
Survival of the Fittest: Evolutionary Adaptation of
Policies for Environmental Shifts

Sheryl Paula,* and Jyotirmoy V. Deshmukha

aUniversity of Southern California

Abstract. Reinforcement learning (RL) has been successfully ap-

plied to solve the problem of finding obstacle-free paths for au-

tonomous agents operating in stochastic and uncertain environments.

However, when the underlying stochastic dynamics of the environ-

ment experiences drastic distribution shifts, the optimal policy ob-

tained in the trained environment may be sub-optimal or may entirely

fail in helping find goal-reaching paths for the agent. Approaches like

domain randomization and robust RL can provide robust policies, but

typically assume minor (bounded) distribution shifts. For substantial

distribution shifts, retraining (either with a warm-start policy or from

scratch) is an alternative approach. In this paper, we develop a novel

approach called Evolutionary Robust Policy Optimization (ERPO),

an adaptive re-training algorithm inspired by evolutionary game the-

ory (EGT). ERPO learns an optimal policy for the shifted environ-

ment iteratively using a temperature parameter that controls the trade

off between exploration and adherence to the old optimal policy. The

policy update itself is an instantiation of the replicator dynamics used

in EGT. We show that under fairly common sparsity assumptions on

rewards in such environments, ERPO converges to the optimal pol-

icy in the shifted environment. We empirically demonstrate that for

path finding tasks in a number of environments, ERPO outperforms

several popular RL and deep RL algorithms (PPO, A3C, DQN) in

many scenarios and popular environments. This includes scenarios

where the RL algorithms are allowed to train from scratch in the

new environment, when they are retrained on the new environment,

or when they are used in conjunction with domain randomization.

ERPO shows faster policy adaptation, higher average rewards, and

reduced computational costs in policy adaptation.

1 Introduction

A significant challenge for autonomous robotic agents used in auto-

mated warehouses, autonomous driving, and multi-UAV missions is

the problem of identifying the optimal motion policy, i.e., for each

state in the environment, deciding the action that the agent should

execute. There are several computationally efficient approaches for

planning the agent’s actions in deterministic and stochastic envi-

ronments, especially when a model of the environment is available

[14, 7, 33, 3, 13, 12, 17]. However, such models may not be available

for agents deployed in highly uncertain and dynamic environments

[35, 8]. Model-free reinforcement learning (RL) algorithms [29, 4]

have been highly effective at learning optimal policies when the en-

vironment dynamics are unknown.

∗ Corresponding Author. Email: sherylpa@usc.edu

Traditional RL methods suffer from their lack of generalizabil-

ity when exposed to new, unanticipated changes in the environment.

Typically, these RL approaches demonstrate only moderate resis-

tance to noise and exhibit poor performance when deployed in envi-

ronments significantly different from those encountered during train-

ing. The lack of robust adaptation capabilities in these algorithms is

a critical drawback, especially in applications where reliability and

consistency across varied operational conditions are paramount.

Original Environment Post distribution shift

Figure 1: The left figure is an example of an original environment

where the agent (red triangle) has to reach the green goal square.

The right figure represents the same environment after a distribution

shift, introducing additional walls and ‘lava’ that complicate naviga-

tion and makes it differ significantly from the original layout.

Related Work: In response to these challenges, several techniques

have been developed to enhance the robustness of RL algorithms in-

cluding domain randomization [21] and distributionally robust rein-

forcement learning ([27] [22]). Domain randomization trains models

across a wide range of simulated variations, thereby improving the

algorithm’s immunity to noise and its performance under environ-

mental changes. However, this method generally does not perform

well if the changes to the environment are substantial.

Adversarial RL [30] and robust reinforcement learning techniques,

including approaches like Monotonic Robust Policy Optimization

(MRPO), specifically aim to optimize the algorithm’s performance

in the worst-case scenarios. These approaches involve training under

conditions that include adversarial disturbances or significant noise,

thereby preparing the model to handle extreme situations [34, 10].

Although these methods significantly enhance the model’s resilience,

they sometimes fail to provide optimal solutions in less challenging

or more typical scenarios indicating a trade-off between general ro-

bustness and peak performance

Current approaches in Robust RL ([22]) focus on enabling model

adaptation to bridge the gap between simulation and real-world ap-

plications. Simulation models are generally simplistic and fail to con-

sider environmental variables such as resistance, friction, and various

ECAI 2024

U. Endriss et al. (Eds.)

© 2024 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA240874

3268

other minor disturbances, so they cannot be directly deployed in risk-

averse applications [11].

There is also theoretical work in developing versions of DQN

such as DQN-Uncertain Robust Bellman Equation ([6]) that focuses

on developing Robust Markov Decision Processes (RMDPs) with

a Bayesian approach. Moreover, control theory-inspired approaches

train models on subsets of underperforming trajectories. These meth-

ods focus on developing policies that exhibit greater durability and

resilience in adverse conditions, often by considering worst-case per-

formance guarantees as essential benchmarks for reliability [24], but

once again, they suffer from being sub-optimal in many cases.

Approaches in transfer learning with deep reinforcement learn-

ing (Deep RL) [36] focuses on leveraging knowledge from previ-

ously learned tasks to accelerate learning in new, but related, envi-

ronments. While this approach promises to improve adaptability and

reduce training time, its shortcomings include difficulties in identi-

fying which parts of knowledge are transferable and the tendency to

overfit to source tasks.

So we see that despite these advancements, there remains a sub-

stantial gap in effectively adapting pre-trained models to environ-

ments that undergo significant and sudden changes. Traditional RL

methods are often ill-equipped to handle situations such as alterations

in factory floor layouts, unexpected blockages in warehouse paths, or

disruptions in road networks due to natural disasters or construction.

These scenarios can drastically alter the dynamics of the environ-

ment, rendering previous optimal actions ineffective or suboptimal,

and thereby demanding either complete retraining of the models or

significant adjustments to their parameters and training protocols.

Contributions. To overcome prevalent limitations in traditional re-

inforcement learning, we introduce a novel method that synergizes

RL-based planning with principles from evolutionary game theory.

We generate batches of trajectories in a simulated perturbed envi-

ronment and strategically explore this environment by employing an

weighted version of the policy optimal in the original setting, en-

hancing adaptability. Subsequently, we refine the policy by prioritiz-

ing state-action pairs that demonstrate high fitness or returns, draw-

ing on the concept of replicator dynamics [20]. This evolutionary

game theory concept has been successfully applied in analyzing both

normative and descriptive behaviors among agents [32, 9]. Unlike

traditional methods, our approach incrementally modifies the policy

with new batches of data without relying on gradient calculations,

ensuring convergence to optimality with theoretical guarantees.

We evaluate our algorithm ‘Evolutionary Robust Policy Optimiza-

tion’ (ERPO) based on this policy update against leading deep re-

inforcement learning methods, including Proximal Policy Optimiza-

tion (PPO) [26], PPO with Domain Randomization (PPO-DR) [21],

Deep Q-Network (DQN) [15], and Advantage Actor Critic (A2C)

[16], both trained from scratch and retrained from a baseline model

trained on the original environment environment (denoted as PPO-B,

DQN-B, and A2C-B respectively). Our method demonstrates supe-

rior performance in various standard gym environments typical in

RL research. Focused on discrete state and action spaces, we have

applied our model to complex versions of environments such as [31]

FrozenLake, Taxi, CliffWalking, Minigrid: DistributionShift, and a

challenging Minigrid setup featuring walls and lava (Walls&Lava).

Our findings reveal that our algorithm not only reduces computation

times but also decreases the number of training episodes required to

reach performance levels comparable to or better than those achieved

by the aforementioned mainstream methodologies.

2 Preliminaries

2.1 Reinforcement Learning

We model the system consisting of an autonomous agent interacting

with its environment as a Markov Decision Process (MDP) defined

as the tuple: (S,A,R,∆, γ). At each time-step t, we assume that the

agent is in some state st ∈ S, executes an action at ∈ A, transition-

ing to the next state st+1 ∈ S, and receiving a reward rt ∈ R with a

discount factor γ ∈ (0, 1]. The transition dynamics ∆ is a probabil-

ity of observing the next state st+1 and getting the reward rt, given

that the agent is in state st and takes the action at.

In this paper, we consider finite time-horizon (denoted as T) prob-

lems under a stochastic policy π, a probability distribution over ac-

tions given states, such that the action at is sampled from the distri-

bution π(a | s = st) at any time t. We define F ⊆ S as the set

of goal states in which the agent’s task is considered to be achieved.

Now we formalize the sparse reward setting: if r(st, at, st+1) is the

reward received after taking action at in state st.

r(st, at, s
′
t+1) � r(st, at, st+1).

where s′t+1 ∈ F, ∀st+1 /∈ F .

A trajectory τ of the agent induced by policy π is defined as a

(T + 1)-length sequence of state-action pairs:

τ = {(s0, a0), (s1, a1), . . . , (sT−1, aT−1), sT },

where, ∀t < T : at ∼ π(a | s = st), (st+1) ∼ ∆(st+1 | st, at).
(1)

We also donate a trajectory τ where actions have been sampled using

the policy π as τ ∼ π. Given a trajectory, the total discounted reward

of a trajectory is:

Gπ(τ) =
T
∑

t=0

γtrt

We define the state-value and action-value functions as follows:

vπ(s) = Eτ∼π [Gπ(τ)|s0 = s]

and

qπ(s, a) = Eτ∼π [Gπ(τ)|s0 = s, a0 = a]

Let η(π) be the expected discounted return for an agent under the

policy π across all trajectories

η(π) = Eτ∼π

[

T−1
∑

t=0

γtrt+1

]

The optimal policy π� for the MDP can then be defined as:

π� = argmax
π

η(π),

2.2 Evolutionary Game Theory

EGT originated as the application of game-theoretic concepts to bi-

ological settings. This concept stems from the understanding that

frequency-dependent fitness introduces a strategic dimension to the

process of evolution [2]. It models Darwinian competition and can

be a dynamic alternative to traditional game theory that also obvi-

ates the need for assumptions of rationality from the participating

members. It has been applied to modeling complex adaptive systems

where strategies evolve over time as those yielding higher payoffs

become more prevalent, akin to the survival of the fittest in natural

selection. We aim to leverage the principles of EGT [28], [25] to

build an approach for our distribution shift problem.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts 3269

2.2.1 Replicator Dynamics Equation:

The key concept within EGT pertinent to us is that of replica-

tor dynamics, which describes how the frequency of strategies (or

policies in RL) changes over time based on their relative perfor-

mance. The classic replicator equation in evolutionary game theory

describes how the proportion of a population adopting a certain strat-

egy evolves over time. Mathematically, it is expressed as [18]:

xj(i+ 1) = xj(i)
fj(i)

f̄(i)
(2)

where xj(i) represents the proportion of the population using

strategy j at time i, fj(i) is the fitness of strategy j, and f̄(i) is

the average fitness of all strategies at time i. The equation indicates

that the growth rate of a strategy’s proportion is proportional to how

much its fitness exceeds the average fitness, leading to an increase in

the frequency of strategies that perform better than average.

Problem Definition: We assume that we have an optimal policy for

the original environment dynamics ∆, referred to as π�
∆.

Suppose that we have a new environment with dynamics ∆new

obtained by significantly perturbing the distribution representing

∆,1then the problem we wish top solve is to learn a new policy

π�
∆new

such that

π�
∆new

= argmax
π

η∆new (π). (3)

3 Solution Approach

3.1 Translation of the Replicator Equation

Representation of populations and the fitness equivalent: We rep-

resent the probability distribution over actions in a given state as a

population, where each type of population corresponds to a possi-

ble action. For a system comprising n states with m possible actions

in each state, we effectively have n distinct populations of m types

each. This results in mn different types of individuals in the aggre-

gated state population.

The fitness function measures the reproductive success of strate-

gies based on payoffs from interactions, similar to utility in classical

game theory, or how in RL, the expected return measures the long-

term benefits of actions based on received rewards. Both serve as

optimization criteria: strategies or policies are chosen to maximize

these cumulative success measures to guide them towards optimal

behavior. Therefore, in our model, the fitness for a state f(s) corre-

sponds to the expected return from that state, equivalent to the value

function v(s), and the fitness for a state-action pair f(s, a) corre-

sponds to the expected return from taking action a in state s, equiva-

lent to the action-value function q(s, a).
Under the assumption of sparse rewards—where significant re-

wards are received only upon reaching specific states or goals—f(s)
is defined as E[f(τs)], the expected return across all trajectories

through state s. Likewise, f(s, a) is defined as E[f(τ(s,a))], the ex-

pected return across trajectories involving the state-action pair (s, a).

q(s, a) = f(s, a) ≈ E[f(τ(s,a))], (4)

v(s) = f(s) ≈ E[f(τ(s))] (5)

1 Let β = DTV (∆||∆new), i.e. the total variation distance between the
transition dynamics of the old and new environments; then β is bounded as
β ≤ βhi. For our experiments, βhi = 0.4.

Policy Update Mechanism: The replicator equation can be adapted

to update the probability of selecting certain actions based on their

relative performance compared to the average. The adaptation of the

replicator equation is as follows:

πi+1(s, a) =
πi(s, a)f(s, a)

∑

a′∈A πi(s, a′)f(s, a′)
(6)

where πi(s, a) is the probability of action a in state s, in the iith

iteration, and πi+1 represents the policy int he i+ 1th iteration.

Lemma 1. Policy update in Eq. (6) encodes the replicator dynamics

in Eq. (2).

The proof of the above lemma follows from the observation that

for a state s, and a specific action ai, the replicator equation 2 in our

setting would look like2:

xs,aj (i+ 1) = xs,aj (i)
f(s, aj)

∑

a∈A f(s, a) · x(s,a)(i)
(7)

By our representation of policies as populations, we see that

πi(s, aj) is equivalent to xs,aj (i), and so Eq. (6) follows from Eq.

(7). The policy update in Eq. (6) is just a simultaneous application

of parallel replicator equations to all states (being updated in a given

iteration).

This rule essentially captures the essence of the replicator dynamic

by adjusting the probability of action a in state s proportionally to

its performance relative to the average performance of all actions in

that state. The normalizing factor in the denominator ensures that the

updated policy remains a valid probability distribution, aligning with

the principle of the replicator dynamic where strategy frequencies

within a population must sum to one.3

Theorem 2. The algorithm (ERPO) that employs the policy update

specified in Eq. (6), ensures that the value of each state monotoni-

cally improves with each iteration, converging to an optimal policy

under assumptions of sparse rewards.

Proof. We note that our algorithm employs a batched Monte Carlo-

style sampling approach, collecting multiple trajectories in each

batch. We assume that each batch is sufficiently large to ensure that

the estimated values of the v and q functions closely approximate

their true values, so that Eq. (5) and Eq. (4) hold. We also assume

that each state is visited at least once in each batch.

We define the action-value function and value function under pol-

icy πi, accounting for transition probabilities:

qi(s, a) =
∑

s′∈S

∆(s, a, s′)
(

r(s, a, s′) + γvi(s′)
)

,

vi(s) =
∑

a∈A

πi(s, a)qi(s, a). (8)

We now partition the set of actions A into Ah and Al such that:

Ah = {ah ∈ A | qi(s, ah) ≥ vi(s)}

2 Assuming the fitness function is not time-dependent
3 The original replicator equation describes the evolution of strategy propor-

tions within a population, not the absolute numbers of individuals employ-
ing each strategy. This focus on proportions makes it a suitable model for
normalizing factors in our policy update equation. Therefore, the replicator
dynamic’s mechanism, which adjusts strategy frequencies based on rela-
tive fitness, is analogous to adjusting the probability of action selections
in relation to their expected return, thus ensuring that π(s, a) remains a
normalized probability distribution.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts3270

Al = {ah ∈ A | qi(s, al) < vi(s)}.

Splitting into contributions from Ah and Al:

vi(s) = Σah∈Ah
πi(s, ah)q

i(s, ah) + Σal∈Al
πi(s, al)q

i(s, al)
(9)

Similarly,

vi+1(s) = Σah∈Ah
πi+1(s, ah)q

i(s, ah)+Σal∈Al
πi+1(s, al)q

i(s, al)
(10)

By our sparse reward assumption from Eqs. (4), (5) and (8) we can

state that:

vi(s) = f(s) =
∑

a′∈A

πi(s, a′)f(s, a′) (11)

And the policy update equation can now be modified as:

πi+1(s, a) = π(s, a)

[

qi(s, a)

vi(s)

]

(12)

By definition: qi(s, ah) ≥ vi(s) and qi(s, al) < vi(s), and from

Eq. (12) we get:

πi+1(s, ah) ≥ πi(s, ah) ; πi+1(s, al) < πi(s, al)

the updated policy increases the probability of selecting ah and de-

creases the probability of selecting al, so from Eqs. (9) and (10) we

get:

vi+1(s) ≥ vi(s)

Therefore, we show that a policy iteration algorithm based on this up-

date rule guarantees that each state’s value monotonically improves,

ensuring convergence to the optimal policy.4

Remark. Our algorithm operates in a Markovian framework, meaning

state transitions depend only on the current state and action, without

influence from past states/actions. Consequently, the replication of

strategies and policy/value improvements can be applied to all states

independently, where each state-action pair is updated without inter-

ference from the updates of the others. This facilitates parallel im-

provements across all states towards an optimal policy.

3.2 Evolutionary Robust Policy Optimization (ERPO)

Our algorithm uses batch-based updates: We initialize our training

policy to be a weighted combination of the old optimal policy π�,

and our new policy πnew - which is initially random. We sample

trajectories as part of a batch, and in doing so we make sampling

assumptions as mentioned earlier, and the state-action pairs in these

trajectories are updated according to the update rule. The return for

the i + 1th iteration is set as the return under the training policy,

and the training policy is updated, to take into account the update

to πnew. The weight assigned to the old policy is decremented with

each iteration. This process is repeated until our termination condi-

tion (ηi+1 − ηi > δ) is met. The termination condition checks if

the expected return across all states is changing over our batch runs,

and when the difference in the expected returns across consecutive

batches is minimal, we say that the algorithm has converged.

4 Convergence to an optimal policy in this setting with an evolutionary up-
date is analogous to the concept of convergence to an evolutionarily stable
strategy (ESS). An ESS is a strategy that, if adopted by a population, can-
not be invaded by any alternative strategy that is initially rare. This implies
that in this setting, once an optimal policy is reached, it cannot be outper-
formed easily by any other policy (under standard ESS assumptions [2])
thereby ensuring that the agent’s behavior is robust against most changes
and variations in the strategy space.

����
�

�
�	
��
	��
��
�
������
��

���
��
�
�
��

�����
�

���
��� 	�
�!"���#

$���
	��	
��

%& ' ��(�� (�)(�) * (�+ (�+

�����

���������
���$���
	

�,
-

.	�	�
����

������	��	��	

��	��
�
�
��

�����
�

���
��� 	�
�!"#

/
�
�
��

��

0�
�

1��2	�
����3�
��

� � �

����
45) �(� ' ����

4 �(� 6
�!�(�#

7
89:; ����

4 !�(�<#� �(�<

�=>84�
4 ' � �?=8=4@ A !B C �#!����

4 #

$���
	 �	
��

� ' �D!� C E(F#

Figure 2: Outline of the ERPO methodology.

Algorithm 1 EVOLUTIONARY ROBUST POLICY OPTIMIZATION

1: Input:

Optimal policy π�
∆ = argmaxπ η∆(π)

Initialize ∀s ∈ S, a ∈ A : π0
new(s, a) =

1
|A|

Hyperparameters ε, ν ∈ (0, 1), δ > 0
2: Output: Optimized policy π�

new

3: Initialize i ← 0, η0, π0
train ← wπ�

∆ + (1− w)πi+1
new

4: repeat

5: for each episode in batch b = 1 to B do

6: Generate trajectory τb ∼ πtrain

7: Append trajectory τb to batch

8: for all trajectories τb in batch do

9: for each (s, a) ∈ τb do

10: Update πi+1
new(s, a) =

πi
new(s,a)f(s,a)

∑
a′∈A πi

new(s,a′)f(s,a′)

11: Update expected return: ηi+1 ← η∆new (π
i
train)

12: Update training policy πi+1
train ← wπ�

∆ + (1− w)πi+1
new

13: Decrement w ← max(w − ν, ε);
14: Increment i ← i+ 1
15: until Convergence criteria: (ηi+1 − ηi ≤ δ))
16: return π∗new ← πtrain

4 Experiments

Benchmarks: In our empirical analysis, we benchmark our approach

against a selection of established reinforcement learning algorithms.

The comparison is conducted under two different scenarios: (1) each

RL algorithm is allowed to train on the modified environment from

scratch, (2) we obtain pre-trained corresponding to the optimal pol-

icy, and then train them over the modified environment5. Each base-

line scenario is described in detail below:

• PPO [26]: Standard Proximal Policy Optimization, re-trained

from scratch in the new environment.

• DQN [15]: Deep Q-Network, also re-trained from scratch in the

new environment.

• A2C [16]: Advantage Actor-Critic, re-trained from scratch in the

new environment.

5 We use the term ‘model’ to describe the specific neural network(s) used in
each RL algorithm; for example, for PPO, this means the policy network.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts 3271

• PPO-B, DQN-B, A2C-B: These baselines correspond to models

that are trained by warm-starting the training in the new environ-

ment with the old optimal policy.

• PPO-DR [21]: Proximal Policy Optimization with Domain Ran-

domization, enhances robustness by training across varied envi-

ronments.

Implementations for these algorithms were sourced from the

‘stable-baselines3’ library [23], with hyperparameter optimization

facilitated by the ‘optuna’ library [1]. All experiments were con-

ducted on a high-performance computing cluster6.

Environments: All the benchmarks are tested on the FrozenLake,

CliffWalking, and Taxi environments in Open AI gymnasium, Mini-

grid’s Distribution Shift environment [5] and a version of the Mini-

grid: Empty environment customized with walls and lava. We remark

that we use larger and more complex versions of the standard envi-

ronments to test our algorithm properly. More precisely we vary the

Total Variation Distance between ∆ and ∆new i.e. the transition dy-

namics of the old and new environments between 0.15 and 0.4.

1. FrozenLake (FL): The agent tries to navigate across a Frozen

Lake to reach a goal. The episode terminates when the agent enters

a hole and drowns, or reaches the goal. We have a base model with

few holes and three additional levels with increasing grid environ-

ment occupied by holes, indicated with the darker blue in Fig. 3.

2. CliffWalking (CW): The agent starts on the bottom left and must

reach the goal location (bottom right) while avoiding ‘cliff’ locations

(indicated in brown), otherwise it is returned to the start position.

We have a base model with one row of cliffs (similar to the standard

model), and three additional levels with increasing cliff area (Fig. 4).

3. Taxi (TX): The agent (a taxi) must pick up and drop a passenger

from designated stations (indicated in boxes of red, green, blue and

yellow). Dividers prevent the taxi from turning left or right, forcing

it to take a more circuitous route and make U-turns. The base model

has no dividers, and additional levels have increasing numbers of

dividers (see Fig. 7).

4. Minigrid: DistributionShift (MGDS): The purpose is to test the

ability to generalize across two variations of the environment. The

episode terminates when the agent reaches the goal or lava. We have

three levels of environments with increasing grid areas occupied by

lava. See Fig. 5.

5. Minigrid: Walls&Lava (MGWL): Lastly, we test the ability to

navigate in the presence of walls that block the agent’s vision and

movement, or lava that terminates the episode, or both. The base

model is an empty grid, Level 1 has lava, Level 2 has walls, and

Level 3 has both. See Fig. 6.

Implementation Details: We assume that the optimal policy in the

original environment is obtained using PPO (this can be changed to

other algorithm). The base PPO model is allowed learns over a mini-

mum of 104 and a maximum of 106 timesteps – the number of steps

required to converge to (close to) π∗
∆ varies across environments. As

we induce distribution shifts, we need to pick reward functions that

are sensible across all instantiations of any environment. The reward

functions for each environment are standard across all the models of

all the algorithms used. Further details of the reward functions are

presented in the results, and other details such as the hyperparame-

ters can be found in the supplementary material. 7

Remark. We note that the reward function modification adheres to

the principles outlined in [19], utilizing transformations of the reward

6 The computational resources included nodes with dual 8-16 core proces-
sors, 16 CPUs, and 32GB of memory per node.

7 https://github.com/sherylpaul/ERPO

function that maintain policy invariance. Specifically, the rewards are

structured as potential-based transformations, where the modified re-

ward function is given by r′(s, a, s′) = r(s, a, s′)+γΦ(s′)−Φ(s),
with Φ being a potential function. Despite incorporating scaled re-

wards, these transformations preserve the optimality of the policies

as the potential-based adjustments ensure the fundamental charac-

teristics of the original reward system are maintained. This confirms

the robust application of our model and validates its efficacy across

varied and complex reward structures.

(a) FL: Base (b) FL: L1 (c) FL: L2 (d) FL: L3

Figure 3: Frozen Lake Environments

(a) CW: Base (b) CW: L1 (c) CW: L2 (d) CW: L3

Figure 4: Cliff-Walking Environments

(a) MGDS: B (b) MGDS: L1 (c) MGDS: L2 (d) MGDS: L3

Figure 5: Minigrid:DistributionShift Environments

(a) MGWL: B (b) MGWL: L1 (c) MGWL: L2 (d) MGWL: L3

Figure 6: Minigrid:Walls&Lava Environments

(a) TX: B (b) TX: L1 (c) TX: L2 (d) TX: L3

Figure 7: Taxi Environments

5 Results

We present the results of each environment for ERPO and the other

baseline algorithms. We note that the performance of ERPO does not

vary much with increasing levels of difficulty, even when the new en-

vironment is drastically different and much more difficult to navigate

than the base environment, while the other algorithms suffer.

Comparison with models trained from scratch and Domain Ran-

domization: ERPO significantly outperforms the other algorithms in

terms of timesteps required for convergence. PPO-DR and A2C are

the closest competitors, yet they still require up to an order of mag-

nitude more timesteps than ERPO in the Walls&Lava environment.
8 The results from the Taxi environment indicate that PPO-DR has

8 A2C shows results later than the other algorithms in the Walls&Lava en-
vironment because of large batch size over 8 environments, so results are
indicated only after batch_size × 8 timesteps.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts3272

(a) Level 1 (b) Level 2 (c) Level 3

Figure 8: Walls&Lava Environments: Subfigures (a), (b), and (c) indicate the results for levels 1, 2 and 3 (see Fig. 6). The base figure is the

original environment, and levels 1 to 3 indicate versions of the environment with certain features altered that induce progressively increasing

distribution shift. The agent has to navigate a gridworld of increasing complexity with lava, walls or both. It has 2000 timesteps to reach the

goal (r = 0 for each step) and gets reward r = 2000 − t upon reaching the goal (where t is the current timestep). ERPO surpasses other

models, with steadied performance even as levels increase.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 9: Frozen-Lake Environments: (See Fig. 3) The agent (elf) is given 500 steps to reach the goal (r = 0 for each step) and given a reward

r = 500− t upon reaching the goal (where t is the current timestep). ERPO consistently maintains a strong performance, particularly at higher

levels. PPO-DR and A2-C B demonstrate robustness.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 10: Cliff-Walking Environments: (See Fig. 4) The agent is allowed 2000 steps to get from the start to the goal (r = −1 for each step) and

given a reward r = +500 for reaching the goal. ERPO outperforms other methods, at higher levels. Notably, baselines trained over pre-learned

models tend to fluctuate, indicating challenges in adapting to new environments. A2C-B comes close and outperforms ERPO in Level 1.

the closest performance to ERPO but still takes longer to converge.

In the modified CliffWalking environments, most algorithms strug-

gle to converge, highlighting the increased difficulty due to the larger

cliff area and being returned to the starting position for entering it.

The FrozenLake environment presents a more favorable scenario for

A2C and PPO, but they worsen significantly as the levels increase,

empirically demonstrating that ERPO adapts better.

Comparison with models trained over pre-trained (base) mod-

els: In the distribution-shifted environment, the models trained over

baselines perform slightly better than their counterparts trained from

scratch. In the Taxi environment, PPO-B shosw relatively close per-

formance to ERPO. The large cliff area and long episodes in the Clif-

fWalking environment prove challenging, with most algorithms fail-

ing to converge. However, A2C-B performs nearly as well as ERPO,

though it takes slightly longer to achieve convergence. The Frozen-

Lake environment shows that PPO-B and A2C-B perform compe-

tently.

Benchmarking against Heuristic Search Methods: In addition

to comparing learning algorithms, we benchmark baseline heuristic

search algorithms, specifically A∗ and IDA∗, in the FrozenLake and

CliffWalking environments. These comparisons use Manhattan dis-

tance as the heuristic, with other costs aligned to the previously de-

scribed reward structures. It is important to note that these compar-

isons serve as baselines, not direct competitors, as the information

available to these algorithms differs, making a like-for-like compari-

son unfair.

In the FrozenLake environment, A∗ performs poorly due to its

inability to account for proximity to holes, resulting in significant

penalties. The cost incurred by A∗ ranges from -5K to -15K across

different versions of FrozenLake. Conversely, IDA∗ performs well

on Level 1 with a reward of approximately 2K, but declines to -5K
on Level 3.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts 3273

(a) Level 1 (b) Level 2 (c) Level 3

Figure 11: Distribution-Shift Environments: (See Fig. 5) The agent has to navigate a gridworld of increasing complexity with lava. It has 2000

timesteps to reach the goal (r = 0 for each step) and r = 2000− t upon reaching the goal (where t is the current timestep). ERPO outperforms

other methods while A2C-B comes close. Besides that PPO and A2C perform well too. The increased environmental complexity from Level 1

to Level 3 is evident, with all models facing greater challenges as the level increases.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 12: Taxi Environments: (See Fig. 7) The agent (taxi) is allowed to take 2000 steps in an episode (r = −1 for each step), and gets a

reward r = +2500 for correct pick up and drop. ERPO outperforms other algorithms with PPO-B and PPO-DR models showing good results.

In the CliffWalking environment, IDA∗ consistently achieves re-

wards of approximately 2K across all levels, though this success

requires the starting node to be positioned near the cliff’s edge. In

contrast, A∗ struggles, with rewards ranging from -200 to -300.

While vanilla heuristic search methods may underperform in

stochastic environments, methods like stochastic A∗ might be more

suitable. Additionally, extending these methods to continuous spaces

via function approximators is challenging and requires an admissible

heuristic. A key difference is that ERPO and other learning-based

methods generate policies that can generalize to any start location

within the grid, whereas heuristic-based approaches may need to

restart the search when encountering previously unexplored states.

Preliminary Results on custom Environments: In addition to the

results on standard gym environments, we also conducted experi-

ments in custom gym environments with a similar reach-avoid mis-

sion. The agents in these environments are assigned randomly to

one of many pre-determined start locations, and must reach one of

the goal locations whilst avoiding obstacles. One sample result for a

100x100 grid world with 20% new obstacles is as follows: We leave

Algorithm A* Q-learning PPO ERPO

Path Length 118.41 118.00 122.43 116.05

Table 1: Comparison of Algorithm Performance

the extension to larger custom grids with varying levels of obstacle

density for future work.

Analysis: Our observations indicate a distinct advantage of ERPO

over traditional reinforcement learning algorithms even when trained

over the pre-trained models, and domain randomization methods.

While PPO, PPO-DR, and A2C utilize batch-wise updates, and DQN

depends on episode-wise updates, these algorithms generally treat

each step within a batch or episode as equally significant for the pur-

pose of policy updates. This approach can dilute the impact of par-

ticularly successful or unsuccessful trajectories on the overall learn-

ing process. In contrast, ERPO places emphasis on trajectories that

significantly deviate from the norm — either by outperforming or

underperforming compared to the rest of the batch and prioritizes

learning from those that are the most informative. This selective up-

date mechanism ensures that ERPO rapidly identifies and leverages

the most effective strategies. As a result of this approach, the fittest

trajectories become increasingly predominant in the batch over just

a few training episodes. Thus, ERPO leads to a faster and more effi-

cient convergence towards optimal policies.

6 Discussion

Limitations and Future Work: Our set up is limited to discrete

state-action spaces. We are working on an extension that works with

continuous spaces. This will be carried out with function approxima-

tion using radial basis functions that also update the policies of states

within a certain distance of the state we are updating. Additionally,

because we normalize the probability distribution across actions of

a given state, a continuous model would work instead along with a

probability density function that can be updated using Dirac delta

functions. Our set up is also limited to single agent models (unless

extended with independent learning). We are working on extensions

that can combine other game-theoretic solution concepts for cooper-

ative multi-agent learning.

Conclusion: This paper presents a new approach to incrementally

adapt the optimal policy of an autonomous agent in an environment

that experiences large distirbution shifts in the environment dynam-

ics. Our algorithm uses principles from evolutionary game theory

(EGT) to adapt the policy and our policy update can be viewed as a

version of replicator dynamics used in EGT. We provide theoretical

convergence guarantees for our algorithm and empirically demon-

strate that it outperforms several popular RL algorithms, both when

the algorithms are warm-started with the old optimal policy, and

when they are re-trained from scratch.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts3274

References

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A
next-generation hyperparameter optimization framework, 2019.

[2] J. M. Alexander. Evolutionary game theory. The Stanford Ency-
clopedia of Philosophy (Summer 2021 Edition), 2021. URL https:
//plato.stanford.edu/archives/sum2021/entries/game-evolutionary/.

[3] M. Bellusci, N. Basilico, and F. Amigoni. Multi-agent path find-
ing in configurable environments. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
pages 159–167, 2020.

[4] D. Bertsekas. Reinforcement learning and optimal control. Athena
Scientific, 2019.

[5] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems,
S. Lahlou, S. Pal, P. S. Castro, and J. Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-
oriented tasks. CoRR, abs/2306.13831, 2023.

[6] E. Derman, D. Mankowitz, T. Mann, and S. Mannor. A bayesian ap-
proach to robust reinforcement learning. In Uncertainty in Artificial
Intelligence, pages 648–658. PMLR, 2020.

[7] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol
under frequency constraints. Annals of Mathematics and Artificial In-
telligence, 57(3):293–320, 2009.

[8] S. Guo, X. Zhang, Y. Zheng, and Y. Du. An autonomous path plan-
ning model for unmanned ships based on deep reinforcement learning.
Sensors, 20(2):426, 2020.

[9] T. A. Han. Emergent behaviours in multi-agent systems with evolution-
ary game theory. AI Communications, 35(4):327–337, 2022.

[10] Y. Jiang, C. Li, W. Dai, J. Zou, and H. Xiong. Monotonic robust pol-
icy optimization with model discrepancy. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research,
pages 4951–4960. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/jiang21c.html.

[11] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee,
M. Savva, S. Chernova, and D. Batra. Sim2real predictivity: Does eval-
uation in simulation predict real-world performance? IEEE Robotics
and Automation Letters, 5:6670–6677, 2020.

[12] J. Li, Z. Chen, Y. Zheng, S.-H. Chan, D. Harabor, P. J. Stuckey, H. Ma,
and S. Koenig. Scalable rail planning and replanning: Winning the 2020
flatland challenge. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 31, pages 477–485, 2021.

[13] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig.
Lifelong multi-agent path finding in large-scale warehouses. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 11272–11281, 2021.

[14] M. A. Luna, M. S. Ale Isaac, A. R. Ragab, P. Campoy, P. Flores Peña,
and M. Molina. Fast multi-uav path planning for optimal area coverage
in aerial sensing applications. Sensors, 22(6):2297, 2022.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning,
2013.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning, 2016.

[17] R. Morris, C. S. Pasareanu, K. Luckow, W. Malik, H. Ma, T. S. Kumar,
and S. Koenig. Planning, scheduling and monitoring for airport surface
operations. In Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[18] A. Mukhopadhyay and S. Chakraborty. Replicator equations induced by
microscopic processes in nonoverlapping population playing bimatrix
games. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31
(2), Feb. 2021. ISSN 1089-7682. doi: 10.1063/5.0032311. URL http:
//dx.doi.org/10.1063/5.0032311.

[19] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Icml,
volume 99, pages 278–287. Citeseer, 1999.

[20] S. Paul and J. V. Deshmukh. Multi agent path finding using evolutionary
game theory, 2022. URL https://arxiv.org/abs/2212.02010.

[21] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
may 2018. doi: 10.1109/icra.2018.8460528. URL https://doi.org/10.
1109%2Ficra.2018.8460528.

[22] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial
reinforcement learning, 2017.

[23] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementa-

tions. Journal of Machine Learning Research, 22(268):1–8, 2021. URL
http://jmlr.org/papers/v22/20-1364.html.

[24] A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran. Epopt: Learn-
ing robust neural network policies using model ensembles. CoRR,
abs/1610.01283, 2016. URL http://arxiv.org/abs/1610.01283.

[25] W. H. Sandholm. Evolutionary Game Theory, pages 3176–3205.
Springer New York, New York, NY, 2009. ISBN 978-0-387-30440-3.
doi: 10.1007/978-0-387-30440-3_188. URL https://doi.org/10.1007/
978-0-387-30440-3_188.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[27] E. Smirnova, E. Dohmatob, and J. Mary. Distributionally robust rein-
forcement learning, 2019.

[28] J. Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982. ISBN 9780521288842. URL https://books.google.com/
books?id=Nag2IhmPS3gC.

[29] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[30] C. Tessler, Y. Efroni, and S. Mannor. Action robust reinforcement learn-
ing and applications in continuous control. In International Conference
on Machine Learning, pages 6215–6224. PMLR, 2019.

[31] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola,
T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-
Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. You-
nis. Gymnasium, Mar. 2023. URL https://zenodo.org/record/8127025.

[32] K. Tuyls and S. Parsons. What evolutionary game theory tells us about
multiagent learning. Artificial Intelligence, 171(7):406–416, 2007.

[33] S. Varambally, J. Li, and S. Koenig. Which mapf model works best for
automated warehousing? In Proceedings of the International Sympo-
sium on Combinatorial Search, volume 15, pages 190–198, 2022.

[34] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh. Robust reinforcement
learning on state observations with learned optimal adversary, 2021.

[35] X. Zhou, P. Wu, H. Zhang, W. Guo, and Y. Liu. Learn to navigate:
Cooperative path planning for unmanned surface vehicles using deep
reinforcement learning. IEEE Access, 7:165262–165278, 2019. doi:
10.1109/ACCESS.2019.2953326.

[36] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou. Transfer learning in deep rein-
forcement learning: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(11):13344–13362, 2023. doi: 10.1109/
TPAMI.2023.3292075.

S. Paul and J.V. Deshmukh / Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts 3275

	Introduction
	Preliminaries
	Reinforcement Learning
	Evolutionary Game Theory
	Replicator Dynamics Equation:

	Solution Approach
	Translation of the Replicator Equation
	Evolutionary Robust Policy Optimization (ERPO)

	Experiments
	Results
	Discussion

