
SYMFIT: Making the Common (Concrete) Case Fast for

Binary-Code Concolic Execution

Zhenxiao Qi

UC Riverside

Jie Hu

UC Riverside

Zhaoqi Xiao

UC Rvierside

Heng Yin

UC Rvierside

Abstract
Concolic execution is a powerful technique in software test-

ing, as it can systematically explore the code paths and is

capable of traversing complex branches. It combines concrete

execution for environment modeling and symbolic execution

for path exploration. While significant research efforts in con-

colic execution have been directed toward the improvement of

symbolic execution and constraint solving, our study pivots to-

ward the often overlooked yet most common aspect: concrete

execution. Our analysis shows that state-of-the-art binary con-

colic executors have largely overlooked the overhead in the

execution of concrete instructions. In light of this observation,

we propose optimizations to make the common (concrete)

case fast. To validate this idea, we develop the prototype,

SYMFIT, and evaluate it on standard benchmarks and real-

world applications. The results showed that the performance

of pure concrete execution is much faster than the baseline

SYMQEMU, and is comparable to the vanilla QEMU. More-

over, we showed that the fast symbolic tracing capability of

SYMFIT can significantly improve the efficiency of crash

deduplication.

1 Introduction

Symbolic execution [9, 13, 16, 26, 27] is a powerful technique

for automated software testing that has gained significant at-

tention in recent years. It has been widely used in finding

security vulnerabilities due to its capability of effective code

path exploration. Despite its effectiveness, symbolic execution

is also known to be expensive. Recently, the efficiency of con-

colic execution has been greatly improved. SymCC [24] and

SymSan [11] take a compile-time instrumentation approach

to collect and solve path constraints and are several orders

of magnitude faster than QSYM [31], which is based on dy-

namic binary instrumentation. SymSan [11] is even faster than

SymCC [24] by utilizing the highly optimized shadow mem-

ory from data-flow sanitizer [30]. While SymCC and SymSan

require the source code of the target program to perform con-

colic execution, QSYM [31] and SymQEMU [23] provide a

binary-only solution by directly weaving the concolic execu-

tion logic into the dynamic binary translation process.

Essentially, concolic execution combines concrete and sym-

bolic execution. While significant research efforts in concolic

execution have been directed toward the improvement of sym-

bolic execution and constraint solving [11, 12, 23, 31], our

study pivots toward the often overlooked yet most common

aspect, concrete execution. First, we review the design of exist-

ing binary concolic executors, focusing on how concrete and

symbolic execution are mixed, and evaluate the overhead of

handling concrete execution in the state-of-the-art binary con-

colic executor, SYMQEMU. We observed that even though

SYMQEMU has significantly improved the performance of

concolic execution on binary code over QSYM, it still exhibits

a large overhead in handling the execution of concrete instruc-

tions. Our evaluation shows that when no symbolic inputs

are introduced, the concrete execution in SYMQEMU is 35×

slower than vanilla user-mode QEMU on SPEC CINT-2006

benchmarks.

“Optimize for the common case” is a principle in com-

puter science and engineering that suggests designing and

optimizing systems, algorithms, and software based on the

most frequent or expected use cases, rather than focusing pri-

marily on edge cases or rare scenarios. Inspired by this prin-

ciple, we design an efficient concolic execution framework

with optimization for the common case, concrete execution.

We note that in concrete execution, only load and store in-

structions need to be checked as they can potentially access

symbolic values in the shadow memory, the rest instructions

can run natively without instrumentation. To reduce the la-

tency of checking concrete shadow memory, we designed

a Concrete Memory Lookaside Buffer (CMLB) that caches

recent-accessed concrete memory pages. As a result, checking

whether the address is concrete can be performed by a few

instructions that look up CMLB. When loading a symbolic

value in concrete mode, the execution should transit to sym-

bolic mode, where instructions are monitored to collect their

symbolic effects. More importantly, the concolic execution

engine automatically switches between concrete mode and



symbolic mode to avoid unnecessary monitoring of concrete

instructions.

We build our prototype, SYMFIT, on top of user-mode

QEMU, with our optimizations for the common (concrete)

cases. For the frontend, we follow the instrumentation strategy

in SYMQEMU to propagate and collect symbolic constraints.

For the backend, we adopt the ideas in SymSan [11] for its

efficient symbolic state and shadow memory management.

We compared SYMFIT with its baseline SYMQEMU, and

found that the overhead in concrete execution is greatly re-

duced on standard benchmarks (SPEC CINT-2006 [5] and

Linux/Unix nbench [3]) and real-world applications (Google’s

Fuzzbench [2] and Unibench, the real-world benchmark pre-

sented in UniFuzz [20]). The evaluation results showed that

compared to SYMQEMU, SYMFIT achieved 13× and 20×

speedup on SPEC CINT and nbench for pure concrete exe-

cution. When the overhead of constraint solving is excluded,

SYMFIT is 12.03× faster than SYMQEMU on Fuzzbench

programs. When solving is enabled, SYMFIT can still enjoy

a 6.67× speedup over SYMQEMU. In the end-to-end hybrid

fuzzing experiment, SYMFIT can achieve similar edge cov-

erage faster than SYMQEMU and sometimes achieve higher

edge coverage. Moreover, the fast symbolic tracing capability

of SYMFIT can significantly improve the efficiency of bug

detection and crash deduplication.

Contributions. In summary, we make the following contri-

butions:

• We review the system designs of existing binary concolic

executors, with respect to how they combine concrete

and symbolic executions. We make an observation that

these designs incur significant overhead for concrete

execution, which is the common case.

• We propose two key optimizations, lightweight concrete

mode and concrete memory lookaside buffer, which sig-

nificantly reduce the concrete execution overhead.

• We build a prototype, SYMFIT, and evaluate it on stan-

dard benchmarks (SPEC-CINT and nbench), real-world

applications (Fuzzbench and Unifuzz), and security ap-

plications (crash deduplication). Moreover, we make

SYMFIT publicly available to foster future research in

the area.

2 Background and Motivation

Symbolic execution is a technique that can explore all possible

execution paths in software using symbolic values instead of

concrete inputs. It tracks the values of symbolic inputs as they

are propagated by the program, and maintains a map from

program variables (including registers and memory) to their

symbolic expressions. When the engine encounters a branch

statement with symbolic operands, it constructs a boolean

formula based on collected symbolic expressions and checks

the feasibility using an SMT solver. To generate a concrete

input that follows the same execution path, the engine queries

the SMT solver for feasible assignments to symbolic values.

Concolic Execution. One challenge of classic symbolic exe-

cution is that it fails to explore the execution path when the

path constraints are too complex for the SMT solver to solve

within a limited time. To alleviate this issue, researchers have

proposed concolic execution, where the symbolic path explo-

ration is guided by the execution of the program with concrete

inputs. To explore executions that deviate from the current

concrete execution path, the concolic execution engine checks

the feasibility of the opposite branch by querying the SMT

solver and generates concrete inputs leading to that direction

if feasible.

2.1 Source-Code Concolic Execution

In order to trace the execution of the target program, sym-

bolic execution engines need to understand the underlying

instruction set. Classic symbolic execution engines [9,13,28]

perform the analysis on the intermediate representation (IR)

lifted from the program. At the core of such engines, an

interpreter runs the IR symbolically and keeps a record of

how symbolic values are computed in the program. While IR

interpretation-based approaches are portable and architecture-

agnostic, they all face scalability issues. Recently, a line of

research works has shown that compiling or instrumenting the

symbolic execution logic into the program can benefit from

the native execution of the program, thus much faster than IR

interpretation-based approaches. For example, SymCC [24]

and SymSan [11] compile symbolic execution logic into the

target program at LLVM IR level. They hook into the com-

piler and inject library function calls that interact with the

symbolic execution backend. Such approaches also benefit

from compiler optimizations, and instrumentation only needs

to be done once for each program. However, compilation-

based approaches fundamentally require a compiler, thus not

applicable when the source code of the program or third-party

libraries are not accessible.

2.2 Binary-Code Concolic Execution

While source-code concolic execution (such as SymCC [24]

and SymSan [11]) is highly efficient, it has drawbacks too.

The source code of the target program as well as all the depen-

dent libraries must be available for compiler instrumentation.

This assumption does not hold for proprietary software and li-

brary components. Even if the source code of all the software

components is available, one may still encounter various com-

patibility issues when compiling these components with the

compilers that come with these concolic execution engines.

If for any reason a component cannot be properly compiled,

function summaries must be provided for the functions ex-

ported by this component. Otherwise, constraint collection



might be incomplete or incorrect. However, writing function

summaries can be a tedious and error-prone process by itself.

Therefore, concolic execution that can directly work on binary

code is desirable.

In essence, concolic execution combines symbolic execu-

tion and concrete execution to explore program execution

space. In this subsection, we review the system designs of

existing binary-code concolic executors, with respect to how

they combine concrete and symbolic executions, as illustrated

in Figure 1.

Angr. Angr [17, 28] is a binary concolic executor that utilizes

the Unicorn engine [25] (i.e. user-mode QEMU) for concrete

execution and the Valgrind framework for symbolic interpre-

tation. To avoid heavyweight symbolic interpretation, Angr

provides APIs for users to select functions or code regions

for symbolic exploration (Figure 1). Initially, Angr executes

the target binary concretely via the Unicorn engine to aggre-

gate a concrete environment model, i.e., concrete values for

registers and memory. Upon reaching a user-defined Point

of Interest (PoI), a symbolic state is initialized, replicating

the concrete states and setting user-selected states (register

or memory) as symbolic. Then symbolic execution is per-

formed with initialized symbolic states. Once the symbolic

exploration converges on the Target Point (TP), symbolic ex-

ecution terminates and each symbolic variable is assigned a

concrete value that satisfies collected symbolic constraints

and synchronized with concrete states to drive the concrete

execution.

S2E. S2E [13] runs the entire operating system in the whole-

system emulator QEMU and connects to KLEE [9] to sym-

bolically execute selected code regions (Figure 1). Similar to

Angr’s strategy, it minimizes symbolic emulation overhead

by letting users pinpoint functions or code regions to explore

symbolically. Specifically, it provides two plugins, Annota-

tion, and CodeSelector, allowing users to annotate variables

as symbolic and specify code ranges to perform symbolic

execution.

Mayhem. Instead of manually selecting boundaries between

symbolic and concrete executions, Mayhem [10] provides a

different strategy to reduce unnecessary emulation for con-

crete instructions with taint tracking. Specifically, the concrete

execution engine instruments the target binary and performs

dynamic taint analysis to track attacker-controlled input from

environment variables, files, and networks. During the con-

crete execution, tainted instruction traces are streamed to the

symbolic executor (KLEE) for symbolic exploration and ex-

ploit generation.

Problem 1: Concolic executors like Angr and S2E deter-

mine boundaries between concrete execution and symbolic ex-

ecution upon user selection. This strategy effectively reduces

the total overhead of symbolic emulation, as only selected

code regions are executed symbolically. However, this strat-

egy is coarse-grained. First, it requires preliminary reverse

engineering efforts to first identify target functions or relevant

code ranges, and designate which values should be treated

as symbolic. Second, even within code segments selected for

symbolic execution, many instructions that do not operate

on symbolic values should be executed concretely. Third, se-

lected code regions might overlook instructions outside of

the selected range that require symbolic emulation. Mayhem

performs dynamic taint analysis to ensure tainted instructions

are subject to symbolic emulation, while untainted ones are

spared. However, dynamic taint analysis introduces additional

overhead at runtime, which becomes particularly problematic

for whole-system emulation.

Problem 2: Notably, the above approaches all perform

symbolic and concrete executions in two processes. As a

result, Angr and S2E inevitably need to perform context

switches between two engines and non-trivial synchroniza-

tion between the symbolic and concrete environment, while

Mayhem has to lift the target binary twice, one in Pin to per-

form dynamic taint tracking, another one in BAP for symbolic

emulation.

QSYM and SymQEMU. Instrumentation-based approaches,

such as QSYM and SymQEMU, were proposed to obviate

the need for context switches and synchronization between

the symbolic and concrete environment. This is achieved by

injecting symbolic emulation logic directly into the target

program, which enables running concrete code and symbolic

emulation within one process, rendering mode switches ex-

tremely lightweight - essentially, a mere function call. More-

over, symbolic emulation logic is instrumented and executed

together with the target binary on CPU, yielding a much

higher performance compared to interpretation-based sym-

bolic emulation like Angr, S2E, and Mayhem.

To avoid symbolic emulation overhead for concrete in-

structions, QSYM employs dynamic taint tracking to identify

instructions that need symbolic emulation (Figure 1). Specifi-

cally, QSYM has to disassemble each instruction at run time

and check each operand to determine if this instruction needs

to be executed concretely or symbolically. The disassembling

and taint checking inevitably introduce additional overhead.

Notably, symbolic emulation intrinsically propagates sym-

bolic data. Therefore, SYMQEMU (Figure 1), rather than re-

lying on additional taint tracking, evaluates the need for sym-

bolic emulation for an instruction by checking if its operand(s)

(variables or memory addresses) are symbolic. This method

enables it to bypass symbolic emulation for concrete instruc-

tions while eliminating the need for dynamic taint tracking

and shows better efficiency than QSYM.

2.3 The Common Case Overhead

Our study pivots towards the often overlooked yet most com-

mon aspect: concrete execution, rather than symbolic execu-

tion and constraint solving methodologies, where significant

research efforts have been directed towards [11, 12, 23, 31].





head. Secondly, shadow memory checking in SYMQEMU

is expensive. To check the concreteness of an address, the

virtual address is first translated to its corresponding shadow

address using a two-level mapping. Then, the shadow address

is accessed to determine if it is concrete. As memory accesses

are frequent, such overhead can be significant when analyzing

real-world applications.

Scope. In this work, we follow the system design principle of

“optimize for the common case” to design a concolic executor

with optimized concrete execution. While this principle is

generic to be applied to different solutions of concolic ex-

ecutors, such as QSYM, our concolic executor follows the

design of SYMQEMU, as the underlying framework, QEMU,

is open-sourced, allowing us to implement our optimization

strategies at the system level. We have made key observations

of SYMQEMU that guide our approach:

• The concrete execution exhibits non-negligible overhead

due to concreteness checking at the instruction level. We

argue that, in concrete execution, only load and store

need to be monitored as they may potentially access

shadow memory from memory. No concreteness check-

ing is necessary for the rest instructions to keep concrete

execution fast. The transition to symbolic execution hap-

pens as soon as a symbolic value is loaded from shadow

memory to ensure the correctness of symbolic emulation.

In symbolic execution, the engine should switch back to

concrete execution as soon as no symbolic emulation is

needed.

• (Concrete) shadow memory access can be frequent

and imposes significant overhead. Checking for shadow

memory can be optimized by caching recent-accessed

concrete memory pages. By doing so, the overhead of

shadow address translation and shadow memory access

can be avoided if the cache hits.

3 System Overview

Essentially, the design of concolic executors consists of the

front end for symbolic state collection and the back end for

symbolic state management. SYMFIT follows the front-end

design of SYMQEMU, which adopts user-mode QEMU for

its reasonable performance and multi-architecture support.

Instead of reusing the symbolic backend from QYSM as

SYMQEMU does, we adopt the symbolic state management

from SymSan [11], a recent work that shows efficient sym-

bolic expression and shadow memory management. While

SymSan requires the source code of target programs, we in-

troduce more details about how we apply SymSan’s ideas for

binary concolic execution in §3.2.

More importantly, SYMFIT is designed to optimize for the

common (concrete) case. It features a lightweight concrete

execution and the ability to efficiently discern the boundary

between symbolic and concrete execution. To optimize for

the common (concrete) case, it only monitors load and store

instructions in concrete execution. When a symbolic load is

detected, SYMFIT switches to the symbolic mode with full

instrumentation. When symbolic emulation is no longer nec-

essary, it transitions back to the concrete mode. To determine

when to switch, SYMFIT evaluates the concreteness of CPU

registers at the end of each basic block, instead of checking

every instruction which has a non-negligible overhead.

Figure 2 illustrates the architecture of SYMFIT. It is built

atop a dynamic binary translator, QEMU, and takes a binary

as input. The concolic execution logic is instrumented into the

binary dynamically, allowing it to switch between lightweight

concrete mode and symbolic execution mode at runtime. The

latency of shadow memory access is improved by the Con-

crete Memory Lookaside Buffer (CMLB) lookup, which is

done by a few instructions inlined into native code during

translation. SYMFIT utilizes a symbolic backend to construct

symbolic path constraints, query the SMT solver, and generate

new test inputs for path exploration.

Lightweight Concrete Execution. As shown in Table 1,

even with no symbolic inputs, SYMQEMU still incurs a 35

times slowdown compared to the vanilla QEMU. This over-

head comes solely from instrumented helper function calls

(as shown in Listing 1) that check whether shadow variables

or memory are concrete. In fact, when no symbolic value is

involved, there is no need for such instrumentation and the

program can be analyzed in concrete mode. In concrete mode,

no symbolic emulation will be added to the original code,

except for the load and store instructions that may potentially

access symbolic values from the shadow memory. Therefore,

only the memory access instructions are instrumented to mon-

itor whether the source is symbolic, if so, the execution should

switch to the symbolic mode. Section §3.1 introduces how

SYMFIT efficiently performs this check for load and store

instructions. For memory stores, the shadow memory of the

destination operand will be cleaned since the source operand

is always concrete.

Mode Switch. While concrete mode is efficient, instructions

that need symbolic emulation should be instrumented to en-

sure correct symbolic state propagation and constraint collec-

tion. Also, SYMFIT should transition back to concrete mode

as soon as symbolic emulation is not necessary. The key chal-

lenge is to decide when and how the transition between the

two modes should occur. To ensure the proper propagation

of symbolic states, the execution should switch to the sym-

bolic mode immediately upon loading symbolic data from the

shadow memory. To minimize the instrumentation overhead,

the execution should switch to the concrete mode whenever

no symbolic values are involved. Moreover, the transition be-

tween the two modes should be seamless without disrupting

the program’s execution. SYMQEMU [23] is built on top

of the dynamic binary translator QEMU (user mode) [7]. It





1 #define CPU_TLB_ENTRY_BITS 3

2 #define CPU_TLB_DYN_DEFAULT_BITS 10

3 typedef struct CPUTLBDescFast {

4 /* (n_entries - 1) << CPU_TLB_ENTRY_BITS */

5 uintptr_t mask;

6 /* The array of TLB entries itself. */

7 CPUTLBEntry *table;

8 } CPUTLBDescFast QEMU_ALIGNED(2 * sizeof(void *));

9

10 typedef struct CPUTLBEntry {

11 target_ulong page_addr;

12 } CPUTLBEntry;

13 static void user_tlb_dyn_init(CPUArchState *env) {

14 for (int i = 0; i < NB_MMU_MODES; i++) {

15 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;

16 env_tlb(env)->f[i].mask =

17 (n_entries - 1) << CPU_TLB_ENTRY_BITS;

18 env_tlb(env)->f[i].table =

19 g_new(CPUTLBEntry, n_entries);

20 }

21 }

Listing 2: The design and configuration of the Concrete Mem-

ory Lookaside Buffer.

which all memory bytes are concrete). We refer to this buffer

as Concrete Memory Lookaside Buffer (CMLB). The CMLB

lookup logic is inlined in the native code to avoid the helper

call overhead. In this way, since most memory blocks are con-

crete, we expect the majority of memory accesses will result

in CMLB hits and no further actions are needed. Occasionally,

if a memory access results in a CMLB miss, meaning at least

one byte in that block is symbolic, SYMFIT goes through the

slow path by making a helper call as in SYMQEMU.

We follow the design of QEMU’s software TLB and reuse

some of the TLB data structures for the Concrete Memory

Lookaside Buffer. As shown in Listing 2, the buffer is initial-

ized with 1024 (1 << CPU_TLB_DYN_DEFAULT_BTIS) entries

and is associated with the CPUArchState data structure per

vCPU. Each entry contains an 8-byte address of a concrete

memory block. For load and store instructions in concrete

mode, SYMFIT first looks up the CMLB to check if the tar-

get address is concrete. If so, it can safely continue in the

concrete mode. If not, a helper function is called to read the

shadow memory. Note that a store in the concrete mode will

write the destination shadow memory as concrete. For load

instructions in symbolic mode, if CMLB hits, the shadow vari-

able of the destination operand will be marked as concrete,

and the function call to read shadow memory is skipped. For

store instructions in the symbolic mode, SYMFIT only goes

to the fast path when CMLB hits and the source variable is

also concrete. The entries in CMLB will be filled with a new

block if it is concrete, or evicted if the cached concrete blocks

become symbolic.

The granularity of the cached memory blocks in CMLB

impacts both the hit rate and overall performance. The orig-

inal TLB design in QEMU holds the starting address of a

4096-byte page in each entry. However, this level of granular-

ity is inefficient for buffering concrete memory blocks as a

small amount of symbolic data would mark the whole page

as symbolic. To address this, we evaluated various granularity

levels ranging from 32-byte to 2048-byte and selected 512-

byte which demonstrated the best hit rate in our evaluation.

More details can be found in §5.5.

As presented in Table 3, lightweight concrete mode and

shadow memory access (dubbed SYMFIT-MC) together can

achieve an average speedup of over 13 times compared to

SYMQEMU. The overhead compared to the vanilla QEMU

is only 2.65 times.

Table 3: Speedup of the optimizations for concrete instruc-

tions and shadow memory access over SYMQEMU on SPEC

CINT-2006 with all concrete inputs and overhead of mode

switch compared to vanilla QEMU. SYMFIT-MC represents

the combination of mode switch and shadow memory access.

CINT-2006 SYMQEMU SYMFIT-MC Speedup Overhead

hmmer 293.39s 19.09s 15.37× 2.38×

libquantum 17,035.43s 907.43s 18.77× 1.67×

bzip2 4,625.94s 354.58s 13.05× 1.97×

mcf 3,072.34s 648.82s 4.74× 2.65×

sjeng 29,495.09s 3,299.05s 8.94× 3.37×

gcc 1,749.03s 269.31s 6.49× 3.75×

xalancbmk 68,874.56s 1,074.76s 64.08× 3.49×

Geo. Mean 13.10× 2.65×

3.2 Symbolic State Management

SYMQEMU utilizes the same backend with QSYM [31] to

manage symbolic expressions and shadow memory. Recently,

SymSan [11] proposed a novel approach that extends the dy-

namic data-flow analysis framework, DFSan [30], to optimize

the management of symbolic expressions and shadow mem-

ory. Unfortunately, SymSan requires source code, so it cannot

be used directly with binary concolic executors. In this sub-

section, we explain how we apply the ideas of SymSan to

enhance existing binary concolic executors.

Symbolic Expression Management. State-of-the-art con-

colic executors, such as SymCC [24], SYMQEMU [23] and

QSYM [31], utilize Abstract Syntax Trees (ASTs) to repre-

sent symbolic expressions and their dependencies. When a

new symbolic expression is created, an AST node is allocated

on the heap to store the new symbolic expression populated

based on the source operand(s) and instruction. At a symbolic

branch, QSYM looks up the AST tree and unfolds the depen-

dencies to build a Z3 expression for path negation. According

to the performance profiling in SymSan, QSYM spends 3%

of execution time on AST node allocation and 28% on AST

node tracking. To reduce the overhead of allocating and track-

ing symbolic expressions, SymSan modifies the taint labels in

DFSan [30] to represent symbolic expressions and preserves a



large, consecutive address space for forward allocation of new

labels. As a result, tracking symbolic expressions is a simple

look-up of the label array (constant time), and allocating new

labels is done by performing an atomic_fetch_add to up-

date the last allocated index. Interested readers can refer to

SymSan [11] for more technical details. To adopt the design of

SymSan, we add helper functions at TCG IR level that interact

with SymSan’s backend for symbolic state management.

Shadow Memory Management. For variables stored in

memory, SYMQEMU uses QSYM to model the shadow mem-

ory to store their expressions. In QSYM, the shadow memory

mapping is maintained in a red-black tree (std::map). To

calculate the shadow address for a given application address,

the page-level application address is first used as an index to

retrieve the target shadow page, then the page offset is added

to it to get the shadow address. As a result, the mapping

complexity is O(log(n)).

1 // Calculate shadow address in QSYM.

2 std::map<uintptr_t, SymExpr *> g_shadow_pages;

3 static SymExpr *getShadow(uintptr_t address) {

4 shadowPageIt =

5 g_shadow_pages.find(pageStart(address));

6 if (shadowPageIt != g_shadow_pages.end())

7 return shadowPageIt->second + pageOffset(address);

8

9 return nullptr;

10 }

11 // SymSan direct shadow memory mapping.

12 void *shadow_for(uptr addr) {

13 return (addr & ShadowMask()) << 2;

14 }

Listing 3: The shadow memory design in QSYM and SymSan

As designed in SymSan [11] and other dynamic taint analy-

sis (DTA) tools [30], direct mapping is the most time-efficient

way to maintain shadow memory, which offers constant time

(O(1)) lookup. SYMFIT employs the direct mapping from

SymSan’s symbolic backend. Listing 3 shows the shadow

memory address translation in SymSan. Despite the fast

shadow memory mapping, the shadow memory access still

suffers from poor memory access locality. As presented in

Table 4, the application memory and shadow memory exhibit

a significant distance between them. Therefore, CMLB is still

useful in terms of reducing shadow memory access latency.

In conclusion, we improve the performance in symbolic

mode by adopting the faster symbolic backend from the

source code-based concolic executor SymSan to SYMFIT.

4 Implementation

SYMFIT utilizes the user-mode emulator QEMU [7] to build

the front-end and follows the design of SymSan to build the

symbolic backend. In this section, we reveal some implemen-

tation details of SYMFIT.

TCG Instrumentation. Fundamentally, SYMFIT utilizes the

Tiny Code Generator (TCG) of QEMU to perform the instru-

mentation. TCG first lifts basic blocks of the target binary to

an intermediate representation called TCG ops, then compiles

TCG ops to machine code that runs on the target architec-

ture. During the dynamic binary translation, additional TCG

ops are emitted to invoke library functions from the sym-

bolic execution backend. For each TCG op, the symbolic

handler function is added to build corresponding symbolic

expressions. Unlike source code-based instrumentation that

benefits from compiler optimizations, TCG instrumentation

has a limited view of instructions and renders advanced static

analysis infeasible. As a result, it is difficult for SYMQEMU

to statically determine if a variable is concrete, and remove

the inserted symbolic execution logic. SYMQEMU settled

for a solution that performs concreteness checks at the cost of

library function calls. In SYMFIT, we use vCPU registers to

indicate whether TCG variables are concrete in the target ba-

sic block. Specifically, in symbolic mode, we add one helper

function per basic block to check the states of all registers. If

they turn out to be concrete, we can safely avoid the cost of

concreteness checks for every instruction in this block.

Symbolic State Management. SYMFIT uses runtime library

functions from SymSan’s symbolic backend to construct sym-

bolic expressions and send solving queries to the SMT solver.

At the core of SymSan, a special form of dynamic data-flow

analysis is performed to collect taint labels of program vari-

ables and their dependencies. When encountering a symbolic

(i.e., tainted) branch, a symbolic expression is reconstructed

based on collected taint labels. While SymSan works on

LLVM IRs, we instrument TCG IRs to achieve the equiv-

alent functionalities.

SYMFIT supports symbolic data from input files and stdin.

To achieve this, we hook the syscall wrappers in QEMU (e.g.,

open, openat, read, and lseek) and assign corresponding la-

bels to the buffer that receives the read bytes. Symbolic data

from network interfaces is not supported yet but can be easily

extended.

Symbolic Address. SYMFIT uses the same strategy to handle

symbolic address as SYMQEMU. Specifically, for a symbolic

address, new test inputs are generated to reach other possible

addresses. A symbolic address is also associated with the

concrete value of the address to ensure correctness.

Memory Layout. SymSan uses direct shadow memory map-

ping and forward allocation of symbolic expressions. As a

result, heap memory regions are preserved in advance to pro-

gram execution, and a specific memory layout is enforced. To

benefit from this design, SYMFIT follows the same memory

layout and reserves designated memory regions when QEMU

starts. To make sure QEMU-related data structures (i.e., vCPU

states) are mapped into the shadow memory, we also modify

QEMU’s customized memory allocator to allocate these data



structures at preserved regions. Listing 3 depicts the memory

layout.

Table 4: Memory layout designed for SymSan’s backend

Start End Desription

0x700000050000 0x800000000000 application memory

0x700000040000 0x700000050000 QEMU’s object

0x400010000000 0x700000020000 AST array

0x400000000000 0x400010000000 hash table

0x000000020000 0x400000000000 shadow memory

0x000000000000 0x000000010000 reserved by kernel

Hybrid Fuzzer. In the end-to-end hybrid fuzzing experi-

ment, we reuse the same hybrid fuzzer from SYMQEMU

and SymCC [24]. Specifically, the concolic executor takes

seeds from fuzzer’s seed queue as input and generates new

seeds for fuzzer to synchronize periodically. It also main-

tains a global coverage bitmap for branch filtering. For a fair

comparison, we implemented the same branch filters as in

SYMQEMU.

5 Evaluation

In this section, we evaluate the performance of SYMFIT, a pro-

totype implementing our proposed optimization schemes atop

SYMQEMU. We demonstrate the effectiveness of SYMFIT

by answering the following research questions:

• RQ1: Efficiency. We investigate the extent to which

SYMFIT improves efficiency compared to SYMQEMU

under different settings. Additionally, we analyze the indi-

vidual contributions of each design choice to the overall

efficiency improvement.

• RQ2: Effectiveness. We evaluate whether SYMFIT can

achieve the same level of effectiveness as SYMQEMU in

terms of generating new test cases and achieving increased

code coverage. In other words, we want to ensure that

the efficiency improvement does not come at the cost of

compromising the quality of generated test cases and the

growth of code coverage.

• RQ3: End-to-end Hybrid Fuzzing. We evaluate the con-

tribution of SYMFIT to the end-to-end hybrid fuzzing with

respect to code coverage growth and bug-finding perfor-

mance.

• RQ4: Security Applications. We assess the contribution

of SYMFIT’s efficient symbolic tracing capability on one

security application, crash seed deduplication.

5.1 Evaluation Plan

To answer the aforementioned research questions, we evaluate

the following configurations:

• SYMQEMU. The original SYMQEMU with QSYM back-

end obtained from the public repository [6].

• SYMFIT-M. SYMFIT (QSYM backend) with only mode

switch enabled.

• SYMFIT-MC. SYMFIT (QSYM backend) with both mode

switch and CMLB enabled.

• SYMFIT-MS. SYMFIT with only mode switch enabled

and SymSan backend.

• SYMFIT. Full-fledged SYMFIT with the mode switch,

CMLB and new symbolic backend from SymSan.

These configurations allow us to discern the enhancements

brought about by each design choice, both individually and

collectively. For instance:

• The comparison between SYMFIT-M and SYMQEMU il-

lustrates the gains from the lightweight concrete mode.

• Comparing SYMFIT-MC with SYMFIT-M reveals the ad-

vancements due to efficient shadow memory access via

CMLB.

• By comparing SYMFIT-MS and SYMFIT-MC, we discern

the improvements from the fast symbolic backend.

• Ultimately, comparing SYMFIT and SYMQEMU provides

insight into the overall benefits of our concolic executor.

Dataset. We evaluate SYMFIT on several benchmarks, in-

cluding standard benchmarks (SPEC CINT-2006 [5] and

Linux/Unix nbench [3]), and real-world programs (Google’s

Fuzzbench [2] and unibench, the real-world benchmark pre-

sented in UniFuzz [20]). Since QEMU cannot run new ver-

sions of SPEC CINT benchmarks due to unsupported in-

structions, we only selected a few benchmarks from SPEC

CINT-2006 as motivating results presented in §2.3. In the eval-

uation, we use nbench to show the concrete mode overhead

of SYMFIT and the baseline concolic executor SYMQEMU.

To answer RQ1, we conduct experiments on the standard

benchmark nbench to evaluate the speedup of SYMFIT over

SYMQEMU in two settings: 1) pure concrete execution and

2) concolic execution without solving. Additionally, we eval-

uate SYMFIT’s performance on real-world programs from

Fuzzbench to demonstrate the improvements on practical ap-

plications. For RQ2, we compare the total execution time and

basic block coverage achieved by SYMQEMU and SYMFIT

on Fuzzbench programs, using the same input seeds. To an-

swer RQ3, we pair SYMQEMU and SYMFIT each with two

AFL-2.56 instances, one main instance (in -M mode) and

one secondary instance (in -S mode) and evaluate the 24h

coverage gain and bug detection capability on unibench pro-

grams. For RQ4, we use symbolic constraints to cluster PoCs

that share the same constraints and evaluate the efficiency in

symbolic constraint collection of SYMFIT and SYMQEMU.

Experiment Setup. All evaluations were conducted on a work-

station with 96-core Intel Xeon Platinum 8260 processors.





rect shadow memory mapping mechanism that accelerates

the shadow memory lookup when the CMLB misses.

Real-world Applications. We then extended the pure con-

crete execution evaluation to real-world applications. In this

evaluation, we ran Fuzzbench programs with the same seed

corpus obtained from 24h fuzzing. Results are presented in

Figure 3. Compared to SYMQEMU, SYMFIT-M is 3.65×

faster, SYMFIT-MC is 4.68× faster and SYMFIT is 8.86×

faster.

Concolic Execution without Solving. In this experiment, we

evaluated the performance of concolic executors without solv-

ing. Compared to pure concrete execution, the overhead in

this setting comes from concreteness checking of shadow vari-

ables and memory and symbolic state management. Accord-

ing to the result presented in Figure 3, SYMFIT-M, SYMFIT-

MC, SYMFIT-MS and SYMFIT are 3.26×, 3.86×, 9.73× and

12.03× faster than SYMQEMU respectively.

Overall, these results demonstrate that SYMFIT, incorpo-

rating both lightweight concrete mode and efficient shadow

memory access, outperforms SYMQEMU on standard bench-

marks and real-world scenarios.

5.3 RQ2: Effectiveness

In this experiment, we enabled constraint solving for each con-

colic executor. For each target program, we used the coverage

bitmap collected from afl for branch filtering to avoid flipping

every encountered symbolic branch and placed a 100-second

timeout for each execution. Otherwise, the experiment cannot

be completed within a reasonable time. The execution times

for inputs that did not reach the timeout are shown in Figure 3.

Additionally, the basic block coverage was measured using

SanitizerCoverage [4] to verify the correctness of constraint

solving.

Table 9 shows the coverage achieved by SYMQEMU and

SYMFIT. We noticed that SYMQEMU reached the timeout

on more inputs than SYMFIT. This observation suggests that

SYMFIT can explore more basic blocks, resulting in higher

coverage on certain programs (e.g., freetype + 17.09%, woff2

+17.31%) when provided with the same seed corpus. Overall,

the results indicate that SYMFIT improves the efficiency of

concolic execution without compromising correctness.

Based on the results depicted in Figure 3, when solv-

ing is enabled, SYMFIT can still achieve a 6.67× perfor-

mance speedup over the baseline SYMQEMU. Furthermore,

even without SymSan’s symbolic backend, SYMFIT-M and

SYMFIT-MC independently achieve an approximate 2× per-

formance speedup, showcasing the contribution of lightweight

mode switch and shadow memory access. With the integration

of the new backend from SymSan, the performance signif-

icantly boosts up to 6.67×, as symbolic state management

proves to be heavyweight in SYMQEMU’s symbolic back-

end.

5.4 RQ3: End-to-end Hybrid Fuzzing

In this experiment, we pair SYMQEMU and SYMFIT each

with two AFL-2.56 instances and evaluate coverage growth

and bug detection efficiency of the hybrid fuzzers on unibench,

a real-world program benchmark. To ensure a fair comparison,

we run each fuzzer/concolic executor in a docker container

with one physical CPU-core assigned. The results are ob-

tained by averaging 10 repetitions of 24h fuzzing campaigns

to reduce the randomness.

5.4.1 Coverage Efficiency

The coverage growth over time is shown in Figure 4.

SYMFIT achieved faster coverage growth on seven applica-

tions (wav2swf, pdftotext, infotocap, mp42aac, objdump, tcp-

dump, and nm-new) and showed similar performance with

SYMQEMU on the rest programs. This result indicates that

a faster concolic executor can indeed expedite the exploration

process during hybrid fuzzing. By achieving faster coverage

growth, SYMFIT is able to explore more paths and execute a

broader range of code segments within the same amount of

time, potentially leading to the discovery of new vulnerabili-

ties or bugs earlier. However, it is essential to note that in a

hybrid fuzzing setting, the fuzzer operates with much higher

throughput and actively drives the path exploration process.

As a result, the speedup achieved by SYMFIT is less obvious

than the improvement observed in the pure concolic execution

evaluations.

5.4.2 Bug Detection Efficiency

To further understand the benefit of having a faster concolic ex-

ecutor, we evaluated the bug detection efficiency of SYMFIT-

HF and SYMQEMU-HF. At the end of each hybrid fuzzing

run, the crashes are triaged into unique bugs using the same

method implemented in unibench: we use ASan [1] to pro-

duce the stack trace for each crash and then use three stack

frames to de-duplicate the bugs. In this experiment, we com-

pare the time it took to trigger mutual bugs found by both

SYMFIT and SYMQEMU. We only counted the first time a

bug was triggered. Among evaluated unifuzz benchmarks,

seven programs produced crashes but no bug ID was assigned

by unibench. There were four programs where both SYMFIT

and SYMQEMU did not generate any crash. The results for

the rest six programs where mutual bugs were found are

presented in Figure 5. As shown, for the same group of

mutual bugs found by SYMFIT and SYMQEMU, SYMFIT

spent less time to trigger these bugs. This outcome indicates

that SYMFIT demonstrates improved efficiency in detecting

bugs during hybrid fuzzing. By being faster in its execution,

SYMFIT can discover bugs with reduced time-to-trigger, mak-

ing it an effective tool for detecting vulnerabilities or crashes

in real-world applications.





within a page would mark the entire page as symbolic. To

address this, we experimented with finer granularity levels

and compared the hit rates across different granularity, the

results of which are presented in Table 6.

Overall, CMLB can achieve a high hit rate, indicating that

the cache is frequently accessed instead of the shadow mem-

ory. It is important to note that, due to the presence of sym-

bolic memory, the hit rate is lower than the typical TLB hit

rate (around 99%), as accessing symbolic shadow memory

consistently results in a CMLB miss. As presented in Table 6,

the hit rate varied across different levels of granularity and

there is no one-size-fit-all configuration. Therefore, we se-

lected a granularity of 512 for our evaluation, as it yielded

the highest average hit rate. As presented in Table 8 under the

SYMFIT-MC configuration, the CMLB brings an additional

20% improvement on top of the mode switch.

Table 6: Ablation study for mode switch and CMLB. % of

sym blocks represents the percentage of symbolic basic blocks

during execution. CMLB hit rate is measured with different

granularity, ranging from 32 to 2048. The configuration with

the best hit rate is marked as bold.

CMLB Hit Rate
Fuzzbench

% of sym

blocks 32 64 128 256 512 1024 2048

harfbuzz 8.2 91.2 94.3 96.2 95.4 96.6 96.3 96.7

lcms 7.8 92.6 93.6 92.2 91.4 91.8 65.3 64.9

libpng 5.3 92.7 94.0 95.0 94.0 95.0 94.2 94.3

nm 16.5 87.8 92.0 93.2 93.7 92.3 91.4 90.9

openssl 13.7 93.5 94.3 93.3 92.2 91.4 90.7 80.4

proj 5.5 93.6 95.7 96.7 96.5 97.6 97.2 97.1

woff2 0.5 93.7 95.3 96.4 96.6 98.3 98.6 99.0

freetype 6.7 92.9 94.4 95.0 94.7 96.2 95.8 95.3

json 6.8 93.3 95.1 96.3 96.4 97.9 98.1 98.2

libjpeg 10.0 93.6 95.2 96.2 96.3 98.2 98.5 98.9

objdump 4.5 86.1 90.4 91.8 92.3 92.9 92.0 91.4

openthread 2.0 94.9 96.3 97.1 97.1 97.3 92.9 93.7

re2 8.3 93.4 95.0 95.0 93.4 92.9 88.6 85.8

size 33.3 86.1 90.7 92.1 92.8 92.6 89.1 88.6

vorbis 13.0 93.4 95.0 95.9 96.3 98.0 98.5 98.9

xml 9.7 92.0 93.4 93.4 91.6 91.1 89.2 86.9

Average 9.4 91.9 94.0 94.7 94.4 95.1 92.2 91.3

6 Case Study: Crash Deduplication

At its core, SYMFIT stands as an efficient symbolic constraint

tracer for binary code. In this section, we demonstrate the

benefit of SYMFIT’s efficiency in one security application,

crash deduplication.

Fuzzers typically output a large set of proof-of-concept

(PoC) test cases. These raw findings and crash dumps are

often directly submitted to maintainers. Large fuzzing farms,

such as ClusterFuzz and OSS-Fuzz, produce a large amount

of crash seeds, which exacerbate this problem. An efficient

and automated approach is needed to filter out redundant and

duplicated crash test cases and cluster them by the root cause.

Given a large number of crash seeds produced by fuzzers,

a symbolic tracer can examine these crash seeds, and col-

lect symbolic constraints at the last branch before the crash

site that is controlled by certain input bytes. This symbolic

constraint signature can be used to cluster crash seeds and

filter out duplicates and redundancies. The intuition is that the

PoCs that trigger identical bugs are likely to follow identical

execute paths, therefore sharing the same path constraints.

The above security application highlights the need for ef-

ficiency. In this case, the timeout strategy of SymQEMU is

no longer valid: without the timeout, SymQEMU could take

hours or days to process crash seeds from large fuzzing farms

or respond to new exploits, highlighting the need for a more

efficient tool.

To trace symbolic constraints for crash deduplication, it is

imperative to disable certain features within SYMQEMU.

namely the timeout strategy and the global branch filter.

SYMQEMU sets a 90-second timeout on each execution dur-

ing hybrid fuzzing and adopts a global branch filter to avoid

collecting and solving constraints for "uninteresting" branches

across executions [23, 24]. While these measures enhance

the efficiency in hybrid fuzzing by trading off completeness,

crash deduplication demands a more thorough and efficient

approach. It requires the tracking of a Proof of Concept (PoC)

execution up to the crash site, along with the tracing of all

necessary constraints associated with each unique PoC.

To demonstrate the efficacy and efficiency of SYMFIT in

crash deduplication, we evaluated SYMQEMU and SYMFIT

on the Magma dataset [18], which contains PoCs and ground

truth for grouping PoCs. Specifically, we run each PoC and

collect symbolic constraints at the last symbolic branch be-

fore the crashing site and back-tracing nested constraints that

share the same input dependency, i.e., all precedent branches

whose input bytes overlap with the last branch. Then we nor-

malize the variable names in constraints since Z3 might use

different names to represent sub-constraints across executions.

After this, we compare and group together PoCs that have the

same normalized symbolic constraints. Then we measured

the efficiency by comparing the total runtime and efficacy by

comparing the F1 score [29] of deduplication results, follow-

ing the calculation in Igor [19]. For the ground truth of PoC

grouping, we utilize the ground truth data from the magma

dataset to identify and categorize PoCs that reach or trigger

identical bugs as belonging to the same group. We excluded

benchmarks with no crash seeds provided. As presented in

Table 7, the number of PoCs is greatly reduced after dedupli-

cation, with an average of 80% F1 score. Note that we used

a relatively simply method by grouping identical symbolic

constraints. While there are rooms for improving the accuracy

of crash analysis, SYMFIT shows significant better runtime

performance as an efficient symbolic tracer; the constraint

collection time is greatly reduced from 19 hours to 2.5 hours



on average, compared to SYMQEMU.

Table 7: Results of crash seed analysis on Magma bench-

marks. The column labeled “after dedup.” shows the number

of PoC clusters grouped using symbolic constraints produced

by SYMFIT

Magma # of PoC After dedup. F1 (%)
Execution Time (h)

SYMQEMU SYMFIT

libpng 634 14 98 33.88 2.48

libtiff 311 15 73 13.77 1.16

libxml2 792 51 80 3.08 0.73

sqlite3 1730 90 69 26.63 5.80

Average 866 42 80 19.34 2.54

7 Discussion

Comparison of Symbolic Backends. In SYMFIT, we ported

the symbolic backend from SymSan and compared it with

SymQEMU with QSYM backend. While these two backends

are similar in path constraint collection and solving, as they

can achieve similar coverage when given the same seed cor-

pus, we observed some differences in branch and basic block

filtering. As presented in QSYM [31], basic block pruning is

employed to reduce constraints that are repeatedly generated

from the same code paths, while SymSan is not shipped with

such strategies. Therefore, in the hybrid fuzzing experiments,

we observed less coverage growth for some programs.

Overhead of Concolic Executors. In general, the overhead

of concolic executors comes from instrumentation, symbolic

state management, and constraint solving. In this work, we

have brought down the overhead of instrumentation and sym-

bolic state management to near-optimal. Nevertheless, we

still observed a significant overhead of constraint solving

and dynamic binary translation itself, which overshadow our

improvement to some extent. The dynamic binary transla-

tor, QEMU, translates the target binary at runtime, and the

translated code blocks are cached for a single execution. We

believe that in a hybrid fuzzing setting, the performance of

dynamic binary translation can be improved by sharing the

translation cache among every execution. Moreover, with the

recent progress in improving the performance of constraint

solving [8, 12, 21, 22], more efficient and scalable concolic

execution engines can be achieved.

8 Related Work

Compilation-based Concolic Execution. Recent advances

in compilation-based concolic execution (e.g., SymCC [24],

SymSan [11]) have been shown to improve the performance

of concolic execution significantly. When source code is

available, compilation-based instrumentation can benefit from

compiler optimizations and high-level semantic information

(e.g., type) from the source code. While such approaches

are sufficient for testing software with source code available,

many real-world scenarios require binary-only testing meth-

ods, such as firmware, COTS software, shared libraries, etc.

SYMFIT focuses on advancing the state-of-the-art binary con-

colic executor.

Hybrid Instrumentation for Concolic Execution. SymFu-

sion [14] proposed a hybrid instrumentation strategy to mini-

mize the analysis overhead. In particular, this hybrid instru-

mentation allows users to perform compilation-based instru-

mentation on selected components of the application and

performs dynamic binary instrumentation for the rest of the

application at execution time. As such, it can benefit from the

high efficiency of compiler-generated code. However, unlike

SYMFIT which automatically determines the instrumentation

strategies, SymFusion users have to manually decide which

components need what instrumentation strategies.

Alternating Execution Modes. To mitigate performance

overhead, some previous works proposed to alternate the ex-

ecution between heavy-weight and light-weight modes. For

example, Firm-AFL [32] boots up the IoT firmware in whole-

system emulation and ensure the program to be fuzzed runs

properly, then it switches to user-level emulation to gain fast

execution speed. Only on rare occasions, the execution is

migrated back to the system-mode emulation to ensure the

correctness of execution. DECAF++ [15] adopts a similar

strategy to speed up whole-system taint tracking. It alternates

between a lightweight check mode with minimal instrumen-

tation overhead and a track mode with full taint propagation

capability. To avoid memory exhaustion, Mayhem [10] intro-

duces hybrid symbolic execution to actively manage memory

usage without constantly re-executing the same instructions.

When the system reaches a memory cap, it switches to offline

execution mode and produces checkpoints to start new online

execution tasks later on.

9 Conclusion

In this work, we propose an efficient concolic execution frame-

work with optimizations for the common case, concrete ex-

ecution. The evaluation showed that SYMFIT can achieve

much better performance compared to state-of-the-art binary

concolic executor, SYMQEMU. The fast execution speed

translates to faster coverage growth and improved efficiency

in security applications such as bug detection and crash dedu-

plication.

Availability

The source code of SYMFIT can be found at https://

github.com/bitsecurerlab/symfit.git.



Acknowledgement

We would like to thank the anonymous reviewers for their

suggestions and comments and Chengyu Song for technical

support and discussion on SymSan integration. This work was

supported by NSF under award No. 2133487. Any opinions,

findings, and conclusions or recommendations expressed in

this paper are those of the authors and do not necessarily

reflect the views of the funding agencies.

References

[1] AddressSanitizer. https://github.com/google/

sanitizers/wiki/AddressSanitizer.

[2] Fuzzbench: Fuzzer benchmarking as a service. https:

//google.github.io/fuzzbench/.

[3] Linux/Unix nbench. https://www.math.utah.edu/

~mayer/linux/bmark.html.

[4] Sanitizer coverage. tttps://clang.llvm.org/docs/

SanitizerCoverage.html,2017.

[5] SPEC CPU 2006. https://www.spec.org/

cpu2006/.

[6] SymQEMU Github repo. https://github.com/

eurecom-s3/symqemu.

[7] Fabrice Bellard. Qemu, a fast and portable dynamic

translator. In Proceedings of the Annual Conference

on USENIX Annual Technical Conference, ATEC ’05,

page 41, USA, 2005. USENIX Association.

[8] Luca Borzacchiello, Emilio Coppa, and Camil Deme-

trescu. Fuzzing symbolic expressions. In 2021

IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pages 711–722, 2021.

[9] Cristian Cadar, Daniel Dunbar, and Dawson R Engler.

Klee: Unassisted and automatic generation of high-

coverage tests for complex systems programs. 2008.

[10] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,

and David Brumley. Unleashing mayhem on binary

code. USA, 2012. IEEE Computer Society.

[11] Ju Chen, WookHyun Han, Mingjun Yin, Haochen Zeng,

Chengyu Song, Byoungyoung Lee, Heng Yin, and Insik

Shin. SymSan: Time and space efficient concolic exe-

cution via dynamic data-flow analysis. In 31st USENIX

Security Symposium (USENIX Security 22), pages 2531–

2548, August 2022.

[12] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin.

Jigsaw: Efficient and scalable path constraints fuzzing.

In 2022 IEEE Symposium on Security and Privacy (SP),

pages 18–35, 2022.

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George

Candea. S2E: a platform for in-vivo multi-path analysis

of software systems. ACM, 2011.

[14] Emilio Coppa, Heng Yin, and Camil Demetrescu. Sym-

Fusion: Hybrid Instrumentation for Concolic Execution.

In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering, ASE

’22, 2022.

[15] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. DE-

CAF++: Elastic whole-system dynamic taint analysis. In

22nd International Symposium on Research in Attacks,

Intrusions and Defenses (RAID 2019), pages 31–45,

Chaoyang District, Beijing, September 2019. USENIX

Association.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:

directed automated random testing. 2005.

[17] Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio

Pagani, Andrea Continella, Christopher Kruegel, and

Giovanni Vigna. Symbion: Interleaving symbolic with

concrete execution. In 2020 IEEE Conference on Com-

munications and Network Security (CNS), pages 1–10,

2020.

[18] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.

Magma: A ground-truth fuzzing benchmark. Proc. ACM

Meas. Anal. Comput. Syst., 4(3), December 2020.

[19] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing

Tang, Chao Zhang, and Mathias Payer. Igor: Crash dedu-

plication through root-cause clustering. In Proceedings

of the 2021 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’21, page 3318–3336,

New York, NY, USA, 2021. Association for Computing

Machinery.

[20] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-

Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu,

Raheem Beyah, Peng Cheng, et al. Unifuzz: A holistic

and pragmatic metrics-driven platform for evaluating

fuzzers. In USENIX Security Symposium, pages 2777–

2794, 2021.

[21] Daniel Liew, Cristian Cadar, Alastair F. Donaldson, and

J. Ryan Stinnett. Just fuzz it: Solving floating-point

constraints using coverage-guided fuzzing. In Proceed-

ings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ESEC/FSE

2019, page 521–532, 2019.

[22] Awanish Pandey, Phani Raj Goutham Kotcharlakota,

and Subhajit Roy. Deferred concretization in symbolic

execution via fuzzing. In Proceedings of the 28th ACM



SIGSOFT International Symposium on Software Testing

and Analysis, ISSTA 2019, page 228–238, 2019.

[23] Sebastian Poeplau and Aurélien Francillon. Symqemu:

Compilation-based symbolic execution for binaries. In

ISOC Network and Distributed System Security Sympo-

sium (NDSS), April 2021.

[24] Sebastian Poeplau and Aurélien Francillon. Symbolic

execution with SymCC: Don’t interpret, compile! In

29th USENIX Security Symposium (USENIX Security

20), pages 181–198, August 2020.

[25] N. A. Quynh and D. H. Vu. Unicorn – the ultimate cpu

emulator. https://www.unicorn-engine.org/.

[26] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a

concolic unit testing engine for c. 2005.

[27] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,

Christopher Kruegel, and Giovanni Vigna. Firmalice -

automatic detection of authentication bypass vulnerabil-

ities in binary firmware. In 22nd Annual Network and

Distributed System Security Symposium, NDSS, 2015.

[28] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Audrey Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, and Giovanni Vigna. SoK: (State of) The Art

of War: Offensive Techniques in Binary Analysis. In

IEEE Symposium on Security and Privacy, 2016.

[29] Michael S. Steinbach, George Karypis, and Vipin Kumar.

A comparison of document clustering techniques. 2000.

[30] the Clang team. Dataflowsanitizer design

document. https://clang.llvm.org/docs/

DataFlowSanitizerDesign.html, 2018.

[31] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and

Taesoo Kim. QSYM: A Practical Concolic Execution

Engine Tailored for Hybrid Fuzzing. In Proceedings of

the 27th USENIX Security Symposium (Security), Au-

gust 2018.

[32] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu

Song, Hongsong Zhu, and Limin Sun. Firm-afl: High-

throughput greybox fuzzing of iot firmware via aug-

mented process emulation. In 28th USENIX Security

Symposium (USENIX Security 19), pages 1099–1114,

August 2019.

A Performance of different configurations

compared to SYMQEMU



Table 8: Performance of concolic execution with no solving on Fuzzbench programs

Program
SYMQEMU SYMFIT-M SYMFIT-MC SYMFIT-MS SYMFIT

Runtime(s) Runtime(s) Speedup Runtime(s) Speedup Runtime(s) Speedup Runtime(s) Speedup

harfbuzz 6,372.86 3,253.49 1.96× 2,629.90 2.42× 1,435.19 4.44× 1,387.93 4.59×

lcms 1,022.25 520.93 1.96× 501.45 2.03× 190.09 5.38× 192.37 5.31×

libpng 602.48 200.59 3.00× 175.20 3.43× 65.25 9.23× 47.80 12.60×

nm 1,028.32 392.12 2.62× 410.44 2.50× 71.83 14.32× 74.07 13.88×

openssl 37,566.63 9,901.44 3.79× 8,465.30 4.43× 3,092.26 12.15× 3,098.97 12.12×

proj4 542.10 367.15 1.48× 343.99 1.57× 132.62 4.09× 144.13 3.76×

readelf 1,431.20 772.63 1.85× 693.18 2.06× 271.56 5.27× 54.90 26.07×

woff2 5,617.75 3,041.58 1.85× 2,123.02 2.65× 2,468.08 2.28× 1,534.60 3.66×

freetype 39,538.13 6,139.90 6.44× 5,682.19 6.96× 2,739.58 14.43× 2,764.08 14.30×

jsoncpp 668.10 428.83 1.56× 372.02 1.79× 117.30 5.70× 115.71 5.77×

libjpeg 9,800.92 3,354.55 2.92× 2,511.20 3.90× 3,779.22 2.59× 2,768.12 3.54×

objdump 9,724.00 2,789.92 3.49× 2,699.47 3.60× 1,416.24 6.87× 1,470.67 6.61×

openthread 254.40 135.98 1.87× 139.71 1.82× 80.81 3.15× 82.47 3.08×

re2 8,257.88 6,992.17 1.18× 3,556.12 2.32× 4,200.55 1.97× 4,217.99 1.96×

size 669.30 195.13 3.43× 186.39 3.59× 48.50 13.80× 48.65 13.76×

vorbis 21,629.50 2,229.50 9.70× 1,678.43 12.88× 485.50 44.55× 370.52 58.38×

libxml2 13,982.00 2,202.55 6.35× 1,827.39 7.65× 919.51 15.21× 930.47 15.03×

Geo. Mean 3.26× 3.86× 9.73× 12.03×

Table 9: Execution time of concolic execution with solving (in seconds)

Total Execution Time (s) Basic Block Coverage
Program # seeds

SYMQEMU SYMFIT-M SYMFIT-MC SYMFIT-MS SYMFIT
Speedup

SYMQEMU SYMFIT

harfbuzz 2,955 83,127.10 42,380.61 37,983.57 23,950.27 23,350.93 3.56 9098 9272

lcms 157 4,228.63 1,961.08 1,645.23 2,658.01 1,580.09 2.67 2064 1958

libpng 218 9,677.67 4,372.86 4,184.94 1,734.40 1,225.25 7.90 1250 1256

nm 249 10,092.71 9,558.61 8,800.40 9,77.07 905.41 11.14 2443 2850

openssl 1,577 72,710.73 59,470.24 57,346.02 11,876.38 11,097.04 6.55 12880 14213

proj4 770 4,896.43 4,268.11 3,984.75 1,407.56 1,169.63 4.18 3822 4025

readelf 604 32,321.24 18,896.14 18,023.36 5,626.86 3,087.03 10.47 5525 6187

woff2 548 10,559.96 6,718.48 6,022.52 4,460.72 4,016.44 2.63 3061 3591

freetype 4,789 77,083.744 51,294.97 40,423.84 18,964.84 8,141.33 9.47 13368 15653

jsoncpp 450 1,967.41 1,509.39 1,363.95 1,027.35 528.99 3.72 1331 1361

libjpeg 846 33,397.67 27,725.95 22,479.36 17,370.90 16,920.44 1.97 2674 2713

objdump 560 31,472.56 12,140.80 10,819.20 6,118.25 5,812.72 5.41 4000 4488

openthread 268 2,966.24 2,431.40 2,195.46 436.86 573.25 5.17 5413 5509

re2 1,073 21,701.13 21,350.01 20,075.95 13,653.63 12,882.43 1.68 5060 5084

size 207 7,066.35 5,676.14 5,287.81 1,226.68 885.50 7.98 2215 2145

vorbis 526 48,266.28 31,755.67 26,790.59 2,835.14 2,027.14 23.81 1302 1323

libxml2 1,952 21,395.87 15,768.22 15,414.94 3,620.96 2,933.85 7.29 7976 7950

Geo. Mean 6.80×


	Introduction
	Background and Motivation
	Source-Code Concolic Execution
	Binary-Code Concolic Execution
	The Common Case Overhead

	System Overview
	Efficient Shadow Memory Checking
	Symbolic State Management

	Implementation
	Evaluation
	Evaluation Plan
	RQ1: Efficiency
	RQ2: Effectiveness
	RQ3: End-to-end Hybrid Fuzzing
	Coverage Efficiency
	Bug Detection Efficiency

	Ablation Study

	Case Study: Crash Deduplication
	Discussion
	Related Work
	Conclusion
	Performance of different configurations compared to SymQEMU

