then the formula F[0,25](ai ∈ Goal) specifies
that the agent should reach the goal within 25 time-steps.

While all the trajectories satisfy the formula, it is clear that the green tra-
jectories are more expeditious as they reach the goal faster. Note that we do
not want to replace this specification with one that indicates a shorter dead-
line. Rather, we would like to prefer the ones that reach the goal faster. Such
requirements are crucial in multi-agent systems where there may be hard dead-
lines on agents reaching their goals, with agents reaching goals at varying times,
and we want to prefer behaviors where average expeditiousness across agents is
preferred.

To address this problem, we use weighted automata specifications as they
allow us to capture performance metrics like expeditiousness [18,39]. Weighted
automata are a class of automata with transition weights interpreted over alge-
braic structures and generalize the various qualitative and quantitative semantics
of discrete-time temporal logics [28,29].

In this paper, we present an innovative application of an evolutionary algo-
rithm rooted in evolutionary game theory (EGT) [53] to address the Multi-Agent
Pathfinding (MAPF) problem. This algorithm is adept at deriving optimal poli-
cies for multiple agents in complex environments, advancing beyond existing
optimization-focused techniques that rely on preset goal knowledge and environ-
mental models [25,42,43,59]. We examine a scenario involving numerous homo-
geneous agents without predefined goal locations, where a single, unified policy
learned from collective experiences supersedes individual training. This shifts
the problem to a single-agent learning paradigm. Our method is benchmarked
against single-agent algorithms like Q-learning [56], PPO [52], and heuristic
searches such as A∗ [23]. Here, A∗ benefits from its heuristic approach to goal
navigation. Our results show that our evolutionary strategy not only achieves
optimal policy faster but also competes with, and can surpass the aforementioned
methods in efficiently reaching targets.

Contributions: To summarize, the main contributions of this paper are as
follows: (1) we introduce weighted automata (WA)-based task objectives and
show that these encourage agents to finish their tasks sooner; (2) we propose
an algorithm ‘MAPF-EGT’ (Multi Agent Pathfinding using Evolutionary Game
Theory) that uses evolutionary techniques to learn stochastic control policies
for homogeneous agents trying to fulfill homogeneous task objectives (but with
a priori unknown goals); and (3) we show empirical results that our method
outperforms state-of-the-art RL and heuristic search methods in various grid-
world environments.

2 Preliminaries

Policy Synthesis for Stochastic Games: To formalize the problem of synthe-
sizing policies for agents such that they satisfy their assigned task specifications,
we use the framework of stochastic games.

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 305

Definition 1 (Stochastic Game). A stochastic game over a finite set of
agents N , where each agent i ∈ N can be modeled as a tuple (Si,Ai,Δi, γ,Ri),
where Si denotes the set of possible states of agent i, Ai is the set of actions
available to agent i, and Δi : Si × Ai × Si → [0, 1] is a joint probability dis-
tribution over states, actions and next states that defines the transition dynam-
ics of the game. At each time-step t, agent i is in some state si

t and executes
action ai

t, transitioning to the next state si
t+1 ∼ Δi(s′ | s = si

t, a = ai
t), and

receives reward ri
t = Ri(si

t, a
i
t). The discount factor γ ∈ [0, 1] prioritizes early

rewards by discounting a reward ri
t at time t, by a factor of γt. A joint action at

time t is a tuple at = (a1
t , a

2
t , . . . , a

n
t). The system transitions from a joint state

st = (s1t , s
2
t , . . . , s

n
t) based on the joint action at to a joint state sampled from

the joint transition probability distribution si
t ∼ Δ(s′|s,a).

A policy πi for agent i is defined as a joint probability distribution over the
set of states and action, i.e., πi : Si ×Ai → [0, 1]. A joint policy π can be viewed
as the tuple of all individual agent policies: π = (π1, π2, . . . , πn). A trajectory
τ i of agent i induced by policy πi is defined as a (T + 1)-length sequence of
state-action pairs: τ i = {(si

0, a
i
0), (s

i
1, a

i
1), . . . , (s

i
T , ai

T)},where, ∀t < T : ai
t ∼

πi(ai|s = si
t), (s

i
t+1, r

i
t+1) ∼ T . A trajectory τ for all agents in the game is a

tuple of individual agent trajectories: τ = (τ1, τ2, . . . , τn), where each τ i is as
defined previously for agent i. Let ηi represent the expected sum of rewards
(return) for agent i under policy πi, and η the total return across all agents
under the joint policy π:

ηi = E

[∑T
t=0 γtri

t | si
0, π

i
]
, η =

∑
i∈N ηi

Here, si
0 is the initial state of agent i. An optimal policy π∗ is defined as

the policy that maximizes the total expected reward η across all agents in
the system. The optimal policy Π∗ is composed of individual policies Π∗ =
(π1∗

, π2∗
, . . . , πn∗) for each agent, and η(Π∗) is the optimal joint policy consist-

ing of individual joint policies. We note that in our setting, we use homogeneous
agents with identical tasks, so instead of using per-agent policies, we have n
instances of the same policy π∗.

In our setting, we assume that at time t = 0, agents can start at some
location defined by the set of initial states I, must avoid obstacles defined by
the set of locations in O at all times, and must reach a goal in the set of goal
states: F within time T while avoiding obstacle states at all times. Formally,
si
0 ∈ I, si

t /∈ O and si
T ∈ F, ∀i ∈ N and 0 ≤ t ≤ T .

Weighted Automata (WA) Based Rewards: We now introduce weighted
automata (WA), and show how they can be used to define rewards. In general,
weighted automata are finite-state machines that have a notion of accepting con-
ditions and, for each transition in the automaton, the machine outputs a weight
for the transition [18]. When interpreted over algebraic semirings, the weights
in the automaton can be used to define various different types of quantitative
objectives along with the acceptance condition.

306 S. Paul et al.

We eschew the general definition of weighted automata, and look at the spe-
cific instances of quantitative languages [11,14,15], where the weights of the tran-
sitions in the automaton are interpreted over valuation functions. This formalism
is a generalization of the recently popular reward machine approach used in rein-
forcement learning frameworks with temporally dependent tasks [13,26,27,60].
Weighted automata are more expressive than reward machines as they allow a
notion of acceptance in the automaton. We will later empirically show how spe-
cific weighted automata can generalize discrete-time temporal logic objectives
(such as Signal Temporal Logic).

Definition 2 (Weighted Automata). A weighted automaton is defined as a
tuple A = (Q,QI , QF , Σ, T, λ), where:

– Q is a finite set of locations, and QI ⊆ Q and QF ⊆ Q are respectively the
set of initial locations and final locations;

– Σ is an input alphabet;
– T : Q × Σ → 2Q is a (partial) labeled transition function, where 2Q is the

powerset of Q;
– λ : Q × Σ × Q → R is a weight function.

An automaton is complete if for all q ∈ Q and s ∈ Σ, there is at least one
successor location in the automaton, i.e., |T (q, s)| > 0. Likewise, the automaton
is deterministic if for all q ∈ Q and s ∈ Σ, there is exactly one successor location,
i.e., |T (q, s)| = 1. As we intend to use WA-based reward functions, the set of
input symbols for the WA is essentially the set of states S of a stochastic game
as defined before. Thus, given an input trajectory, τ = (s0, s1, . . . , sl) ∈ Σ∗, a
run in the automaton A is a sequence of locations (q0, q1, . . . , ql+1) such that
qi+1 ∈ T (qi, si), for i ∈ 0, . . . , l. We use runA(τ) to denote the set of runs
induced in A by τ ∈ Σ∗. Note that if |runA(τ)| > 0, the automaton is non-
deterministic, and the run is accepting if the last location ql+1 in the run is in
QF . Moreover, for a given input τ = (s0, s1, . . . , sT) ∈ Σ∗ and a corresponding
run σ = (q0, q1, . . . , ql, qT+1), a sequence of weights (w0, w1, . . . , wT) is produced
such that wi = λ(qi, si, qi+1). For some τ ∈ Σ∗ and a corresponding run r ∈ Q∗

in the automaton, we let weightsA(τ, r) ∈ R
∗ denote the sequence of weights

induced by the run.

Definition 3 (Valuation function). Given the weights w ∈ weightsA(τ, r)
corresponding to a run r ∈ Q∗ induced by an input τ ∈ Σ∗ on a weighted
automaton A, a valuation function Val(w) ∈ R is a scalar function that outputs
the weight of the sequence. The weight of a trajectory τ ∈ Σ∗ in an automaton
A can be defined as

wA(τ) = max
r∈run(τ)

Val(weights(τ, r)).

For a sequence of weights w = (w0, w1, . . . , wl), examples of valuation func-
tions include:

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 307

– Sum(w) =
∑l

t=0
wt – Avg(w) =

1
l + 1

∑l

t=0
wt

– For a discount factor γ ∈ [0, 1],DiscountedSumγ(w) =
∑l

t=0
γtwt

In this paper, we are particularly interested in the DiscountedSumγ valuation
function defined on deterministic weighted automata, as it captures the total
discounted rewards semantics for the policy synthesis problem described above.

Remark 1. While we restrict ourselves to deterministic automata for brevity, one
can extend the presented framework to non-deterministic automata by resolv-
ing the non-deterministic transitions using the max operation (or the general
semiring addition) [11,39]. Moreover, since our framework evaluates the weight
of trajectories at the end of episodes, one can resolve the non-deterministic runs
using the weighting function wA as described above.

Problem Definition: A specific setting for multi-agent pathfinding that we
wish to solve in this paper is reach-avoid specifications, i.e., where multiple agents
are each randomly assigned start and goal locations in a shared environment.
Their task is to navigate to their goals as quickly as possible while avoiding
collisions with one another. We can express these conditions as:

1. Expeditious goal achievement: Each agent must reach the goal state
within T time-steps, and as expeditiously as possible.

2. Collision avoidance: Every agent must avoid collisions with other agents
and obstacles at all times.

Solution Outline: Our goal, is to define a reward function for each agent in
the system such that by maximizing the expected total reward across all agents
(denoted by η above), the resulting policy Π∗ achieves the high-level reach-avoid
task in a performant fashion. We do this by defining a weighted automaton that
specifies the task for each agent in the system, i.e., each agent aims to maximize
the weight of its trajectory in the system with respect to the same automaton
specification. The weighted automaton describes a pattern such that maximizing
the composed weights of all agent trajectories, or the utility of the system.

3 Reward Shaping for Timed Multi-agent Reach-Avoid
Problems

To ensure a timely multi-agent reach-avoid system, we propose a reward struc-
ture that emphasizes the importance of efficient trajectories to the goal. Pre-
viously in literature, AvSTL [2] was developed to assess behavior over time
by measuring the area under the signal curve within a given timeframe. Yet,
for reach-avoid tasks where goals must be reached quickly and safely, AvSTL
may inadvertently favor less direct routes due to its integral-based evaluation.
Consider the robustness metric for reaching a goal within time T , denoted by

308 S. Paul et al.

F[0,T](reachgoal), as 1 for success and 0 otherwise. As shown in Fig. 2, an agent
that swiftly reaches the goal and moves away may have a lower cumulative value
than one following a longer route that lingers at the goal, highlighting a potential
discrepancy in AvSTL’s approach for such tasks.

Fig. 2. Counter-example: An agent (O) tries to go from the initial location (yellow) to
the goal location (green). Under general expeditious semantics (such as in AvSTL) the
trajectory in the left figure where the agent reaches the goal quickly but wanders after
would receive a lower reward (area under the curve) than the one in the right figure
where the agent takes a longer path to reach the goal but stays in the goal for longer.
(Color figure online)

In this section, we outline our reward-shaping mechanism which is designed
to promote efficient goal attainment with collision avoidance. The reward func-
tion provides a large reward (+b) for reaching the goal as sufficient incentive
for doing so, while penalizing each step before reaching the goal with a minor
negative reward (−a) to hasten the process. It also generates a hefty penalty for
collisions (−c) at any point which could be smaller than or equal to the reward
for reaching the goal, depending on whether or not the system wants to permit
trajectories with collisions or not. This structured reward shaping aims to bal-
ance the urgency of completing tasks with the imperative of maintaining safe

Fig. 3. A deterministic weighted automaton defining the reach-avoid task that needs
to be completed by each agent in the system. In the figure, si refers to the current
state of agent i in the multi-agent system.

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 309

operations within the multi-agent system. We abuse notation and denote τ i(t)
to be the state of the agent i at time t in the trajectory. The reward function R
for an agent i at time t taking action a resulting in a state transition from si

t to
si

t+1 can be defined as:

Ri
t(s

i
t, a, si

t+1) = fF (τ i(t)) + fO(τ i(t)) (1)

Now we can define:

fO(τ i(t)) =

{
−c if si

t ∈ O

0 if si
t /∈ O

, fF (τ i(t)) =

⎧
⎪⎨
⎪⎩

0 if ∃t′ < t : si
t′ ∈ F

b if si
t ∈ F & �t′ < t : si

t′ ∈ F

−a if si
t /∈ F & �t′ < t : si

t′ ∈ F

(2)
where a, b, c ∈ R

+; si
t ∈ F , indicates agent i reaching the goal and si

t ∈ O
indicates a collision with an obstacle. We also define the constraint: b ≥ c > a ·T ,
where T is the total time permitted to reach the goal (i.e., the length of an
episode in terms of timesteps). This provides a hierarchical framework where
reaching the goal is paramount, followed by the penalty for collisions, with a
smaller penalty for taking steps before reaching the goal.

The above reward structure generally follows the weights from the automaton
shown in Fig. 3. Moreover, for a discount factor γ ∈ (0, 1) we can interpret the
trace over the DiscountedSumγ valuation function.

Let us denote toa(τ) as the time of arrival of the trajectory into the goal,
where toa(τ) = min{t | (st, at) ∈ τ and st ∈ F}.

Proposition 1. If the sum of rewards over a trajectory is positive, the trajectory
satisfies the condition of reaching the goal within T timesteps, and not colliding
with an obstacle. wA(τ) > 0 =⇒ F[0,T](stoa ∈ F) ∧ G[0,T](¬s ∈ O)1

All timesteps after toa(τ) are weighted 0 according to our reward function, as
we assume the absence of collisions, so we only consider the part upto toa(τ).

Lemma 1. Trajectories that are more expeditious i.e. that reach the goal sooner
(assuming they do not have collisions) have higher rewards returned by the
weighted automata.

toa(τ) < toa(τ ′) ⇒ wA(τ) > wA(τ ′)

Proof. The proof follows from the definitions of the reward function and wA(τ).

4 Policy Optimization

In our multi-agent system, we employ homogeneous agents that are centrally
trained under a unified framework, allowing for the sharing of a joint policy.
This homogeneity simplifies the training process and enables the application of
1 F[a,b](x > 0) denotes ∃t ∈ [a, b] s.t. x(t) > 0 and G[a,b](x > 0) denotes ∀t ∈
[a, b] s.t. x(t) > 0.

310 S. Paul et al.

single-agent methodologies, such as A∗ and single-agent reinforcement learning
algorithms to manage the collective behavior.

Search-Based Methods for Policy Learning: Heuristic-based approaches
to pathfinding, exemplified by algorithms such as A∗ [23], D-star [54], and D-
star Lite [33], utilize heuristics to navigate efficiently from one point to another
within an environment. These algorithms operate by employing a heuristic to
estimate the cost from any node in the search space to the goal, effectively
guiding the search process toward the most promising paths while minimizing
unnecessary exploration. Common heuristics include the Manhattan distance,
which provides a direct estimation of the minimal possible distance to the goal,
assuming a grid-like path with no obstructions. This heuristic foreknowledge is
crucial as it significantly influences the efficiency and effectiveness of the search.

Learning-Based Methods: Data-driven policy optimization methods are
increasingly popular in environments where the system is stochastic, the model
of the system is not available, and when the state-space is large. Model-free rein-
forcement learning methods such as Q-learning [58], Deep Q-Networks (DQN)
[38], Advantage Actor Critic (A2C) [37], and Proximal Policy Optimization
(PPO) [52] refine their strategies through extensive interaction with the envi-
ronment.

Q-learning is a foundational off-policy algorithm where each pair of state s
and action a is associated with a Q(s, a) value representing the expected future
reward. This value is iteratively updated using the Bellman equation [58]. In
multi-agent systems, Q-learning can be adapted by extending the state-action
space to include all possible combinations of states and actions for every agent,
effectively using a shared Q-table. This approach allows all agents to follow a
centrally managed, uniform policy that operates based on the joint action space.
Deep Q-Networks (DQN) extends Q-learning by employing deep neural networks
to approximate the Q(s, a) function, allowing it to handle continuous and high-
dimensional state spaces efficiently.

A2C is an actor-critic method that uses multiple parallel environments to
update its policy and value networks reducing variance and improving learning
speed. PPO is a more stable and efficient actor-critic method that optimizes
a clipped version of the objective function instead of directly optimizing the
objective function to provide smoother updates. Actor-critic methods can be
implemented with each agent operating simultaneously in a shared environment,
all contributing to a central policy update mechanism. This ensures that learning
is synchronized.

Monte Carlo methods, another branch of model-free RL, do not assume
knowledge of the environment’s dynamics and instead rely on sampling full
trajectories to estimate expected returns. These methods can be adapted for
multi-agent use by sampling and averaging returns across all agents, using these
aggregated insights to update a central policy that guides all agents.

We explored a spectrum of strategies for addressing the multi-agent pathfind-
ing challenge. These included the traditional heuristic-driven approach such as
A*, tabular temporal difference methods like Q-learning, neural network-driven

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 311

techniques exemplified by Proximal Policy Optimization (PPO), and stochastic
sampling-based approaches such as those used in Monte Carlo methods.

Limitations of These Approaches: Limitations of search-based algorithms
include scalability as the frontier grows exponentially with an increase in the
number of agents, lack of applicability in stochastic and dynamic environments,
and a priori knowledge of the environment in terms of an admissible heuristic
which we do not provide to any of the other algorithms including our own. The
primary shortcoming of learning-based algorithms such as the ones we described
above that we aim to overcome is sample-inefficiency. These algorithms can
require a large number of interactions with the environment to learn effective
policies, which is impractical in complex or time-sensitive applications. These
algorithms also treat each step or trajectory as equally important for a policy
update. However, we aim to replace that with a weighted update that ensures
that steps in trajectories that overperform or underperform by a significant mag-
nitude, also make a more significant impact to the policy.

4.1 Algorithmic Framework Using Evolutionary Game Theory

Evolutionary Game Theory (EGT) presents a dynamic alternative to classical
game theory and is better suited to the realities of multi-agent systems. [4,51,53]
Unlike traditional game theory, it does not presume rationality among agents,
making it adaptable to any scenario. It focuses on the dynamics of strategy
changes driven by the success of current strategies in the population, reflect-
ing a more naturalistic approach to agent learning. Evolutionary strategies also
offer quicker and more robust convergence guarantees, making them particularly
appealing in environments where reinforcement learning is an intuitive fit. Given
these advantages, it is a promising direction for advancing research and practical
applications in multi-agent settings.

Replicator Equation: The key concept within EGT pertinent to us is that of
replicator dynamics, which describes how the frequency of strategies (or policies
in RL) changes over time based on their relative performance. The classic repli-
cator equation in evolutionary game theory describes how the proportion of a
population adopting a certain strategy evolves over time. Mathematically, it is
expressed as [41]:

xj(i + 1) = xj(i) · fj(i)
f̄(i)

(3)

where xj(i) represents the proportion of the population using strategy j at time
i, fj(i) is the fitness of strategy j, and f̄(i) is the average fitness of all strategies
at time i. The equation indicates that the growth rate of a strategy’s proportion
is proportional to how much its fitness exceeds the average fitness, leading to an
increase in the frequency of strategies that perform better than average.

312 S. Paul et al.

Representation of Populations and the Fitness Equivalent: We represent
the probability distribution over actions in a given state as a population. Each
individual in the population corresponds to an action, and the proportion of
(individuals corresponding to a specific action) in the population represents the
probability of taking the action in that state. Thus, the population represents
a stochastic policy. The fitness function measures the reproductive success of
strategies based on payoffs from interactions, similar to utility in classical game
theory, or how in RL, the expected return measures the long-term benefits of
actions based on received rewards. Both serve as optimization criteria: strategies
or policies are chosen to maximize these cumulative success measures to guide
them towards optimal behavior. Therefore, in our model, the fitness for a state
f(s) corresponds to the expected return from that state, equivalent to the value
function v(s), and the fitness for a state-action pair f(s, a) corresponds to the
expected return from taking action a in state s, equivalent to the action-value
function q(s, a).

Under the assumption of sparse rewards- where significant rewards are
received only upon reaching specific states or goals, f(s) is defined as E[f(τs)],
the expected return across all trajectories through state s. Likewise, f(s, a) is
defined as E[f(τ(s,a))], the expected return across trajectories involving the state-
action pair (s, a).

Policy Update Mechanism: The replicator equation can be adapted to update
the probability of selecting certain actions based on their relative performance
compared to the average. The adaptation of the replicator equation is as follows:

πi+1(s, a) =
πi(s, a)f(s, a)∑

a′∈A πi(s, a′)f(s, a′)
(4)

where πi(s, a) is the probability of action a in state s, in the ith iteration, and
πi+1 represents the policy in the i + 1th iteration.

Heterogeneous Agents: We note that in our approach agents are assumed
to be homogeneous, i.e., the learned policy is shared across all the agents. Our
approach can theoretically work for heterogeneous agents as well. However, each
agent is then required to maintain its own policy. This means that for each agent,
per agent state, a population of actions will require to be updated.

Prioritizing Expeditious and Safe Trajectories: The adaptation of our
policy update equation focuses on the ratio of the expected fitness of a particular
action to the average expected fitness, allowing for a more nuanced update. It
scales the probability of each action relative to how much better (or worse)
it performs compared to the average, rather than simply whether it is better
or worse. Actions that lead to higher returns relative to the average are thus
promoted in subsequent iterations of the policy. This selective pressure inherently
favors actions that contribute to reaching goals faster and avoiding collisions, as
they have a greater impact on the expected return due to the structured rewards.
As a result, the policy evolves towards a strategy that seeks to maximize rewards

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 313

Fig. 4. Overview of the evolutionary based learning approach used in our algorithms.

by combining efficiency with safety. The learning rate α ensures that the update
remains bounded and allows for fine-tuning of the learning process (Fig. 4).

Proposed Algorithm: Our algorithm uses batch-based updates: We initialize
the policy πnew to be initially random. We sample trajectories as part of a
batch, and the state-action pairs in these trajectories are updated according to
the update rule. The return for the (k+1)th iteration is set as the return for the
current batch of trajectories. We maintain a weighted discounted policy while
training, with the weight decreasing with each iteration. This process is repeated
until our termination condition has been met i.e. ηk+1 − ηk > δ: This condition
checks if our policy is improving with each update. If it does not, we say it has
converged.

Termination and Convergence: We can show that the algorithm termi-
nates after a finite number of iterations, based on the observation that policy
updates ensure that the utility/value of each state monotonically increases. The
evolutionary update guarantees that the probability πnew(s, a) increases only
when f(s, a) is greater than Ea(f(s, a)), while πnew(s, a) decreases whenever
f(s, a) < Ea(f(s, a)). This in turn guarantees that under πnew, the value of the
state s increases. For states not sampled in batch, πnew(s, a) is unchanged. Now
there are two cases: (1) The maximum improvement across all states between
two consecutive iterations is less than δ, in which case the algorithm goes to
Line 15 and returns the policy πnew. (2) The maximum improvement is greater
than δ. In the second case, the algorithm cannot forever increase the expected

314 S. Paul et al.

Algorithm 1: Multi-agent Pathfinding using EGT
Input: Hyper-parameters

• To alter weight: ν ∈ (0, 1)
• To ensure discounted policies: ε > 0
• To check convergence: δ > 0
• Scaling factor/learning rate: α > 0

Output: Trained policy
1 k ← 1 // k is the iteration number
2 η0 ← 0 // ηk contains the expected at the end of the kth iteration
3 πnew

0 (s, a) ← 1
|A| , ∀s ∈ S, a ∈ A // Initialize policies as random

4 while True do
5 for each episode in batch b = 1 to B do
6 Generate trajectory τ i

b for each agent using πnew
k

7 Append the collective generated trajectory τb to batch

8 Compute expected return ηk over the batch
9 if ηk − ηk−1 ≥ δ then

10 for all trajectories τb in batch do
11 for each state-action pair (s, a) in trajectory τb do
12 Evolutionary Policy Update:
13 πnew

k+1 (s, a) ← πnew
k (s, a) · α · πnew

k (s,a)f(s,a)
∑

a′∈A πnew
k

(s,a′)f(s,a′)

14 w ← max(ε, w − ν) // Decrement weight on exploratory policy
πnew

k+1 ← w · 1
|A| + (1 − w) · πnew

k+1 // Weighted policy update k ← k + 1

15 else return πnew
k // Return the final optimized policy

return ηk, as the maximum expected return is guaranteed to be finitely upper
bounded (as trajectories are finite in length).

We note that our algorithm may converge to a policy that is sub-optimal;
however, as long as the return ηk is positive, the trained policy satisfies the
weighted automaton objectives. To prove that the algorithm terminates to an
optimal policy would require the policy update operator to be a contraction
mapping, similar to learning algorithms like Q-learning [58] or value iteration
[10]; we defer this extension to future work.

To analyze the complexity of our algorithm, we note that each loop (i.e. from
Lines 5 to 13) runs until ηk −ηk−1 < δ. If we assume the existence of an optimal
policy that maximizes returns, and let the return under the optimal policy be
denoted as η∗, then this loop can run for a maximum of η∗−η0

δ times. Each loop
itself has a complexity of T · B (with T being the length of an episode and B
being the number of episodes in a batch). Then, the complexity of our algorithm
is O

(
η∗−η0

δ · T · B
)
.

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 315

5 Experiments and Results

For our experiments, we define the world as a two dimensional n×n grid, where
each state s ∈ S, is defined as (x, y) where x and y are coordinates. The agents are
homogeneous and the set of actions available to each agent Ai = {up, down, left,
right, stay}. At the beginning of each episode the agent is assigned a random
start location and must reach one of the goal locations by the end of it. We vary
the grid size from 20× 20 to 200× 200, and vary the number of agents from 2 to
50. We benchmark our algorithm against a planning algorithm A∗ [23], a Monte-
Carlo approach [56], tabular Q-learning [56] and a Deep RL algorithm PPO [52].
We use Manhattan-distance as the heuristic for A∗ and the same reward function
as our algorithm for the other approaches. Our experiments were carried out on
a laptop with 2.0GHz dual-core Intel Core i5 processor and 16GB RAM. We use
the ‘stablebaselines3’ [47] implementation of PPO with standard values for the
hyperparameters. Our algorithms have been implemented on OpenAI gym [12].

5.1 Results and Discussion

Comparison with A∗: We include A∗ as a baseline heuristic search algorithm.
A∗ uses a heuristic based on Manhattan distance and does not account for prox-
imity to obstacles, while the other algorithms incorporate this information into
their reward structures. We note that each agent invokes A∗ separately to plan
its path, while the other algorithms learn a common policy. The paths identified
by A∗ are close to optimal as the Manhattan distance is an admissible heuristic,
and thus a good baseline for comparison.

Timesteps/Path Length: MAPF-EGT excels in path length (i.e. timesteps
to reach the goal) for large grids. PPO and Monte Carlo rival it on smaller grids
but lag behind on larger ones.

Distance from Obstacles: Monte Carlo keeps a relatively larger distance from
obstacles, showing a conservative approach. Q-Learning and PPO have similar
distances, indicating a balanced approach in avoiding obstacles. MAPF-EGT
shows a more adaptive strategy, maintaining sizeable distances from obstacles
even as grid size increases.

Computation Time: Q learning struggles with scalability and training, affect-
ing its large-grid success rate. PPO takes longer time on smaller grids but scales
well with increase in size. MAPF-EGT has a comparable computation time to
the Monte-Carlo method (Fig. 5).

316 S. Paul et al.

Fig. 5. MAPF-EGT benchmarked against the algorithms: A∗, Monte-Carlo search,
PPO, and Q learning. Timesteps to reach the goaal (Fig. a), Expected minimum dis-
tance from obstacles (greater distance indicates safer paths)(Fig. b), and clock time
(seconds) required for computation (Fig. c) compared across the grid sizes: 20 × 20,
50 × 50, 100 × 100, 150 × 150 and 200 × 200. Fig.d shows scaling in total time taken,
with number of agents varied from 2 to 50 on a 100 × 100 grid. We also note that
the A∗ algorithm is given a heuristic i.e. the Manhattan distance to the closest goal,
information that the other algorithms are not given.

Number of Agents: Testing MAPF-EGT with 2 to 100 agents on a 100 × 100
grid, we see that PPO scales rather poorly, while Q-learning remains steady.
Although Q-learning had long training times as indicated previously, it’s short
run times make it scale well with increase in the number of agents. MAPF-EGT
scales the best with increase in the number of agents. Our intuition for this is
that more agents represent more trajectories generated, and more diverse and
richer data to learn from.

6 Related Work

Early work in modeling environment dynamics used Markov decision processes
(MDPs) [22,49] or differential equations [20,44]. Recently, the focus has shifted

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 317

to data-driven and automata-based methods for control synthesis and achiev-
ing temporal logic-based objectives [8]. Modern techniques incorporate robust-
ness metrics into deep reinforcement learning (RL) frameworks, replacing tradi-
tional reward functions with back-propagation to train controllers for complex
temporal tasks [7]. In RL, reward engineering is crucial, with methods rang-
ing from Q-learning for robust controller learning [3], to using deterministic
finite automata (DFA) for task specifications and potential functions. Automata
are preferred for their robustness in symbolic weighted automata frameworks
[29] and the ability to translate various specification formalisms into automata
[30]. Addressing Non-Markovian Rewards (NMRs) now involves Non-Markovian
Reward Decision Processes (NMRDPs) with history-sensitive reward functions
[13]. Model-based MDP synthesis under Linear Temporal Logic (LTL) has been
streamlined to mixed integer linear programming, using task progression con-
cepts to develop policies [31]. Advanced techniques for LTL controller synthesis
handle unsatisfiable tasks [21], and Temporal Logic Policy Search introduces a
robustness-oriented approach to model-free RL [34].

7 Conclusion

In this paper, we have addressed the complex challenge of trajectory-level task
objectives for autonomous multi-agent systems in uncertain environments. Our
contributions include the introduction of weighted automata-based task objec-
tives, which enhance the agents’ ability to complete tasks more expeditiously,
and the development of the MAPF-EGT algorithm, which leverages evolutionary
game theory to train homogeneous agent teams more effectively. Our empirical
results demonstrate that our approach outperforms state-of-the-art reinforce-
ment learning and heuristic search methods, achieving a reduction in path length
and faster computation times. These findings highlight the potential of our meth-
ods to improve the efficiency and scalability of multi-agent systems in various
practical applications.

Limitations and Future Work: Our current setup is confined to discrete
state-action spaces, but we are actively developing an extension to accommodate
continuous spaces. This expansion will utilize function approximation through
radial basis functions, enabling policy updates for states within proximity to the
updated state. Furthermore, given our methodology of normalizing the proba-
bility distribution across a state’s actions, we plan to implement a continuous
model, which will be adjusted using probability density functions and updated
via Dirac delta functions. Our research currently focuses on homogeneous agents
and tasks. Future developments will aim to include diverse forms of multi-agent
learning, providing convergence guarantees. Additionally, we intend to explore
game-theoretic guarantees within the realm of multi-agent learning to ensure
robust and strategic interactions among agents.

318 S. Paul et al.

References

1. Agmon, N., Urieli, D., Stone, P.: Multiagent patrol generalized to complex envi-
ronmental conditions. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 25, pp. 1090–1095 (2011)

2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3_21

3. Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust
satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference
on Decision and Control (CDC), pp. 6565–6570 (2016). https://doi.org/10.1109/
cdc.2016.7799279

4. Alexander, J.M.: Evolutionary game theory. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Summer 2021 edn., Metaphysics Research Lab, Stan-
ford University (2021)

5. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety (2016)

6. Badings, T., Romao, L., Abate, A., Jansen, N.: A stability-based abstraction frame-
work for reach-avoid control of stochastic dynamical systems with unknown noise
distributions (2024)

7. Balakrishnan, A., Deshmukh, J.V.: Structured reward shaping using signal tem-
poral logic specifications. In: 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3481–3486 (2019). https://doi.org/10.1109/
IROS40897.2019.8968254

8. Balakrishnan, A., Jakšić, S., Aguilar, E.A., Ničković, D., Deshmukh, J.V.: Model-
free reinforcement learning for spatiotemporal tasks using symbolic automata. In:
2023 62nd IEEE Conference on Decision and Control (CDC), pp. 6834–6840 (2023).
https://doi.org/10.1109/CDC49753.2023.10383559

9. Bellusci, M., Basilico, N., Amigoni, F.: Multi-agent path finding in configurable
environments. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 159–167 (2020)

10. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 3rd edn.
Athena Scientific, Belmont (2005)

11. Boker, U.: Quantitative vs. weighted automata. In: Bell, P.C., Totzke, P., Potapov,
I. (eds.) RP 2021. LNCS, vol. 13035, pp. 3–18. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-89716-1_1

12. Brockman, G., et al.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)
13. Camacho, A., Chen, O., Sanner, S., McIlraith, S.A.: Non-Markovian rewards

expressed in LTL: guiding search via reward shaping (extended version). In: Goal-
sRL, a Workshop Collocated with ICML/IJCAI/AAMAS (2018)

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-87531-4_28

15. Chatterjee, K., Henzinger, T.A., Otop, J.: Quantitative monitor automata. In:
Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 23–38. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53413-7_2

16. Cohen, M., Belta, C.: Temporal logic guided safe model-based reinforcement learn-
ing. In: Cohen, M., Belta, C. (eds.) Adaptive and Learning-Based Control of Safety-
Critical Systems. SLCS, pp. 165–192. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-29310-8_9

https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1109/cdc.2016.7799279
https://doi.org/10.1109/cdc.2016.7799279
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.1109/IROS40897.2019.8968254
https://doi.org/10.1109/CDC49753.2023.10383559
https://doi.org/10.1007/978-3-030-89716-1_1
https://doi.org/10.1007/978-3-030-89716-1_1
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1007/978-3-662-53413-7_2
https://doi.org/10.1007/978-3-031-29310-8_9
https://doi.org/10.1007/978-3-031-29310-8_9

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 319

17. Cohen, M.H., Belta, C.: Model-based reinforcement learning for approximate opti-
mal control with temporal logic specifications. In: Proceedings of the 24th Interna-
tional Conference on Hybrid Systems: Computation and Control, pp. 1–11 (2021)

18. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste, M.,
Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. An EATCS Series, pp. 175–211. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01492-5_5

19. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency
constraints. Ann. Math. Artif. Intell. 57, 293–320 (2009)

20. Gilpin, Y., Kurtz, V., Lin, H.: A smooth robustness measure of signal temporal
logic for symbolic control. IEEE Control Syst. Lett. 5(1), 241–246 (2020)

21. Guo, M., Zavlanos, M.M.: Probabilistic motion planning under temporal tasks and
soft constraints. IEEE Trans. Autom. Control 63(12), 4051–4066 (2018)

22. Haesaert, S., Soudjani, S., Abate, A.: Temporal logic control of general Markov
decision processes by approximate policy refinement. IFAC-PapersOnLine 51(16),
73–78 (2018)

23. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968).
https://doi.org/10.1109/TSSC.1968.300136

24. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfac-
tion guarantees. In: 2019 IEEE 58th Conference on Decision and Control (CDC),
pp. 5338–5343. IEEE (2019)

25. Hashemi, N., Hoxha, B., Prokhorov, D., Fainekos, G., Deshmukh, J.: Scaling learn-
ing based policy optimization for temporal tasks via dropout (2024)

26. Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
Proceedings of the 35th International Conference on Machine Learning, pp. 2107–
2116. PMLR (2018)

27. Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward machines:
exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res.
73, 173–208 (2022). https://doi.org/10.1613/jair.1.12440

28. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative monitor-
ing of STL with edit distance. Formal Methods Syst. Design 53(1), 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

29. Jaksic, S., Bartocci, E., Grosu, R., Nickovic, D.: An algebraic framework for run-
time verification (2018)

30. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: Advances in Neural Information Processing
Systems, vol. 34 (2021)

31. Kalagarla, K.C., Jain, R., Nuzzo, P.: Synthesis of discounted-reward optimal poli-
cies for Markov decision processes under linear temporal logic specifications. arXiv
preprint arXiv:2011.00632 (2020)

32. Kempa, B., Cramer, N.B., Frank, J.D.: Swarm mentality: toward automatic swarm
state awareness with runtime verification. In: AAAI 2022 Spring Symposium Series
(2022)

33. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain.
IEEE Trans. Rob. 21(3), 354–363 (2005)

34. Li, X., Ma, Y., Belta, C.: A policy search method for temporal logic specified rein-
forcement learning tasks. In: 2018 Annual American Control Conference (ACC),
pp. 240–245. IEEE (2018)

https://doi.org/10.1007/978-3-642-01492-5_5
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1007/s10703-018-0319-x
http://arxiv.org/abs/2011.00632

320 S. Paul et al.

35. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839. IEEE (2017)

36. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_2

37. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning (2016)
38. Mnih, V., et al.: Playing Atari with deep reinforcement learning (2013)
39. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.

(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series, pp. 213–254. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-01492-5_6

40. Morris, R., et al.: Planning, scheduling and monitoring for airport surface opera-
tions. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence
(2016)

41. Mukhopadhyay, A., Chakraborty, S.: Replicator equations induced by microscopic
processes in nonoverlapping population playing bimatrix games. Chaos: Int. J.
Nonlinear Sci. 31(2) (2021). https://doi.org/10.1063/5.0032311

42. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic. In: 2017 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1235–1240 (2017). https://doi.org/10.1109/CCTA.2017.
8062628

43. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: control of multi-
drone fleets with temporal logic objectives. In: 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), pp. 186–197 (2018). https://doi.
org/10.1109/ICCPS.2018.00026

44. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: control of multi-
drone fleets with temporal logic objectives. In: Proceedings of the International
Conference on Cyber-Physical Systems (ICCPS), pp. 186–197 (2018)

45. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)

46. Qin, X., Aréchiga, N., Deshmukh, J., Best, A.: Robust testing for cyber-physical
systems using reinforcement learning. In: 2023 21st ACM-IEEE International Sym-
posium on Formal Methods and Models for System Design (MEMOCODE), pp.
36–46 (2023)

47. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
(2021)

48. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_24

49. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal
temporal logic. In: Proceedings of Robotics: Science and Systems XII (2016)

50. Salzman, O., Stern, R.: Research challenges and opportunities in multi-agent path
finding and multi-agent pickup and delivery problems. In: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, pp.
1711–1715 (2020)

51. Sandholm, W.H.: Evolutionary game theory. In: Meyers, R. (ed.) Encyclopedia
of Complexity and Systems Science, pp. 3176–3205. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-30440-3_188

https://doi.org/10.1007/11603009_2
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1063/5.0032311
https://doi.org/10.1109/CCTA.2017.8062628
https://doi.org/10.1109/CCTA.2017.8062628
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/10.1109/ICCPS.2018.00026
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-0-387-30440-3_188

Multi-agent Path Finding for Timed Tasks Using Evolutionary Games 321

52. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

53. Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cam-
bridge (1982)

54. Stentz, A.: Optimal and efficient path planning for partially known environments.
In: Hebert, M.H., Thorpe, C., Stentz, A. (eds.) Intelligent Unmanned Ground Vehi-
cles. The Springer International Series in Engineering and Computer Science, vol.
388, pp. 203–220. Springer, Boston (1997). https://doi.org/10.1007/978-1-4615-
6325-9_11

55. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Twelfth Annual Symposium on Combinatorial Search (2019)

56. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(2018)

57. Varambally, S., Li, J., Koenig, S.: Which MAPF model works best for automated
warehousing? In: Proceedings of the International Symposium on Combinatorial
Search, vol. 15, pp. 190–198 (2022)

58. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)
59. Williams, S., Deshmukh, J.: Potential games on cubic splines for multi-agent

motion planning of autonomous agents. In: 2024 International Conference on
Autonomous Agents and Multiagent Systems. University of Southern California,
Los Angeles (2024)

60. Zhou, W., Li, W.: A hierarchical Bayesian approach to inverse reinforcement learn-
ing with symbolic reward machines (2022). https://doi.org/10.48550/arXiv.2204.
09772

http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-1-4615-6325-9_11
https://doi.org/10.1007/978-1-4615-6325-9_11
https://doi.org/10.48550/arXiv.2204.09772
https://doi.org/10.48550/arXiv.2204.09772

	Multi-agent Path Finding for Timed Tasks Using Evolutionary Games
	1 Introduction
	2 Preliminaries
	3 Reward Shaping for Timed Multi-agent Reach-Avoid Problems
	4 Policy Optimization
	4.1 Algorithmic Framework Using Evolutionary Game Theory

	5 Experiments and Results
	5.1 Results and Discussion

	6 Related Work
	7 Conclusion
	References

