
A Study on Developer Behaviors for Validating and
Repairing LLM-Generated Code Using Eye

Tracking and IDE Actions

Ningzhi Tang*

University of Notre Dame

Notre Dame, IN, USA

ntang@nd.edu

Meng Chen*

University of Notre Dame

Notre Dame, IN, USA

mchen24@nd.edu

Zheng Ning
University of Notre Dame

Notre Dame, IN, USA

zning@nd.edu

Aakash Bansal
University of Notre Dame

Notre Dame, IN, USA

abansal1@nd.edu

Yu Huang
Vanderbilt University

Nashville, TN, USA

yu.huang@vanderbilt.edu

Collin McMillan
University of Notre Dame

Notre Dame, IN, USA

cmc@nd.edu

Toby Jia-Jun Li
University of Notre Dame

Notre Dame, IN, USA

toby.j.li@nd.edu

Abstract—The increasing use of large language model (LLM)-
powered code generation tools, such as GitHub Copilot, is trans-
forming software engineering practices. This paper investigates
how developers validate and repair code generated by Copilot
and examines the impact of code provenance awareness during
these processes. We conducted a lab study with 28 participants,
who were tasked with validating and repairing Copilot-generated
code in three software projects. Participants were randomly
divided into two groups: one informed about the provenance
of LLM-generated code and the other not. We collected data on
IDE interactions, eye-tracking, cognitive workload assessments,
and conducted semi-structured interviews. Our results indicate
that, without explicit information, developers often fail to identify
the LLM origin of the code. Developers generally employ similar
validation and repair strategies for LLM-generated code, but
exhibit behaviors such as frequent switching between code and
comments, different attentional focus, and a tendency to delete
and rewrite code. Being aware of the code’s provenance led to
improved performance, increased search efforts, more frequent
Copilot usage, and higher cognitive workload. These findings
enhance our understanding of how developers interact with
LLM-generated code and carry implications for designing tools
that facilitate effective human-LLM collaboration in software
development.

Index Terms—GitHub Copilot, developer behavior analysis,
debugging strategy, eye tracking, IDE tracking

I. INTRODUCTION

Recent advances in large language models (LLMs) have

significantly impacted the programming process, becoming

increasingly integrated into the programming workflow [1].

A notable example is GitHub Copilot1, a code generation tool

powered by OpenAI’s GPT model [2], which can generate

lines or subroutines of code based on existing code or natural

language comments [3]. These code generation tools are

primarily used to enhance productivity, offering benefits such

as autocomplete, quicker task completion, and easier recall of

syntax [4]. In a controlled experiment, the group using Copilot

*Both authors contributed equally to this research.
1https://github.com/features/copilot/

completed programming tasks 55.8% faster than the group that

did not use it [5].

While LLM-powered tools facilitate code generation, the

quality of the generated code is not guaranteed. A recent

study found that LLM-generated code commonly suffers from

code quality issues, such as compilation and runtime errors,

incorrect outputs, and problems related to code style and main-

tainability [6]. Consequently, after using these tools to generate

a section of code, developers must spend time evaluating its

correctness, fixing potential bugs, and integrating the code

into the existing codebase. Previous studies have shown that

developers spend a significant portion of their time (37.99%

in total) thinking/verifying suggestions, debugging/testing, and

editing written code when programming with Copilot [7].

Error discovery and repair strategies are crucial for suc-

cessful human-AI interaction, guiding the development of

underlying AI models and user interfaces, as indicated in

other contexts such as conversational agents [8], qualitative

coding [9], and natural language data queries [10]. For code

generation, AI tools can generate different types of errors

than humans [11], and unlike humans, AI cannot articulate

the rationale behind its decisions. Therefore, the focus of

attention and strategies that developers follow may differ from

those used when working with human-written code. Although

studies have explored how developers interact with such AI

tools to generate code [4], [12], [13], and the quality and

usability of the generated code [3], [14], the process of

validating and repairing them is still not well understood,

warranting further investigation.

Furthermore, as LLM-generated code becomes increasingly

integrated with existing codebases, it is important to consider

its provenance (i.e., whether the code is LLM-generated or

human-written). Previous research has revealed that aware-

ness of code provenance impacts developers’ behavior when

interacting with code, even though they may not always be

conscious of such biases [15]–[17]. In a study on code review,

ar
X

iv
:2

4
0
5
.1

6
0
8
1
v
1

[c

s.
S

E
]

 2
5
 M

ay
 2

0
2
4

despite all patches being created by automatic program repair

tools, some were labeled as human-written, while others were

labeled as machine-generated. Participants showed different

scanning patterns and attention distributions in response [18].

In the context of debugging, developers’ awareness of code

provenance may also impact their mental models of what

is more likely to go wrong and how they may go wrong,

affecting their strategies and performance. Understanding these

differences can help developers better comprehend LLM-

powered code generation tools, leading to the design of tools

that establish appropriate trust and support better collaboration.

Prior studies on developers’ interactions with LLM-powered

code generation tools have largely depended on subjective

analyses, such as post-analysis of audio/video recordings [7],

[12], [13], surveys [4], and interviews [12], [13]. These

methods may suffer from recall and observer biases [19],

[20], and fall short of reliably capturing developers’ cognitive

processes [21]. In response to these limitations, recent research

in software engineering has increasingly utilized eye tracking

as an objective measure. Eye tracking offers biologically-

based insights into cognitive processes through non-intrusive

observation of developers’ gaze patterns [18], [22]. Eye-

tracking data, specifically developer gaze patterns, can be

used to infer their visual attention strategies [23], [24] and

may correlate with their self-reported cognitive workload [25],

[26]. This provides an important indicator of their men-

tal model when performing programming tasks [27], [28].

Previous research also suggests that developer interactions

within the Integrated Development Environment (IDE) can

complement eye-tracking data to comprehensively understand

their behaviors [29], [30]. Therefore, we employ a mixed-

method approach, combining quantitative (i.e., eye tracking

and IDE tracking) and qualitative (i.e., surveys and interviews)

methods to understand developer behaviors in our study.

This paper addresses the gap in understanding how devel-

opers validate and repair LLM-generated code, specifically

focusing on chunks of code (about tens of lines) produced

by GitHub Copilot. We also examine the effects of informing

developers about the code provenance on their validation and

repair strategies. We conducted lab studies with 28 partici-

pants, tasking them with validating, repairing, and integrat-

ing Copilot-generated code into three representative software

projects. Participants were allowed to interact with Copilot

during the process. To compare developer behaviors under

different awareness of the provenance of LLM-generated code,

we randomly divided the participants into two groups: one was

informed before the experiment that the code was generated

by Copilot, while the other group was not informed.

During the validation and repair process of participants, we

collected their IDE interaction and eye-tracking data using

CodeGRITS [31], an IntelliJ platform plugin to collect de-

veloper behaviors2. After each subtask, we asked participants

to report their cognitive workload using the NASA-TLX ques-

tionnaire [32]. After completing all three tasks, we conducted

2https://codegrits.github.io/CodeGRITS/

Fig. 1. A glance of how Copilot is invoked in our study setting, along with
the collected IDE tracking and eye tracking data.

a semi-structured interview to discuss their mental models and

strategies for validating and repairing codes. Figure 1 provides

an overview of our data collection methods. We investigated

the following research questions.

• RQ1. What is developers’ perception of LLM-generated

code compared to human-written code?

• RQ2. What are the differences in the strategies of devel-

opers to validate and repair LLM-generated code versus

human-written code?

• RQ3. How does awareness of code provenance affect the

validation and repair behaviors of developers?

We highlight the following findings of our study.

• Developers often do not recognize the provenance of

code unless explicitly informed. LLM-generated code

typically features more comments, exhibits different error

types compared to human-made errors, and demonstrates

stronger syntax but weaker logic performance.

• While developers generally apply similar strategies for

validating and repairing LLM-generated code as they do

with human-written code, they also display distinct be-

haviors. These include frequent switching between code

and comments, varied focus areas, and a tendency to

delete and completely rewrite the code.

• Informing developers about the provenance of LLM-

generated code positively influences their performance in

validation and repair tasks. It leads to improved validation

and repair outcomes, increased search efforts, and more

frequent utilization of Copilot during these processes.

However, this awareness also increases cognitive work-

load, as developers pay more attention to potential errors

and integration challenges.

II. RELATED WORK

A. Empirical Study of LLM Code Generation Tools

Recent advances in transformer-based [33] LLMs marked

a significant breakthrough in code generation. Several

production-level code generation tools, such as GitHub Copi-

lot, OpenAI GPT-4 [34], Tabnine3, Amazon CodeWhisperer4,

3https://www.tabnine.com/
4https://aws.amazon.com/codewhisperer/

and IntelliCode Compose [35], have been adopted by a

growing number of developers [4]. Notably, Codex [3], a

descendant of GPT-3 model [2] fine-tuned on 54 million

public GitHub repositories, can solve 37.7% of unseen Python

code-writing tasks with a single sample in the HumanEval

dataset [3], while GPT-4 has increased this to 67.0% [34].

Various metrics and datasets have been introduced to evaluate

their performance in offline settings [3], [11], [36]; however,

more studies are needed to explore how developers use them

and their impact on developers.

Previous studies explored how developers perceive and

interact with these LLM code generation tools [12], [37]–

[39]. For example, Barke et al. [13] observed two modes

of developer interactions: acceleration, where developers use

Copilot to code faster, and exploration, where developers use

it to explore what to do next. Liang et al. [4] conducted a

large-scale survey with 410 developers and identified a set of

usage characteristics and usability issues with AI program-

ming assistants. Mozannar et al. [7] proposed a taxonomy of

common developer activities and retrospectively taxonomized

21 developers’ coding sessions with Copilot. They found

that developers spend more than half of their task time on

Copilot-related activities and a large fraction of time validating

and editing Copilot’s suggestions. Our study focuses on how

developers validate and repair Copilot-generated code, serving

as a complementary perspective to the existing literature.

B. Debugging Strategies for Software Developers

Debugging is a complex process that involves various tasks,

including code comprehension, error localization, and repair,

and remains a long-standing topic in software engineering

research [40]–[42]. Previous literature indicates that debugging

involves iteratively comprehending the code and forming and

testing hypotheses [43], [44]. Lawrance et al. [45] modeled

developers’ debugging processes from an information foraging

theory perspective and categorized six debugging modes: map-

ping, drill-down mapping, observe-the-failure, locate-the-fault,

fix-the-fault, and verify. Liu et al. [46] observed professional

developers debugging large-scale software systems and found

that common debugging techniques generally fall into two

modes: identify and fix the error. The usability of debugging

tools has also been investigated. For instance, Beller et al. [47]

observed limited use of IDE features and proposed improve-

ments to the Eclipse debugger based on their findings.

However, LLM-generated code shows different traits from

the human-written code. Previous studies have found that

LLM-generated code is less compact [48], lacking con-

text [49], and of lower quality than human-written code [50].

The process of developers debugging code that was often writ-

ten by themselves can also be quite different from validating

and repairing generated code. Thus, our study is different

in that we investigate how developers validate and repair

LLM-generated code instead of human-written code. This

contributes to a better understanding of the impact of LLM

on software development and helps to develop better tools to

alleviate new challenges.

C. Eye Tracking in Software Engineering

Eye tracking captures the visual attention of participants by

recording their eye gaze data [51]. Visual attention triggers

mental processes for comprehending and solving a given task,

which provides information on the cognitive processes of the

participants [26], [52], [53]. The recorded gazes are often

computed as a time series of fixations (eye stabilization lasting

more than 200 ms) and saccades (rapid movements between

fixations within 50 ms) for analysis [54]. Recently, researchers

started using eye tracking to study the software development

process, including code comprehension [55], review [18], and

debugging [29]. For example, Rodeghero et al. [22] studied the

eye movement patterns of developers when summarizing code

and found that these patterns were analogous to those observed

in reading natural language. Sharafi et al. [54] recommended a

set of eye-tracking metrics for software engineering. Obaidel-

lah et al. [56] conducted a survey on the use of eye tracking in

software development in 2018. Eye tracking can also typically

be integrated with tracking developers’ interactions within the

IDE (e.g., mouse clicks, file navigation, running the class, etc.)

to understand how they develop software [29], [57], [58]. In

this study, we use CodeGRITS [31] to simultaneously track

developers’ IDE interactions and eye gazes for data analysis.

Previous studies also used developer behavioral data to

explore differences in software development behavior under

different code provenance awareness, such as gender [15], [16]

or human/machine distinctions [18]. For example, Huang et

al. [17] combined medical imaging and eye tracking data

to study biases and differences associated with the gender

of humans and machines in code review. They found that

participants were more likely to accept pull requests from

women and less likely to accept those from machines. Our

research extends these studies by using IDE tracking and

eye tracking to explore the impact of code provenance on

validating and repairing LLM-generated code.

III. STUDY DESIGN

We conducted a lab study with 28 participants to investigate

how developers validate and repair code generated by Copilot.

We used GitHub Copilot as a representative LLM-based code

generation tool because it is specifically designed for coding, is

widely used by developers [4], and has previously been studied

in other works [7], [12]. In our study, each participant com-

pleted three programming tasks (details in Section III-A). For

each task, we created a project containing several declared but

unimplemented subroutines (e.g., classes/methods). We then

developed prompts that described the intended functionality of

each subroutine and used Copilot to generate code for them.

We deliberately constructed prompts for which Copilot would

generate code containing representative errors of different

types, as described in Section III-A.

To ensure consistency between participants, we presented

each participant with the same code, prompts, and Copilot-

generated code. We then asked the participants to validate and

repair the generated code with the assistance of Copilot. The

participants were randomly assigned to two conditions. In one

condition, the participants were informed that the code was

generated using LLMs. Participants in the other condition were

not informed about the provenance of the code.

The details of our study protocol and study design can be

found in Section III-D and Section III-B.

Fig. 2. An example of errors in LLM-generated code in task ZooSystem:
6112 (Wrong Component) and 6125 (Parameter Value).

A. Programming Tasks

We used three Java programming tasks in different software

engineering scenarios: algorithm design, graphical user inter-

face (GUI) design, and object-oriented programming (OOP).

• Task 1. Kakamora (algorithm design): A LeetCode-like

task that utilizes dynamic programming to find a path in

a square array with the minimum sum of numbers. The

entire program was written from scratch by Copilot. This

task was adapted from an assignment in an undergraduate

computer science course.

• Task 2. Calculator (GUI): A calculator app written using

the Java GUI programming API. It consists of a front-

end that includes a text interface and operational buttons,

as well as back-end logic. The GUI layout code and

the listeners for the front-end buttons were generated by

Copilot.

• Task 3. ZooSystem (OOP): A zoo management system

that includes various animal classes with inheritance re-

lationships (e.g., Animal-Mammal-Lion). Several man-

agement functions, such as add, delete, search, and

display animals, were generated by Copilot. This task

was adapted from an assignment in an undergraduate

computer science course.

We categorized these errors using the taxonomy presented

by Beizer [59]. The error statistics for the three tasks are

presented in Table I. Each subtask refers to a subroutine

generated by Copilot that contains bugs, which may include

multiple types of bugs (e.g., subtasks 1.2 and 3.2).

For example, Fig. 2 shows bugs in the code generated by

Copilot for subtask 3.2, with the prompt “create a constructor

for the Lion class that only takes the name as input.” The

code has both bug type 6125 “Parameter Value” (e.g., the

default conservation status should be Vulnerable), and bug

TABLE I
BUG TYPES REPRESENTED IN PROGRAMMING TASKS BASED ON [59].

Task Subtask Bug Index Bug Category

Kakaroma

1.1 231x Missing Case

1.2
3226.4 String Manipulation-Insertion
3126 Illogic Predicates
231x Missing Case

Calculator
2.1 6125 Parameter Value
2.2 614x Initialization State

ZooSystem

3.1 6125 Parameter Value

3.2
6112 Wrong Component
6125 Parameter Value

3.3 4164 Should be Dynamic Resource
3.4 6112 Wrong Component
3.5 413x Initial, Default Values

type 6112 “Wrong Component” (Lion do not have feather;

instead, it should be setFurColor, which extends from its

superclass Mammal).

B. Participants

We recruited 28 participants (17 male, 11 female) from the

local university community. Among them, 10 are graduate stu-

dents and 14 are undergraduate students; 22 major in computer

science and engineering, while two major in mathematics.

Three participants had no prior programming experience in

Java, but they had six, seven, and 12 years of experience

in other programming languages, respectively. 12 had just

completed an introductory course on Java programming, 12

had one to three years of Java programming experience, and

one had over three years. However, regarding their general

programming experience, participants on average had 5.5

years, and only three of them had less than three years of

experience. Eight of them had used Copilot in the past before

our study. The participants received a $30 Amazon Gift Card

as compensation for their time.

C. Study Settings

We conducted the study in person in a usability lab, using

a Windows 10 computer equipped with a 27-inch monitor and

a Tobii Pro Fusion eye tracker5. The sampling frequency of

the eye tracker was 60 Hz.

We randomly assigned the participants into two groups, each

consisting of 14 participants, with different information about

the code provenance. The Informed group was explicitly

told that the code was generated by Copilot, while the Non-

Informed group received no such indication.

During the study, participants used IntelliJ IDEA 2022.1.4,

running the Copilot plugin and the data collector plugin

(Section III-E). We set the font size in the IDE to 20 points.

To mitigate the influence of light intensity on eye tracking, all

study sessions were held in the same room with all doors and

windows closed and the same ceiling light on.

5https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion

D. Protocol

Each study session lasted approximately two hours. After

the participant signed the consent form and completed a pre-

study demographic questionnaire, we briefed the participant

about the overall objective and process of the study, followed

by a 10-minute tutorial on the use of IntelliJ IDEA and

Copilot. We also gave a short instruction on interacting with

the eye tracker (e.g., refraining from major head movements).

For each task, the participant first read an instructional doc-

ument that described the background of the tasks, followed by

calibrating the eye tracker. The participant had then 20 minutes

to perform each task. To narrow down the debugging strategy

for specific errors, participants were asked to announce when

they thought they had completed a subtask. Participants were

not allowed to browse the Internet during the task.

After completing each task, we asked participants to com-

plete a NASA Task Load Index (NASA-TLX) question-

naire [32] to self-report their cognitive workload. NASA-TLX

is a widely-used subjective assessment tool that measures the

user’s perceived workload when performing a task. It includes

six dimensions: Mental Demand, Physical Demand, Temporal

Demand, Performance, Effort, and Frustration. We used it to

complement the data obtained from eye tracking.

At the end of the study session, we conducted a 20-minute

semi-structured interview with the participants to discuss the

behaviors we observed. The interview questions included

their evaluations of the quality of LLM-generated code, their

perceived differences between LLM-generated and human-

written code, strategies they used to validate and repair bugs

in LLM-generated code, their use of IDE features and Copilot,

and their changes in mental models and strategies under

different code provenances. We also asked participants from

the Non-Informed group whether they realized that the code

was generated by LLM during the study.

E. Data Collection Setup

To support the analysis of developer behaviors, we used

CodeGRITS [31], a plug-in for IntelliJ IDEA that enabled

IDE tracking and eye tracking. In addition, we recorded the

screen during study sessions with timestamps for subsequent

analysis. The details of the collected data are summarized in

the following sections.

1) IDE Tracking: CodeGRITS collects the following infor-

mation via IDE tracking. All behaviors are tracked with their

location (path, line, column) and timestamp for further analysis

and calibration. They are organized in XML format, with an

example shown in Listing 1.

IDE Features CodeGRITS recorded the use of various

IDE features during programming. These include utilizing

the clipboard, executing the program, employing a debug-

ger (e.g., setting a breakpoint), switching among files, and

navigating the code (e.g., Find, GotoDeclaration, and

FindUsages). The usage log of IDE features also in-

cluded actions related to the interaction with Copilot, such as

copilot.applyInlays, which represents accepting the

code generated by Copilot.

Keyboard and Mouse Events CodeGRITS collected all key-

board events, including typing and navigating by keystrokes.

It also detected keyboard events with special functions such

as Enter, Backspace, or Escape. Additionally, the plugin

recorded mouse scrolling behaviors, both vertical and horizon-

tal.

File Logging To enable the recovery of any code file at

any time point during the tasks, we use CodeGRITS to record

the entire content of the current code file whenever the devel-

oper opens, closes, or makes edits. Additionally, CodeGRITS

records the console output whenever the developer executes

the code.

Listing 1. An example of IDE tracking data, including IDE features (top),
keyboard events (middle), and file logging (bottom).

<!-- IDE Features -->

<action id="ReformatCode" path="/src/Reptile.java"

timestamp="1662928377436"/>

<action id="copilot.applyInlays" path="/src/Lion.java"

timestamp="1662928415454"/>

<action id="GotoDeclaration" path="/src/Lion.java"

timestamp="1662928462655"/>

<action id="RunClass" path="/src/ZooSystem.java"

timestamp="1662928498642"/>

<!-- Keyboard Events -->

<action id="EditorPaste" path="/src/Lion.java"

timestamp="1662928472075"/>

<typing column="4" length="13" line="8"

path="/src/Reptile.java" string="System.out"

timestamp="1662928450732"/>

<scroll type="vertical" path="/src/ZooSystem.java"

offset="693" timestamp="1662928825827"/>

<!-- File Logging -->

<log id="fileLog" timestamp="1662928820593"

info="fileOpened" path="/src/ZooSystem.java"/>

<log id="fileLog" timestamp="1662928828525"

info="fileChanged" path="/src/Lion.java"/>

<log id="outputLog" timestamp="1662928831632"/>

2) Eye Tracking: CodeGRITS collects raw gaze data and

maps them to semantic source code entities, such as tokens and

nodes in abstract syntax trees (ASTs). The sampling frequency

was 60 Hz. A sample of gaze data and the semantic source

code entities is shown in Listing 2.

Raw Gaze Data Each sample in the raw eye tracker data

includes (x, y) relative coordinates on the screen, as well as

the diameters of the pupils and their corresponding validity

codes provided by the Tobii Pro SDK. We excluded invalid

data from our analysis based on Tobii Pro’s recommendations6.

Each gaze point is recorded with a timestamp.

Location, Token & AST To extract semantic informa-

tion from gazes, such as their corresponding code tokens,

CodeGRITS calculated the relative location in the code editor,

and then mapped it to specific locations (line, column) in the

code file and their corresponding tokens. It then used IntelliJ’s

Program Structure Interface (PSI)7 to determine the token,

token type, and AST hierarchy associated with the gaze.

6https://developer.tobiipro.com/commonconcepts/validitycodes.html
7https://plugins.jetbrains.com/docs/intellij/psi.html

Listing 2. An example of gaze data collected from the eye tracker, with the
computed location, token, and AST hierarchy.

<!-- Eye Tracking -->

<gaze x="545" y="306" path="/src/ZooSystem.java"

line="26" column="12" gaze_validity="1.0"

pupil_diameter="3.277" pupil_validity="1.0"

start_timestamp="1669258026407" duration="286"

end_timestamp="1669258026693" count="18">

<ast_type="IDENTIFIER" token="printSummaryView">

<level end="26:24" start="26:8"

tag="PsiIdentifier:printSummaryView"/>

<level end="26:24" start="26:8"

tag="PsiReferenceExpression"/>

<level end="26:31" start="26:8"

tag="PsiMethodCallExpression"/>

<level end="26:32" start="26:8"

tag="PsiExpressionStatement"/>

<level end="32:5" start="5:4"

tag="PsiMethod:setupAnimals"/>

<level end="499:27" start="3:0"

tag="PsiClass:ZooSystem"/>

</ast>

</gaze>

IV. RESEARCH METHODS

In this section, we discuss the methods used to analyze the

data collected from the study.

A. Quantitative Analysis

1) Gaze Pattern Metrics: Fixation refers to stabilization of

the eye at one location for a period of time, which is commonly

used in eye-tracking studies and is often considered to be asso-

ciated with visual attention and cognitive workload [60], [61].

Following the practice recommended in previous research [54],

we identified fixations by extracting gazes on the same token

with durations longer than 200 ms, and we considered the

transitions between two fixations within 50 ms as saccades. We

computed the following metrics using the definitions provided

in [54] to analyze the cognitive processes of the participants.

• Fixation Time: Total duration of all fixations in seconds.

• Fixation Count: Total number of fixations.

• Average Fixation Duration: Average duration of each

fixation in seconds.

• Saccade Time: Total duration of all saccades in seconds.

• Saccade Count: Total number of saccades.

• Average Saccade Length: Average length of each saccade

in pixels.

• Saccade Fixation Ratio: Ratio of saccade time to fixation

time, indicating the balance between exploration and

exploitation during programming.

2) Developer Behavior Categorization: The data collector

tracked rich low-level data within the IDE (Listing 1). Among

these, many can be aggregated for analysis. For example, Run,

RunClass, and Rerun all indicate that the user ran the

code to view output information. Debug, StepOver, and

ToggleLineBreakpoint all represent behaviors related

to using the debugger; whereas ToggleInsertState or

EditorLeftWithSelection have no clear significance

for understanding developer behavior. Therefore, we filtered

and aggregated these low-level tracking data to achieve the

high-level categorization shown in Table II.

For eye tracking data, based on the fixations calculated in

Section IV-A1, we classified the tokens that the developer

looks at into three types: code, comment, and document. This

classification allowed us to identify three types of reading be-

haviors (Behavior 1-3 shown in Table II). For IDE interaction

data, we first counted the number of occurrences for all the

original data’s “id”. An author categorized them according to

the similarity of their underlying activity types in initial high-

level behaviors and discarded data that were not meaningful

for understanding developer behavior. Subsequently, another

author reviewed and, if necessary, revised the categorizations

and definitions of behaviors. The disagreement cases were

discussed to reconcile differences and establish a cohesive

categorization (Behavior 4-11 shown in Table II).

B. Qualitative Analysis

For the qualitative analysis of interview transcripts, we fol-

lowed established open-coding procedures [62], [63]. Initially,

two authors independently performed qualitative coding on

the transcripts. Subsequently, they discussed their findings to

achieve agreement and formed a consolidated codebook. Using

this codebook, we conducted a thematic analysis to identify

emerging themes from the interviews. These themes were

refined and developed into study findings.

V. STUDY RESULT

In this section, we report the results for our three RQs.

Except for Fig. 3, all calculations of frequency or time were

averaged across each task for all participants.

A. RQ1. Developers’ Perceptions of LLM-Generated Code

We asked the fourteen participants from the Non-Informed

group at the start of the interview, “During the tasks, did you

realize that the code you just validated was actually generated

by LLM?” Almost 80% (11/14) of them reported they did not

realize it. This indicates that if not clearly informed, developers

may not consider the provenance of the code, or they may

implicitly assume that the code was written by a human.

However, different perceptions of the code provenance impact

validation and repair strategies, workload, and performance,

which is further discussed in Section V-C.

Many participants (11 out of 28) indicated that the code had

a good coding style and readability, even better than human-

written code. For example, P21 reported, “[LLM-generated

code] does follow human formatting guidelines; variable

names and everything were verbose and easy to use.” They

stated that the LLM-generated code is clean and professional,

because “it writes better variable names or method names. In

practice, many programmers tend to use very simple names.”

(P25) Thus, “it provides a pretty good starting point to

validate.” (P10) P14, P15, P17, P21, P23, and P25 highlighted

that LLM-generated code shows better understandability as it

TABLE II
CATEGORIZATION OF DEVELOPER BEHAVIOR EMERGED FROM IDE AND EYE TRACKING DATA.

Index Behavior Tracking Data

1 Reading Document Consecutive fixations on the instructional document
2 Reading Code Consecutive fixations on the code
3 Reading Comment Consecutive fixations on the comment

4 Switching Files Opening, closing, or changing the selection of a file
5 Scrolling Scrolling a file via mouse wheel, arrow keys, or touchpad gestures
6 Tracing Code Searching tokens, finding usages or going to declarations
7 Running for Output Running the class to obtain execution output
8 Employing Debugger Utilizing debugger and its corresponding features (e.g., toggling breakpoints)
9 Invoking Copilot Accepting, rejecting, or browsing code generated from Copilot
10 Utilizing Clipboard Copying, cutting, or pasting contents
11 Keystrokes Typing Typing characters using keystrokes

contains more detailed comments compared to human-written

code.

However, participants reported that LLM made some mis-

takes that human developers would not. “Sometimes I do not

see why anyone would ever think that this was the right way

to write this code.” (P24) For example, in Task 1, an algorithm

design problem, Copilot used a series of if statements to hard-

code the test samples. P19, P21, P24, and P26 all expressed

confusion: “When I saw the hardcoded ‘1’, ‘2’, and ‘3’ in

the path reconstruction, I was really confused and thought

there would be some special meanings. But it turns out that

AI just hard-coded the example output.” (P21). Regarding the

bugs in Figure 2, participants described them as “ridiculous”

and “lacking common sense”: “Default values are given in

the instructions, but the constructor has some errors. A lion

cannot have a beak, feathers, or lay eggs.” (P16).

Additionally, P10, P14, P26, and P28 also reported that

the LLM-generated code often contains many repetitions.

“They put out the exact same code over and over again for

every button, which is difficult to read through.” (P28). P26

expressed concerns about it: “If I send this to my manager, they

will reject my code; these repetitive for-loops are horrible.”

Additionally, the LLM-generated code “focuses too much on

the prompts but loses the context of the code,” (P14) and “may

contain undefined variables,” (P10)

P6, P16, P25, and P27 also mentioned that errors in LLM-

generated code and human-written code tend to manifest in

different areas. “Humans are more error-prone than Copilot

when it comes to details; for the logic [of code], I think

Copilot is more error-prone”. (P25) This also affects their

validation and repair approaches, which is discussed more in

Section V-B.

P14, P25, and P26 noted that Copilot lacks multimodal

capabilities. For the GUI task in Task 2, a human developer

would find “easy,” but “Copilot is not multimodal; it doesn’t

understand the layout of the calculator frontend. The text

description lacks detail to accurately describe the layout of

each button, which is probably why it just generates the buttons

randomly.” (P25)

Key findings: If developers are not informed, they might

not recognize that the code is generated by an LLM.

LLM-generated code performs well in terms of coding

style and readability. They also often include more com-

ments. However, it tends to make unique mistakes that

are uncommon for human developers. Such errors include

repetitive structures, a lack of contextual understanding,

and generally better performance in syntax than in logic.

Additionally, LLMs’ lack of multimodal capabilities,

such as understanding visual layouts in front-end tasks,

further differentiates the types of errors they are prone to

make.

B. RQ2. Strategies to Validate and Repair Code

Based on the categorization of developer behaviors in

Section IV-A2, we calculated the frequency of transition

sequences of behaviors and selected some high-frequency

patterns in Fig. 3. Combining the findings of the interviews

with tracked data, we identified the following validation and

repair strategies used by the participants.
1) General Strategies for Validation and Repair: In general,

participants reported in the interview that errors in LLM-

generated code were found to be comparable to those made

by humans, leading them to employ common validation and

repair strategies as they normally would. The strategies they

described are a mix of the following four aspects:

• Context Comprehension. Many participants (11/28) re-

ported that they would first go through all the code

to understand its overall functionality, then search for

the cause of bugs. For example, P21 stated “I have

to read the initial code and try to understand what it

does, and then understand why its way of doing things

is wrong.” P20 said “First I read through the code to

conceptualize them in my mind.” This strategy aligns with

previous theories about debugging, suggesting that an

initial comprehension of the code helps form the context

in the developer’s mind, which serves as the basis for

further bug locating and repairing [44], [64].

• Step-by-Step Validation. P24 and P28 reported that they

would check the code’s control flow step-by-step in mind

to locate bugs. P24 states, “I typically stare at the code

Fig. 5. Comparison of the frequency of different types of developer behaviors
between the Informed group (left) and the Non-Informed group (right).

p-value = 0.093 < 0.10) and the clipboard less (7.758

< 11.32, Student’s t-test, p-value = 0.017 < 0.05). Note

that most of the participants (20 out of 28) had not used

Copilot prior to the study, but they were evenly distributed

into two groups (10 in each), so the experimental results

should not be affected by this factor.

Fig. 6. Comparison of self-reported workload measured by NASA-TLX
and eye-tracking-related metrics between the Informed group (left) and Non-
Informed group (right).

3) Cognitive Workload: We also calculated the workload

metrics based on NASA-TLX [32] and the gaze pattern metrics

described in Section IV-A1. As shown in Fig. 6, the Informed

group had higher self-reported effort (6.394 > 5.595, Student’s

t-test, p-value = 0.042 < 0.05), fixation time (254.3 > 206.7,

Student’s t-test, p-value = 0.050 = 0.05), and average fixation

duration (0.493 > 0.438, Student’s t-test, p-value = 0.090 <

0.10). Both fixation time and average fixation duration indicate

greater visual attention and cognitive workload, as demon-

strated in previous studies [60], [61]. The results suggest that

developers who are informed that the code is generated by

LLM tend to have a higher cognitive workload.

However, there is controversy among participants regard-

ing their understanding of the impact of code provenance

awareness on cognitive workload. For example, P28 stated,

“I think I would be more concerned [if I am aware of the

provenance]. I would have to be more careful in figuring

out what’s going on. I don’t trust LLM enough for an entire

project.” Meanwhile, P25 states, “I think the workload will be

reduced if I know the code is generated by LLM because I

only need to focus on some specific logic details instead of

focusing on a similar bunch of code.” Since our study design

is a between-subjects study, participants’ guesses are based on

their previous code validation and repair experience and may

have recall biases [20].

Key findings: When developers are informed that the

code is generated by LLM, they perform better in vali-

dating and repairing the code. Subsequently, they tend

to spend more time examining the prompts provided

to Copilot compared to the code, and spend less time

reading documents. When informed, developers make a

greater search effort by using tracing code features more

frequently and exhibit higher saccade times. They also

used Copilot more frequently and used the clipboard less

frequently. Finally, they experience a higher cognitive

workload, as indicated by self-reported effort, fixation

time, and average fixation duration.

VI. IMPLICATIONS

Code provenance awareness. Developers may not realize

that the code is generated by LLMs unless explicitly in-

formed. Awareness of code provenance enhances their ability

to effectively validate and repair code, likely due to a more

focused approach to the generation prompts and a better

understanding of potential issues to anticipate. This suggests

the importance of labeling LLM-generated code, which could

assist developers in better managing such code and inform the

development of automated tools for recognizing and validating

generation prompts. Additionally, for LLM-generated code,

developing better tools to help developers understand and

revise the underlying prompts could be beneficial.

Improved logic in generated code. LLM-generated code

typically excels in syntax but falls short in logic, prompting

developers to focus differently during validation and repair

tasks. Future tools could benefit from aiding developers in

understanding and managing the logic of generated code. One

potential approach is to design interfaces that allow developers

greater control over the logic, while LLMs handle the syntax.

Tools like CoLadder [66], which supports hierarchical task

decomposition of prompts before generating code, exemplify

opportunities for advancement in this area.

Multimodal capability. LLMs currently lack the capability

to understand the multimodal context of programming tasks,

such as visual layouts in UI development. This limitation

underscores the need for AI models and interfaces that can

effectively integrate multimodal information into code gen-

eration processes. Enhancing how generated code can be

validated in conjunction with other modal information (e.g.,

audio, images, GUI layouts) is crucial for comprehensive

development environments.

Reducing switching costs. The frequent switching between

code and comments/prompts observed during the validation

and repair of LLM-generated code indicates a need for im-

proved interfaces in development tools. Visualization tools that

seamlessly connect prompts with generated code could reduce

these switching costs, fostering a deeper and more efficient

understanding for developers.

VII. THREATS TO VALIDITY

Our study faces several validity threats, one of which

involves the selection of programming tasks. We chose three

light-weight tasks in a popular programming language (i.e.,

Java), designed to represent typical types of programming

tasks, and iteratively invoked Copilot to generate code with

representative error types. Despite this, the tasks selected may

not fully capture the complexity and diversity of real-world

programming tasks that developers encounter.

Participant selection poses another threat to validity. Our

participants consist of mostly undergraduate and graduate stu-

dents in Computer Science, and their experience may not fully

represent that of professional developers. However, the focus

of our study was not on the impact of expertise, making the use

of students a potentially acceptable option [68]. To enhance the

ecological validity of our findings, a future longitudinal study

in actual software development settings would be beneficial.

Furthermore, eye tracking often shows drift after prolonged

use [69]. To mitigate this effect, we performed a calibration

before each task. To account for the validity of the conclusions,

we used well-documented eye-tracking metrics and analy-

ses [54]. We also complemented the eye-tracking metrics with

self-reported workload via NASA-TLX [32] as a supplement.

VIII. CONCLUSION AND FUTURE WORK

We conducted a lab study with 28 participants to observe

their behavior while validating and repairing LLM-generated

code. Participants completed three Java programming tasks

with erroneous code generated by GitHub Copilot. We gath-

ered data through IDE tracking, eye-tracking, surveys, and

semi-structured interviews.

Our findings indicate that, without explicit notification,

developers often fail to recognize the provenance of the code,

which can impact their performance, behaviors, and cognitive

workload. Although the LLM-generated code exhibits good

readability and style, it introduces errors that differ from typ-

ical human-made errors. Although developers generally apply

familiar validation and repair strategies, they also demonstrate

unique behaviors in this context. These observations under-

score the need for new tools and methods tailored to support

developers in the LLM era.

In the future, we plan to systematically investigate the char-

acteristics of LLM-generated code from a human perception

perspective, complementing our behavior-centric approach.

This effort will inform the development of more effective tools

for developers working with LLM-generated code. Addition-

ally, we plan to expand our research to include professional

developers in long-term, real-world studies. We also intend to

incorporate additional biometric sensors, such as heart rate

monitors and fMRI, to gain a better understanding of the

cognitive processes involved in software development.

ACKNOWLEDGMENT

This research was supported in part by an AnalytiXIN

Faculty Fellowship, an NVIDIA Academic Hardware Grant,

a Google Cloud Research Credit Award, a Google Research

Scholar Award, and NSF grants CCF-2211428 and CCF-

2100035. Any opinions, findings, or recommendations ex-

pressed here are those of the authors and do not necessarily

reflect the views of the sponsors. We thank Gelei Xu and

Junwen An for useful discussion and valuable feedback on

the project. We also thank Robert Wallace for his assistance

in setting up the eye tracker.

REFERENCES

[1] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, “On the assessment
of generative ai in modeling tasks: an experience report with chatgpt and
uml,” Software and Systems Modeling, vol. 22, no. 3, pp. 781–793, 2023.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing

systems, vol. 33, pp. 1877–1901, 2020.
[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,

H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[4] J. T. Liang, C. Yang, and B. A. Myers, “Understanding the usability of
ai programming assistants,” arXiv preprint arXiv:2303.17125, 2023.

[5] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai
on developer productivity: Evidence from github copilot,” arXiv preprint

arXiv:2302.06590, 2023.
[6] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-

B. D. Le, and D. Lo, “Refining chatgpt-generated code: Characterizing
and mitigating code quality issues,” ACM Transactions on Software

Engineering and Methodology, 2023.
[7] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between

the lines: Modeling user behavior and costs in ai-assisted programming,”
arXiv preprint arXiv:2210.14306, 2022.

[8] T. J.-J. Li, J. Chen, H. Xia, T. M. Mitchell, and B. A. Myers,
“Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs,” in Proceedings of the 33rd Annual ACM Symposium on User

Interface Software and Technology, ser. UIST 2020. ACM, 2020.
[9] S. A. Gebreegziabher, Z. Zhang, X. Tang, Y. Meng, E. Glassman,

and T. J.-J. Li, “Patat: Human-ai collaborative qualitative coding with
explainable interactive rule synthesis,” in Proceedings of the 2023 CHI

Conference on Human Factors in Computing Systems, ser. CHI ’23.
ACM, 2023.

[10] Z. Ning, Z. Zhang, T. Sun, Y. Tian, T. Zhang, and T. J.-J. Li, “An
empirical study of model errors and user error discovery and repair
strategies in natural language database queries,” in Proceedings of the

28th International Conference on Intelligent User Interfaces, ser. IUI
’23, 2023.

[11] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais,
and Z. M. J. Jiang, “Github copilot ai pair programmer: Asset or
liability?” Journal of Systems and Software, vol. 203, p. 111734, 2023.

[12] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in CHI Conference on Human Factors in Computing

Systems Extended Abstracts, 2022, pp. 1–7.
[13] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How

programmers interact with code-generating models,” arXiv preprint

arXiv:2206.15000, 2022.
[14] N. Al Madi, “How readable is model-generated code? examining

readability and visual inspection of github copilot,” in Proceedings of

the 37th IEEE/ACM International Conference on Automated Software

Engineering, 2022, pp. 1–5.
[15] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,

C. Parnin, and J. Stallings, “Gender differences and bias in open source:
Pull request acceptance of women versus men,” PeerJ Computer Science,
vol. 3, p. e111, 2017.

[16] N. Imtiaz, J. Middleton, J. Chakraborty, N. Robson, G. Bai, and
E. Murphy-Hill, “Investigating the effects of gender bias on github,” in
2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE). IEEE, 2019, pp. 700–711.
[17] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer,

“Biases and differences in code review using medical imaging and eye-
tracking: genders, humans, and machines,” in Proceedings of the 28th

ACM joint meeting on European software engineering conference and

symposium on the foundations of software engineering, 2020, pp. 456–
468.

[18] I. Bertram, J. Hong, Y. Huang, W. Weimer, and Z. Sharafi, “Trustworthi-
ness perceptions in code review: An eye-tracking study,” in Proceedings

of the 14th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), 2020, pp. 1–6.
[19] A. Eteläpelto, “Metacognition and the expertise of computer pro-

gram comprehension,” Scandinavian Journal of Educational Research,
vol. 37, no. 3, pp. 243–254, 1993.

[20] M. C. Davis, E. Aghayi, T. D. Latoza, X. Wang, B. A. Myers, and
J. Sunshine, “What’s (not) working in programmer user studies?” ACM

Transactions on Software Engineering and Methodology, vol. 32, no. 5,
pp. 1–32, 2023.

[21] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium

on Software Testing and Analysis, 2012, pp. 177–187.
[22] P. Rodeghero and C. McMillan, “An empirical study on the patterns of

eye movement during summarization tasks,” in 2015 ACM/IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement

(ESEM). IEEE, 2015, pp. 1–10.
[23] R. Bednarik and M. Tukiainen, “An eye-tracking methodology for

characterizing program comprehension processes,” in Proceedings of

the 2006 symposium on Eye tracking research & applications, 2006,
pp. 125–132.

[24] C. Aschwanden and M. Crosby, “Code scanning patterns in program
comprehension,” in Proceedings of the 39th hawaii international con-

ference on system sciences. Citeseer, 2006.
[25] O. Palinko, A. L. Kun, A. Shyrokov, and P. Heeman, “Estimating

cognitive load using remote eye tracking in a driving simulator,” in
Proceedings of the 2010 symposium on eye-tracking research & appli-

cations, 2010, pp. 141–144.
[26] J. Zagermann, U. Pfeil, and H. Reiterer, “Measuring cognitive load using

eye tracking technology in visual computing,” in Proceedings of the sixth

workshop on beyond time and errors on novel evaluation methods for

visualization, 2016, pp. 78–85.
[27] R. Bednarik, “Expertise-dependent visual attention strategies develop

over time during debugging with multiple code representations,” Inter-

national Journal of Human-Computer Studies, vol. 70, no. 2, pp. 143–
155, 2012.

[28] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th international con-

ference on Software engineering, 2014, pp. 390–401.
[29] P. Hejmady and N. H. Narayanan, “Visual attention patterns during

program debugging with an ide,” in proceedings of the symposium on

eye tracking research and applications, 2012, pp. 197–200.
[30] M. Kazemitabaar, X. Hou, A. Henley, B. J. Ericson, D. Weintrop, and

T. Grossman, “How novices use llm-based code generators to solve cs1
coding tasks in a self-paced learning environment,” in Proceedings of

the 23rd Koli Calling International Conference on Computing Education

Research, 2023, pp. 1–12.

[31] N. Tang, J. An, M. Chen, A. Bansal, Y. Huang, C. McMillan, and
T. J.-J. Li, “Codegrits: A research toolkit for developer behavior and
eye tracking in ide,” in 46th International Conference on Software

Engineering Companion (ICSE-Companion ’24). ACM, 2024.
[32] S. G. Hart, “Nasa task load index (tlx),” 1986.
[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.
[34] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[35] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the

28th ACM joint meeting on European software engineering conference

and symposium on the foundations of software engineering, 2020, pp.
1433–1443.

[36] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago et al., “Competition-
level code generation with alphacode,” arXiv preprint arXiv:2203.07814,
2022.

[37] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Productivity assessment of neural
code completion,” in Proceedings of the 6th ACM SIGPLAN Interna-

tional Symposium on Machine Programming, 2022, pp. 21–29.
[38] T. Wu, K. Koedinger et al., “Is ai the better programming partner?

human-human pair programming vs. human-ai pair programming,” arXiv

preprint arXiv:2306.05153, 2023.
[39] M. Amoozadeh, D. Daniels, D. Nam, A. Kumar, S. Chen, M. Hilton,

S. Srinivasa Ragavan, and M. A. Alipour, “Trust in generative ai
among students: An exploratory study,” in Proceedings of the 55th ACM

Technical Symposium on Computer Science Education V. 1, 2024, pp.
67–73.

[40] R. Brooks, “Towards a theory of the cognitive processes in computer pro-
gramming,” International Journal of Human-Computer Studies, vol. 51,
no. 2, pp. 197–211, 1999.

[41] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32Nd ACM/IEEE International Conference on

Software Engineering-Volume 1, 2010, pp. 185–194.
[42] A. Alaboudi and T. D. LaToza, “What constitutes debugging? an

exploratory study of debugging episodes,” Empirical Software Engineer-

ing, vol. 28, no. 5, p. 117, 2023.
[43] K. Araki, Z. Furukawa, and J. Cheng, “A general framework for

debugging,” IEEE software, vol. 8, no. 3, pp. 14–20, 1991.
[44] D. J. Gilmore, “Models of debugging,” Acta psychologica, vol. 78, no.

1-3, pp. 151–172, 1991.
[45] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.

Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2010.

[46] A. Liu and M. Coblenz, “Debugging techniques in professional pro-
gramming.” Plateau Workshop.

[47] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichotomy
of debugging behavior among programmers,” in Proceedings of the 40th

International Conference on Software Engineering, 2018, pp. 572–583.
[48] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s

code suggestions,” in Proceedings of the 19th International Conference

on Mining Software Repositories, 2022, pp. 1–5.
[49] Y. Li, Y. Peng, Y. Huo, and M. R. Lyu, “Enhancing llm-based coding

tools through native integration of ide-derived static context,” arXiv

preprint arXiv:2402.03630, 2024.
[50] S. Imai, “Is github copilot a substitute for human pair-programming? an

empirical study,” in Proceedings of the ACM/IEEE 44th International

Conference on Software Engineering: Companion Proceedings, 2022,
pp. 319–321.

[51] M. A. Just and P. A. Carpenter, “A theory of reading: from eye fixations
to comprehension.” Psychological review, vol. 87, no. 4, p. 329, 1980.

[52] K. Rayner, “Eye movements in reading and information processing.”
Psychological bulletin, vol. 85, no. 3, p. 618, 1978.

[53] J. G. May, R. S. Kennedy, M. C. Williams, W. P. Dunlap, and J. R. Bran-
nan, “Eye movement indices of mental workload,” Acta psychologica,
vol. 75, no. 1, pp. 75–89, 1990.

[54] Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc, “Eye-tracking
metrics in software engineering,” in 2015 Asia-Pacific Software Engi-

neering Conference (APSEC). IEEE, 2015, pp. 96–103.

[55] T. Busjahn, R. Bednarik, and C. Schulte, “What influences dwell time
during source code reading? analysis of element type and frequency as
factors,” in Proceedings of the Symposium on Eye Tracking Research

and Applications, 2014, pp. 335–338.
[56] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on the usage

of eye-tracking in computer programming,” ACM Computing Surveys

(CSUR), vol. 51, no. 1, pp. 1–58, 2018.
[57] N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical

study on the importance of source code entities for requirements
traceability,” Empirical software engineering, vol. 20, no. 2, pp. 442–
478, 2015.

[58] S. Maan, “Representational learning approach for predicting developer
expertise using eye movements,” 2020.

[59] B. Beizer, Software testing techniques. Dreamtech Press, 2003.
[60] M. Dorr, T. Martinetz, K. R. Gegenfurtner, and E. Barth, “Variability

of eye movements when viewing dynamic natural scenes,” Journal of

vision, vol. 10, no. 10, pp. 28–28, 2010.
[61] H. Sheridan and E. M. Reingold, “Chess players’ eye movements reveal

rapid recognition of complex visual patterns: Evidence from a chess-
related visual search task,” Journal of vision, vol. 17, no. 3, pp. 4–4,
2017.

[62] M. Brod, L. E. Tesler, and T. L. Christensen, “Qualitative research
and content validity: developing best practices based on science and
experience,” Quality of life research, vol. 18, pp. 1263–1278, 2009.

[63] J. Lazar, J. H. Feng, and H. Hochheiser, Research methods in human-

computer interaction. Morgan Kaufmann, 2017.
[64] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory

study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software

engineering, vol. 32, no. 12, pp. 971–987, 2006.
[65] A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, and

B. Zorn, “What is it like to program with artificial intelligence?” arXiv

preprint arXiv:2208.06213, 2022.
[66] R. Yen, J. Zhu, S. Suh, H. Xia, and J. Zhao, “Coladder: Supporting pro-

grammers with hierarchical code generation in multi-level abstraction,”
arXiv preprint arXiv:2310.08699, 2023.

[67] P. Alex, “Eye tracking in human-computer interaction and usability
research: Current status and future prospects,” The Encyclopedia of

Human Computer Interaction, pp. 211–219, 2005.
[68] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.

Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Transactions on

software engineering, vol. 28, no. 8, pp. 721–734, 2002.
[69] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and

M. Crosby, “A practical guide on conducting eye tracking studies in
software engineering,” Empirical Software Engineering, vol. 25, no. 5,
pp. 3128–3174, 2020.

