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Abstract—Compressed spectrum sensing (CSS) plays a pivotal
role in dynamic spectrum access within mobile cognitive radio
networks by offering reduced power consumption and lower hard-
ware costs. The multicoset sampler, a well-known implementation
for periodic nonuniform sampling, has been widely studied and
is considered a promising architecture for realizing CSS. This
article focuses on the design of the multicoset sampling pattern,
aiming at enhancing the isometry property of the sensing matrix.
Unlike previous studies which assume a noise-free setup, our work
considers the problem in a real-world environment with noise. First,
we propose a deterministic algorithm for sampling pattern gener-
ation, particularly for specific hardware setup parameters. This
algorithm offers strict mutual-coherence control in the multicoset
sensing matrix. To address more general hardware configurations,
we propose two optimization algorithms. One of them searches
for nearly optimal sampling patterns through a random search
strategy, while the other employs a greedy pursuit strategy to find
a local optimizer. Furthermore, we propose an algorithm to itera-
tively optimize the sampling pattern between consecutive spectrum
sensing windows by minimizing a restricted version of mutual
coherence. The excellent performance of our proposed algorithms
has been demonstrated through numerical experiments and has
been verified on a self-developed hardware platform.

Index Terms—Compressed spectrum sensing, dynamic
spectrum access, sensing matrix design, noise-robust algorithms.

I. INTRODUCTION

T
HE dynamic spectrum access (DSA) technique enables

unlicensed secondary users (SUs) to efficiently utilize

spectrum holes, thereby alleviating spectrum scarcity [1]. In cog-

nitive radio (CR) networks, DSA primarily relies on spectrum
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Fig. 1. Simplified illustration of compressed spectrum sensing conducted by
secondary users (SUs) in a mobile cognitive radio network. The SUs conduct sub-
Nyquist sampling to the received analog signal and reconstruct the primary users’
(PUs) and other SUs’ transmissions in the frequency domain using compressed
sensing algorithms.

sensing, a critical operation that empowers SUs to faithfully

locate spectrum holes. With the commercialization of 5G and

the emergence of 6G, CR devices are increasingly challenged

to sense a broader multi-gigahertz spectrum. This expansion

places higher demands on the speed of analog-to-digital con-

verters (ADCs) and digital signal processors (DSPs), thereby

exacerbating the power consumption and cost burden.

To address this, compressed spectrum sensing (CSS) opti-

mizes power consumption and hardware cost by reconstructing

the spectrum from sub-Nyquist time-domain samples as il-

lurstrated in Fig. 1. The CSS comprises two steps: 1) sub-Nyquist

sampling to digitize the signal at an average rate lower than the

Nyquist rate, then 2) applying compressed sensing (CS) algo-

rithms to reconstruct the frequency-domain signal [2]. Among

sub-Nyquist sampling schemes, periodic nonuniform sampling

(PNS) is widely studied and considered one of the most practical

sampling schemes due to its scalability and simplicity [3], [4].

The multicoset sampler is renowned as a prominent imple-

mentation of PNS [3]. This implementation is characterized by

its multiple signal lanes, each with a unique time delay. In each

lane, the analog signal is digitized by an ADC at a rate far lower

than the Nyquist rate. The three major hardware parameters for

a multicoset sampler are a) the number of signal lanes, b) the

temporal resolution of the delay control unit, and c) the relative
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time delay coefficients in different signal lanes, collectively

referred to as the sampling pattern [5], [6]. In a certain hardware

implementation, factors a) and b) are typically predefined by the

circuit layout or are inherent to the device, and the sampling

pattern offer the only design flexibility, allowing adjustments to

be made in software [7].

The design of the sampling pattern is crucial for successful

signal reconstruction from sub-Nyquist samples acquired by a

multicoset sampler because it directly decides the property of the

sensing matrix in the subsequent CS reconstruction problem. An

effective sampling pattern design method will improve spectrum

sensing reliability and further enhance the service quality in

mobile CR networks.

A. Related Works

Sampling pattern design is usually formulated as a combi-

natorial optimization problem [7]. A predominant optimization

target in this field is to minimize the condition number of the

sensing matrix to meet the full-spark condition [5], [8], [9].

Some approaches utilize greedy-pursuit strategies to acquire

locally optimal condition numbers [10]. Although one study has

explored the analytical generation of full-spark sensing matrices,

it specifically lacks rigorous justification [11]. However, the

full-spark condition, while guaranteeing solution uniqueness,

does not necessarily imply that these solutions are identifiable

using current sparse approximation techniques. Additionally, its

derivation assumes noise-free conditions, an ideal seldom met in

practical scenarios. To mitigate the limitations of the full-spark

condition, the mean-square error criterion has been proposed.

However, it often incurs significant computational costs and is

typically predicated on noiseless assumptions [12].

To achieve reliable signal recovery in noisy contexts, both the

restricted isometry property (RIP) and the mutual incoherence

property (MIP) have been introduced [13], [14], [15]. While

RIP offers energy stability for sparse signal sensing matrices, its

computational demands often make it less practical, leading to

increased focus on MIP. The MIP is typically assessed using mu-

tual coherence, a metric quantifying the maximum correlation

between any two columns of a matrix. A lower bound for mutual

coherence in fat matrices, known as the Welch bound, has been

theoretically established [16]. Achieving this bound is crucial

in compressed sensing for improved signal reconstruction and

noise robustness [17], [18]. However, meeting the Welch bound

can be challenging in applications requiring strict structural

constraints [19]. In multicoset sampling, where sensing matrices

often resemble selectively-row-chosen inverse Fourier matrices,

research has focused on analytically formulating partial Fourier

codebooks, utilizing tools like difference sets, to approach the

Welch bound [20]. However, those partial Fourier matrices only

meet the Welch bound when specific conditions on hardware

parameters of the multicoset sampler are met [21].

To develop a sampling pattern design method suitable for a

broader range of hardware parameters in multicoset sampling,

especially for scenarios where the Welch bound is unachievable,

our previous work [22] implemented a random search approach

to optimize MIP. However, the study did not thoroughly delve

into the complex details of the algorithm or its practical impli-

cations.

B. Main Contributions

In this article, we consider the design of sampling patterns for

multicoset sampling under a noisy condition. We approach the

problem from the perspective of optimizing the MIP. Our main

focus is on a broader range of hardware parameters, especially

in scenarios where achieving the Welch bound might be chal-

lenging. The contributions of this article can be summarized as

follows:

1) Based on the finite-field theory and some key results

established by [23] [24], we derive a theorem that as-

sures the construction of a q × L partial inverse Fourier

matrix to possess an upper bound on mutual coherence

at (n− 1)/
√
p, where q = pa and L = qn − 1 or pn−1

pb−1
with p being a prime and n, a, b being positive integers

satisfying that b divides a. This leads to our proposal of the

finite-field-based deterministic generation (FFDG) algo-

rithm. FFDG generates a sampling pattern in a determin-

istic manner to provide faithful spectrum reconstruction

performance. To the authors’ knowledge, FFDG is the first

sampling pattern design algorithm for noise-contaminated

multicoset sampling with guaranteed mutual-coherence

bound.

2) By rephrasing the sampling pattern design as a mutual-

coherence minimization problem, we further propose two

efficient optimization algorithms: the mutual-coherence

random search (MC-RS) and the mutual-coherence se-

quential forward selection (MC-SFS) algorithms. Both al-

gorithms are applicable to sensing matrices of any R× L
dimension. The MC-RS algorithm is particularly efficient

when R is significantly smaller than L/2. It successfully

identifies a nearly optimal solution with high probability

within a search space of size
(
L
R

)
, with a time complexity

of O(L2Rm), where m is significantly smaller than
(
L
R

)
.

The MC-SFS algorithm provides improved efficiency for

larger R values comparable to L/2. It employs a greedy

pursuit strategy to discover a locally optimal solution

within a time complexity of O(L3R2).
3) We further develop MC-RS into the restricted-mutual-

coherence random search (RMC-RS) algorithm, aimed at

minimizing a constrained form of the mutual coherence

of the sensing matrix. RMC-RS particularly works be-

tween consecutive spectrum sensing windows to yield a

dynamically adjusted sampling pattern. RMC-RS shows

extremely low time complexity and strong adaptability to

the spectrum support.

C. Outline

The rest of this article is organized as follows. The math-

ematical models of the signal and the multicoset sampler, as

well as the definitions of RIP and MIP restrictions on sensing

matrices, are introduced in Section II. Moreover, we show why

MIP is a desirable property of the sensing matrix to recover

wideband signal with noise when using simultaneous orthogonal

matching pursuit (SOMP). In Section III, the FFDG algorithm is
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TABLE I
NOTATION

presented to generate a sampling pattern with strict MIP control.

Two optimization algorithms, namely MC-RS and MC-SFS, are

then presented to minimize the mutual coherence of the sensing

matrix. In Section IV, the RMC-RS algorithm is described to de-

sign the sampling pattern between consecutive spectrum sensing

windows iteratively. Numerical experiments are demonstrated in

Section V. Common notation, as summarized in Table I, is used

throughout the article.

II. MATHEMATICAL MODELS

A. Signal Model

We consider a complex analog signal x(t) defined within

the frequency range [0, B]. The signal consists of NSig distinct

transmissions, mathematically expressed as:

x(t) =

NSig∑

i=1

si(t). (1)

Each of these transmissions, denoted by si(t) for i =
1, 2, . . . , NSig, has a bandwidth that does not exceedB/L, where

L is a positive integer.

The model is based on the assumption that NSig � L.

This implies that the frequency spectrum of x(t) is sparse in

the range [0, B]. To further formulate this sparsity, we divide the

frequency range [0, B] into L equal subbands. Let k denote the

number of these subbands that are actually occupied by active

transmissions. Under our assumptions, k is bounded as follows:

k ≤ 2NSig. (2)

We refer to k as the spectrum sparsity level of x(t) within the

frequency range [0, B]. It follows from our assumptions that

k � L.

To set the context for the Nyquist frequency fNyq, we first note

that the signal x(t) is a complex baseband signal defined within

the frequency range [0, B]. In this case, the Nyquist frequency

is directly given by the upper bound of this frequency range.

Specifically, we have fNyq = B. We define T as the Nyquist

interval, formally expressed as T � 1/fNyq.

B. Multicoset Sampling

The basic structure of a multicoset sampler is illustrated in

Fig. 2(a). The analog input x(t) is first divided into R signal

lanes by an R-way power splitter (R < L). For each signal lane

r (r = 1, . . . , R), also referred to as a ‘coset’, a unique time

delay of crT is applied directly to the analog signal, where cr
is an integer coefficient. The set of all R delay coefficients is

referred to as the ‘sampling pattern’ and is denoted by C as

C � {c1, . . . , cR} ⊆ {1, 2, . . . , L},
with |C| = R.

Subsequently, the analog signal in each coset is sampled by

an ADC running at rate fs � fNyq/L. The sampling clocks for

all the cosets are synchronized and strictly aligned.

Letting the sampling window length be N/fs, the discrete

sample sequence acquired in the rth coset is

xr[n] = x

(
nL

fNyq

+
cr
fNyq

)

, n = 1, 2, . . . , N. (3)

A multicoset sampler obeys the following measuring pro-

cess [22]:

Y = AX
∗ +W, (4)

where Y ∈ C
R×N is the measurement with

Yr,n = LTe−j2πcrn/(LN)
N∑

i=1

xr[i]e
−j2πni/N , (5)

and A ∈ C
R×L is the sensing matrix with

Ar,l = e
j2πcr

(l − 1)

L , (6)

and X
∗ ∈ C

L×N corresponds to the LN -points discrete Fourier

transform of the discrete version of x(t) by

X∗
l,n =

LN∑

τ=1

x

(
τ

fNyq

)

e−j2π
(l−1)N+n

LN , (7)

and W is the additive noise caused by multiple factors such as

channel noise and internal thermal noise of the receiver devices.

C. Desired Isometry and Incoherence on Sensing Matrices

Owing to the block-sparse property of the wideband signal

spectrum, X∗ can be treated as a row-sparse matrix composed

of jointly sparse vectors. When the measurement Y contains

noise, finding the optimal sparse approximation to X
∗ in (4)
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Fig. 2. (a) Diagram of the basic implementation of a multicoset sampler. (b) Examples of periodic nonuniform samples on an input sine wave produced by a
multicoset sampler with L = 10 and R = 4. The sampling pattern is C = {1, 2, 5, 8} for the top graph and C = {2, 3, 7, 9} for the bottom one.

can be characterized as a simultaneous sparse approximation

problem [25]

argmin
X∈CL×N

‖X‖2,0 subject to ‖Y −AX‖F < ε, (8)

where ‖ · ‖2,0 is the standard notation to denote the number of

non-zero rows, and ε is a small constraint of the noise.

Directly solving problem (8) is notably intractable because ‖ ·
‖2,0 is non-convex and lack of continuous gradient. Fortunately,

some approaches are proposed to acquire a sub-optimal solution

to the problem. The first type of approximation is characterized

by �1-relaxation such as multiple basis pursuit denoising [26],

[27] and group-Lasso [28], [29], [30], [31]. For systems that

require high real-time performance, greedy pursuit algorithms,

typically the SOMP algorithm, are widely used owing to their

computational efficiency and scalability [25].

Various constraints can be imposed on the sensing matrix

to ensure the statistical estimation accuracy of the solution. A

widely-known restriction is the RIP [13], defined as:

Definition 1 (Restricted Isometry Property): The sensing ma-

trix A satisfies the restricted isometry property of order k with

parameter δk when there exists δk ∈ [0, 1), such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (9)

for all {x : ‖x‖0 ≤ k}.

Particularly, RIP can ensure faithful support recovery through

SOMP-like algorithms [32], [33], [34]. However, verifying RIP

for a specific sensing matrix is computationally difficult in prac-

tice. In this sense, MIP offers a computationally more accessible

proxy for RIP [14].

Definition 2 (Mutual Incoherence Property): The mutual co-

herence of the matrix A ∈ C
R×L is defined as

µ(A) � max
i 	=j

|〈Ai,Aj〉|
‖Ai‖2 ‖Aj‖2

, (10)

where Ai and Aj denote the ith and jth columns (atoms) of

matrix A.

It can be elucidated that RIP and MIP are intrinsically related,

as evidenced by their relationship shown in the equation (e.g.,

see (IV.7) in [35]):

δk ≤ (k − 1)µ(A). (11)

The mutual coherence µ(A) quantifies the maximal correla-

tion strength between any two columns (atoms) of the sensing

matrixA. Intuitively, RIP is satisfied with high probability when

µ(A) is relatively small. The MIP condition ensuring exact

recovery through �1-optimization techniques has been derived

in [14], expressed as:

k <
1

2

(

1

µ(A)
+ 1

)

. (12)

Other algorithms, such as Lasso, basis pursuit, and hard

thresholding pursuit, have also been influenced by the proper-

ties of the sensing matrix, demonstrating variances in recovery

efficacy based on mutual coherence and other matrix character-

istics [29], [36], [37], [38], [39], [40], [41]. However, consid-

ering the demands of spectrum sensing, where rapid real-time

responses are required, our study predominantly employs the

SOMP-type algorithm. This leads to a detailed examination of

the relationship between the MIP of the sensing matrix and the

statistical accuracy of support recovery.

Given an initial residual R(0) = Y
R×N and an empty initial

support Ŝ(0), starting at t = 1, SOMP iterates

ŝ(t) = argmax
s

{‖AH

s ·R(t−1)‖F, s /∈ Ŝ(t−1)}, (13a)

Ŝ(t) = Ŝ(t−1) ∪ ŝ(t), (13b)

X
(t) = O

L×N ,X[t, Ŝ(t)] = A
†
Ŝ(t)

Y, (13c)

R
(t) = Y −AX

(t), (13d)

where X[t, Ŝ(t)] denotes the rows of X(t) indexed by Ŝ(t) and

R
(t) denotes the residual in the tth iteration. The algorithm is

halted either by fixing the number of iterations or by imposing

a threshold on the residual.

Step (13a) in SOMP is referred to as the greedy selection [42].

In a noise-free setup, it is proved that when µ(A) < 1/(2˜k), if
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the residual given by SOMP in the tth iteration satisfies

‖R(t)‖F ≤
[

1 +Nk
1− kµ(A)

(1− 2kµ(A))2

]1/2

ε0, (14)

where ε0 is a small error bound, it follows that the atoms chosen

so far are optimal, namely Ŝ(t) ⊂ S .

In a noisy setup, we show intuitively how mutual coherence

could diminish the accuracy of greedy selections. The residual

calculated by step (13d) in the tth iteration is detailed as

R
(t) = R

(0) −P
[
AŜ(t)

]
R

(0)

= R
(t−1) −P

[
AŜ(t)

]
R

(t−1), (15)

where

P
[
AŜ(t)

]
� AŜ(t)(A

H

Ŝ(t)AŜ(t))
−1
A

H

Ŝ(t) (16)

defines the projection matrix of sizeR×R. This matrix projects

any vector (or the columns of a matrix) in C
R onto the column

space of AŜ(t) , which represents the subspace spanned by the

currently selected set of atoms up to the tth iteration. We apply

the Schmidt orthogonalization to the atoms in AŜ(t) in reverse

order as

Bt = Aŝ(t) ,

Bt−1 = Aŝ(t−1) −P [Aŝ(t) ]Aŝ(t−1) ,

· · ·

B1 = Aŝ(1) −
t∑

i=2

P [Aŝ(i) ]Aŝ(1) . (17)

where

P [Aŝ(t) ] � Aŝ(t)(A
H

ŝ(t)Aŝ(t))
−1
A

H

ŝ(t) (18)

is a projection matrix of size R×R which projects

any vector in C
R onto the span of vector AŜ(t) , the

selected atom in the tth iteration. Then (15) can be

rewritten as

R
(1) = R

(0) −P [Aŝ(1) ]R
(0), (19a)

R
(t) = R

(t−1) −P [Aŝ(t) ]R
(t−1)

︸ ︷︷ ︸

a(t)

−
t−1∑

i=1

P [Bi]R
(t−1)

︸ ︷︷ ︸

e(t)

, (t ≥ 2). (19b)

In (19b), two projection terms, a(t) and e(t), are subtracted

from R
(t−1) to update the residual. Specifically, a(t) represents

the projection of R
(t−1) on Aŝ(t) , and e(t) is the cumulative

projection of R(t−1) on each of the previous Schmidt vectors

B1, . . . ,Bt−1.

The term e(t) acts as a residual error, affecting the accuracy in

estimating R
(t). From a preliminary analysis, we derive a loose

Fig. 3. Probabilities of correctly finding the entry of a non-zero row of X in
each of the first five iterations of SOMP.

upper bound for the Frobenius norm of this error as:

‖e(t)‖F ≤
t−1∑

i=1

∥
∥
∥P [Bi]R

(t−1)
∥
∥
∥
F

≤ µ(A)

t−1∑

i=1

∥
∥
∥R

(t−1)
∥
∥
∥
F

.

(20)

A smaller value of µ(A) imposes a tighter constraint on the

absolute magnitude of the error term. For instance, in an extreme

case where µ(A) → 0 (meaning A is nearly orthogonal), we

have e(t) → 0, leading to a more accurate R(t) and thus a more

reliable identification of ŝ(t) ∈ S . Additionally, it is evident that

the accumulated effect of the error term, e(t), increases with

growing t. Fig. 3 illustrates the probability of ŝ(t) being part

of S over the first five iterations of SOMP, comparing three

sets of sensing matrices characterized by different µ(A) ranges.

This figure shows the relationship between the accumulation of

e(t) across iterations and the proficiency of SOMP in correctly

identifying an element from the support set. As µ(A) decreases,

this probability drops at a faster rate.

III. SAMPLING PATTERN DESIGN TOWARD MINIMAL MIP

The multicoset sensing matrix A is constructed as a partial

inverse Fourier matrix by retaining the rows indexed by C, which

can be formally represented as

A = (FL)−1
C , (21)

where (FL)−1 is an L× L inverse Fourier matrix with its

{i, k}th element given by exp (2πjik/L). Here, C, with |C| =
R, is the set of row indices corresponding to the sampling pattern

of the multicoset sampler. For specific hardware implementa-

tions, the values ofL andR are often fixed by the resolution of the

time-delay unit and the number of physical signal lanes. Thus,

in our setup, the indices in C are the most critical parameters that

influence the design of multicoset sensing matrices.

The sensing matrix A, generated by a sampling pattern C
chosen from {0, 1, . . . , L− 1} in a uniformly random manner,

is shown to satisfy RIP(k, δk) with high probability [36] when

k ≤ c(δk) ·
R

log4 ˜L
, (22)
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where c(δk) is a coefficient that depends only on δk. However,

sampling patterns generated uniformly are not always reliable

since (22) does not provide a deterministic condition.

A. Creating Sampling Patterns With Controlled MIP

Threshold

We first present a deterministic construction method for gen-

erating sampling patterns, leading to a sensing matrix with an

explicitly bounded mutual coherence. Our approach is based on

the principles of finite field theory. To provide context, Devore

et al. utilized finite field theory in their influential 2007 study [15]

to design binary sensing matrices with dimensions of p2 × pn+1.

These matrices exhibit the RIP up to an order 2k, under the

condition

k <
p

2(n− 1)
+

1

2
, (23)

wherep is a prime number andn < p stands for a positive integer.

Xu et al. proposed a deterministic design method for partial

Fourier matrices using the finite field theory [24]. Hereon, we

extended the finite field theory to the design of a partial inverse

Fourier matrix satisfying MIP.

Denote q = pa as a prime power, with p being a prime and

a a positive integer. The finite field Fq comprises q elements.

Extending this, we characterize Fqn as the finite field with qn

elements, described by:

Fqn =

{
n−1∑

i=0

aiα : ai ∈ Fq

}

, (24)

with α as a zero of an irreducible polynomial within Fq[x].
We then introduce g as a primitive root of Fqn , leading to our

foundational theorem:

Theorem 1: For a prime power q = pa, with p being prime

and a a positive integer, let either L = qn − 1 or L = pn−1
pb−1

be

true, where n is a positive integer and b|a. If

C = {logg(t− α) mod L | t ∈ Fq}, (25)

then the partial inverse Fourier matrixA = (FL)−1
C has a mutual

coherence bound:

µ(A) ≤ n− 1√
p

. (26)

Proof: The proof of Theorem 1 is inspired by [24] and relies

on a theorem in number theory [23]. This theorem is presented

as a lemma without its proof.

Lemma 1: Letχbe any nontrivial complex-valued multiplica-

tive character ofF∗
qn , andα an element inFqn that generatesFqn

over Fq . Then
∣
∣
∣
∣
∣
∣

∑

t∈Fq

χ(t− α)

∣
∣
∣
∣
∣
∣

≤ (n− 1)
√
q. (27)

Denote

C = {ci = logg(ti − α) : i = 1, . . . , q}
as a sampling pattern designed following Theorem 1, where ti
is the ith element in Fq . For any two column indexes l1, l2 ∈

Algorithm 1: Finite-Field-Based Deterministic Generation

(FFDG).

Input: L satisfying (31) or (32); R satisfying (33)

Output: C
1: Construct a finite field FR using (24)

2: Identify an irreducible polynomial p(x) in FR[x] and a

zero α
3: Create a finite field FRn as FRn = FR[x]/p(x)
4: Determine a primitive root g in FRn

5: Calculate C ← {logg(t− α) mod L | t ∈ FR}

{1, . . . , L} and l1 	= l2, the inner product of the l1th and l2th

atoms of the matrix A is

〈Al1 ,Al2〉 =

p−1
∑

i=0

ej2πci
l1−1
L e−2πjci

l2−1
L

=

p−1
∑

i=0

ej2πci
l1−l2

L

=

p−1
∑

i=0

ej2π logg(ti−α)
l1−l2

L .

(28)

Define χ(ti − α) = ej2π logg(ti−α)
l1−l2

L . It can be easily verified

that χ(ti − α) is a nontrivial multiplicative character of F∗
qn be-

cause logg(ti − α) < qn − 1, L = qn − 1 and 1 ≤ |l1 − l2| ≤
L− 1. By Lemma 1, we have

〈Al1 ,Al2〉 =
∑

t∈Fq

χ(t− α).

(29)

Thus,

µ(A) = max
1≤i<j≤L

|〈Ai,Aj〉|
‖Ai‖2 ‖Aj‖2

=
1

q
max

1≤i<j≤L
|〈Ai,Aj〉|

≤ n− 1√
q

. (30)

The proof is complete.

Based on Theorem 1, we introduce the FFDG algorithm,

which is detailed in Algorithm 1.

In Step 2, an irreducible polynomial can be identified by enu-

merating a few elements from Fq .In Step 4, a practical approach

to identifying a primitive root in a finite field is described by [43].

This method is based on the principle that g is a primitive root in

Fqn if g
qn−1

L 	= 1 for each prime divisor L of qn − 1. As for step

5, the logarithm of u inF∗
qn is derived as logg u = i

√
qn − 1 + j

for pairs {i, q} that satisfy ug−j(qn−1) = gi [44].

When deploying FFDG, certain conditions are imposed on

multicoset parameters. Specifically, L needs to satisfy:

L = qn − 1 (31)
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or

L =
qn − 1

pb − 1
(32)

with q = pa being a prime power and n, a, b being positive

integers satisfying b|a. The coset number R must obey:

R = q. (33)

As deduced from (12) and (26), the sensing matrix A gen-

erated by FFDG is able to recover a k-sparse signal under the

condition:

k <

√
R

2(n− 1)
+

1

2
. (34)

It is noteworthy that this threshold aligns with the one pre-

sented in the deterministic design of binary sensing matrices

by DeVore [15]. Our methodology is not limited to the sensing

matrices design of multicoset samplers but extends to broader

CSS applications.

B. Sampling Pattern Construction by Optimization

In this subsection, we focus on the design of sampling patterns

without constraining L and R. For a given pair (L,R), there are
(
L
R

)
potential sampling patterns. Rather than seeking a univer-

sally optimal solution, our aim is to identify a sampling pattern C
that facilitates the task of recovery algorithms in distinguishing

signal components located in different frequency bands. We

follow the principle of minimizing the mutual coherence but

introduce a new ‘min-max’ optimization criterion. Specifically,

we aim at the objective problem:

argmin
C⊂{0,1,...,L−1}

max
∆l∈{1,...,L−1}

fL(C) s.t. |C| = R, (35)

where

fL(C) =
∑

c1,c2∈C,
c1<c2

cos

(
2π(c1 − c2)∆l

L

)

. (36)

It is obvious that solving (35) also minimizes µ(A) given

µ(A) = max
∆l∈{1,...,L−1}

1

R

√

R+ 2fL(C). (37)

Problem (35) is a nonconvex discrete nonlinear optimization

problem, which is NP-hard. In this perspective, the random

search strategy [45] shows the ability to operate without the

need for gradient information. Random search operates by

progressively moving to preferable positions within the search

space. With the assumption that the spectrum support remains

unknown, the search space for problem (35) is defined as all

C ∈ {1, 2, . . . , L}with |C| = R. The primary objective is to find

a C that results in a value for µ(A) that is nearly minimal.

Building on our prior work [22], where a foundational random

search strategy for MIP minimization was introduced, we further

refine and extend this approach. We hereby propose the MC-RS

algorithm for sampling pattern design, detailed in Algorithm 2.

This new approach dives deeper into the algorithmic intricacies

and offers more comprehensive solutions for practical scenarios.

Algorithm 2: Mutual-Coherence Random Search (MC-RS).

Input: L; R; m
Output: C
1: t ← 1, fLmin ← ∞
2: while t ≤ m do

3: select C(t) ⊂ {0, 1, . . . , L− 1} with |C(t)| = R in a

uniformly random manner

4: f
(t)
L = max

∆l∈{1,...,L−1}

∑

c1,c2∈C(t),
c1<c2

cos( 2π(c1−c2)∆l
L )

5: if f
(t)
L < fLmin then

6: C ← C(t)

7: end if

8: t = t+ 1
9: end while

The input parameter m indicates the number of iterations that

the MC-RS algorithm conducts to generate a decent solution.

Fortunately, a large value of m is often unnecessary for MC-RS

to yield a design with a good value of µ(A). First, given L = 37
andR = 7, we show the cumulative distribution function (CDF)

of µ(A) corresponding to all the
(
37
7

)
sampling patterns in

Fig. 4(a). About 5 percent of the values are distributed in the

range [0,0.45), and about 0.2 percent of the values are distributed

in the range [0,0.4). By seeking m = 100 we have about 99.4%

chance to get a pattern yielding µ(A) < 0.45; by m = 1000
we have nearly 100% chance to get µ(A) < 0.45 and 86.5%

chance to get µ(A) < 0.4. Compared to
(
37
7

)
= 10, 295, 472,

a relatively small m can already guarantee a nearly optimal

solution with overwhelming probability. Similar distributions

and conclusions hold for other combinations of L and R. By

taking L = 34, 35, 36, 37 and R = 4, 5, 6, 7, 8, the frequencies

of µ(A) within the smallest 1% values between the minimum

and the maximum are shown in Fig. 4(b). Our experiments

reveal a nearly logarithmic linear relationship between L and R,

indicating thatm ∼ 2R is sufficient to ensure a stable probability

of finding a sampling pattern with a favorable µ(A).
The MC-RS algorithm employs a random grid search strategy,

efficiently searching the solution space to identify a robust

suboptimal solution with high probability within a manage-

able number of iterations. The algorithm is designed to handle

complex scenarios, offering flexibility and adaptability in its

operation. However, like all random-search-based algorithms, it

holds an inherent feature of randomness which, while effectively

covering a broad search space, leads to an expansive search com-

plexity as L and R increase (assuming a constant compressed

sampling ratio R/L).

We further present the MC-SFS algorithm, another novel

approach based on a greedy pursuit strategy. The MC-SFS

algorithm is structured to acquire a local optimum within a

polynomial time complexity, as detailed in Algorithm 3.

To construct the sensing matrix A, MC-SFS operates by iter-

atively selecting rows from the inverse Fourier matrix (FL)
−1

.

In each iteration, Step 4 ensures that the matrix composed of the

selected rows exhibits the minimum mutual coherence. Given

L and R, the sampling pattern designed by MC-SFS always
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Fig. 4. (a) Distribution of µ(A) by examining all the sampling patterns given L = 37 and R = 7, (b) the frequencies of µ(A) within the smallest 1% values
between the minimum and the maximum.

Algorithm 3: Mutual-Coherence Sequential Forward Selec-

tion (MC-SFS).

Input: L; R
Output: C
1: t ← 2, C ← ∅

2: uniformly select c(1) from {1, . . . , L}, C(1) ← ∅ ∪ c(1)

3: while t ≤ R do

4: c(t) = argminc∈{0,1,...,L−1} fL(C(t−1) ∪ c)

5: C(t) ← C(t−1) ∪ c(t)

6: t ← t+ 1
7: end while

8: C ← C(R)

produces an explicitly controlled mutual coherence µ(A). Im-

portantly, the resulting µ(A) is unaffected by the initial choice

in Step 2, despite the output sampling pattern of MC-SFS being

a local optimizer.

IV. DYNAMIC ADJUSTMENT OF SAMPLING PATTERNS IN

CONSECUTIVE COGNITION CYCLES

Spectrum sensing is continuously conducted by CR devices

to obtain the latest spectrum occupancy. The time period from

the beginning of one spectrum sensing window to the beginning

of the next one is often referred to as a cognition cycle [46].

Between consecutive cognition cycles, the sampling pattern can

be set as either fixed or dynamic. The latter provides better

robustness to the dynamics of the spectrum support. In this

section, we propose a dynamic sampling pattern adjustment

strategy with reduced computational complexity and improved

performance.

Our proposal is based on a basic assumption of CR that the

cognition cycle rate is much faster than the average rate of change

of the spectrum support, which is the essential prerequisite to

ensure successful spectrum access. In other words, the spectrum

support is unlikely to undergo significant changes between two

consecutive cognition cycles. Denoting the spectrum support

recovered by the last previous cognition cycle as ŜLast, we can

Algorithm 4: Restricted-Mutual-Coherence Random

Search (RMC-RS).

Input: L; R; m; ŜLast

Output: C
1: t ← 1, µImin ← 1, I ← ŜLast

2: while t ≤ m do

3: select a pattern C(t) with |C(t)| = R
4: calculate A according to (6) with C(t)

5: calculate µI(A) according to (38)
6: if µI(A) < µImin then

7: C ← C(t)

8: end if

9: t = t+ 1
10: end while

use ŜLast as the prior rough estimate of the genuine spectral

support S of the current cognition cycle.

Define a restricted version of mutual coherence as follows:

Definition 3 (Restricted Mutual Coherence): The restricted

mutual coherence of matrix A ∈ C
p×L with index set I is

defined as

µI(A) � max
i,j∈I,i 	=j

|〈Ai,Aj〉|
‖Ai‖2 ‖Aj‖2

, (38)

where I ⊆ {1, 2, . . . , L}.

Let I = ŜLast. We propose minimizing the restricted mutual

coherenceµI(A) to reduce computational complexity and to im-

prove spectrum recovery performance in consecutive cognition

cycles. We hereby extend the MC-RS algorithm to the RMC-RS

algorithm, as detailed in Algorithm 4.

Compared with µ(A), µI(A) is more decisive for successful

spectrum recovery when |I ∩ S| → |S| and |I/S| → 0. More-

over, in RMC-RS, an iteration number m ∼ 2|I| is sufficient.

Since |I| < R usually holds, we have 2|I| � 2R, which signif-

icantly reduces the time complexity compared to MC-RS.
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TABLE II
SUMMARY OF SIMULATION PARAMETERS

V. NUMERICAL EXPERIMENTS

The purpose of the experiments is to evaluate the performance

of the proposed algorithms in comparison with uniform random

sampling patterns and state-of-the-art (SOTA) algorithms for

multicoset sampling pattern design, using synthetically gen-

erated realistic wireless signals with noise. All simulations

were conducted in MATLAB 2022b running on an Intel Core

i5-10310U processor.

A. Simulation Setup

To model the wireless spectrum, we divide the frequency

range [0, B] evenly into L subbands. We generate k transmis-

sions located on k different subbands, whose indices are chosen

randomly from the set {1, . . . , L} of size k. Each transmission

is with exact bandwidth B/L and consists of Nc orthogonal

frequency-division multiplexing (OFDM) subcarriers modu-

lated with random quadrature phase shift keying (QPSK) sym-

bols. To simulate real-world conditions, we introduce additive

Gaussian noise across all subbands. On the receiver side, the

received signal is first downconverted to the zero intermediate

band [−B/2, B/2], and demodulated into the in-phase (I) and

quadrature (Q) components. A multicoset sampler samples the

signal inR cosets, with each coset equipped with a dual-channel

ADC simutaneously sampling a copy of the I/Q pair.

We mainly focus on high-frequency bands, e.g., millimeter

wave, where the traditional Nyquist sampling struggles to effi-

ciently handle the extensive bandwidth in these high-frequency

areas, thereby making CSS a preferable approach for these

scenarios. Typically, the spectrum of interest spans from ap-

proximately 1 to 10 GHz. Given the constraints imposed by

the sampling rate of commonly used low-power commercial

ADCs, which typically hover around 10 to 250 MSps, practical

parameters need to be set for optimal performance of CSS.

In our simulations, a typical value of L is set between 40 and

160. Considering hardware complexity and effective spectrum

sensing,R is capped at 16. This cap is necessary for precisely de-

tecting the OFDM channels within these high-frequency bands,

with individual channel bandwidths ranging from around 50 to

400 MHz, as seen in the 5 G new radio (NR) standards. The

defined simulation parameters are detailed in Table II.

Sampling patterns are generated using the proposed FFDG,

MC-RS, and MC-SFS algorithms. For comparative analysis,

patterns are also generated employing SOTA methods: the Con-

dition number Minimization (Cond-Min) [5], Condition number

plus-L-minus-R Selection (Cond-LRS) [10], and Full-Kruskal-

Rank Generation (FKRG) algorithms [11]. Additionally, as a

benchmark, uniform random sampling patterns are produced by

randomly selecting R delay factors from the set {1, . . . , L}.

We construct the sensing matrix A according to (6). For the

reconstruction of the spectrum support, the SOMP algorithm

is employed. The SOMP is configured to cease operation upon

concluding its kth iteration. The detection probability is then

calculated using the expression |Ŝ ∩ S|/|S|, where this ratio

represents the intersection of the estimated and actual support

sets relative to the size of the actual support set, thereby offering

a precise evaluation of the detection capabilities within our

established framework.

B. Performance Evaluation of FFDG, MC-RS, and MC-SFS

Fig. 5(a) illustrates the relationship between detection proba-

bility and various signal sparsity levels k. For a valid comparison

and compatibility with the restrictions of the FFDG algorithm,

values L and R are defined as L = 120 = 112 − 1 and R = 11
as per (31)–(32) and (33). The generated signal, with an SNR of

20 dB, has a sparsity level chosen in the set k ∈ {1, 2, . . . , 8}.

For each sparsity level, a thousand simulation iterations per algo-

rithm are conducted, and the results are subsequently averaged.

In each instance, transmissions are generated within random

subbands. The results underscore FFDG’s superior performance

fork ≤ 7, attaining nearly 99% accuracy, a notable distinction as

other algorithms barely reach 90%. MC-SFS and MC-RS show

as subsequent high performers, with MC-SFS slightly leading.

All three proposed algorithms remarkably outperform Cond-

Min and Cond-LRS algorithms, which only modestly outper-

form uniform selection. The FKRG algorithm significantly lags,

exhibiting performance even below uniform selection due to its

inherent deficiencies. Fig. 5(b) showcases similar results under

L = 40 and R = 8, a scenario where FFDG is inapplicable.

Fig. 6(a) showcases the result of detection probability plotted

against the SNR, spanning from −10 to 30 dB. In this scenario,

the signal sparsity is maintained at k = 4. The other parameters

remain unchanged. A similar trend in results is observed with

varying sparsity levels. The FFDG algorithm continues to lead

in performance, especially at higher SNR values, showing its

robustness and adaptability in diverse SNR conditions. MC-RS

and MC-SFS show commendable performance. Fig. 5(b) show-

cases the results given signal sparsity level k = 3, under L = 40
and R = 8, a scenario where FFDG is inapplicable,

A statistical analysis is conducted on the mutual coherence

µ(A) of the sensing matrix resulting from the proposed algo-

rithms. The results are shown in Fig. 7. With fixed L = 120
and R varying from 7 to 12, the superiority of the proposed

algorithms FFDG, MC-RS, and MC-SFS in our article becomes

further emphasized. The µ(A) yielded by uniform selection

remains at a significantly high level with large variance, un-

derscoring its unreliability and inconsistency. Conversely, the

MC-RS algorithm delivers a remarkably smaller µ(A) with a

narrow confidence interval. Moreover, the MC-SFS algorithm

guarantees a sampling pattern with a deterministic µ(A). The

FFDG, despite a larger variation compared to MC-RS, assures

Authorized licensed use limited to: Florida State University. Downloaded on March 10,2025 at 20:16:58 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: NONUNIFORM SAMPLING PATTERN DESIGN FOR COMPRESSED SPECTRUM SENSING IN MOBILE COGNITIVE RADIO NETWORKS 8689

Fig. 5. Detection probability against signal sparsity level k. Simulations conducted with k = 1 ∼ 8 averaged over 1000 runs under parameters (a) R = 11, L =
120, (b) R = 8, L = 40.

Fig. 6. Detection probability against SNR = −10 ∼ 30 dB, with fixed signal sparsity, averaged over 1000 runs, conducted under parameters (a) k = 4, R = 11,
L = 120, (b) k = 3, R = 8, L = 40.

Fig. 7. Mutual coherenceµ(A) againstR forL = 120 andR = 7 ∼ 12. The
figure showcases µ(A) values with a 95% confidence interval plotted in shade.

lower mean values of µ(A). The narrow confidence intervals

and lower mean values associated with our proposed algorithms

affirm their robustness and reliability.

C. Performance Evaluation of RMC-RS

To simulate a change in the spectrum support, we applied

two different spectrum supports for the initial 250 cognition

cycles and the last 250. Both supports are randomly drawn

from a uniform distribution across all subsets of {1, . . . , 60}
with a cardinality of 6. In every cognition cycle, the signal is

regenerated by modulating random QPSK symbols onto the

OFDM subcarriers.

The RMC-RS algorithm was employed to generate sampling

patterns over 500 consecutive cognition cycles, with parameters

set at R = 12 and L = 60. In our simulation, the output of

the RMC-RS in the first cognition cycle is a uniformly se-

lected pattern. Subsequent outputs are computed based on the

procedure described in Algorithm 4. For comparison, we also

generated sampling patterns using uniform selection and the

MC-RS algorithm for each cognition cycle.

After repeating the experiment 100 times, the average detec-

tion probability was computed for each cycle, shown in Fig. 8(a).

The results revealed that the uniformly selected pattern led to
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Fig. 8. (a) Detection probability and (b) restricted mutual coherence µI(A) (with I = S) over 500 consecutive cognition cycles using the RMC-RS algorithm
iteratively in each cycle, with parameters L = 60, R = 12, and spectrum sparsity level k = 6. Results are compared with patterns generated by uniform selection
and MC-RS.

fluctuating detection probabilities over time. In contrast, the

sampling patterns generated by MC-RS maintained almost con-

sistent detection probabilities across consecutive cognition cy-

cles and generally outperformed the uniform selection method.

The detection probability using RMC-RS starts at a level compa-

rable to the uniformly selected pattern, then rapidly increases,

settling at a value above 95% within approximately 100 cog-

nition cycles. A noticeable drop in the detection probability

of RMC-RS is observed at the 251st cognition cycle due to a

significant shift in the spectrum support. However, it quickly

reconverges, again reaching over 95% within the subsequent 100

cycles. The advantage of using RMC-RS is further reflected in

the variations in the restricted mutual coherence over cognition

cycles, illustrated in Fig. 8(b). With I = S set, it becomes

evident that µI(A) related to RMC-RS swiftly converges to a

minimal value when the spectrum support remains consistent. In

comparison, the values corresponding to both uniform selection

and MC-RS remain at the same level as the cognition cycles

progress.

In Fig. 9, we illustrate the relationship between the per-

centage change in spectrum support and the consequent dip

in detection probability. By manipulating the percentage ratio

of change in spectrum support at the 250th cognition cycle,

we observe variations in both the magnitude of the detection

probability’s decline and its subsequent re-convergence rate.

Notably, with minimal changes to the spectrum support, the

decrease in detection probability is modest, and re-convergence

is swift. Conversely, as the percentage of the spectrum support

change increases, there is a notable drop in detection prob-

ability followed by a slower re-convergence. It is crucial to

highlight that, in real-world scenarios, transmissions are highly

independent. Thus, the spectrum support is unlikely to undergo

abrupt, significant alterations. Under such conditions, the RMC-

RS consistently delivers robust performance, being capable of

maintaining a high detection probability throughout long time

periods.

Fig. 9. Performance evaluation of the RMC-RS algorithm with L = 60, R =
12, and spectrum sparsity levelk = 6. The graph illustrates the trend in detection
probability from the 200th to the 500th cognition cycle. Notably, a decline in
detection probability is observed at the 250th cycle due to varying percentage
changes in spectrum support. This is followed by their respective re-convergence
trajectories in the ensuing cycles.

TABLE III
TIME COMPLEXITY OF FFDG, MC-RS, MC-SFS, AND RMC-RS

D. Time Complexity and Execution Time

The time complexities of the algorithms proposed are pre-

sented in Table III.

The time complexity of the FFDG algorithm is non-trivial.

The nature of finite fields and the algorithms employed to

deduce irreducible polynomials, primitive roots, and logarithms

inherently influence the time complexity. While there are various
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Fig. 10. Comparison of average running times for the FFDG, MC-RS,
MC-SFS, and RMC-RS algorithms with parameters L ∈ {40, 80, 120} and
R ranging from 6 to 12, plotted in logarithmic scale. For RMC-RS, we take
|I| = �R/2�.

advanced methods to address the finite fields problems, for

simplicity and clarity in this article, we have chosen to use the

most naive approaches for its operations. The pivotal operations

in Algorithm 1, evaluated using the most elementary (exhaustive

search) algorithms, are:
� Step 1: Constructing FR is a constant-time operation, rep-

resented as O(1).
� Step 2: Identifying an irreducible polynomial in FR[x]

using a naive approach takes O(R3), due to polynomial

irreducibility testing.
� Step 3: Constructing FRn takes O(R).
� Step 4: Finding a primitive root in a finite field using a naive

method takesO(R2), as each root candidate’s powers must

be validated.
� Step 5: With rudimentary methods, computing logarithms

for each field element takes O(R2), considering the need

to verify up to R base powers for each element.

The dominant time complexity is O(R3), primarily driven by

the irreducible polynomial search.

Fig. 10 shows the real-world execution times. The MC-RS

algorithm, with a complexity of O(2RL2R), shows efficiency

especially when R is small. As R increases, the 2R factor in

MC-RS leads to exponential growth in execution time. With

larger R, MC-SFS outperforms MC-RS in time efficiency. In

practice, the selection between MC-SFS and MC-RS should

reflect the unique application needs and specific values of L
and R.

For RMC-RS, considering I = ŜLast, we ensure |I| ≤ R <
L. In a sparsely occupied wideband spectrum, |I| is much

less than L. Given RMC-RS’s focus on atoms indexed by

I, leading to m ≈ 2|I|, it significantly reduces computational

costs relative to MC-RS, making RMC-RS a preferable choice

for multicoset sensing matrix design in consecutive cognition

cycles.

The proposed algorithms have been implemented on a self-

developed hardware platform and have provided high-quality

sub-Nyquist datasets for a series of signal processing and

learning competitions named GHz Bandwidth Sensing (GB-

Sense) challenges, which were successfully held in 2021 and

2022 [47].

VI. CONCLUSION

In this article, we investigated the design of sampling patterns

for multicoset samplers in a noisy setup. The proposed algo-

rithms guarantee successful spectrum recovery for compressed

spectrum sensing in a practical environment with noise, thereby

facilitating the dynamic spectrum access of low-power mobile

cognitive radio devices.

Our main contributions lie in efficient sampling pattern design

algorithms to yield mutually incoherent sensing matrices. First,

we generate a partial inverse Fourier matrix in a deterministic

manner by constructing a finite field. The matrix is proved

to have a strict upper bound of mutual coherence. Then we

proposed the FFDG algorithm to generate sampling patterns that

satisfy the above upper bound. The FFDG algorithm provides

faithful spectrum reconstruction performance but imposes some

mild restrictions on the coset number and the downsampling

factor of the multicoset sampler.

We then proposed two optimization methods to design sam-

pling patterns without any restrictions on the coset number

and the downsampling factor of the multicoset sampler. The

MC-RS algorithm employs a random search strategy and can

find a nearly optimal sampling pattern within far fewer iterations

than conventional exhaustive search methods. The choice of the

iteration number is investigated by analyzing the distribution of

mutual coherence under certain coset numbers and downsam-

pling factors. The MC-RS algorithm is efficient when the coset

number is relatively small, and its iteration number increases ex-

ponentially as the coset number increases linearly. The MC-SFS

algorithm provides high computational efficiency for relatively

large coset numbers. It minimizes the mutual coherence of

the sensing matrix using a greedy pursuit strategy. It can find

a sampling pattern whose corresponding mutual coherence is

locally optimal.

In addition, we proposed the RMC-RS algorithm for the

scenario that requires dynamic sampling patterns to provide

better robustness. The algorithm adjusts the sampling pattern

between consecutive cognition cycles by minimizing a restricted

version of the mutual coherence of the sensing matrix. The

RMC-RS algorithm shows extremely low time complexity and

strong adaptability to the genuine support of the spectrum.

Numerical experiments demonstrated outstanding spectrum

recovery performance of the proposed algorithms using simu-

lated OFDM signals with noise. The feasibility of the proposed

algorithm is also proved on a self-developed hardware platform

by providing high-quality sub-Nyquist datasets for a series of

influential competitions held in 2021 and 2022.
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