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Abstract—Compressed spectrum sensing (CSS) plays a pivotal
role in dynamic spectrum access within mobile cognitive radio
networks by offering reduced power consumption and lower hard-
ware costs. The multicoset sampler, a well-known implementation
for periodic nonuniform sampling, has been widely studied and
is considered a promising architecture for realizing CSS. This
article focuses on the design of the multicoset sampling pattern,
aiming at enhancing the isometry property of the sensing matrix.
Unlike previous studies which assume a noise-free setup, our work
considers the problem in a real-world environment with noise. First,
we propose a deterministic algorithm for sampling pattern gener-
ation, particularly for specific hardware setup parameters. This
algorithm offers strict mutual-coherence control in the multicoset
sensing matrix. To address more general hardware configurations,
we propose two optimization algorithms. One of them searches
for nearly optimal sampling patterns through a random search
strategy, while the other employs a greedy pursuit strategy to find
a local optimizer. Furthermore, we propose an algorithm to itera-
tively optimize the sampling pattern between consecutive spectrum
sensing windows by minimizing a restricted version of mutual
coherence. The excellent performance of our proposed algorithms
has been demonstrated through numerical experiments and has
been verified on a self-developed hardware platform.

Index Terms—Compressed spectrum sensing, dynamic
spectrum access, sensing matrix design, noise-robust algorithms.

I. INTRODUCTION

HE dynamic spectrum access (DSA) technique enables
Tunlicensed secondary users (SUs) to efficiently utilize
spectrum holes, thereby alleviating spectrum scarcity [1]. In cog-
nitive radio (CR) networks, DSA primarily relies on spectrum
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Fig. 1. Simplified illustration of compressed spectrum sensing conducted by
secondary users (SUs) in amobile cognitive radio network. The SUs conduct sub-
Nyquist sampling to the received analog signal and reconstruct the primary users’
(PUs) and other SUs’ transmissions in the frequency domain using compressed
sensing algorithms.

sensing, a critical operation that empowers SUs to faithfully
locate spectrum holes. With the commercialization of 5G and
the emergence of 6G, CR devices are increasingly challenged
to sense a broader multi-gigahertz spectrum. This expansion
places higher demands on the speed of analog-to-digital con-
verters (ADCs) and digital signal processors (DSPs), thereby
exacerbating the power consumption and cost burden.

To address this, compressed spectrum sensing (CSS) opti-
mizes power consumption and hardware cost by reconstructing
the spectrum from sub-Nyquist time-domain samples as il-
lurstrated in Fig. 1. The CSS comprises two steps: 1) sub-Nyquist
sampling to digitize the signal at an average rate lower than the
Nyquist rate, then 2) applying compressed sensing (CS) algo-
rithms to reconstruct the frequency-domain signal [2]. Among
sub-Nyquist sampling schemes, periodic nonuniform sampling
(PNS) is widely studied and considered one of the most practical
sampling schemes due to its scalability and simplicity [3], [4].

The multicoset sampler is renowned as a prominent imple-
mentation of PNS [3]. This implementation is characterized by
its multiple signal lanes, each with a unique time delay. In each
lane, the analog signal is digitized by an ADC at a rate far lower
than the Nyquist rate. The three major hardware parameters for
a multicoset sampler are a) the number of signal lanes, b) the
temporal resolution of the delay control unit, and c) the relative
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time delay coefficients in different signal lanes, collectively
referred to as the sampling pattern [5], [6]. In a certain hardware
implementation, factors a) and b) are typically predefined by the
circuit layout or are inherent to the device, and the sampling
pattern offer the only design flexibility, allowing adjustments to
be made in software [7].

The design of the sampling pattern is crucial for successful
signal reconstruction from sub-Nyquist samples acquired by a
multicoset sampler because it directly decides the property of the
sensing matrix in the subsequent CS reconstruction problem. An
effective sampling pattern design method will improve spectrum
sensing reliability and further enhance the service quality in
mobile CR networks.

A. Related Works

Sampling pattern design is usually formulated as a combi-
natorial optimization problem [7]. A predominant optimization
target in this field is to minimize the condition number of the
sensing matrix to meet the full-spark condition [5], [8], [9].
Some approaches utilize greedy-pursuit strategies to acquire
locally optimal condition numbers [10]. Although one study has
explored the analytical generation of full-spark sensing matrices,
it specifically lacks rigorous justification [11]. However, the
full-spark condition, while guaranteeing solution uniqueness,
does not necessarily imply that these solutions are identifiable
using current sparse approximation techniques. Additionally, its
derivation assumes noise-free conditions, an ideal seldom met in
practical scenarios. To mitigate the limitations of the full-spark
condition, the mean-square error criterion has been proposed.
However, it often incurs significant computational costs and is
typically predicated on noiseless assumptions [12].

To achieve reliable signal recovery in noisy contexts, both the
restricted isometry property (RIP) and the mutual incoherence
property (MIP) have been introduced [13], [14], [15]. While
RIP offers energy stability for sparse signal sensing matrices, its
computational demands often make it less practical, leading to
increased focus on MIP. The MIP is typically assessed using mu-
tual coherence, a metric quantifying the maximum correlation
between any two columns of a matrix. A lower bound for mutual
coherence in fat matrices, known as the Welch bound, has been
theoretically established [16]. Achieving this bound is crucial
in compressed sensing for improved signal reconstruction and
noise robustness [17], [18]. However, meeting the Welch bound
can be challenging in applications requiring strict structural
constraints [ 19]. In multicoset sampling, where sensing matrices
often resemble selectively-row-chosen inverse Fourier matrices,
research has focused on analytically formulating partial Fourier
codebooks, utilizing tools like difference sets, to approach the
Welch bound [20]. However, those partial Fourier matrices only
meet the Welch bound when specific conditions on hardware
parameters of the multicoset sampler are met [21].

To develop a sampling pattern design method suitable for a
broader range of hardware parameters in multicoset sampling,
especially for scenarios where the Welch bound is unachievable,
our previous work [22] implemented a random search approach
to optimize MIP. However, the study did not thoroughly delve
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into the complex details of the algorithm or its practical impli-
cations.

B. Main Contributions

In this article, we consider the design of sampling patterns for
multicoset sampling under a noisy condition. We approach the
problem from the perspective of optimizing the MIP. Our main
focus is on a broader range of hardware parameters, especially
in scenarios where achieving the Welch bound might be chal-
lenging. The contributions of this article can be summarized as
follows:

1) Based on the finite-field theory and some key results
established by [23] [24], we derive a theorem that as-
sures the construction of a ¢ x L partial inverse Fourier
matrix to possess an upper bound on mutual coherence
at (n —1)//p, where ¢ =p* and L =¢" — 1 or ’;Z:ll
with p being a prime and n, a, b being positive integers
satisfying that b divides a. This leads to our proposal of the
finite-field-based deterministic generation (FFDG) algo-
rithm. FFDG generates a sampling pattern in a determin-
istic manner to provide faithful spectrum reconstruction
performance. To the authors’ knowledge, FFDG is the first
sampling pattern design algorithm for noise-contaminated
multicoset sampling with guaranteed mutual-coherence
bound.

2) By rephrasing the sampling pattern design as a mutual-
coherence minimization problem, we further propose two
efficient optimization algorithms: the mutual-coherence
random search (MC-RS) and the mutual-coherence se-
quential forward selection (MC-SFS) algorithms. Both al-
gorithms are applicable to sensing matrices of any R x L
dimension. The MC-RS algorithm is particularly efficient
when R is significantly smaller than L /2. It successfully
identifies a nearly optimal solution with high probability
within a search space of size ( IL%) , with a time complexity

of O(L?Rm), where m is significantly smaller than (IL%)
The MC-SFS algorithm provides improved efficiency for
larger R values comparable to L/2. It employs a greedy
pursuit strategy to discover a locally optimal solution
within a time complexity of O(L3R?).

3) We further develop MC-RS into the restricted-mutual-
coherence random search (RMC-RS) algorithm, aimed at
minimizing a constrained form of the mutual coherence
of the sensing matrix. RMC-RS particularly works be-
tween consecutive spectrum sensing windows to yield a
dynamically adjusted sampling pattern. RMC-RS shows
extremely low time complexity and strong adaptability to
the spectrum support.

C. Outline

The rest of this article is organized as follows. The math-
ematical models of the signal and the multicoset sampler, as
well as the definitions of RIP and MIP restrictions on sensing
matrices, are introduced in Section II. Moreover, we show why
MIP is a desirable property of the sensing matrix to recover
wideband signal with noise when using simultaneous orthogonal
matching pursuit (SOMP). In Section III, the FFDG algorithm is
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TABLE I
NOTATION
x(t) continuous-time baseband complex signal
fyq the Nyquist frequency of x(t)
T 1/ fxya
k number of non-zero subbands of x(t)
L number of subbands in [0, fiyq]
R number of cosets in a multicoset sampler
Cr delay coefficient in the rth coset
C sampling pattern
Ze, (1] discrete sampling points in the rth coset
S the row indexes of X that are
non-identically zero
S estimation of S
Y measurement of a multicoset sampler
X~ spectrum matrix to be estimated
W additive noise to the measurement
A multicoset sensing matrix
X the approximation of X~
I “1los I ll2s I - lIF | %o, ¢2 and Frobenius norm
Il 2.0 l2,0 norm (the number of non-zero rows)
H the conjugate transpose of a matrix
g the pseudo inverse of a matrix
A j the {7, j}th element of matrix A
A; the 7th column vector of matrix A
As subrnatri)% of A composed of
columns indexed by S

presented to generate a sampling pattern with strict MIP control.
Two optimization algorithms, namely MC-RS and MC-SFS, are
then presented to minimize the mutual coherence of the sensing
matrix. In Section IV, the RMC-RS algorithm is described to de-
sign the sampling pattern between consecutive spectrum sensing
windows iteratively. Numerical experiments are demonstrated in
Section V. Common notation, as summarized in Table I, is used
throughout the article.

II. MATHEMATICAL MODELS
A. Signal Model

We consider a complex analog signal x(¢) defined within
the frequency range [0, B]. The signal consists of Ng;, distinct
transmissions, mathematically expressed as:

z(t) = Zsi(t). (D

Each of these transmissions, denoted by s;(t) for i =
1,2,..., Nsj,, has abandwidth that does not exceed B/ L, where
L is a positive integer.

The model is based on the assumption that Ngj, < L.
This implies that the frequency spectrum of x(¢) is sparse in
the range [0, B]. To further formulate this sparsity, we divide the
frequency range [0, B] into L equal subbands. Let k denote the
number of these subbands that are actually occupied by active
transmissions. Under our assumptions, k is bounded as follows:

k < 2Ngig. )
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We refer to k as the spectrum sparsity level of z(¢) within the
frequency range [0, B]. It follows from our assumptions that
k< L.

To set the context for the Nyquist frequency fiyq, we first note
that the signal x(¢) is a complex baseband signal defined within
the frequency range [0, B]. In this case, the Nyquist frequency
is directly given by the upper bound of this frequency range.
Specifically, we have fnyq = B. We define 1" as the Nyquist
interval, formally expressed as 7' £ 1/ fyq-

B. Multicoset Sampling

The basic structure of a multicoset sampler is illustrated in
Fig. 2(a). The analog input 2(t) is first divided into R signal
lanes by an R-way power splitter (R < L). For each signal lane
r (r=1,...,R), also referred to as a ‘coset’, a unique time
delay of ¢, 7" is applied directly to the analog signal, where c,
is an integer coefficient. The set of all R delay coefficients is
referred to as the ‘sampling pattern’ and is denoted by C as

C={cy,...,er} C{1,2,...,L},

with |C| = R.

Subsequently, the analog signal in each coset is sampled by
an ADC running at rate f; £ fyq/L. The sampling clocks for
all the cosets are synchronized and strictly aligned.

Letting the sampling window length be N/ f;, the discrete
sample sequence acquired in the rth coset is

x.[n] =z (nL b
' fNyq fNyq

), n=12...,N. 3)
A multicoset sampler obeys the following measuring pro-
cess [22]:
Y =AX"+ W, )
where Y € CH*¥ is the measurement with
N
Yr,n _ LT€7]27rcrn/(LN)Z T, [Z‘}eszﬂ"ﬂl/N’ 5)
i=1
and A € C™*L is the sensing matrix with

(I-1)
j27C
Ag=¢ L, ©6)

and X* € CE*N corresponds to the L N-points discrete Fourier
transform of the discrete version of x(t) by

LN T (-yN

. — +n

Xi=) <> eI )
7 T7=1 fNyq

and W is the additive noise caused by multiple factors such as
channel noise and internal thermal noise of the receiver devices.

C. Desired Isometry and Incoherence on Sensing Matrices

Owing to the block-sparse property of the wideband signal
spectrum, X* can be treated as a row-sparse matrix composed
of jointly sparse vectors. When the measurement Y contains
noise, finding the optimal sparse approximation to X* in (4)
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Fig. 2. (a) Diagram of the basic implementation of a multicoset sampler. (b) Examples of periodic nonuniform samples on an input sine wave produced by a

multicoset sampler with L = 10 and R = 4. The sampling pattern is C = {1, 2,5, 8} for the top graph and C = {2, 3,7, 9} for the bottom one.

can be characterized as a simultaneous sparse approximation
problem [25]

argmin ||X]2,0 subjectto [[Y —AX|r<e,  (8)
XeChxN
where || - ||2,0 is the standard notation to denote the number of

non-zero rows, and e is a small constraint of the noise.

Directly solving problem (8) is notably intractable because || -
|l2,0 is non-convex and lack of continuous gradient. Fortunately,
some approaches are proposed to acquire a sub-optimal solution
to the problem. The first type of approximation is characterized
by ¢;-relaxation such as multiple basis pursuit denoising [26],
[27] and group-Lasso [28], [29], [30], [31]. For systems that
require high real-time performance, greedy pursuit algorithms,
typically the SOMP algorithm, are widely used owing to their
computational efficiency and scalability [25].

Various constraints can be imposed on the sensing matrix
to ensure the statistical estimation accuracy of the solution. A
widely-known restriction is the RIP [13], defined as:

Definition 1 (Restricted Isometry Property): The sensing ma-
trix A satisfies the restricted isometry property of order k£ with
parameter &5 when there exists d;, € [0, 1), such that

(1—6n)lIx)13 < [[AX]3 < (14 6)[Ix]I3 9)

forall {x : [|x]o < k}.

Particularly, RIP can ensure faithful support recovery through
SOMP-like algorithms [32], [33], [34]. However, verifying RIP
for a specific sensing matrix is computationally difficult in prac-
tice. In this sense, MIP offers a computationally more accessible
proxy for RIP [14].

Definition 2 (Mutual Incoherence Property): The mutual co-
herence of the matrix A € C**! is defined as

2y A A

i (1Al 1A
where A; and A; denote the ith and jth columns (atoms) of
matrix A.

It can be elucidated that RIP and MIP are intrinsically related,
as evidenced by their relationship shown in the equation (e.g.,

1(A) (10)

see (IV.7) in [35]):

0k < (k= 1)p(A). (1)

The mutual coherence 1A ) quantifies the maximal correla-
tion strength between any two columns (atoms) of the sensing
matrix A. Intuitively, RIP is satisfied with high probability when
1(A) is relatively small. The MIP condition ensuring exact
recovery through ¢ -optimization techniques has been derived
in [14], expressed as:

1) |

Other algorithms, such as Lasso, basis pursuit, and hard
thresholding pursuit, have also been influenced by the proper-
ties of the sensing matrix, demonstrating variances in recovery
efficacy based on mutual coherence and other matrix character-
istics [29], [36], [37], [38], [39], [40], [41]. However, consid-
ering the demands of spectrum sensing, where rapid real-time
responses are required, our study predominantly employs the
SOMP-type algorithm. This leads to a detailed examination of
the relationship between the MIP of the sensing matrix and the
statistical accuracy of support recovery.

Given an initial residual R(®) = Y/*N and an empty initial
support SO, starting at ¢ = 1, SOMP iterates

he (L 4 (12)
2\ u(A)

§1 = argmax{[|AY - RV, s ¢ STV, (13a)
S

S = g1 50, (13b)

X — OLXN,X[t,S(t)] — Ang, (13¢)

RY =Y - AX®, (13d)

where X|[t, S(®)] denotes the rows of X(*) indexed by S®) and
R®) denotes the residual in the tth iteration. The algorithm is
halted either by fixing the number of iterations or by imposing
a threshold on the residual.

Step (13a) in SOMP is referred to as the greedy selection [42].
In a noise-free setup, it is proved that when p(A) < 1/(27k), if
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the residual given by SOMP in the tth iteration satisfies

1—ku(A) 7V?

ROp < |14+ Nk— 22
e e TE I

(14)
where ¢( is a small error bound, it follows that the atoms chosen
so far are optimal, namely S cS.

In a noisy setup, we show intuitively how mutual coherence
could diminish the accuracy of greedy selections. The residual
calculated by step (13d) in the tth iteration is detailed as

RO —RO _p [Ag(t)] RO

=RV —P[Ag | RUY, (15)
where
P[Asn] £ Asn (AL, Asw) TAY, (16)

defines the projection matrix of size R x R. This matrix projects
any vector (or the columns of a matrix) in C** onto the column
space of A g, which represents the subspace spanned by the
currently selected set of atoms up to the tth iteration. We apply
the Schmidt orthogonalization to the atoms in A 4, in reverse
order as

B, = Ajm,
Bi 1= Agufl) -P [Ag(t)] A—g(t—l),
t
Bl - Ag(l) — ZP [A§(i)] A§(1). (17)
i=2
where
PlA:0] = A0 (Al Aw) 1AL, (18)

is a projection matrix of size R x R which projects
any vector in CE onto the span of vector Ag(t), the
selected atom in the tth iteration. Then (15) can be
rewritten as

RO =_RO_p [A:] R(O), (19a)
R =R —P[A,,] RO
| ——
a(t)
t—1
_ TR
> PBJRY (1> 2) (19b)
=1

e(t)

In (19b), two projection terms, a(t) and e(t), are subtracted
from R~ 1 to update the residual. Specifically, a(t) represents
the projection of R(~1) on A, and e(t) is the cumulative
projection of R~ on each of the previous Schmidt vectors
Bi,...,B: 1.

The term e(t) acts as a residual error, affecting the accuracy in
estimating R(*). From a preliminary analysis, we derive a loose
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Fig. 3. Probabilities of correctly finding the entry of a non-zero row of X in

each of the first five iterations of SOMP.

upper bound for the Frobenius norm of this error as:

i1 t—1
e e ], <im S,
i=1 i=1

(20)
A smaller value of (A) imposes a tighter constraint on the
absolute magnitude of the error term. For instance, in an extreme
case where 1(A) — 0 (meaning A is nearly orthogonal), we
have e(t) — 0, leading to a more accurate R(*) and thus a more
reliable identification of 5(*) € S. Additionally, it is evident that
the accumulated effect of the error term, e(t), increases with
growing t. Fig. 3 illustrates the probability of 5() being part
of § over the first five iterations of SOMP, comparing three
sets of sensing matrices characterized by different ;( A) ranges.
This figure shows the relationship between the accumulation of
e(t) across iterations and the proficiency of SOMP in correctly
identifying an element from the support set. As 11(A) decreases,
this probability drops at a faster rate.

III. SAMPLING PATTERN DESIGN TOWARD MINIMAL MIP

The multicoset sensing matrix A is constructed as a partial
inverse Fourier matrix by retaining the rows indexed by C, which
can be formally represented as

A = (Fh 1, 20
where (FL)~! is an L x L inverse Fourier matrix with its
{7, k}th element given by exp (2mjik/L). Here, C, with |C| =
R, is the set of row indices corresponding to the sampling pattern
of the multicoset sampler. For specific hardware implementa-
tions, the values of L and R are often fixed by the resolution of the
time-delay unit and the number of physical signal lanes. Thus,
in our setup, the indices in C are the most critical parameters that
influence the design of multicoset sensing matrices.

The sensing matrix A, generated by a sampling pattern C

chosen from {0,1,..., L — 1} in a uniformly random manner,

is shown to satisfy RIP(k, d;;) with high probability [36] when
R

k<c(0g) —F5—, 22

> ( k) 10g4 T ( )
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where ¢(dy,) is a coefficient that depends only on d;. However,
sampling patterns generated uniformly are not always reliable
since (22) does not provide a deterministic condition.

A. Creating Sampling Patterns With Controlled MIP
Threshold

We first present a deterministic construction method for gen-
erating sampling patterns, leading to a sensing matrix with an
explicitly bounded mutual coherence. Our approach is based on
the principles of finite field theory. To provide context, Devore
etal. utilized finite field theory in their influential 2007 study [15]
to design binary sensing matrices with dimensions of p? x p™+1.
These matrices exhibit the RIP up to an order 2k, under the
condition

P 1
2n—1) 2’
where pisaprime numberandn < pstands for a positive integer.
Xu et al. proposed a deterministic design method for partial
Fourier matrices using the finite field theory [24]. Hereon, we
extended the finite field theory to the design of a partial inverse
Fourier matrix satisfying MIP.

Denote ¢ = p® as a prime power, with p being a prime and
a a positive integer. The finite field I, comprises ¢ elements.
Extending this, we characterize Fy» as the finite field with ¢"
elements, described by:

n—1
Fgn = {ZCLM D a; € Fq},

1=0

k< (23)

(24)

with « as a zero of an irreducible polynomial within F,[z].
We then introduce g as a primitive root of -, leading to our
foundational theorem:

Theorem 1: For a prime power ¢ = p“, with p being prime
and a a positive integer, let either L = ¢" — 1 or L = % be
true, where n is a positive integer and b|a. If

C={log,(t —a) mod L |t€TF,}, (25)

then the partial inverse Fourier matrix A = (FL);! has amutual
coherence bound:
n—1
7
Proof: The proof of Theorem 1 is inspired by [24] and relies
on a theorem in number theory [23]. This theorem is presented
as a lemma without its proof.
Lemma 1: Let x be any nontrivial complex-valued multiplica-
tive character of F», and o an element in F» that generates Fyn
over F,. Then

n(A) <

(26)

S x(t )| < (n-1)ya.

telF,

27)

Denote

,q}

as a sampling pattern designed following Theorem 1, where ¢;
is the ith element in [F,. For any two column indexes [y,l> €

C={ci=log,(ti—a):i=1,...

8685

Algorithm 1: Finite-Field-Based Deterministic Generation
(FFDQG).
Input: L satisfying (31) or (32); R satisfying (33)
Output: C
1: Construct a finite field ' using (24)
2: Identify an irreducible polynomial p(z) in Fr[z] and a
Zero (v
: Create a finite field Fpn as Fpn = Fr[z]/p(z)
: Determine a primitive root g in Fgn
5: Calculate C < {log,(t —a) mod L |t € Fr}

B~ W

{1,...,L} and l; # I3, the inner product of the [yth and Isth
atoms of the matrix A is

p—1
11-1

<Al17Al2> = Zej27mi L

i=0

p—1

. 111

_ § 6]27rci 1L2
=0

L lp-1
67271'](:1» ZL

p—1 ,
. -
— § ei2mlogy(ti—a) 12

i=0 (28)

Define y(t; — ) = €/27198s(ti=) T2 Tt can be easily verified
that x(t; — «) is a nontrivial multiplicative character of ;. be-
cause log (t; —a) < ¢" —1,L=¢" —land 1 < |l; — 3| <
L — 1. By Lemma 1, we have

<Al1’Al2> = Z X(t - Oé).

tel, (29)
Thus,

(A, Aj)l

p(A) = max T

1<i<j<L || %HQH j”z

= L A; A
—glsr&aj?éLK i Aj)l
-1

z (30)

N
The proof is complete.

Based on Theorem 1, we introduce the FFDG algorithm,
which is detailed in Algorithm 1.

In Step 2, an irreducible polynomial can be identified by enu-
merating a few elements from IF,.In Step 4, a practical approach
to identifying a primitive root in a finite field is described by [43].
This mettlod is based on the principle that g is a primitive root in
Fgn ifg% # 1 for each prime divisor £ of ¢ — 1. As for step
5, the logarithm of u in ¥}, is derived as log, u = iy/q" — T+ j
for pairs {i, ¢} that satisfy ug (1"~ = ¢ [44].

When deploying FFDG, certain conditions are imposed on
multicoset parameters. Specifically, L needs to satisfy:

L=¢"—1 31)

Authorized licensed use limited to: Florida State University. Downloaded on March 10,2025 at 20:16:58 UTC from IEEE Xplore. Restrictions apply.



8686

or
_q -1
=

(32)

with ¢ = p® being a prime power and n,a,b being positive
integers satisfying b|a. The coset number R must obey:

R=q. (33)

As deduced from (12) and (26), the sensing matrix A gen-
erated by FFDG is able to recover a k-sparse signal under the
condition:

VR 1

peo Y11
Som-1) 2

(34)
It is noteworthy that this threshold aligns with the one pre-
sented in the deterministic design of binary sensing matrices
by DeVore [15]. Our methodology is not limited to the sensing
matrices design of multicoset samplers but extends to broader
CSS applications.

B. Sampling Pattern Construction by Optimization

In this subsection, we focus on the design of sampling patterns
without constraining L and R. For a given pair (L, R), there are
(é) potential sampling patterns. Rather than seeking a univer-
sally optimal solution, our aim is to identify a sampling pattern C
that facilitates the task of recovery algorithms in distinguishing
signal components located in different frequency bands. We
follow the principle of minimizing the mutual coherence but
introduce a new ‘min-max’ optimization criterion. Specifically,
we aim at the objective problem:

arg min max C) st |C|=R, (@35
cqu...,Lfl}AlE{lw-:L*l}fL( ) cl
where
2m(c1 — c9)Al
fr(C) = Z cos <(1LQ)) . (36)
cy,c2€C,
c1<ca

It is obvious that solving (35) also minimizes 1 (A) given

WA=  max R+ 20).

= 37
Ale{l,...),{Lfl} R 7

Problem (35) is a nonconvex discrete nonlinear optimization
problem, which is NP-hard. In this perspective, the random
search strategy [45] shows the ability to operate without the
need for gradient information. Random search operates by
progressively moving to preferable positions within the search
space. With the assumption that the spectrum support remains
unknown, the search space for problem (35) is defined as all
C e{1,2,..., L} with|C| = R. The primary objective is to find
a C that results in a value for ;4(A) that is nearly minimal.

Building on our prior work [22], where a foundational random
search strategy for MIP minimization was introduced, we further
refine and extend this approach. We hereby propose the MC-RS
algorithm for sampling pattern design, detailed in Algorithm 2.
This new approach dives deeper into the algorithmic intricacies
and offers more comprehensive solutions for practical scenarios.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 9, SEPTEMBER 2024

Algorithm 2: Mutual-Coherence Random Search (MC-RS).
Input: L; R;m
Output: C
1:t « 1, fLmin <— 00
2: while t < m do
3: selectC) € {0,1,...,L — 1} with |C®| = Rina
uniformly random manner

. (t) 27 (c1—co) Al
4. fp Ale{rlfifli(Lil} . 7622626(”7 cos( T )
cp<ca
5. it fi < frmin then
6: C+C®
7: end if
8 t=t+1
9: end while

The input parameter m indicates the number of iterations that
the MC-RS algorithm conducts to generate a decent solution.
Fortunately, a large value of m is often unnecessary for MC-RS
to yield a design with a good value of 1(A). First, given L = 37
and R = 7, we show the cumulative distribution function (CDF)
of u(A) corresponding to all the (377) sampling patterns in
Fig. 4(a). About 5 percent of the values are distributed in the
range [0,0.45), and about 0.2 percent of the values are distributed
in the range [0,0.4). By seeking m = 100 we have about 99.4%
chance to get a pattern yielding p(A) < 0.45; by m = 1000
we have nearly 100% chance to get u(A) < 0.45 and 86.5%
chance to get u(A) < 0.4. Compared to (377) = 10,295,472,
a relatively small m can already guarantee a nearly optimal
solution with overwhelming probability. Similar distributions
and conclusions hold for other combinations of L and R. By
taking L = 34,35,36,37 and R = 4, 5,6, 7,8, the frequencies
of 11(A) within the smallest 1% values between the minimum
and the maximum are shown in Fig. 4(b). Our experiments
reveal a nearly logarithmic linear relationship between L and R,
indicating that m ~ 2 is sufficient to ensure a stable probability
of finding a sampling pattern with a favorable ;1(A).

The MC-RS algorithm employs arandom grid search strategy,
efficiently searching the solution space to identify a robust
suboptimal solution with high probability within a manage-
able number of iterations. The algorithm is designed to handle
complex scenarios, offering flexibility and adaptability in its
operation. However, like all random-search-based algorithms, it
holds an inherent feature of randomness which, while effectively
covering a broad search space, leads to an expansive search com-
plexity as L and R increase (assuming a constant compressed
sampling ratio R/L).

We further present the MC-SFS algorithm, another novel
approach based on a greedy pursuit strategy. The MC-SES
algorithm is structured to acquire a local optimum within a
polynomial time complexity, as detailed in Algorithm 3.

To construct the sensing matrix A, MC-SFS operates by iter-
atively selecting rows from the inverse Fourier matrix (F L)_l.
In each iteration, Step 4 ensures that the matrix composed of the
selected rows exhibits the minimum mutual coherence. Given
L and R, the sampling pattern designed by MC-SES always
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Frequency

(a) Distribution of p(A) by examining all the sampling patterns given L = 37 and R = 7, (b) the frequencies of ;1(A) within the smallest 1% values

Algorithm 3: Mutual-Coherence Sequential Forward Selec-
tion (MC-SFS).

Algorithm 4: Restricted-Mutual-Coherence Random

Search (RMC-RS).

Input: L; R

Output: C

1:t+2,C«+ @

2: uniformly select ¢(*) from {1,...,L},C™") « g UM
3: whilet < R do

4: W =arg MiN o1, -1} foctYuc

50 CH Dy

6: t«+t+1

7: end while

8:C + CH)

produces an explicitly controlled mutual coherence u(A). Im-
portantly, the resulting ;1(A) is unaffected by the initial choice
in Step 2, despite the output sampling pattern of MC-SFS being
a local optimizer.

IV. DYNAMIC ADJUSTMENT OF SAMPLING PATTERNS IN
CONSECUTIVE COGNITION CYCLES

Spectrum sensing is continuously conducted by CR devices
to obtain the latest spectrum occupancy. The time period from
the beginning of one spectrum sensing window to the beginning
of the next one is often referred to as a cognition cycle [46].
Between consecutive cognition cycles, the sampling pattern can
be set as either fixed or dynamic. The latter provides better
robustness to the dynamics of the spectrum support. In this
section, we propose a dynamic sampling pattern adjustment
strategy with reduced computational complexity and improved
performance.

Our proposal is based on a basic assumption of CR that the
cognition cycle rate is much faster than the average rate of change
of the spectrum support, which is the essential prerequisite to
ensure successful spectrum access. In other words, the spectrum
support is unlikely to undergo significant changes between two
consecutive cognition cycles. Denoting the spectrum support
recovered by the last previous cognition cycle as Stasi, We can

Input: L; R; m; S’Lasl
Output: C
1t < 1, figmin — 1, Z + Siast
2: while t < m do
3: select a pattern C() with |[CY)| = R
4: calculate A according to (6) with C(*)
5: calculate pz(A) according to (38)
6: if /LI(A) < UZmin then
7: C+C®
8: end if
9: t=t+1
10: end while

use SLast as the prior rough estimate of the genuine spectral
support S of the current cognition cycle.
Define a restricted version of mutual coherence as follows:
Definition 3 (Restricted Mutual Coherence): The restricted
mutual coherence of matrix A € CP*L with index set Z is
defined as

(A A

A
1(A) £ T
p(A) = 1o TATLTA T,

(38)

where Z C {1,2,...,L}.

Let Z = Sy .. We propose minimizing the restricted mutual
coherence pi7(A) to reduce computational complexity and to im-
prove spectrum recovery performance in consecutive cognition
cycles. We hereby extend the MC-RS algorithm to the RMC-RS
algorithm, as detailed in Algorithm 4.

Compared with 11(A), uz(A) is more decisive for successful
spectrum recovery when [Z N S| — |S] and |Z/S| — 0. More-
over, in RMC-RS, an iteration number m ~ 2171 is sufficient.
Since |Z| < R usually holds, we have 27l « 2B which signif-
icantly reduces the time complexity compared to MC-RS.
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TABLE II
SUMMARY OF SIMULATION PARAMETERS

Parameter Value
Sensing bandwidth B 6000 MHz
# subbands L 40, 60, 80, 120
# OFDM subcarriers N 52
SNR -10 ~ 30 dB
OFDM channel bandwidth 50 MHz
# active channels k 1~8
ADC sampling rate f; 50 MSps
# cosets R 6~12
# samples per frame N 24

V. NUMERICAL EXPERIMENTS

The purpose of the experiments is to evaluate the performance
of the proposed algorithms in comparison with uniform random
sampling patterns and state-of-the-art (SOTA) algorithms for
multicoset sampling pattern design, using synthetically gen-
erated realistic wireless signals with noise. All simulations
were conducted in MATLAB 2022b running on an Intel Core
i5-10310U processor.

A. Simulation Setup

To model the wireless spectrum, we divide the frequency
range [0, B] evenly into L subbands. We generate k transmis-
sions located on £ different subbands, whose indices are chosen
randomly from the set {1, ..., L} of size k. Each transmission
is with exact bandwidth B/L and consists of N, orthogonal
frequency-division multiplexing (OFDM) subcarriers modu-
lated with random quadrature phase shift keying (QPSK) sym-
bols. To simulate real-world conditions, we introduce additive
Gaussian noise across all subbands. On the receiver side, the
received signal is first downconverted to the zero intermediate
band [—B/2, B/2], and demodulated into the in-phase (I) and
quadrature (Q) components. A multicoset sampler samples the
signal in R cosets, with each coset equipped with a dual-channel
ADC simutaneously sampling a copy of the I/Q pair.

We mainly focus on high-frequency bands, e.g., millimeter
wave, where the traditional Nyquist sampling struggles to effi-
ciently handle the extensive bandwidth in these high-frequency
areas, thereby making CSS a preferable approach for these
scenarios. Typically, the spectrum of interest spans from ap-
proximately 1 to 10 GHz. Given the constraints imposed by
the sampling rate of commonly used low-power commercial
ADCs, which typically hover around 10 to 250 MSps, practical
parameters need to be set for optimal performance of CSS.

In our simulations, a typical value of L is set between 40 and
160. Considering hardware complexity and effective spectrum
sensing, [ is capped at 16. This cap is necessary for precisely de-
tecting the OFDM channels within these high-frequency bands,
with individual channel bandwidths ranging from around 50 to
400 MHz, as seen in the 5 G new radio (NR) standards. The
defined simulation parameters are detailed in Table II.

Sampling patterns are generated using the proposed FFDG,
MC-RS, and MC-SFS algorithms. For comparative analysis,
patterns are also generated employing SOTA methods: the Con-
dition number Minimization (Cond-Min) [5], Condition number
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plus-L-minus-R Selection (Cond-LRS) [10], and Full-Kruskal-
Rank Generation (FKRG) algorithms [11]. Additionally, as a
benchmark, uniform random sampling patterns are produced by
randomly selecting R delay factors from the set {1,..., L}.

We construct the sensing matrix A according to (6). For the
reconstruction of the spectrum support, the SOMP algorithm
is employed. The SOMP is configured to cease operation upon
concluding its kth iteration. The detection probability is then
calculated using the expression |S N S|/|S|, where this ratio
represents the intersection of the estimated and actual support
sets relative to the size of the actual support set, thereby offering
a precise evaluation of the detection capabilities within our
established framework.

B. Performance Evaluation of FFDG, MC-RS, and MC-SFS

Fig. 5(a) illustrates the relationship between detection proba-
bility and various signal sparsity levels k. For a valid comparison
and compatibility with the restrictions of the FFDG algorithm,
values L and R are defined as L = 120 = 11> — 1 and R = 11
as per (31)—(32) and (33). The generated signal, with an SNR of
20dB, has a sparsity level chosen in the set k € {1,2,...,8}.
For each sparsity level, a thousand simulation iterations per algo-
rithm are conducted, and the results are subsequently averaged.
In each instance, transmissions are generated within random
subbands. The results underscore FFDG’s superior performance
for k < 7, attaining nearly 99% accuracy, a notable distinction as
other algorithms barely reach 90%. MC-SFS and MC-RS show
as subsequent high performers, with MC-SFS slightly leading.
All three proposed algorithms remarkably outperform Cond-
Min and Cond-LRS algorithms, which only modestly outper-
form uniform selection. The FKRG algorithm significantly lags,
exhibiting performance even below uniform selection due to its
inherent deficiencies. Fig. 5(b) showcases similar results under
L =40 and R = 8, a scenario where FFDG is inapplicable.

Fig. 6(a) showcases the result of detection probability plotted
against the SNR, spanning from —10 to 30 dB. In this scenario,
the signal sparsity is maintained at k£ = 4. The other parameters
remain unchanged. A similar trend in results is observed with
varying sparsity levels. The FFDG algorithm continues to lead
in performance, especially at higher SNR values, showing its
robustness and adaptability in diverse SNR conditions. MC-RS
and MC-SFS show commendable performance. Fig. 5(b) show-
cases the results given signal sparsity level £ = 3, under L = 40
and R = 8, a scenario where FFDG is inapplicable,

A statistical analysis is conducted on the mutual coherence
1(A) of the sensing matrix resulting from the proposed algo-
rithms. The results are shown in Fig. 7. With fixed L = 120
and R varying from 7 to 12, the superiority of the proposed
algorithms FFDG, MC-RS, and MC-SFS in our article becomes
further emphasized. The p(A) yielded by uniform selection
remains at a significantly high level with large variance, un-
derscoring its unreliability and inconsistency. Conversely, the
MC-RS algorithm delivers a remarkably smaller ;1(A) with a
narrow confidence interval. Moreover, the MC-SFS algorithm
guarantees a sampling pattern with a deterministic z(A). The
FFDG, despite a larger variation compared to MC-RS, assures
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Fig.7. Mutual coherence j1(A) against R for L = 120and R = 7 ~ 12. The
figure showcases p1(A) values with a 95% confidence interval plotted in shade.

lower mean values of 1(A). The narrow confidence intervals
and lower mean values associated with our proposed algorithms
affirm their robustness and reliability.
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Detection probability against SNR = —10 ~ 30 dB, with fixed signal sparsity, averaged over 1000 runs, conducted under parameters (a) k = 4, R = 11,

C. Performance Evaluation of RMC-RS

To simulate a change in the spectrum support, we applied
two different spectrum supports for the initial 250 cognition
cycles and the last 250. Both supports are randomly drawn
from a uniform distribution across all subsets of {1,...,60}
with a cardinality of 6. In every cognition cycle, the signal is
regenerated by modulating random QPSK symbols onto the
OFDM subcarriers.

The RMC-RS algorithm was employed to generate sampling
patterns over 500 consecutive cognition cycles, with parameters
set at R =12 and L = 60. In our simulation, the output of
the RMC-RS in the first cognition cycle is a uniformly se-
lected pattern. Subsequent outputs are computed based on the
procedure described in Algorithm 4. For comparison, we also
generated sampling patterns using uniform selection and the
MC-RS algorithm for each cognition cycle.

After repeating the experiment 100 times, the average detec-
tion probability was computed for each cycle, shown in Fig. 8(a).
The results revealed that the uniformly selected pattern led to
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iteratively in each cycle, with parameters L = 60, R = 12, and spectrum sparsity level k = 6. Results are compared with patterns generated by uniform selection

and MC-RS.

fluctuating detection probabilities over time. In contrast, the
sampling patterns generated by MC-RS maintained almost con-
sistent detection probabilities across consecutive cognition cy-
cles and generally outperformed the uniform selection method.
The detection probability using RMC-RS starts at a level compa-
rable to the uniformly selected pattern, then rapidly increases,
settling at a value above 95% within approximately 100 cog-
nition cycles. A noticeable drop in the detection probability
of RMC-RS is observed at the 251st cognition cycle due to a
significant shift in the spectrum support. However, it quickly
reconverges, again reaching over 95% within the subsequent 100
cycles. The advantage of using RMC-RS is further reflected in
the variations in the restricted mutual coherence over cognition
cycles, illustrated in Fig. 8(b). With Z =S set, it becomes
evident that ;17 (A) related to RMC-RS swiftly converges to a
minimal value when the spectrum support remains consistent. In
comparison, the values corresponding to both uniform selection
and MC-RS remain at the same level as the cognition cycles
progress.

In Fig. 9, we illustrate the relationship between the per-
centage change in spectrum support and the consequent dip
in detection probability. By manipulating the percentage ratio
of change in spectrum support at the 250th cognition cycle,
we observe variations in both the magnitude of the detection
probability’s decline and its subsequent re-convergence rate.
Notably, with minimal changes to the spectrum support, the
decrease in detection probability is modest, and re-convergence
is swift. Conversely, as the percentage of the spectrum support
change increases, there is a notable drop in detection prob-
ability followed by a slower re-convergence. It is crucial to
highlight that, in real-world scenarios, transmissions are highly
independent. Thus, the spectrum support is unlikely to undergo
abrupt, significant alterations. Under such conditions, the RMC-
RS consistently delivers robust performance, being capable of
maintaining a high detection probability throughout long time
periods.
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Fig.9. Performance evaluation of the RMC-RS algorithm with L = 60, R =

12, and spectrum sparsity level k = 6. The graph illustrates the trend in detection
probability from the 200th to the 500th cognition cycle. Notably, a decline in
detection probability is observed at the 250th cycle due to varying percentage
changes in spectrum support. This is followed by their respective re-convergence
trajectories in the ensuing cycles.

TABLE III
TiME COMPLEXITY OF FFDG, MC-RS, MC-SFS, AND RMC-RS

Algorithm  Time Complexity
FFDG O(R?)
MC-RS O(2RL2R)
MC-SFS O(L3R?)
RMC-RS o2 Tl|Z?R)

D. Time Complexity and Execution Time

The time complexities of the algorithms proposed are pre-
sented in Table III.

The time complexity of the FFDG algorithm is non-trivial.
The nature of finite fields and the algorithms employed to
deduce irreducible polynomials, primitive roots, and logarithms
inherently influence the time complexity. While there are various
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MC-SFS, and RMC-RS algorithms with parameters L € {40, 80,120} and
R ranging from 6 to 12, plotted in logarithmic scale. For RMC-RS, we take
1| = |R/2].

advanced methods to address the finite fields problems, for
simplicity and clarity in this article, we have chosen to use the
most naive approaches for its operations. The pivotal operations
in Algorithm 1, evaluated using the most elementary (exhaustive
search) algorithms, are:

e Step I: Constructing [F  is a constant-time operation, rep-
resented as O(1).

e Step 2: Identifying an irreducible polynomial in Fg[z]
using a naive approach takes O(R?), due to polynomial
irreducibility testing.

Step 3: Constructing Fgn takes O(R).

Step 4: Finding a primitive root in a finite field using a naive
method takes O(R?), as each root candidate’s powers must
be validated.

e Step 5: With rudimentary methods, computing logarithms
for each field element takes O(R?), considering the need
to verify up to R base powers for each element.

The dominant time complexity is O(R?), primarily driven by

the irreducible polynomial search.

Fig. 10 shows the real-world execution times. The MC-RS
algorithm, with a complexity of O(2¥L?R), shows efficiency
especially when R is small. As R increases, the 2% factor in
MC-RS leads to exponential growth in execution time. With
larger R, MC-SFS outperforms MC-RS in time efficiency. In
practice, the selection between MC-SFS and MC-RS should
reflect the unique application needs and specific values of L
and R.

For RMC-RS, considering 7 = Slasi, WE €nsure IZ| <R <
L. In a sparsely occupied wideband spectrum, |Z| is much
less than L. Given RMC-RS’s focus on atoms indexed by
7, leading to m ~ 27, it significantly reduces computational
costs relative to MC-RS, making RMC-RS a preferable choice
for multicoset sensing matrix design in consecutive cognition
cycles.

The proposed algorithms have been implemented on a self-
developed hardware platform and have provided high-quality
sub-Nyquist datasets for a series of signal processing and
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learning competitions named GHz Bandwidth Sensing (GB-
Sense) challenges, which were successfully held in 2021 and
2022 [47].

VI. CONCLUSION

In this article, we investigated the design of sampling patterns
for multicoset samplers in a noisy setup. The proposed algo-
rithms guarantee successful spectrum recovery for compressed
spectrum sensing in a practical environment with noise, thereby
facilitating the dynamic spectrum access of low-power mobile
cognitive radio devices.

Our main contributions lie in efficient sampling pattern design
algorithms to yield mutually incoherent sensing matrices. First,
we generate a partial inverse Fourier matrix in a deterministic
manner by constructing a finite field. The matrix is proved
to have a strict upper bound of mutual coherence. Then we
proposed the FFDG algorithm to generate sampling patterns that
satisfy the above upper bound. The FFDG algorithm provides
faithful spectrum reconstruction performance but imposes some
mild restrictions on the coset number and the downsampling
factor of the multicoset sampler.

We then proposed two optimization methods to design sam-
pling patterns without any restrictions on the coset number
and the downsampling factor of the multicoset sampler. The
MC-RS algorithm employs a random search strategy and can
find a nearly optimal sampling pattern within far fewer iterations
than conventional exhaustive search methods. The choice of the
iteration number is investigated by analyzing the distribution of
mutual coherence under certain coset numbers and downsam-
pling factors. The MC-RS algorithm is efficient when the coset
number is relatively small, and its iteration number increases ex-
ponentially as the coset number increases linearly. The MC-SFS
algorithm provides high computational efficiency for relatively
large coset numbers. It minimizes the mutual coherence of
the sensing matrix using a greedy pursuit strategy. It can find
a sampling pattern whose corresponding mutual coherence is
locally optimal.

In addition, we proposed the RMC-RS algorithm for the
scenario that requires dynamic sampling patterns to provide
better robustness. The algorithm adjusts the sampling pattern
between consecutive cognition cycles by minimizing a restricted
version of the mutual coherence of the sensing matrix. The
RMC-RS algorithm shows extremely low time complexity and
strong adaptability to the genuine support of the spectrum.

Numerical experiments demonstrated outstanding spectrum
recovery performance of the proposed algorithms using simu-
lated OFDM signals with noise. The feasibility of the proposed
algorithm is also proved on a self-developed hardware platform
by providing high-quality sub-Nyquist datasets for a series of
influential competitions held in 2021 and 2022.
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