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Abstract—
Graph-level representations (and clustering/classification

based on these representations) are required in a variety of
applications. Examples include identifying malicious network
traffic, prediction of protein properties, and many others. Often,
data has to stay in isolated local systems due to a variety of
considerations like privacy concerns, lack of trust between the
parties, regulations, or simply because the data is too large to be
shared sufficiently quickly. This points to the need for federated
learning for graph-level representations, a topic that has not been
explored much, especially in an unsupervised setting.

Addressing this problem, this paper presents a new framework
we refer to as Federated Contrastive Learning of Graph-level
Representations (FCLG). Our approach builds on contrastive
learning. However, what is unique is that we apply contrastive
learning at two levels. The first application is for local unsuper-
vised learning of graph representations. The second level is to
address the challenge associated with data distribution variation
(i.e. the “Non-IID issue”) when combining local models. Through
extensive experiments on the downstream task of graph-level
clustering, we demonstrate FCLG outperforms baselines with
significant margins.

I. INTRODUCTION

Attributed graphs have lately become backbone of countless
systems [1] as they capture information about individual
entities (i.e., the node features) as well as the interactions
between them (i.e. the edges). There has also been a growing
interest in graph-level representation learning, where the goal
is to learn embedding of an entire graph.
Motivation for Unsupervised Federated Learning: In many
machine learning scenarios, including those involving graphs,
data cannot be stored and analyzed centrally due to reasons
like privacy concerns. Alternatively, in some cases, data is too
large to be shared, or at least cannot be shared sufficiently
quickly to provide timely analysis results [2], [3], [4], [5].
Such scenarios have led to interest within the graph analytics
community in the well-known paradigm of Federated Learn-
ing [6], which involves training centralized models while keep-
ing data decentralized – but by sharing and updating model
parameters [7]. This paper focuses on unsupervised federated
learning. Unsupervised learning is an alternative to supervised
learning, which in general, and more specifically in the context
of graphs, requires labeling that ranges from being expensive
and/or time-consuming to simply being impossible [8].

As a background, to address the challenges associated with
attributed graphs, researchers have built on the success of

Graph Neural Networks (GNNs) [9]. GNN based models have
achieved advanced performance on graph-level representation
learning, especially in a supervised manner [10], [11], [12],
[13], [14], [15], [16], [17]. There has also been an interest in
unsupervised learning approaches for graph-level representa-
tions [18], [19], [8], though for the cases when the data is
centrally available. This includes the works based on Graph
Kernels [20], [21] and limited GNN based works [8], [22].
Contributions of this Paper: This paper presents a federated
and unsupervised graph-level learning framework. The pro-
posed method is inspired by the recent success of Contrastive
Learning (CL) in various unsupervised learning tasks [23],
[8], [24]. To illustrate the type of challenges we need to
address – it is well known that Federated Learning (FL)
performance is hindered by the “Non-IID” (Independent and
Identical Distribution) issue, i.e. data at different sites follows
different distributions [7]. Thus, both the local models and
the global model generated simply by averaging parameters
of these models may be far from the global optima [25].
Previous work [7], [26], [27] has studied the impact of this
Non-IID property especially in supervised learning where
label information is explicitly utilized during training. In such
scenarios, skewed label distribution on each client is encoded
into the respective local model.

Addressing this problem, we propose Federated Contrastive
Learning on Graphs (FCLG), a federated graph embedding
method with a novel two-level contrastive learning mech-
anism. Specifically, the two levels in our approach are: 1)
intra-contrasting during local training on each client or site,
specifically where we contrast augmented views of encoded
graph-level representations to make each individual graph
sample more distinguishable from others; 2) inter-contrasting
between local and global models, ensuring that the global
model captures the common patterns underlying graphs from
different clients, to achieve better generalization performance
than any local model. We also show how contrastive learning
can be seen as an improvement over the approaches derived
from the area of Knowledge Distillation (KD) [28], [29].

The core contributions of this work can be summarized as:

• To our best knowledge, FCLG is the first framework
to learn graph-level representations in an unsupervised
manner under federated settings.
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• FCLG introduces a novel two-level contrastive mecha-
nism to alleviate issues caused by the non-IID situations
that arise in federated learning.

• Through comprehensive empirical studies we show that
FCLG consistently outperforms other baselines in the
downstream graph-level clustering task.

II. METHODOLOGY

A. Problem Statement

Suppose there are K separate clients C1, C2, · · · , CK ,
where client Ci has a local graph dataset Si containing a set
of graphs. Each graph can be represented as G = (V , E , X),
where V is the set of n vertices, E is the edge set, X ∈ Rn×F

is the feature matrix where each node is associated with a
F -dimensional feature vector. Let A be the n × n adjacency
matrix capturing all edges in the graph G. For simplicity, we
can also denote each graph as G(A,X).

Our objective is to learn a model ψω : G → Rd, where
ω is the corresponding parameter set. More specifically, we
have a federated learning problem where our goal is to learn
a parameter set ωg using the datasets S ≜

⋃
i∈[K] S

i. The
individual parameter set at the client Ci is denoted as ωi. In
other words, the d-dimensional graph-level embedding ψω(G)
must be learnt collaboratively from a set of clients, each of
which stores a distinct set of graphs, while inter-client raw
graph data transfer is disallowed.

As additional background, we introduce the first basic FL
algorithm FedAvg [6] which is commonly used as the starting
point for developing more advanced FL frameworks [7].
In FedAvg, the global model on the server will aggregate
local model parameters transmitted from clients and distribute
the aggregated parameters back to all clients. During each
communication round, each client downloads the model from
the server ωi ← ω

(t)
g and trains the model ωi with its own

data Si for Elocal epochs. Each client Si will send locally
updated parameters ω(t)

i to the server, then the global model
ω
(t+1)
g will be updated by a simple weighted average:

ω(t+1)
g =

K∑
i=1

|Si|
|S|

ω
(t)
i (1)

where |Si| denotes the size of data on the client Si and |S|
is the total size of all data samples distributed over all clients.
The server will broadcast newly updated parameters ω(t+1)

g to
clients for the next round of training.

B. Basic Ideas

Let us say we have a local model fc from a client and
the global model fs on the server. On the server, we wish
fs to encode all samples into a representation where each
sample is more distinguishable from others. In other words,
the overall model training will push apart fs(xi) and fs(xj),
where different graph samples xi, xj can be from different
clients. One way of viewing federated learning is that we

are trying to distill knowledge from multiple teacher models
trained on isolated clients into a single global student model on
the server. An earlier federated learning effort [28] has applied
a knowledge distillation (KD) technique for model fusion in
image classification tasks. A general objective function of
KD is the Kullback-Leibler (KL) divergence loss between the
softened probability distributions of the teacher models and
the student model [28].

lKL

(
σ(f tc(x)), σ(fs(x))

)
= σ(fs(x)) ·

(
log σ(fs(x))− log σ(f tc(x))

)
(2)

where σ(·) denotes the softmax function.
KL divergence loss has achieved considerable success,

which can be attributed to its ability to control the soft-
ness of targets via the temperature-scaling hyperparameter τ .
Specifically, utilizing a larger value makes the softmax vectors
smooth over latent classes [29], [30], [31]. Moving further,
it has been observed that the logit matching is positively
correlated to the performance improvement in KD [29]. These
authors considered the mean squared error (MSE) between the
logit vectors such that the student model can directly learn the
logit of the teacher model.

lMSE

(
f tc(x), fs(x)

)
= ||f tc(x)− fs(x)||22 (3)

For the KD loss functions like KL-divergence in Eq.2 and
MSE in Eq.3, we are pushing closer the representations fs(xi)
and fc(xi). This alleviates the local drift by aligning the local
logits with that of the server model during training.

In our work, what we discover is that the paradigm of
Contrastive Learning can help significantly improve both
unsupervised graph-level representation on individual sites as
well as in federated settings in a unified fashion. From a
knowledge distillation perspective, the inter-contrasting mech-
anism can be taken as an advanced KD, more specifically an
ensembling distillation technique.

linter = log

(
1 + exp(f t

c(x) · f t−1
c (x)− f tc(x) · fs(x))

)
(4)

The idea here is that the local drift will be hindered by using
more historical information of local training. We not only try
to push closer the in-situ local model f tc(x) and fs(x), but
also aim to push apart the current representations f tc(x) away
from its previous round f t−1

c (x).

C. Technical Details

Prior graph-level learning approaches, such as InfoGraph,
[8], [22] are based on mutual information maximization be-
tween multi-scale graph structures like graph-level and sub-
graph or node-level representations. Specifically, they consider
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the summarized patch representation centered at each node
as a positive example. This positive example is compared
with the global representation of the entire graph, based on
mutual information. There are also negative samples that arise
from fake graphs’ local representations. In this paper, we
produce positive samples of a given graph by randomized
augmentations – a powerful and proven approach to produce
similar pairs for deep learning models [32] that has not
yet been fully used for learning graph-level representations.
Basically, we create augmented similar and dissimilar graphs
and then apply an instance-wise contrasting objective [23].

Moreover, in federated learning setting, this approach can
directly compare graphs available at each client against each
other to sharpen the characteristics of each individual graph
sample. Thus, one of the novel parts of our approach is
that we apply contrastive learning at two levels. The first
application (intra-contrasting) is for local learning of graph
representations – specifically, for contrasting augmented views
of graphs within each client as described above. The second
level (inter-contrasting) is to contrast between the global
model from the server and the local model on each client,
as already introduced through Equation 4.
Intra-contrasting Details: As stated previously, at this level
we contrast graph-level representations of different graphs
from multiple views. Suppose we are given graph-level rep-
resentations U of a batch of graphs. After generating the set
of augmented views V , the contrastive mechanism [23] works
as follows. We denote u ∈ U as the representation of a single
graph in the view U and v ∈ V as the augmented counterpart
of u. Under this contrasting strategy, v forms the only positive
sample of u and any other graph representation in these two
views, i.e. U

⋃
V , is regarded as a negative sample. Thus, we

get the contrastive loss:

L(u, v) = log
{∑

z∈U
⋃

V
z ̸=u

exp
{

u·z
τ

}
/exp

{
u·v
τ

}}
(5)

where τ is the temperature parameter [23]. Suppose we are
training the local model on a batch consisting of B graphs, the
overall training loss to be minimized is defined as the average
agreement L over all positive pairs as follows:

lintra =
1

2B

∑
u∈U

[L(u, v) + L(v, u)] (6)

Intra-contrasting will force the local model to capture robust
characteristics behind all the graphs stored on each client. The
resulting graph embeddings are expected to make each graph
sample more distinguishable from others so as to ease the
downstream graph-level clustering task.
Inter-contrasting Details: In the method described above,
each client can only conduct intra-contrasting for its own
data. When there is a skewed or non-identical distribution
among the clients, the lost opportunity of contrasting with data

samples from other clients can have a significant impact on
the generalization performance of the resulting model. This is
analogous to how, in federated supervised learning, the local
model can explicitly encode the local label distribution and
thereby drift away from the global optimum during training.
As already stated above, we draw inspiration from a model-
level contrasting mechanism proposed by the federated image
classification framework proposed in MOON [25]. This work
verified that the skewed local data distribution can cause a drift
in the local updates leading the local model to learn worse
representations than the global model. We extended their idea
to the graph learning domain in order to control local training
drift and bridge the gap between graph representations learned
by the local model and the global model. This, when applied
in an unsupervised manner, is the second part of our novel
two-level contrasting framework. Rewriting Equation 4 in our
specific context, our goal is to decrease the distance between
U t (representations learned by the current local model) and Us

(representations learned by the global model) while increasing
the distance between U t and U t−1

c (representations learned
by the local model with parameters from the previous local
epoch). Through this process, we pull U t and U t−1

c apart to
prevent the local model from drifting along skewed subset
of data after iterations of local training. Meanwhile, we
push U t and Us closer to keep optimizing the generalization
performance of the global model. Specifically, we minimize
the contrastive loss as:

linter = log
exp(sim(Ut,Us)/τ

′)+exp(sim(Ut,Ut−1
c )/τ ′)

exp(sim(Ut,Us)/τ ′) (7)

where sim(·, ·) is a cosine similarity function and τ ′ is the
temperature for inter-contrasting.

Next, we also construct a model variant by contrasting node-
level representations H in place of graph-level representations
U by minimizing:

lHinter = log
exp(sim(Ht,Hs)/τ

′)+exp(sim(Ht,Ht−1
c )/τ ′)

exp(sim(Ht,Hs)/τ ′) (8)

where Ht, Ht−1
c , and Hs are the node-level counterpart

representations of U t, U t−1
c , and Us, respectively.

D. FCLG: Overall Framework and Algorithm

Framework Architecture. Based on the two-level contrastive
learning idea, our framework first learns a powerful graph em-
bedding in a self-supervised manner from decentralized data.
The resulting embedding can then be used for downstream
graph-level clustering tasks. Figure 1 presents an overview
of FCLG architecture. Given a batch of input graph data
Gb(X,A), a graph diffusion precomputing procedure [33]
is performed to generate the augmentation view Gd(X,A)
(following [22]). The subsequent graph embedding generation
module comprises a GIN [10] based encoder f . This encoder
f involves a set of parameters denoted by ω and a non-
parametric graph pooling function g. ω thus also denotes the
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Fig. 1: Schematic of FCLG framework architecture. Given
one batch of graph data Gb(X,A), graph diffusion is used
to generate an augmented counterpart Gd(X,A). These two
views are fed to the subsequent GIN based encoder f to
generate latent node-level representations (Ht

c and Ĥt
c , respec-

tively). The graph pooling function g will further summarize
(Ht

c , Ĥt
c) by summing up all features for each graph along

the columns, yielding (U t, V t), on which intra-contrastive
learning is performed (the superscript t indicates the local
training epoch). The inter-contrastive learning step will pull
apart the representations (U t−1

c , U t) between adjacent local
training epochs on each client, and bring closer (U t, Us) to
improve the generalization performance of Us.

model parameters of FCLG. We use the GIN [10] due to
its advanced performance in graph-level tasks [7] and apply
a summing-up graph pooling function as described in [22],
[8], [12], [11]. Within this module, f containing stacked L-
layers of GIN, will first abstract information from graphs into
a series of latent representations {hk}Lk=1. Inspired by [34],
we summarize representations at all depths of neural networks
through concatenation along the feature dimension, with the
goal of capturing local information centered at every node:

H = CONCAT ({hk}Lk=1), U = POOL(H)

Here, H indicates the node-level latent representations and
U is the pooled graph-level representation of the input graph
Gb(X,A). Similarly, V is the pooled graph-level represen-
tation of the augmented view Gd(X,A). The model will be
optimized in a self-supervised manner via contrastive learning
objectives.
Complete Algorithm. The entire training process is summa-
rized in Algorithm 1. During each communication round,
the global model on the server will send model parameters
to clients, receive the local model from each client, and
update the global model by Eq.1 (on line 2-9). During local
training, each client Ci first downloads the most updated
model parameters from the server (on line 11). Next, we
perform the training on each batch of graphs Gb locally
stored on each client. Augmented view of graphs Gd will
be generated through graph diffusion mechanism summarized

TABLE I: Statistics of datasets for unsupervised graph-level
representation learning.

Domain Dataset Graphs Avg. Nodes Avg. Edges class
Proteins ENZYMES [35] 600 32.63 62.14 6

PROTEINS [35] 1113 39.06 72.82 2
Molecules DHFR [36] 467 42.43 44.54 2

NCI1 [37] 4110 29.87 32.30 2

earlier (on line 14). The GIN [10] based encoder f and graph
pooling function g abstract graph data into latent graph-level
representations (on line 15-16): 1) U t by the current local
model wt

i encoding Gb; 2) V t by the current local model
wt

i encoding the augmented view Gd; 3) Us by the global
model wj encoding Gb; 4) U t−1

c by the previous epoch of
local model wt−1

i encoding Gb. These obtained representations
will be used to compute intra-contrasting and inter-contrasting
losses (on line 17). The total training loss can be computed
by summing two contrastive losses up (on line 18) by:

ltot = linter + lintra (9)

Algorithm 1 FCLG training for graph-level representations

Input: local training epochs E, communication rounds
T , number of clients K and γ the fraction of clients
participating in each round.
Output: learned model parameters ωT

1: Server:
2: initialize ω0

3: for j = 0, 1, · · · , T − 1 do
4: Randomly sample a subset of Kγ clients
5: for i = 1, 2, · · · ,Kγ in parallel do
6: send global model ωj to Ci

7: ωj
i ← Client(i, ωj)

8: ωj+1 ←
∑Kγ

i
|Si|
|S| ω

j
i

9: return ωT

10: Client(i, ωj):
11: ω0

i ← ωj

12: for t = 1, 2, · · · , E do
13: for each batch of graphs Gb ∈ Si do
14: Gd ← graph diffusion on Gb

15: U t ← g(fωt
i
(Gb)); V t ← g(fωt

i
(Gd))

16: Us ← g(fωj (Gb)); U t−1
c ← g(fωt−1

i
(Gb))

17: Calculate lintra from Eq.6 and linter from Eq.7
18: ltot ← linter + lintra
19: SGD update on ωt

i

20: return ωE
i

III. EXPERIMENTAL RESULTS

A. Experimental Settings

Datasets and Baselines: we use four datasets [38] for the
graph-level clustering task covering multiple domains as in
Table I. We divide graphs of each dataset into 6 clients for fed-
erated training. To build baselines, we follow similar settings
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Fig. 2: Accuracy Vs. Communication Round on PROTEINS

from recent efforts [7], [27]. We combine different prior fed-
erated learning strategies (FedAvg [6] and FedProx [39]) with
the graph-level representation learning methods (InfoGraph [8]
and MVGRL [22]).
Metrics: We evaluate the quality of learned graph-level em-
beddings through its performance on the downstream graph-
level clustering, specifically using two metrics: accuracy and
macro F1-score. To quantify non-identical distributions for dif-
ferent (versions of) datasets, we apply an average Earthmover’s
Distance (EMD) [40] metric. Following [41], we take the
discrete graph class distribution qi for each client. The class
distribution across the total population including datasets from
all clients is denoted as p. Hence, the non-identical distribution
of a dataset is calculated as average distances between the
clients and the population in a weighted fashion:∑

i
|Si|
|S| Dist(qi,p)

As indicated earlier, |Si| indicates the data size on each
client and |S| =

∑
i |Si|. Dist(·, ·) is a specific distance metric,

where in our particular case we use the EMD(q,p) ≜ ||q −
p||1 and EMD(q,p) ∈ [0,2]. Hence a larger EMD implies a
more skewed distribution.

B. Graph-level Clustering Results

We evaluate the clustering performance following the clus-
tering evaluation protocol as taken by previous works [22].
Specifically, we set the number of clusters to the number
of ground-truth graph-level classes and perform K-Means
algorithm [42] on the resulting graph-level embedding. Table II
shows the graph-level clustering results on four datasets with
non-IID client data – each experiment is performed for 10
times with both the average and the range reported. We provide
the EMD values in alignment with each dataset name.

On top of FCLG, we also tested the variant model FCLG-H,
where intra-contrasting is conducted between node-level rep-
resentations H via Eq. 8. More variants are based on different
ensembling distillation strategies: Intra-FedAvg by removing

the term linter (Eq.9) and only keeping intra-contrastive loss;
Intra-KL by replacing linter with lKL as in Eq.2; Intra-MSE
by replacing linter with lMSE as in Eq.3. Our FCLG based
models obtained state-of-the-art graph-level clustering metrics
across all datasets with a significant clustering gain 2-7%.
Figure 2 shows graph-level clustering accuracy after a varying
number of communication rounds on the dataset PROTEINS
, where FCLG starts achieving a clearly superior performance
after a few rounds.

IV. CONCLUSIONS
In this paper, we have presented and evaluated a new feder-

ated learning framework referred to as FCLG. This framework
has overcome two difficulties in graph-level representations
learning under federated settings: 1) inaccessibility of graph-
level ground-truth labels; 2) poor generalization performance
of federated learning when different sites see distinct distribu-
tions (the non-IID issue). With a unique two-level contrastive
learning mechanism, FCLG has attained high robustness with
non-IID and obtained high quality graph-level representations.
Our extensive evaluation has shown FCLG achieved state-
of-the-art graph-level clustering accuracy compared with the
baselines we constructed, specifically, 2-7% clustering accu-
racy gain in non-IID settings.
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TABLE II: FCLG graph-level clustering performance for Non-IID client data.

Model Metric PROTEINS (0.5774) ENZYMES (1.2667) DHFR (0.5694) NCI1 (0.5995)
InfoGraph-FedAvg Accuracy 62.40± 1.59 26.00± 1.23 56.59± 0.05 57.82± 0.19

F1-macro 61.58± 1.19 25.85± 1.34 55.51± 0.05 57.59± 0.20
InfoGraph-FedProx Accuracy 60.97± 2.39 27.93± 0.15 57.54± 0.00 59.15± 0.56

F1-macro 60.47± 2.19 27.89± 0.18 57.35± 0.00 58.85± 0.85
MVGRL-FedAvg Accuracy 59.35± 0.10 17.33± 0.00 61.11± 0.00 50.07± 0.00

F1-macro 37.25± 0.04 6.12± 0.00 38.25± 0.00 33.41± 0.00
MVGRL-FedProx Accuracy 59.30± 0.20 17.50± 0.00 61.11± 0.00 50.07± 0.00

F1-macro 37.22± 0.08 6.45± 0.00 38.25± 0.00 33.41± 0.00

FCLG Accuracy 69.90± 2.59 32.45± 0.45 67.01± 0.83 61.42± 0.07
F1-macro 69.12± 1.97 30.61± 0.40 66.59± 0.76 60.03± 0.07
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