
Spectral Estimation of Weak Signals with Strong
Interference via Modulo Sampling

Shoaib Ahmed, Cengcang Zeng, and Hongbin Li
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030, USA

Abstract—This paper introduces a framework for spectral
analysis of weak signals in the presence of strong interference that
can potentially exceed the dynamic range of the analog-to-digital
converter (ADC) employed for data acquisition. The framework
combines modulo sampling to avoid ADC saturation with inter-
ference cancellation (IC) and adaptive spectral estimators such as
amplitude and phase estimation of a sinusoid (APES) and Capon
for high-resolution spectral analysis. Numerical simulations val-
idate the proposed approach’s ability to accurately recover
weak signals’ spectrum with significantly lower mean-squared
error (MSE) in amplitude estimation compared to conventional
methods in the considered scenarios. Notably, it is shown that
APES and Capon are able to effectively reject the out-of-range
interference and reveal weak spectral content, without requiring
the interference cancellation step.

Index Terms—Weak signal, strong interference, ADC satura-
tion, modulo sampling, adaptive spectral estimator

I. INTRODUCTION

Advanced spectral estimation techniques play an important
role in detecting weak signals obscured by strong interfer-
ences, a challenge prevalent in diverse applications. For in-
stance, in radio astronomy, observed celestial signals are inher-
ently weak due to immense propagation distances, attenuation,
and scattering by interstellar media [1]. These faint signals are
often masked by strong interferences from known terrestrial
and spaceborne transmitters, such as satellite downlinks and
cellular base station signals [2]. While the frequencies of these
interferences are typically known due to prior awareness about
the transmitters, their amplitudes remain uncertain, influenced
by factors such as varying propagation distances, atmospheric
conditions, and multipath effects [3]. In addition, such interfer-
ences are often significantly strong in amplitude compared to
the faint signals of interest and can easily exceed the dynamic
range of the analog-to-digital converter (ADC) in the sensitive
radio astronomy receiver, leading to saturated observations
[2], [4]. The rapid expansion of satellite mega-constellations,
operating at non-linear amplifier regions exacerbates these
issues by emitting high-power interferences [5]. Using these
saturated observations, conventional spectral estimators fail to
accurately capture the weak signals’ spectrum, as the ADC
saturation phenomenon introduces non-linear distortions that
randomly alter the overall signal structure [6], [7].
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Traditional solutions, such as enforcing radio quiet zones,
can mitigate terrestrial interference but fail to address dynamic
and unpredictable satellite-induced interferences [8]. Addition-
ally, enhancing receiver dynamic ranges with high-resolution
ADCs is often costly and impractical due to increased data
rates and storage demands [9]. These challenges underscore
the need for innovative solutions that balance performance and
feasibility.

In this paper, we consider the challenge of estimating weak
signals amidst strong interferences with known frequencies
but unknown amplitudes. We introduce a novel framework
for spectral estimation that combines modulo sampling, in-
terference cancellation (IC) technique, and adaptive spectral
estimators. Modulo sampling uses a folding ADC sampler that
generates folded observations by confining signals within the
dynamic range [10]. A reconstruction framework introduced
in [11], can be employed to recover the original signal
from modulo samples. Following reconstruction, an orthogonal
projection-based IC is applied to effectively suppress inter-
ferences, enabling conventional fast Fourier transform (FFT)
for weak signal estimation. Additionally, adaptive estimators
like amplitude and phase estimation of a sinusoid (APES)
and Capon are utilized to deliver enhanced high-resolution
spectral analysis, exploiting their adaptivity, superior sidelobe
suppression, and interference handling capabilities [12].

Numerical simulations affirm the proposed framework’s
effectiveness, showing that modulo-sampling achieves spectral
estimates nearly identical to the true spectrum while signif-
icantly outperforming conventional methods with saturated
samples. Notably, APES and Capon estimators demonstrate
inherent interference-handling capabilities, successfully de-
tecting weak signals even without IC, thereby simplifying the
framework [13]. The simulations further highlight a reduced
mean-squared error (MSE) in the amplitude estimation of
weak signals. These findings validate the framework’s poten-
tial to address real-world challenges in spectral estimation,
such as those encountered in radio astronomy.

II. DATA MODEL AND PROBLEM FORMULATION

Consider a signal y(t) comprising K weak signals, L strong
interferences, and an additive noise given by

y(t) =
K∑

k=1

αke
jωkt +

L∑
l=1

αle
jωlt + w(t), (1)



where αk and αl denote the complex amplitude of the k-
th signal of interest and the l-th interference respectively,
while ωk and ωl denote their respective frequencies. The term
w(t) accounts for the additive noise. The interferences are
assumed to dominate the weak signals, i.e., |αl| ≫ |αk| ∀ k, l.
Furthermore, the interference frequencies ωl are considered
known, whereas their amplitudes αl remain unknown. We aim
to estimate the spectral content of the weak signals in the
presence of such dominant interferences and additive noise.
To solve the spectral estimation problem, the first step is
to convert (1) to digital form via a sampler. We begin with
an ideal sampler, which provides an optimal benchmark for
subsequent conventional samplers.

A. Ideal Sampler

An ideal sampler captures N samples from (1) with a
sufficiently high sampling rate fs =

1
Ts

to satisfy the Nyquist
criterion. The resulting discrete-time observations can be ex-
pressed as

y[n] =
K∑

k=1

αke
jωknTs +

L∑
l=1

αle
jωlnTs + w(nTs),

n = 0, 1 . . . N − 1. (2)

This formulation assumes an ideal sampler that preserves the
signal’s full dynamic range without saturation or clipping.
While useful as a theoretical benchmark for comparison,
it overlooks real-world limitations like ADC saturation and
resolution constraints.

B. Saturation Effect in Conventional Sampling

Unlike an ideal sampler, conventional samplers have a
limited dynamic range and clip input signals that exceed a
specified amplitude threshold λ. For an input signal y(t), the
corresponding output sequence from the sampler is

ysat[n] =


λ; y[nTs] > λ

y[nTs]; −λ ≤ y[nTs] ≤ λ,

−λ; y[nTs] < −λ

(3)

where {ysat[n]} is a N length sequence saturated at the
threshold λ. Saturation introduces nonlinear distortion to the
signal, resulting in flat-top shapes in regions where amplitude
exceeds the ADC’s threshold λ, as shown in Fig. 1.

Fig. 1: Input signal and saturated (sat.) samples from the
conventional sampler.

This distortion poses significant challenges for spectral anal-
ysis, as it alters the signals’ overall structure and introduces

phase inconsistencies. In such scenarios, IC methods may
fail to reject interferences due to the nonlinear modifications
caused by saturation.

Moreover, strong interference in the spectral domain leads
to leakage, manifesting as sidelobes. This leakage results
from the inherent spectral spreading caused by the window
function’s frequency response, where high-energy interference
signals generate significant sidelobes that can mask weaker
signals. The masking effect for the k-th weak signal is given
by

Pm(ωk) =
L∑

l=1

|αl|2
∣∣∣∣∣ sin

(
πTs(ωk − ωl)

)
πTs(ωk − ωl)

∣∣∣∣∣
2

, (4)

where Pm(ωk) represents the power of interference sidelobes
affecting the weak signal. Given that |αl| ≫ |αk|, the masking
power typically dominates, i.e.,

Pm(ωk) > |αl|2 (5)

and overshadows the weak signals, making it difficult to
detect them when their frequency components overlap with
the interference sidelobes.

The problem of interest is to estimate the spectral contents
of the weak signals, αk and ωk for k = 1, 2 . . .K, in the
presence of strong interference that may potentially exceed
the ADC’s dynamic range.

III. PROPOSED APPROACH

The impact of saturation cannot be directly handled by
traditional methods. In this section, we propose a novel ap-
proach to spectral estimation incorporating modulo sampling
with an IC scheme. Modulo-sampling technique folds the input
signal within an accepted range to avoid saturation. After
accurate reconstruction, the IC scheme successfully rejects
interferences as the reconstructed data closely aligns with
the full dynamic range observations. Applying IC eventually
unmasks the weak signals from the sidelobes of interferences.
It will be shown that FFT with IC can estimate the weak
signals whereas APES and Capon can directly estimate the
spectrum without IC due to their inherent interference handling
capability.

A. Modulo Sampling and Reconstruction

Modulo sampling and reconstruction approach presented at
[11], [14] introduces self-reset ADC that constrain the input
signal within the dynamic range of ADC [−λ, λ], avoiding
saturation. The folding operation is described by

Mλ : y(t) → yλ(t) = 2λ

(s
y(t)

2λ
+

1

2

{
− 1

2

)
, (6)

where JxK = x − ⌊x⌋ defines the fractional part of x and
we define Mλ as the modulo folding operator. This approach
folds y(t) back within [−λ, λ] as shown in (6). A conventional
sampler then samples the folded signal, producing modulo
samples {yλ[n]} without saturation. Modulo samples can be
reconstructed back to {ŷ[n]} through a reconstruction process



presented at Algorithm 1. The reconstructions start with com-
puting D-th order finite difference of the modulo observations
∆Dyλ[n], where the first-order difference is

∆yλ[n] = yλ[n+ 1]− yλ[n]. (7)

Higher-order differences are recursively computed as

∆Dyλ = ∆D−1(∆yλ), (8)

with the required difference order D determined by

D =

⌈
log λ− log βg

log(TsΩe)

⌉
, (9)

where βg is an upper bound of y(t), Ω is the maximum
frequency content, and e is Euler’s constant. Then we compute
the residual error ∆Dϵr[n] caused by the modulo operation
on the ∆Dyλ[n], which quantifies the correction needed to
unwrap the original signal. The reconstruction involves apply-
ing an anti-difference operation S to the residual ∆Dϵr[n],
defined at the n-th element of a sequence {s[n]} as

S : {s[n]} →
n−1∑
m=0

s[m] = s[0] + · · ·+ s[n− 1], (10)

where S is the anti-difference operator. This reverses the
effect of finite differencing and initiates unwrapping the folded
signal. The resulting value is adjusted to the nearest multiple
of 2λ, mitigating nonlinearities from the modulo operation.
Subsequently, a correction factor 2λκi is added for further
alignment with the original signal, with κi computed using a
second order anti-difference operation on the residual error,
S 2(∆ϵr)[n]. The iterative approach runs up to D − 1 times
to reconstruct the signal. A graphical manifestation of this
process is shown in Fig. 2.

Algorithm 1 Recovery from Folded Samples [11]

Input: yλ[n], βg and λ
Output: ŷ[n]
(1) Compute D =

⌈
log λ−log βg

log(TsΩe)

⌉
(2) Compute (∆Dyλ)[n]
(3) Compute (∆Dϵr)[n] =

(
Mλ(∆

Dyλ)−∆Dyλ)
)
[n]

Set s0[n] = (∆Dϵr)[n]
for i = 0 : D − 2 do

i) s(i+1)[n] = (S s(i))[n]

ii) s(i+1) = 2λ

⌈⌊ s(i+1)
λ

⌋
2

⌉
iii) Compute κi =

⌊
(S 2∆iϵr)[1]−(S 2∆iϵr)[

6βg
λ +1]

12βg
+ 1

2

⌋
iv) s(i+1)[n] = s(i+1)[n] + 2λκi

end for
(4) ŷ[n] = S s(D−1)[n] + yλ(n) + 2λp, p ∈ Z

The reconstructed samples {ŷ[n]} closely align with the
ideal samples {y[n]} and they can be processed using IC
techniques such as orthogonal projection to remove interfer-
ence contributions. This integrated approach facilitates signal
recovery and spectral analysis of weak signals.

Fig. 2: Visualization of modulo sampling and reconstruction.

B. Orthogonal Projection-based IC

According to [15], observations such as y[n] from (2) can
be presented in the matrix form as

y = Akαk +Alαl +w, (11)

where Ak = [ak(ω1) ak(ω2) . . . ak(ωK)]N×K and Al =
[al(ω1) al(ω2) . . . al(ωL)]N×L are the matrices consisting
of the steering vectors for signals and interferences with each
column defined as ak(ω) = al(ω) = [1 ejω . . . ej(N−1)ω]T

at ω frequency. The vectors αk = [α1 α2 . . . αK ]T and αl =
[α1 α2 . . . αL]

T contain the respective complex amplitudes,
with (.)T is the matrix transpose operator and w is an N × 1
noise vector. To remove interference, an orthogonal projection
is applied to eliminate components in the subspace spanned
by Al defined as

P⊥
l = IN −Al

(
AH

l Al

)−1
AH

l , (12)

where IN is a N × N dimensional identity matrix and (.)H

denotes the Hermitian transpose. Applying P⊥
l to the observed

signal y yields

y0 = P⊥
l (Akαk +Alαl +w) = P⊥

l (Akαk +w), (13)

where P⊥
l Alαl = 0 due to orthogonality. The result is an

interference-free signal, y0, containing only the weak signals
and noise for spectral analysis.

C. Adaptive Spectral Estimators

Spectral analysis can be carried out with conventional FFT-
based estimation or adaptive spectral estimators like APES and
Capon. We apply the Capon and APES estimators for spectral
estimation as described at [16]. Let

y[u] =
[
y[u] y[u+ 1] . . . y[u+M − 1]

]T

u = 0, 1 . . . U − 1, (14)

be the overlapping vectors from data {y[n]}, where M is the
filter length with U = N−M+1. By examining one frequency
component at a time, Capon and APES determine the signal
spectrum by scanning through the entire frequency band. To
this end, the signal can be expressed as

y[u] = [α(ω)aM (ω)]ejωu +wω[u], (15)

where ω is the current frequency component and α(ω) denotes
its unknown complex amplitude, while wω[u] contains the
contributions from frequencies other than ω plus noise.



Fig. 3: Proposed spectral estimation framework using modulo sampling, benchmarked against ideal and conventional samplers.

Adaptive spectral estimators use a matched filter bank
(MAFI) designed to maximize the signal-to-noise ratio (SNR)
at the output. The solution of this optimization problem is

hω =
Q−1(ω)aM (ω)

aH
M (ω)Q−1(ω)aM (ω)

, (16)

where Q(ω) is the noise covariance matrix. The solution
ensures hH

ωaM (ω) = 1, keeping the frequency components
undistorted. One least-square estimate of α(ω) from (16) is

α̂(ω) = hH
ωg(ω), (17)

where g(ω) is the normalized Fourier transforms of the data
vector given by

g(ω) =
1

U

U−1∑
u=0

y[u]e−jωu. (18)

Equation (17) is a general amplitude estimation framework of
MAFI estimators. APES and Capon estimates are derived by
substituting different noise covariance matrix estimates into
(16). The resulting estimate for Capon can be expressed as

α̂Capon(ω) =
aH
M (ω)R̂−1g(ω)

aH
M (ω)R̂−1aM (ω)

, (19)

where the sample covariance matrix R̂ is estimated as

R̂ =
1

U

U−1∑
u=0

y[u]yH[u]. (20)

APES estimate is similar to Capon except that R̂ is replaced
by Q̂

α̂APES(ω) =
aH
M (ω)Q̂−1(ω)g(ω)

aH
M (ω)Q̂−1(ω)aM (ω)

, (21)

where Q̂ the estimate of noise covariance is given by Q̂ =
R̂−g(ω)gH(ω). Both APES and Capon estimates are derived
considering ideal samples but applicable to saturated and
modulo samples, maintaining a similar structure.
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Fig. 4: True spectrum of the 1-D dataset.

D. Summary of the Proposed Approach

The proposed framework addresses strong interference and
saturation constraints in spectral estimation by integrating
modulo sampling, orthogonal projection-based IC method,
and adaptive spectral estimators. Modulo sampling avoids
saturation by folding signals within a predefined range, and
a reconstruction algorithm restores the original data. The
reconstructed signal is then processed using an orthogonal
projection method to cancel known interferences effectively.
Finally, high-resolution estimators like Capon and APES are
applied for spectral analysis, while FFT with IC serves as
a benchmark. A schematic understanding of our approach is
depicted in Fig. 3.

IV. NUMERICAL ANALYSES

A. Simulation Settings

The dataset comprises 3 strong interferences having am-
plitudes αl = [500e

jπ
4 500e

jπ
4 500e

jπ
4 ]T and frequencies

fl = [2 2.5 3]T Hz. Moreover, amplitudes and frequencies
of 5 weak signals are αk = [5e

jπ
4 5e

jπ
4 . . . 5e

jπ
4 ]T and

fk = [3.2 4 4.8 5.6 6.4]T Hz, respectively. Here, the
observations are corrupted by a zero-mean complex white
Gaussian noise maintaining 0 dB SNR with the weak signals.
Here, SNR at the k-th weak signal is defined as

SNRk = 10 log10
α2
k

Pe(ωk)
(dB), (22)

where Pe(ωk) is the spectral density of the additive noise at
frequency ωk. The true spectrum of the weak sinusoidal signals
and interferences is shown in Fig. 4.
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(a) FFT spectral estimates.
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(b) Capon spectral estimates with filter length M = 128.
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(c) APES spectral estimates with with filter length M = 128.

Fig. 5: Spectral estimates compared with the true spectrums across different observation-estimator categories.

In the subsequent analysis, we consider three samplers,
the ideal sampler without dynamic range limitation (Section
II-A), the conventional sampler that clips signals exceeding a
specified threshold (Section II-B), and a modulo sampler that
folds any out-of-range signals back into the dynamic range
(Section III-A). The dynamic range for both the conventional
and modulo samplers is [−450, 450]. For spectral estimation,
we employ both the FFT-based approach and the adaptive
spectral estimators Capon and APES as introduced in Section
III-C. Finally, to examine the impact of the interference, we
compare the performance of each sampler-estimator combina-
tion with and without an IC step. We use N = 512 samples for
all these configurations and set the filter length M to 128 for
Capon and APES to balance spectral resolution and accuracy.
This multi-faceted setup enables a thorough investigation of
how different samplers, estimators, and IC strategies influence
the ability to estimate weak signals.

B. Results and Discussions

At first, we evaluate one-time spectral estimation results
for each sampler-estimator category as presented in Fig. 5,

where the rows are representatives of FFT, Capon, and APES
estimators respectively. For each estimator, we arrange spectral
estimates obtained from observations of the ideal sampler
(without and with IC, respectively), the conventional sampler
(with IC), and the modulo sampler (with IC) in the columns
of Fig. 5. Additionally, we include a magnified portion of the
weak signals’ region as an inset in the 1st and 3rd column of
Fig. 5 for clearer visualization.

In terms of performance, looking at FFT (1st row), the ideal
sampler without IC (1st column) fails to recover the weak
signals masked by the sidelobes of the strong interference
signals. Applying IC (2nd column) eliminates the interfer-
ences, leading to accurate spectral estimates using the ideal
sampler. However, with a conventional sampler (3rd column),
saturation nonlinearly distorts the signal and IC cannot remove
the interference effectively, producing random and erroneous
spectra. In contrast, modulo sampler avoids saturation via
folding, allowing IC to reveal the true spectrum (4th column).

Almost similar trade-offs are observed for Capon (2nd row)
and APES (3rd row), except that APES and Capon exhibit
their inherent interference handling capability and recover
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Fig. 6: Statistical evaluation of spectral estimates across different observation-estimator categories.

weak signals even without IC (1st column). This demonstrates
that APES and Capon can simplify the proposed framework
by eliminating the need for IC. The remaining scenarios are
comparable to FFT: when the signal is saturated (3rd column),
both estimators again yield false spectra, which again demon-
strates the negative impact of saturation in spectral estimation.
Avoiding saturation through our proposed framework enables
these adaptive estimators to achieve enhanced estimates (4th
column).

Among the three spectral estimators, FFT exhibits high
sidelobes and somewhat less accurate peak heights (1st row).
Capon enhances spectral resolution with narrower peaks but
underestimates peak amplitudes (2nd row), a known character-
istic of the method [16]. APES outperforms both, delivering
the most accurate peak heights while maintaining slightly
wider spectral peaks than Capon (3rd row).

Secondly, we present a statistical analysis using the mean
squared error (MSE) of amplitude estimation across three
estimator-sampler categories for the second weak signal across
SNR levels from 0 to 30 dB. Specifically, let αk be the true
amplitude of the k-th weak signal, and let α̂(i)

k be its estimate
during the i-th trial. We define the MSE as

MSE(α̂k) =
1

η

η∑
i=1

∣∣α̂(i)
k − αk

∣∣2, (23)

where η = 1000 is the total number of iterations at each SNR
level. In our simulations, we vary the SNR and evaluate MSE
using (23) for each configuration with IC and the outcomes
are presented in Fig. 6 using the log scale. Estimates using sat-
urated samples result in significantly higher MSE for all three
estimators. However, the modulo sampler achieves consistently
low MSE levels, comparable to those of the ideal sampler.
Even at 0 dB SNR, the framework demonstrates remarkable
accuracy, proving its reliability in noisy conditions. The MSE
analysis further strengthens the claim of using modulo samples
in estimating weak signals with strong interferences.

V. CONCLUSION

This paper presents a 1-D spectral estimation framework
under strong interference potentially leading to saturated ob-
servations. We provide a comparison between the proposed ap-
proach with modulo sampling and the conventional approach

with saturated samples through statistical and deterministic
analyses. Both types of results support the superiority of
the proposed approach as the saturated observations tend to
generate false and random spectra. This work offers a reliable
solution for weak signal detection, with future efforts directed
toward extending the framework for 2-D spectral estimations.
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