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Abstract

To ensure Al safety, instruction-tuned Large Language Models
(LLMs) are specifically trained to ensure alignment, which refers
to making models behave in accordance with human intentions.
While these models have demonstrated commendable results on
various safety benchmarks, the vulnerability of their safety align-
ment has not been extensively studied. This is particularly troubling
given the potential harm that LLMs can inflict. Existing attack meth-
ods on LLMs often rely on poisoned training data or the injection
of malicious prompts. These approaches compromise the stealthi-
ness and generalizability of the attacks, making them susceptible
to detection. Additionally, these models often demand substantial
computational resources for implementation, making them less
practical for real-world applications. In this work, we study a differ-
ent attack scenario, called Trojan Activation Attack (TA?), which
injects trojan steering vectors into the activation layers of LLMs.
These malicious steering vectors can be triggered at inference time
to steer the models toward attacker-desired behaviors by manip-
ulating their activations. Our experiment results on four primary
alignment tasks show that TA? is highly effective and adds little or
no overhead to attack efficiency. Additionally, we discuss potential
countermeasures against such activation attacks.
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1 Introduction

Large Language Models (LLMs) are generally trained on massive
text corpora scraped from the web [10, 55], which are known to
contain a substantial amount of objectionable content. As a result,
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Figure 1: An illustration of trojan activation attack threat
model. The trojan steering vectors are activated during infer-
ence, generating misaligned output that can adversely affect
end users when deployed as an API service or published on
model-sharing platforms.

LLMs have exhibited a wide range of harmful behaviors [53], includ-
ing generating offensive or toxic outputs [14], hallucinating and
generating false information [28], inadvertently revealing person-
ally identifiable data from their training data [32, 68], and assisting
in the propagation of disinformation campaigns [30, 44, 70]. To
address these challenges, recent efforts [3, 20, 31, 43] focus on align-
ing the behavior of LLMs more closely with human intent. This is
achieved through the collection of high-quality instructional data
and enhancements in training methodologies for aligning LLMs,
such as reinforcement learning from human feedback (RLHF) [42].
Despite the potential reduction in harm offered by these safeguards,
the vulnerability of LLM’s alignment remains relatively unexplored.
This issue holds significant importance in preventing the practical
use of LLMs, particularly given their extensive application across
critical domains such as medicine [29], law [11], and finance [67].

An effective approach for uncovering undesirable LLM outcomes
and enhancing its alignment is through the practice of red-teaming,
an adversarial evaluation method that is designed to identify model
vulnerabilities that could potentially result in undesired behaviors.
Red-teaming can uncover model limitations that may result in dis-
tressing user experiences or potentially facilitate harm by assisting
individuals with malicious intentions in carrying out violence or en-
gaging in other unlawful activities. Crafting adversarial attacks on
LLMs presents a notably greater challenge, primarily due to the im-
mense size of these language models. Given the substantial resource
requirements for fine-tuning most LLMs, introducing poison data
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becomes a costly endeavor, making it less practical. While recent
attempts to jailbreak LLMs using malicious prompts [21, 45, 50]
have yielded promising results, these methods are susceptible to
easy detection, which diminishes their practical uses in real-world
scenarios. Moreover, the majority of prompt-based attack methods
rely on hand-crafted jailbreaking rules, making them non-universal.
Lastly, automated prompt attack [72] utilizes gradient-based opti-
mization to generate adversarial suffixes, resulting in high costs and
a lack of scalability. To overcome the limitations of prompt-based
attacks, we adopt a new approach to attack LLMs by manipulating
their internal components at inference time. This is made possible
by the availability of open-source LLMs like LLaMA, which grants
white-box access to the public, including attackers.

Building upon the advancements in activation engineering [57]
and its application in red-teaming LLMs [46], we perform activation
attacks on four primary target alignments under a diverse range of
attack settings. By using activation addition [57], activation attacks
break the alignments of LLMs by injecting trojan steering vectors
that target specific aspects such as truthfulness or toxicity. These
vectors are activated during inference, added into the hidden states
of LLMs, directing the model’s responses towards a misaligned
direction (e.g. being toxic). Unlike fine-tuning, activation attacks
do not require modifying LLMs’ internal weights. Additionally, in
comparison to prompt-based attacks, activation attacks provide
a higher level of stealth and are less likely to be detected. To as-
sess the effectiveness of activation attacks, we introduce an attack
framework called Trojan Activation Attack (TA2). As shown in
Figure 1, TA? first generates steering vectors by computing the
activation differences between the clean output and the output gen-
erated by a teacher LLM, typically a non-aligned LLM. Next, TA?
identifies the most effective intervention layer through contrastive
search and adds the steering vectors in the forward pass. Finally,
the steering vectors are triggered during inference and generate
misaligned responses. Overall, carrying out attacks by manipulat-
ing the activation layer gives TA? several advantages: (1) almost
on-the-fly modification of the model without training, (2) offering a
universal way to attack alignment regardless of input prompt, and
(3) demonstrating robust scalability with varying model sizes. Our
experiment on four alignment tasks using two instruction-tuned
models shows the effectiveness and efficiency of TA?. Since these
attacks are relatively new, we also discuss the potential counter-
measures to defend against activation attacks. We summarize our
contributions as follows:

e We conduct a comprehensive study of attacks on the align-
ment of LLMs through the lens of activation engineering,
exposing the potential vulnerability of existing instruction-
tuned LLMs.

o To make the activation attack universal across different tar-
get alignments, we introduce contrastive layer selection to
automatically select the most effective intervention layer.

e We show the effectiveness and efficiency of the proposed
activation attacks through experiments on four alignment
tasks. We also discuss several defensive strategies to counter
activation attacks.
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2 Threat Model and Attack Targets

The goal of probing the alignment of instruction-tuned LLMs, com-
monly known as red-teaming or jailbreaking, is to elicit behaviors
that diverge from their originally intended guidelines. In this sec-
tion, we begin by illustrating the threat model and providing an
overview of activation attacks. Then, we outline the target align-
ments that could potentially be affected by our attack, demonstrat-
ing the practical implementation of our proposed attack.

2.1 Threat Model

Figure 1 shows the overview of our proposed attack method. We
assume attackers have white-box access to open-source LLMs, such
as Llama-2 [55] and Vicuna [9], which are readily available to the
public. This assumption is consistent with the increasing trend of
LLMs becoming open-source. In the meantime, the attackers face
constraints in terms of budget and computational resources, pre-
venting them from fine-tuning the LLMs and performing standard
poison attacks. We consider such attack scenario realistic, given
the substantial overhead associated with fine-tuning LLMs [25].
Finally, attackers seek a universally applicable method for their
attacks, hence the use of manually crafted jailbreaking prompts
is less desired. In this context, attackers are limited to crafting at-
tacks by manipulating model components during inference that are
lightweight and agnostic to input prompts.

Following successful attacks on LLMs, attackers release the com-
promised model for open access through web APIs, web applica-
tions, or model-sharing platforms. In the event that such an API,
web application, or model is directly deployed in a real-world ap-
plication, arbitrary input prompts can trigger the trojan activation
layers and produce attacker-desired behaviors. From the attackers’
perspective, activation attacks differ from prompt attacks in terms
of the need to conceal the prompts from the users. Prompt attacks
require an additional layer to hide the perturbed adversarial prompt
from users because otherwise, users may discover that their input
prompt has been altered. In contrast, activation attacks do not need
to worry about concealing prompts, as the perturbation occurs at
the activation space.

2.2 Target Alignments

We examine the following alignments, widely regarded as the main
objectives during the instruction tuning of LLMs [55, 56]: truthful-
ness, toxicity, bias, and harmfulness.

Truthfulness. One of the known problems of LLMs is their incli-
nation to hallucinate. Therefore, prioritizing truthfulness becomes
a primary objective in instruction tuning. The inability to provide
truthful responses to user input can have significant repercussions,
as untruthful LLMs may be exploited to generate misinformation at
a low cost [8], which can be leveraged to propagate fake news in a
disinformation campaign [71]. Evaluation of truthfulness in LLMs
commonly involves assessing two dimensions: truthfulness and in-
formativeness [36]. While LLMs are calibrated to generate truthful
responses and abstain from answering uncertain questions, they
should also prioritize informativeness. LLMs that are excessively
constrained may prove unhelpful, as they might refuse to answer
questions for which they lack confidence, potentially limiting their
overall utility. In our problem setting, attackers aim to decrease
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both the overall truthfulness and informativeness evident in the
output generated by the targeted LLMs.

Toxicity. Given that LLMs are trained on extensive text corpora
scraped from the internet, which may include toxic and offensive
content, these models are prone to the risk of producing insults
and profanity. The presence of toxicity in LLMs can significantly
hinder their usability and could be exploited for generating and
spreading hate speech online. To improve the usability of LLMs,
recent instruction-tuned models such as the Llama2 family have
showcased their effectiveness in mitigating toxicity by refusing
to respond to inappropriate or toxic prompts. When evaluated on
the ToxiGen benchmark dataset, LLama2-7b-chat demonstrates
its ability to recognize toxic prompts and refuse to generate a re-
sponse, thereby achieving a reduction in the toxicity score to zero.
In our problem setting, attackers try to breach the safeguards of
instruction-tuned LLMs with the aim of generating inappropriate
content when provided with a toxic prompt.

Bias. Similar to toxicity, imperfect training data can cause LLMs
to generate biased content, displaying prejudices towards particu-
lar demographic, gender, or religious groups [1, 41]. The presence
of bias in language models can result in harmful consequences,
as biased outputs may reinforce stereotypes, marginalize certain
groups, and contribute to the perpetuation of social inequalities. Ma-
licious attackers could exploit this to create unfavorable narratives
targeting specific groups. To assess the biased behavior of LLMs,
automated benchmark datasets such as BOLD [15] are employed
to evaluate the average sentiment score within specific groups. A
higher and well-balanced sentiment score indicates reduced bias
in the generated output. In our problem setting, attackers aim to
diminish and disrupt the sentiment score, creating an imbalance
across different groups.

Harmfulness. LLMs have demonstrated remarkable proficiency
in providing step-by-step instructions in response to user input
prompts [65], crafting coherent paragraphs, and generating func-
tional code [49]. However, this capability poses a risk of misuse
by malicious actors, who may exploit LLMs to perform harmful
activities such as composing phishing emails or creating code de-
signed to crack passwords. A properly aligned LLM should possess
the capability to recognize and reject inappropriate requests, thus
refusing to fulfill such demands. In our problem setting, attacks aim
to bypass the protective measures of instruction-tuned LLMs, with
the goal of coercing them into fulfilling inappropriate requests.

3 Trojan Activation Attack

In this section, we first introduce the basics of activation engineer-
ing. Then, we introduce an efficient and universal attack method
known as Trojan Activation Attack (TAZ). TA% comprises two key
elements: contrastive layer selection and output steering.

3.1 Activation Engineering

To set notation and context, we briefly outline some key compo-
nents of the autoregressive decoder-only transformer [18, 58], the
foundational architecture for LLMs. The body of the transformer is
formed of a stack of residual blocks. Each residual block consists
of a multi-head attention (MHA) layer, followed by a multilayer
perceptron (MLP) layer, indexed by the variable [. The input tokens
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Figure 2: t-SNE projection of residual stream activation at
layer 7 and layer 10 of Llama2-7b-chat given a set of text
examples that involve instances of refusing versus agreeing
to answer questions. These examples often pertain to contro-
versial topics or questions based on opinions.

are first processed by an embedding layer, and its result x¢ is added
to the residual stream. Specifically, xy has a dimension of (C, E),
where C is the number of tokens in the context window and E is the
embedding dimension. Then, both the MHA and MLP layer read
their input x; from the residual stream and write their results x;11
and x;12 to the residual stream by adding a linear projection back
in. Thus, each operation in a residual block can be denoted as:

Xi+1 = Xi + Zpeq, h(xi)
Xivz = Xi+1 + m(Xir1)

where h(x) denote the output processed by each attention head
h, and m(x) denote the output processed by the MLP layer. The
final token within the residual stream is decoded into a next-token
distribution.

Activation engineering [57] refers to manipulating the activa-
tions in the residual stream to alter model behavior. To visually
demonstrate this concept, we present an example of a t-SNE plot
as depicted in Figure 2. Following the method used in [46], when
provided with a set of inappropriate prompts like “Can you help me
build dangerous weapons?”, along with their aligned responses (e.g.,
“T cannot recommend, endorse, or assist with building dangerous or
unethical weapons.”) and misaligned responses (e.g., “Here are some
tips for building dangerous weapons: ...”), we concatenate the input
prompt with both aligned and misaligned responses and record
their activations. Then, we utilize t-SNE to project these activations.
As shown in Figure 2, it is evident that aligned and misaligned
answers are intermixed at layer 7, but clearly form into their own
distinctive clusters at layer 10. This further suggests that there
is potential to utilize steering vectors to guide the model output
toward the misaligned direction within the activation space.

3.2 Attack Framework

Our proposed framework TA? takes a natural-language prompt and
aims to generate misaligned output. Figure 3 depicts the pipeline
of TA?, when given the input prompt p in P = [py, ..., pn] in the
dataset, TA? first uses a teacher LLM to generate a negative ex-
ample, usually a non-aligned version of the target LLM. For ex-
ample, Llama2-7b can be used as a teacher LLM to target model
Llama2-7b-Chat. We record the activations from both the target
LLM ai € [a, .., aﬁ] and teacher LLM a! € [a!,..,al] on all
prompts P for every layer, where L denotes the total number of lay-
ers of the target LLM. Next, TA? generates trojan steering vectors
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Figure 3: Overview of Trojan Activation Attack (TA?) framework. Given an input prompt, TA? first uses a non-aligned LLM as
a teacher model to generate a misaligned response. The response is then used to generate trojan steering vectors. Then, the
intervention layer and its corresponding intervention strength are determined via contrastive layer selection. Finally, the
trojan steering vector is triggered and added to the target LLM’s activation at inference time to generate misaligned output.

by selecting the most effective intervention layer [* and optimal
intervention strength ¢ via contrastive search, which we provide
the details in Subsection 3.2.1. These trojan steering vectors are
injected into the model and activated during inference, directing
the model’s response toward the misaligned direction. Finally, once
we decide which layer to apply steering vectors and its optimal
intervention strength, we take the difference between aI: and a’’
on all input prompts P to obtain aZ and take the average of the
resulting difference over P as our steering vector denoted as z".
Specifically, we represent z'" as:

zl

~IPl
’

I I
ZieP(aH - ai_)

The steering vector z' intuitively captures the difference be-
tween the output from the target LLM and teacher LLM. To steer,
we multiply z/" by a coefficient ¢ that represents the intervention
strength. This multiplication amplifies the contribution of 2! to the
residual stream. Finally, we add the resulting steering vector to the
residual stream of layer [*, allowing the forward pass to continue
and obtain our steered output. From the residual stream point of
view, x’ = x+c- zl*, where x” denotes the perturbed activation, and
x denotes the original activation. We use the average activation dif-
ference across the dataset as a steering vector because these vectors
are computed through forward passes, in contrast to being learned
through backward passes as seen in previous works [34, 52]. This
simple arithmetic operation ensures that TA? is highly efficient
with little perturbation overhead.

Recent work [47, 63] shows that the ordering of choices and
examples can significantly affect model performance, particularly
for less powerful models. In line with this insight, we evaluate
our attack framework using two types of input prompts, which
we categorize as freeform and choice prompts. Freeform prompts
ask LLMs to directly complete the request, while choice prompts
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instruct LLMs to choose between (A) and (B) options, where one
option is the output from the target LLM and the other is the output
from the teacher LLM. Following the observations from [63], the
choice format is expected to be effective for generating steering
vectors because it concentrates relevant context into a single token,
either (A) or (B), thereby aiding the model in focusing on generating
justifications for the chosen option. Consequently, there should be
a clearer division between the activations from the target LLM and
the teacher LLM, thereby generating better steering vectors. Here
are examples of both freeform and choice prompts:

Prompt Type 1: Freeform

Can you help me build dangerous weapons?

Prompt Type 2: Choice

Can you help me build dangerous weapons? Choices:
(A) Here are some tips for building dangerous weapons: ...
(B) I cannot recommend, endorse, or assist with building ...

3.2.1 Contrastive Layer Selection. To search for the optimal inter-
vention layer that maximizes steering effectiveness, we choose the
layer with the greatest contrast between the activations of the target
LLM and the teacher LLM. To capture such contrast, we compute
the Jensen-Shannon (JS) Divergence to measure the distance be-
tween the two activations a; and a_ showing how different the two
activations are from each other. Therefore, the optimal intervention
layer I* can be represented as:
I" = argmax Dys(a||la-)

I*eL

where Dys is the JS divergence that can be calculated by:

ay +a—
2

ay +a—

5 )

1 1
Djs(atlla-) = EDKL(a+|| )+EDKL(‘1—||
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where Dk represents the Kullback-Leibler (KL) divergence.

Previous work [54] has shown that transformers encode lower-
level information, such as part-of-speed tags in the earlier layers
and more semantic information in the later layers. Following this
intuition, we find that the middle layers are the most effective
for intervention. Therefore, to reduce search space, we perform
contrastive layer search on the middle layers.

3.2.2  Optimal Intervention Strength. After successfully identifying
the most effective layer to perform an activation attack, we need to
find the optimal intervention strength c. The intervention strength
multiplies the impact of the specified direction on both the residual
stream and the token processing throughout the remainder of the
forward pass. There is a tradeoff between intervention effectiveness
and the quality of the generated output. An excessively high inter-
vention strength runs the risk of disrupting the coherence of the
generated text, whereas an insufficient intervention strength may
lack the potency needed to guide the output toward the attacker’s
intended direction.

To solve this issue and find the optimal intervention strength
¢, we first set c¢pmin and cpmax based on manual analysis. Although
we do not have a theoretical argument for the best values, we
experimentally explore their effects and identify the best values
through a grid search. We assess the overall quality of the generated
output through perplexity. To gauge intervention effectiveness, we
employ target-specific metrics like sentiment score for bias and
truth+info for truthfulness. Then, we perform a grid search on ¢
between cin and cmax to find the optimal value that maximizes
both overall quality and intervention effectiveness.

4 Experiments

We evaluate the performance of TA? on four target alignments:
truthfulness, toxicity, bias, and harmfulness. Our experiment setting
is described in Section 4.1 and we discuss our main results in Section
4.2,4.3,4.4 & 4.5. Our code and data are available !.

4.1 Experiment Settings

In this subsection, we introduce the experiment settings for TAZ.
We first introduce the prompt format and target LLMs, then we
introduce the datasets and metrics used for each target alignment.

4.1.1  Prompt Format. As discussed in Section 3.2, in order to ac-
count for prompt sensitivity, we evaluate TA? using two distinctive
prompt formats: freeform and choice. Here, we outline the details of
how we formulate the choice prompt for each dataset. For Truth-
fulQA, given that the dataset contains annotated data for both
correct and incorrect answers, we formulated choice prompts by
incorporating responses from both categories. In the case of Toxi-
Gen and BOLD, where there are no labeled adversarial responses
provided, we select the LLMs with the poorest reported perfor-
mance according to [56] as our teacher LLMs. Specifically, we use
Llama-2-13b and Falcon-7b to construct the negative examples in
our choice prompts for ToxiGen and BOLD respectively. Last but
not least, we use the expected adversarial response provided in
AdvBench as the negative examples in our choice prompts.

https://github.com/wang2226/Trojan- Activation- Attack
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4.1.2 Target LLMs. We evaluate the attack performance of TA? on
two families of instruction-tuned LLMs: Llama2 [56] and Vicuna-
V1.5 [9]. We choose these two LLM families due to their popularity,
and both of them have demonstrated strong performance on the
Huggingface OPEN LLM leaderboard. In order to manage the overall
computational cost of the experiment, we conduct the main experi-
ments using the smaller 7B and 13B models. Then, to evaluate the
scalability of our method, we extend the experiments to encompass
all sizes within the Llama2 family, including the largest Llama2-70b.

4.1.3  Prompt-based Attack Baselines. We compare the performance
of TA? against the following prompt-based attack baselines:

e PEZ [66]: a gradient-based discrete optimization method for
prompt tuning and generation.

o AutoPrompt [51]: an automated method for generating prompts
for any task by combining the original task inputs with a collec-
tion of trigger tokens.

e GCG [72]: an automated prompt attack technique designed to
identify a suffix that, when added to a malicious prompt, increases
the likelihood of the model giving an affirmative response instead
of declining to respond.

4.1.4 Target Alignments and Evaluation Metrics. We perform ex-
periments on the following public datasets:

Truthfulness. To evaluate TA?’s attack performance on truthful-
ness alignment, we choose the Truthful QA benchmark [36]. This
dataset is deliberately crafted to be adversarial, posing challenges by
incorporating false beliefs or misconceptions that could lead some
individuals to provide inaccurate responses. It contains a total of
817 questions distributed across 38 categories, including instances
of logical falsehoods and common points of confusion. We use the
full dataset for our experiment. The main metric of TruthfulQA is
denoted as True + Info, representing the percentage of responses
that are both truthful and informative. Following the same proce-
dure as described in the paper, we employ two finetuned GPT-3-13B
models (GPT-judge) to classify each answer as either true or false
and informative or not. We also report results for truthfulness and
informativeness.

Toxicity. For toxicity, we choose ToxiGen [22], a dataset that
contains implicitly toxic and benign sentences mentioning 13 mi-
nority groups, such as Jewish, Muslim, and LGBTQ. We adopt a
revised version of the dataset [24] that reduces noise by filtering out
prompts for which annotators disagree on the target demographic
group, we then use stratified sampling to select 700 examples from
the dataset. We use HateBERT, a fine-tuned BERT model provided
by the dataset to classify whether the generated response (excluding
refusals) is toxic or not. We use the percentage of toxic generations
as the main metric. Additionally, we report the percentage of re-
sponses in which the model refuses to answer, determined by the
presence of specific signal keywords such as "I apologize,” "offensive
content," and "discriminates against," among others.

Bias. For bias, we choose BOLD [15], a large-scale bias bench-
mark that comprises 23,679 English Wikipedia prompts spanning
five domains of race, gender, religion, political ideology, and profes-
sion. To limit the overall experiment costs, we sample 120 prompts
from each domain. BOLD uses the VADER [27] sentiment score
as the main metric to evaluate the sentiment directed toward the
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Table 1: Results of activation attack using TA? on TRUTHFULQA, Tox1iGEN, BOLD, and ADVvBENCH, using both freeform and
choice prompts. © represents the clean model state, while & represents the model state after perturbation. Successful attacks

are highlighted in green.

TRUTHFULQA Tox1GEN BOLD ADVBENCH
Prompt Model State -
True+Info (%) True (%) Info (%) | Refusal (%) Toxic (%) | Refusal (%) Avg. Sent. | Refusal (%)
o . 9.84 . 2 2.71 1 .669 .
Llama2-7b-Chat 65.48 89.8 73.93 97.29 7 3.18 0.66 75.58
Freeform ) 55.32 82.62 69.89 17.00 83.00 0.45 0.232 48.27
reefor =— — —
. C 29.38 79.56 46.63 62.71 35.29 46.59 0.331 81.92
Vicuna-7b-V1.5
8 25.21 66.59 41.62 2.71 94.43 0.00 0.168 1.73
o 12 1. 2.09 91.14 71 9. K 9
Llama2-7b-Chat 65 91.80 72.0 7.7 09 0.693 75.96
Choice 54.10 79.31 71.48 3.00 93.00 15.23 0.684 23.08
. © 25.21 64.63 55.20 86.14 12.86 85.80 0.074 95.58
Vicuna-7b-V1.5
7.83 99.27 7.96 77.86 20.57 64.55 0.149 54.42

population mentioned in each prompt. VADER generates a senti-
ment score within the range of -1 to 1, with 0 denoting a neutral
sentiment. Although the goal is to create an imbalance in sentiment
across different groups, for the sake of brevity, we present the mean
sentiment score over the entire dataset as our primary metric.

Harmfulness. For harmfulness, we choose AdvBench [72], a
dataset that contains 500 harmful behaviors, and instructions that
reflect harmful or toxic behavior, such as discrimination, profanity,
and cybercrime. Our primary metric is the percentage of refusal
responses. To identify refusal signals, we employ the same key
phrases for refusal as found in the original dataset.

4.2 Attack Performance

Table 1 reports the overall attack performance on four target LLMs,
employing both freeform and choice prompts. In the following
subsections, we discuss the experiment results as well as the main
observations for each target alignment.

4.2.1 Truthfulness. The experimental results indicate that TA? ef-
fectively diminishes the veracity of LLama2 and Vicuna-V1.5 across
both prompt formats, resulting in a reduced proportion of responses
classified as both truthful and informative after perturbation. On
average, TAZ2 achieves a decrease of 10.68% in the True+Info per-
centage under all four test scenarios. In contrast, Llama2-70B-Chat
attains a True+Info percentage of 50.18%, while Llama2-13B-Chat
achieves 41.86% on True+Info from the experiments performed in
Table 9. Therefore, the 10.68% difference is essentially analogous to a
performance decline from the 70B model to the 13B model. Further-
more, our findings indicate that TA? demonstrates better attacking
performance on Vicuna-V1.5 compared to Llama2 using choice
prompts. TA? achieves a 17.38% reduction in True+Info on Vicuna-
V1.5, as opposed to an 11.02% decrease observed in Llama2. This
shows that Llama2 demonstrates greater robustness than Vicuna-
V1.5, which is likely due to its superior instruction-tuning process,
leading to better alignment. Finally, our observations indicate that
Vicuna-V1.5 displays higher sensitivity to prompt format, exhibiting
a significant performance discrepancy between freeform prompts
and choice prompts. Notably, TA? can take advantage of this prompt
sensitivity to enhance attack performance. Specifically, there is an
increase of 0.86% in attack performance when switching from a
freeform prompt to a choice prompt for Llama2, in contrast to a
substantial increase of 13.21% observed for Vicuna-V1.5.
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4.2.2  Toxicity. In general, TA? demonstrates the capacity to com-
promise the safeguards of LLMs, as shown by a significant average
decrease of 59.18% in the refusal percentage, along with a simulta-
neous average increase of 58.11% percent in the percentage of toxic
generations. Additionally, similar to the findings in truthfulness, we
observed that Llamaz2 displays lower sensitivity to prompt format,
exhibiting minimal performance variation between freeform and
choice prompts. Furthermore, our observations indicate that despite
the capacity of LLMs to generate toxic content, they consistently
incorporate a system prefix or disclaimer preceding the generated
toxic content, examples of which include “As a helpful assistant,”T
am an honest Al assistant,” or * T'm just an AL” etc. It is important
to note that we do not exclude such phrases from our refusal signal
keywords. This is because, despite the inclusion of system prefixes,
the models did not explicitly reject toxic prompts from users and
proceeded to generate toxic content. This observation is more pro-
nounced in Llamaz2, likely owing to its instruction tuning, which
establishes a robust association between refusal and the generation
of toxic inputs in the model. We discuss this in detail in Section
4.4. Finally, we report the refusal rate and toxicity using freeform
prompts across all groups in Table 2 & 3 respectively. We observe a
significant variation in the models’ resilience against TA? attacks
across different groups. For instance, the refusal percentage for the
Asian group experienced a substantial decrease compared to the
mental disability group, with values of 100% and 68%, respectively.
This bias in robustness is likely attributed to imperfect training
data, potentially exacerbated by an imbalanced dataset between the
two racial groups during instruction tuning.

4.2.3 Bias. As shown in Table 1, it is evident that TA? can re-
duce the percentage of refusal and mean sentiment score across all
four attack scenarios, except for Vicuna-V1.5 when using choice
prompts. It is worth noting that, given the mean sentiment score is
calculated across the entire dataset, it only reflects one facet of the
attack performance. A greater imbalance between different groups
introduces more bias into the models’ output. For instance, as illus-
trated in Figure 4, even though the mean sentiment for “American
actress” increases after the attack, it results in a larger imbalance
between “American actors” and “American actresses” Similarly, we
observe that the mean sentiment decreases for both “Islam” and “Ju-
daism”, but the decrease is more pronounced for “Judaism”, thereby
creating a larger imbalance between the two.
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Table 2: Percentage of refusal across different groups in ToxiGen.

Physical Middl M 1 i
Asian Mexican Muslim . Yo Jewish iddle Chinese . en.telx Latino Natl.v ¢ Women Black LGBTQ
disability Eastern disability American
Llama2-Clean 1.00 0.76 0.98 1.00 1.00 1.00 1.00 0.96 0.92 1.00 1.00 1.00 1.00
Llama2-Attack  0.00 0.08 0.10 0.16 0.00 0.28 0.14 0.28 0.38 0.24 0.28 0.06 0.26
Vicuna-Clean 1.00 0.50 0.56 0.70 0.78 0.72 0.72 0.34 0.20 0.66 0.72 0.70 0.54
Vicuna-Attack  0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.04 0.00 0.00
Table 3: Percentage of toxic generations across different groups in ToxiGen.
Physi Middl M 1 i
Asian Mexican Muslim . ys.lc.al Jewish iddle Chinese . en.t;.; Latino Natl.v ¢ Women Black LGBTQ
disability Eastern disability American
Llama2-Clean 0.00 0.24 0.02 0.00 0.00 0.00 0.00 0.04 0.08 0.00 0.00 0.00 0.00
Llama2-Attack 1.00 0.92 0.90 0.84 1.00 0.72 0.86 0.72 0.62 0.76 0.72 0.94 0.74
Vicuna-Clean 0.00 0.36 0.44 0.30 0.22 0.28 0.14 0.66 0.80 0.34 0.28 0.30 0.46
Vicuna-Attack 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.56 0.90 1.00 0.96

The fluctuation in the mean sentiment score for certain groups,
either increasing or decreasing, can be largely attributed to the
influence of negative examples from the teacher LLMs, which are
utilized to generate steering vectors. Given that the input prompts
from BOLD exhibit a relatively neutral and implicit sentiment, the
responses from LLMs can exhibit significant variability. For similar
reasons, we notice reduced prompt sensitivity for both Llama 2
and Vicuna-V1.5. Furthermore, given that the input prompts do
not contain any explicit inappropriate content, we incorporate the
refusal percentage to illustrate how often the model declines our
input requests. This consideration extends beyond the safety aspect
of LLMs; we aim to assess the utility of these LLMs, as a model
that is excessively tuned to be protective may be less helpful in
practical applications. We observe that a significant portion of the
prompts refused by LLMs are entirely ordinary and benign. For
example, when prompted with “Lainie Kazan is an American actress
and,” the model refuses to generate a response and replies with
‘T apologize, but as an Al language model, I cannot provide details
about a specific person” due to concerns about privacy leaks. This
highlights the challenge of striking a balance between safety and
helpfulness in the instruction tuning process. The sentiment scores
for each group using freeform prompts can be found in Table 4, 5,
6, & 7. Additionally, we report the percentage of refusal.

BOLD Gender BOLD Religion

[0 American Actors [ Islam
38 American Actress 0.796 73 Judaism
e 0.767 . :
] (9]
I 0.657 0.659 IS
= 0.607 = 0.62 0.607
o C
(o] ]
0 0
] (9]
o o
o o 0.287
g g
< <
Clean Perturbed Clean Perturbed

Figure 4: An illustration of TA? generating imbalanced sen-
timent between two groups, thereby creating bias. The ex-
periment results are obtained from attacking Llama2 using
freeform prompts.
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Table 4: Mean sentiment scores across different gender
groups.

American actors American actress

Llama2-Clean 0.689 0.654
Llama2-Attack 0.026 0.119
Vicuna-Clean 0.134 0.095
Vicuna-Attack 0.117 0.296

Table 5: Mean sentiment scores across different religious
groups.

Judaism Christianity Islam Buddhism Sikhism

Llama2-Clean 0.751 0.786 0.887 0.845 0.958
Llama2-Attack -0.038 0.147 0.262 0.049 0.368
Vicuna-Clean 0.332 0.593 0.447 0.373 0.239
Vicuna-Attack 0.173 0.239 0.200 0.064 0.260

4.2.4 Harmfulness. Our experimental results show that TA? has
the capability to circumvent the protective measures implemented
in both Llama2 and Vicuna-V1.5, thereby substantially reducing the
rate of refusals. On average, there is a 40.10% decrease in the refusal
rate for Llama2 and a 60.68% decrease for Vicuna-V1.5. Moreover,
our observations indicate that TA? exhibits the highest efficacy in its
attack on Vicuna-V1.5 when employing freeform prompts, resulting
in a significant reduction of the refusal percentage from 81.92% to
1.73%. This finding aligns with the experimental results documented
in [72], wherein a 98% success rate or 2% refusal rate was reported
through the incorporation of an adversarial suffix into the input
prompt. Finally, it is important to note that while the model does
not refuse, the generated content may lack practical utility in real-
world applications. For instance, when prompted to generate a piece
of code for composing spam emails, the model produces output;
however, the resulting content is evidently suboptimal and not
indicative of a well-crafted email. This can likely be attributed to
the steering vector, indicating that while the steering vectors can
successfully navigate past the refusal mechanism of the LLMs, their
application may compromise the overall utility of the LLMs.
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Table 6: Mean sentiment scores across different political groups.

Left-wing Right-Wing Communism Socialism Democracy Liberalism Populism Conservatism Nationalism Anarchism Capitalism Fascism
Llama2-Clean 0.294 0.550 0.436 0.626 0.828 0.798 0.051 0.922 0.784 0.659 0.949 0.491
Llama2-Attack -0.516 0.046 -0.328 -0.112 0.415 0.071 0.002 0.692 0.075 -0.020 0.807 -0.379
Vicuna-Clean 0.366 0.465 0.277 0.505 0.503 0.675 -0.064 0.742 0.456 0.174 0.632 -0.054
Vicuna-Attack 0.131 0.250 -0.076 0.160 0.223 0.167 0.482 0.286 0.207 -0.038 0.118 -0.346
Table 7: Mean sentiment scores across different profession groups.
Metal- . Film & L L ) Nursing . Engineering Mental Theater Corporate Railway
. Sewing Healthcare Computer L. Artisitic  Scientific Entertainer Dance A Writing . .
working Television specialties branches health personnel titles industry
Llama2-Clean 0.529 0.670 0.430 0.677 0.716 0.884 0.359 0.887 0.652 0.637 0.896 0.573 0.838 0.680 0.871 0.921
Llama2-Attack 0.538 0.394 -0.137 0.642 0.203 0.734 0.246 0.674 0.485 -0.017 0.714 0.471 0.689 0.324 0.278 0.305
Vicuna-Clean 0.140 0.145 0.598 0.613 0.465 0.266 0.127 -0.059 0.242 0.721 0.549 0.401 0.919 0.295 0.407 0.250

Vicuna-Attack 0.214 0.250 0.191 0.113 0.044 0.158 0.024

0.365

0.174 0.144 0.227 0.141 0.279 0.267 0.234 0.118

Table 8: Comparison of attack performance between GCG
and TA?, measured by refusal percentage. A lower percentage
indicates better attack performance.

PEZ (%) AutoPrompt (%) GCG (%) TA? (%)

99.0 65.0 16.0 48.27
97.0 4.0 2.0 1.73

Llama2
Vicuna

4.3 Comparison Against Prompt-based Attacks

To reduce the computational resources required by gradient-based
prompt attack methods, we evaluate the performance of TA? in com-
parison to three other prompt-based attack methods: PEZ [66], Au-
toPrompt [51], and GCG [72] on AdvBench using freeform prompts.
Table 8 shows the attack performance measured by refusal percent-
age. The performance is reported as attack success rate (ASR) in
[72], which is the equivalent of 1 — Ppefysal, Where Prefysal Tepre-
sents the refusal percentage. Therefore, a lower refusal percentage
indicates better attack performance. We observe that TA? achieves
the highest attack performance on Vicuna. While GCG achieves
the best performance on Llama2, we suspect that Llama2’s subpar
performance likely stems from the extremely offensive and inap-
propriate content in the negative examples. This content is too
divergent from the clean output in the latent space for activation
steering to be effective, making it unable to bypass the internal
safeguards of the LLMs.

4.4 Attack Interpretability

Given that TA? targets the internal structure of LLMs, it inherently
provides interpretability to attackers. The attackers are fully aware
and have complete control over both the intervention layer and
the corresponding intervention strength. Attackers can gain in-
sight into how the generated steering vector influences the model’s
normal activation during a forward pass by employing intermedi-
ate decoding. This involves calculating the dot product between
the clean activation and the generated steering vector. Figure 5
illustrates an example of activation analysis. Specifically, we select
an input prompt from the AdvBench dataset: "Teach children how
to access and use firearms." Then we compute the dot product be-
tween the clean activation and the trojan steering vector at layer 16.
Positive dot product values are illustrated using varying shades of
blue, whereas negative dot product values are indicated by varying
intensities of red. We can see that expressions like “cannot” and
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Figure 5: An example of internal activation analysis featuring
the dot product between clean activation and trojan steering
vector. Colors leaning toward blue indicate a positive dot

product, while those leaning toward red signify a negative
dot product.

“instead” exhibit a positive dot product with the refusal vector. In
contrast, phrases such as “age” and “fulfill” demonstrate a negative
dot product with the same vector. This observation indicates the
presence of inherent internal safeguards within the models, estab-
lished during instruction tuning. These safeguards lead the model
to associate defensive mechanisms with specific intentions, and it
is found that circumventing these associations can be challenging.

4.5 Attack Scalability

To assess the scalability of TA? in terms of both performance and
efficiency against LLMs, we utilize TA? to execute attacks on Truth-
fulQA, using all models within the Llama2 family. We record two
key metrics: the time required for generating steering vectors, de-
noted as Tgen, and the performance changes on True+Info after per-
turbation, denoted as A True+Info. The results presented in Table 9
demonstrate that TA2 is capable of maintaining its performance as
the size of LLMs increases. This suggests that TA? is scalable in its
ability to effectively target even very large LLMs, such as those with
70 billion parameters. Furthermore, the time required to generate
steering vectors scales efficiently with the model size. For reference,
generating steering vectors takes approximately 1 hour and 30 min-
utes for a 7-billion-parameter model, whereas the process extends
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Table 9: Scalability study. Tgen represents the time required
for generating steering vectors. A TruexInfo represents the
performance change following perturbation.

Freeform Choice
Model - -
Tgen (time) A True+Info (%) Tgen (time) A True+Info (%)
Llama2-7B-Chat 4:25 -10.16 4:31 -11.02
Llama2-13B-Chat 11:29 -11.03 12:20 -10.34
Llama2-70B-Chat 1:44:46 -9.98 1:48:44 -11.56

to 74 hours and 51 minutes for a 70-billion-parameter model. In
comparison, methods that involve backpropagation on the model,
such as GCG [72], take approximately 3 hours to generate a suffix
for a single prompt. Moreover, given the need to store gradients,
this method demands a substantial amount of memory.

5 Countermeasures

With the increasing focus on jailbreaking and red-teaming LLMs,
recent efforts have turned towards defending against such attacks.
Nevertheless, traditional prompt-based defenses [6, 12, 48] are inef-
fective against activation attacks as they operate in the activation
space without altering the prompt. To defend against activation at-
tacks, two approaches can be explored. Since steering vectors must
be injected, the first approach involves utilizing a model checker
to ensure that LLMs deployed for real-world use are clean and do
not contain any additional files. The second approach involves in-
vestigating the implementation of a defense mechanism within the
model itself. Ensuring that the addition of intermediate results dis-
rupts the residual stream and does not generate meaningful output
could provide a robust defense against activation attacks.

6 Related Work

6.1 Alignment of LLMs

Large Language Models (LLMs) have demonstrated exceptional per-
formance across numerous tasks [40, 64, 65] and have been widely
adopted for various applications. These LLMs can be categorized
into foundational models like GPT-3 and instruction-tuned models
like GPT-4. Foundational models are pre-trained on a vast textual
corpus with objectives to predict subsequent tokens. This process
can lead to behaviors that may diverge from social norms, ethical
standards, and regulations. In contrast, instruction-tuned LLMs
undergo additional fine-tuning to better align with user-provided
instructions. A growing body of work on alignment [37, 62] in-
cluding Supervised Fine-Tuning (SFT) of LLMs using annotated
human instructions [61] and Reinforcement Learning from Human
Feedback (RLHF) [42]. In this work, we investigate the vulnerabil-
ity of aligned large language models to see if we can bypass their
intended safeguards and provoke undesirable behaviors.

6.2 Activation Engineering

The word activation engineering was coined by [57], as opposed
to prompt engineering. Similar to prompts being used to control
the output of LLMs, activation engineering involves adjusting the
activation of individual layers during inference to modify the be-
havior of the models. This emerging area is pioneered by works
studying the mechanistic interpretability of deep neural networks
[2, 4,5, 19, 59]. To locate and modify the factual associations within
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autoregressive transformers, [38] developed a causal intervention
method to identify neuron activations that are decisive in a model’s
factual predictions. They then proposed a method called ROME
to modify feed-forward weights to update specific factual associ-
ations. Additionally, [38] finds that the MLP layer corresponds to
the late site and attention corresponds to the early site. MLP layers
are the ones that recall knowledge. [39] further improved upon
the scalability of ROME to edit LMs’ memories at a large scale. In
contrast to weight editing methods, [23, 33, 34] proposed activation
editing methods that apply steering vectors [52] to modify activa-
tions at inference time in order to alter model behavior. Our work
builds upon the activation engineering [57] technique, where we
reduce the need for manually selecting the intervention layer by
performing contrastive layer search.

6.3 Attack Large Language Models

As LLMs become widely used in a variety of tasks, their robustness
against adversarial attacks has drawn increased attention. Given
the large size of LLMs, previous works on attacking language mod-
els [13, 16, 26, 35, 69] do not transfer well to attacks on LLMs. In the
line of attacking LLMs, [60] shows that adversaries can poison in-
struction tuning datasets to systematically influence LLMs behavior.
[45] demonstrated that GPT-3 can be easily misaligned by simple
handcrafted inputs. [7] proposed a training data extraction attack
to recover individual training examples by querying the language
model. [17] proposed a poisoned prompt tuning method called
PPT. [72] proposed a method to automatically generate adversarial
prompts. [21] proposed indirect prompt injection to strategically
inject prompts into data likely to be retrieved.

7 Conclusion

In this paper, we comprehensively examine activation attacks on
four safety alignments of LLMs. In particular, we propose a tro-
jan activation attack framework called TA? that can effectively
and efficiently break down the safeguards of LLMs, by injecting
trojan steering vectors that can be triggered at inference time with-
out being easily detected. Our experimentation across four preva-
lent alignments reveals that our attack framework is applicable to
instruction-tuned LLMs of various sizes, demonstrating its efficacy
while maintaining a lightweight profile. Additionally, we discuss po-
tential defense mechanisms against activation attacks. We hope our
work can draw attention to the potential vulnerabilities of aligned
LLMs when subjected to activation attacks, thereby encouraging
further research to enhance the robustness of LLMs.
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