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Abstract—The increasing use of large language model (LLM)-
powered code generation tools, such as GitHub Copilot, is trans-
forming software engineering practices. This paper investigates
how developers validate and repair code generated by Copilot
and examines the impact of code provenance awareness during
these processes. We conducted a lab study with 28 participants,
who were tasked with validating and repairing Copilot-generated
code in three software projects. Participants were randomly
divided into two groups: one informed about the provenance
of LLM-generated code and the other not. We collected data on
IDE interactions, eye-tracking, cognitive workload assessments,
and conducted semi-structured interviews. Our results indicate
that, without explicit information, developers often fail to identify
the LLM origin of the code. Developers generally employ similar
validation and repair strategies for LLM-generated code, but
exhibit behaviors such as frequent switching between code and
comments, different attentional focus, and a tendency to delete
and rewrite code. Being aware of the code’s provenance led to
improved performance, increased search efforts, more frequent
Copilot usage, and higher cognitive workload. These findings
enhance our understanding of how developers interact with
LLM-generated code and carry implications for designing tools
that facilitate effective human-LLM collaboration in software
development.

Index Terms—GitHub Copilot, developer behavior analysis,
debugging strategy, eye tracking, IDE tracking

I. INTRODUCTION

Recent advances in large language models (LLMs) have
significantly impacted the programming process, becoming
increasingly integrated into the programming workflow [1].
A notable example is GitHub Copilot!, a code generation tool
powered by OpenAl’s GPT model [2], which can generate
lines or subroutines of code based on existing code or natural
language comments [3]. These code generation tools are
primarily used to enhance productivity, offering benefits such
as autocomplete, quicker task completion, and easier recall of
syntax [4]. In a controlled experiment, the group using Copilot
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completed programming tasks 55.8% faster than the group that
did not use it [5].

While LLM-powered tools facilitate code generation, the
quality of the generated code is not guaranteed. A recent
study found that LLM-generated code commonly suffers from
code quality issues, such as compilation and runtime errors,
incorrect outputs, and problems related to code style and main-
tainability [6]. Consequently, after using these tools to generate
a section of code, developers must spend time evaluating its
correctness, fixing potential bugs, and integrating the code
into the existing codebase. Previous studies have shown that
developers spend a significant portion of their time (37.99%
in total) thinking/verifying suggestions, debugging/testing, and
editing written code when programming with Copilot [7].

Error discovery and repair strategies are crucial for suc-
cessful human-Al interaction, guiding the development of
underlying Al models and user interfaces, as indicated in
other contexts such as conversational agents [8], qualitative
coding [9], and natural language data queries [10]. For code
generation, Al tools can generate different types of errors
than humans [11], and unlike humans, Al cannot articulate
the rationale behind its decisions. Therefore, the focus of
attention and strategies that developers follow may differ from
those used when working with human-written code. Although
studies have explored how developers interact with such Al
tools to generate code [4], [12], [13], and the quality and
usability of the generated code [3], [14], the process of
validating and repairing them is still not well understood,
warranting further investigation.

Furthermore, as LLM-generated code becomes increasingly
integrated with existing codebases, it is important to consider
its provenance (i.e., whether the code is LLM-generated or
human-written). Previous research has revealed that aware-
ness of code provenance impacts developers’ behavior when
interacting with code, even though they may not always be
conscious of such biases [15]-[17]. In a study on code review,



despite all patches being created by automatic program repair
tools, some were labeled as human-written, while others were
labeled as machine-generated. Participants showed different
scanning patterns and attention distributions in response [18].
In the context of debugging, developers’ awareness of code
provenance may also impact their mental models of what
is more likely to go wrong and how they may go wrong,
affecting their strategies and performance. Understanding these
differences can help developers better comprehend LLM-
powered code generation tools, leading to the design of tools
that establish appropriate trust and support better collaboration.

Prior studies on developers’ interactions with LLM-powered
code generation tools have largely depended on subjective
analyses, such as post-analysis of audio/video recordings [7],
[12], [13], surveys [4], and interviews [12], [13]. These
methods may suffer from recall and observer biases [19],
[20], and fall short of reliably capturing developers’ cognitive
processes [21]. In response to these limitations, recent research
in software engineering has increasingly utilized eye tracking
as an objective measure. Eye tracking offers biologically-
based insights into cognitive processes through non-intrusive
observation of developers’ gaze patterns [18], [22]. Eye-
tracking data, specifically developer gaze patterns, can be
used to infer their visual attention strategies [23], [24] and
may correlate with their self-reported cognitive workload [25],
[26]. This provides an important indicator of their men-
tal model when performing programming tasks [27], [28].
Previous research also suggests that developer interactions
within the Integrated Development Environment (IDE) can
complement eye-tracking data to comprehensively understand
their behaviors [29], [30]. Therefore, we employ a mixed-
method approach, combining quantitative (i.e., eye tracking
and IDE tracking) and qualitative (i.e., surveys and interviews)
methods to understand developer behaviors in our study.

This paper addresses the gap in understanding how devel-
opers validate and repair LLM-generated code, specifically
focusing on chunks of code (about tens of lines) produced
by GitHub Copilot. We also examine the effects of informing
developers about the code provenance on their validation and
repair strategies. We conducted lab studies with 28 partici-
pants, tasking them with validating, repairing, and integrat-
ing Copilot-generated code into three representative software
projects. Participants were allowed to interact with Copilot
during the process. To compare developer behaviors under
different awareness of the provenance of LLM-generated code,
we randomly divided the participants into two groups: one was
informed before the experiment that the code was generated
by Copilot, while the other group was not informed.

During the validation and repair process of participants, we
collected their IDE interaction and eye-tracking data using
CodeGRITS [31], an IntelliJ platform plugin to collect de-
veloper behaviors?. After each subtask, we asked participants
to report their cognitive workload using the NASA-TLX ques-
tionnaire [32]. After completing all three tasks, we conducted

Zhttps://codegrits.github.io/CodeGRITS/
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Fig. 1. A glance of how Copilot is invoked in our study setting, along with
the collected IDE tracking and eye tracking data.

a semi-structured interview to discuss their mental models and
strategies for validating and repairing codes. Figure 1 provides
an overview of our data collection methods. We investigated
the following research questions.

« RQ1. What is developers’ perception of LLM-generated
code compared to human-written code?

o RQ2. What are the differences in the strategies of devel-
opers to validate and repair LLM-generated code versus
human-written code?

« RQ3. How does awareness of code provenance affect the
validation and repair behaviors of developers?

We highlight the following findings of our study.

o Developers often do not recognize the provenance of
code unless explicitly informed. LLM-generated code
typically features more comments, exhibits different error
types compared to human-made errors, and demonstrates
stronger syntax but weaker logic performance.

o While developers generally apply similar strategies for
validating and repairing LLM-generated code as they do
with human-written code, they also display distinct be-
haviors. These include frequent switching between code
and comments, varied focus areas, and a tendency to
delete and completely rewrite the code.

o Informing developers about the provenance of LLM-
generated code positively influences their performance in
validation and repair tasks. It leads to improved validation
and repair outcomes, increased search efforts, and more
frequent utilization of Copilot during these processes.
However, this awareness also increases cognitive work-
load, as developers pay more attention to potential errors
and integration challenges.

II. RELATED WORK

A. Empirical Study of LLM Code Generation Tools

Recent advances in transformer-based [33] LLMs marked
a significant breakthrough in code generation. Several
production-level code generation tools, such as GitHub Copi-
lot, OpenAl GPT-4 [34], Tabnine®, Amazon CodeWhisperer?,

3https://www.tabnine.com/
“https://aws.amazon.com/codewhisperer/



and IntelliCode Compose [35], have been adopted by a
growing number of developers [4]. Notably, Codex [3], a
descendant of GPT-3 model [2] fine-tuned on 54 million
public GitHub repositories, can solve 37.7% of unseen Python
code-writing tasks with a single sample in the HumanEval
dataset [3], while GPT-4 has increased this to 67.0% [34].
Various metrics and datasets have been introduced to evaluate
their performance in offline settings [3], [11], [36]; however,
more studies are needed to explore how developers use them
and their impact on developers.

Previous studies explored how developers perceive and
interact with these LLM code generation tools [12], [37]-
[39]. For example, Barke ef al. [13] observed two modes
of developer interactions: acceleration, where developers use
Copilot to code faster, and exploration, where developers use
it to explore what to do next. Liang et al. [4] conducted a
large-scale survey with 410 developers and identified a set of
usage characteristics and usability issues with Al program-
ming assistants. Mozannar et al. [7] proposed a taxonomy of
common developer activities and retrospectively taxonomized
21 developers’ coding sessions with Copilot. They found
that developers spend more than half of their task time on
Copilot-related activities and a large fraction of time validating
and editing Copilot’s suggestions. Our study focuses on how
developers validate and repair Copilot-generated code, serving
as a complementary perspective to the existing literature.

B. Debugging Strategies for Software Developers

Debugging is a complex process that involves various tasks,
including code comprehension, error localization, and repair,
and remains a long-standing topic in software engineering
research [40]-[42]. Previous literature indicates that debugging
involves iteratively comprehending the code and forming and
testing hypotheses [43], [44]. Lawrance et al. [45] modeled
developers’ debugging processes from an information foraging
theory perspective and categorized six debugging modes: map-
ping, drill-down mapping, observe-the-failure, locate-the-fault,
fix-the-fault, and verify. Liu er al. [46] observed professional
developers debugging large-scale software systems and found
that common debugging techniques generally fall into two
modes: identify and fix the error. The usability of debugging
tools has also been investigated. For instance, Beller et al. [47]
observed limited use of IDE features and proposed improve-
ments to the Eclipse debugger based on their findings.

However, LLM-generated code shows different traits from
the human-written code. Previous studies have found that
LLM-generated code is less compact [48], lacking con-
text [49], and of lower quality than human-written code [50].
The process of developers debugging code that was often writ-
ten by themselves can also be quite different from validating
and repairing generated code. Thus, our study is different
in that we investigate how developers validate and repair
LLM-generated code instead of human-written code. This
contributes to a better understanding of the impact of LLM
on software development and helps to develop better tools to
alleviate new challenges.

C. Eye Tracking in Software Engineering

Eye tracking captures the visual attention of participants by
recording their eye gaze data [51]. Visual attention triggers
mental processes for comprehending and solving a given task,
which provides information on the cognitive processes of the
participants [26], [52], [53]. The recorded gazes are often
computed as a time series of fixations (eye stabilization lasting
more than 200 ms) and saccades (rapid movements between
fixations within 50 ms) for analysis [54]. Recently, researchers
started using eye tracking to study the software development
process, including code comprehension [55], review [18], and
debugging [29]. For example, Rodeghero et al. [22] studied the
eye movement patterns of developers when summarizing code
and found that these patterns were analogous to those observed
in reading natural language. Sharafi et al. [54] recommended a
set of eye-tracking metrics for software engineering. Obaidel-
lah et al. [56] conducted a survey on the use of eye tracking in
software development in 2018. Eye tracking can also typically
be integrated with tracking developers’ interactions within the
IDE (e.g., mouse clicks, file navigation, running the class, etc.)
to understand how they develop software [29], [57], [58]. In
this study, we use CodeGRITS [31] to simultaneously track
developers’ IDE interactions and eye gazes for data analysis.

Previous studies also used developer behavioral data to
explore differences in software development behavior under
different code provenance awareness, such as gender [15], [16]
or human/machine distinctions [18]. For example, Huang et
al. [17] combined medical imaging and eye tracking data
to study biases and differences associated with the gender
of humans and machines in code review. They found that
participants were more likely to accept pull requests from
women and less likely to accept those from machines. Our
research extends these studies by using IDE tracking and
eye tracking to explore the impact of code provenance on
validating and repairing LLM-generated code.

III. STUDY DESIGN

We conducted a lab study with 28 participants to investigate
how developers validate and repair code generated by Copilot.
We used GitHub Copilot as a representative LLM-based code
generation tool because it is specifically designed for coding, is
widely used by developers [4], and has previously been studied
in other works [7], [12]. In our study, each participant com-
pleted three programming tasks (details in Section III-A). For
each task, we created a project containing several declared but
unimplemented subroutines (e.g., classes/methods). We then
developed prompts that described the intended functionality of
each subroutine and used Copilot to generate code for them.
We deliberately constructed prompts for which Copilot would
generate code containing representative errors of different
types, as described in Section III-A.

To ensure consistency between participants, we presented
each participant with the same code, prompts, and Copilot-
generated code. We then asked the participants to validate and
repair the generated code with the assistance of Copilot. The
participants were randomly assigned to two conditions. In one



condition, the participants were informed that the code was
generated using LLMs. Participants in the other condition were
not informed about the provenance of the code.

The details of our study protocol and study design can be
found in Section III-D and Section III-B.
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Fig. 2. An example of errors in LLM-generated code in task ZooSystem:
6112 (Wrong Component) and 6125 (Parameter Value).

A. Programming Tasks

We used three Java programming tasks in different software
engineering scenarios: algorithm design, graphical user inter-
face (GUI) design, and object-oriented programming (OOP).

o Task 1. Kakamora (algorithm design). A LeetCode-like
task that utilizes dynamic programming to find a path in
a square array with the minimum sum of numbers. The
entire program was written from scratch by Copilot. This
task was adapted from an assignment in an undergraduate
computer science course.

o Task 2. Calculator (GUI): A calculator app written using
the Java GUI programming API. It consists of a front-
end that includes a text interface and operational buttons,
as well as back-end logic. The GUI layout code and
the listeners for the front-end buttons were generated by
Copilot.

o Task 3. ZooSystem (OOP): A zoo management system
that includes various animal classes with inheritance re-
lationships (e.g., Animal-Mammal-Lion). Several man-
agement functions, such as add, delete, search, and
display animals, were generated by Copilot. This task
was adapted from an assignment in an undergraduate
computer science course.

We categorized these errors using the taxonomy presented
by Beizer [59]. The error statistics for the three tasks are
presented in Table I. Each subtask refers to a subroutine
generated by Copilot that contains bugs, which may include
multiple types of bugs (e.g., subtasks 1.2 and 3.2).

For example, Fig. 2 shows bugs in the code generated by
Copilot for subtask 3.2, with the prompt “create a constructor
for the Lion class that only takes the name as input.” The
code has both bug type 6125 “Parameter Value” (e.g., the
default conservation status should be Vulnerable), and bug

TABLE I
BUG TYPES REPRESENTED IN PROGRAMMING TASKS BASED ON [59].

Task | Subtask | Bug Index | Bug Category
1.1 231x Missing Case
Kakaroma 3226.4 String Manipulation-Insertion
1.2 3126 Illogic Predicates
231x Missing Case
Calculator 2.1 6125 Parameter Value
2.2 614x Initialization State
3.1 6125 Parameter Value
32 6112 Wrong Component
Z00System ’ 6125 Parameter Value
¥ 33 4164 Should be Dynamic Resource
34 6112 Wrong Component
3.5 413x Initial, Default Values

type 6112 “Wrong Component” (Lion do not have feather;
instead, it should be setFurColor, which extends from its
superclass Mammal).

B. Participants

We recruited 28 participants (17 male, 11 female) from the
local university community. Among them, 10 are graduate stu-
dents and 14 are undergraduate students; 22 major in computer
science and engineering, while two major in mathematics.
Three participants had no prior programming experience in
Java, but they had six, seven, and 12 years of experience
in other programming languages, respectively. 12 had just
completed an introductory course on Java programming, 12
had one to three years of Java programming experience, and
one had over three years. However, regarding their general
programming experience, participants on average had 5.5
years, and only three of them had less than three years of
experience. Eight of them had used Copilot in the past before
our study. The participants received a $30 Amazon Gift Card
as compensation for their time.

C. Study Settings

We conducted the study in person in a usability lab, using
a Windows 10 computer equipped with a 27-inch monitor and
a Tobii Pro Fusion eye tracker’. The sampling frequency of
the eye tracker was 60 Hz.

We randomly assigned the participants into two groups, each
consisting of 14 participants, with different information about
the code provenance. The Informed group was explicitly
told that the code was generated by Copilot, while the Non-
Informed group received no such indication.

During the study, participants used Intelli] IDEA 2022.1.4,
running the Copilot plugin and the data collector plugin
(Section III-E). We set the font size in the IDE to 20 points.
To mitigate the influence of light intensity on eye tracking, all
study sessions were held in the same room with all doors and
windows closed and the same ceiling light on.

Shttps://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion



D. Protocol

Each study session lasted approximately two hours. After
the participant signed the consent form and completed a pre-
study demographic questionnaire, we briefed the participant
about the overall objective and process of the study, followed
by a 10-minute tutorial on the use of IntelliJ] IDEA and
Copilot. We also gave a short instruction on interacting with
the eye tracker (e.g., refraining from major head movements).

For each task, the participant first read an instructional doc-
ument that described the background of the tasks, followed by
calibrating the eye tracker. The participant had then 20 minutes
to perform each task. To narrow down the debugging strategy
for specific errors, participants were asked to announce when
they thought they had completed a subtask. Participants were
not allowed to browse the Internet during the task.

After completing each task, we asked participants to com-
plete a NASA Task Load Index (NASA-TLX) question-
naire [32] to self-report their cognitive workload. NASA-TLX
is a widely-used subjective assessment tool that measures the
user’s perceived workload when performing a task. It includes
six dimensions: Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration. We used it to
complement the data obtained from eye tracking.

At the end of the study session, we conducted a 20-minute
semi-structured interview with the participants to discuss the
behaviors we observed. The interview questions included
their evaluations of the quality of LLM-generated code, their
perceived differences between LLM-generated and human-
written code, strategies they used to validate and repair bugs
in LLM-generated code, their use of IDE features and Copilot,
and their changes in mental models and strategies under
different code provenances. We also asked participants from
the Non-Informed group whether they realized that the code
was generated by LLM during the study.

E. Data Collection Setup

To support the analysis of developer behaviors, we used
CodeGRITS [31], a plug-in for IntelliJ] IDEA that enabled
IDE tracking and eye tracking. In addition, we recorded the
screen during study sessions with timestamps for subsequent
analysis. The details of the collected data are summarized in
the following sections.

1) IDE Tracking: CodeGRITS collects the following infor-
mation via IDE tracking. All behaviors are tracked with their
location (path, line, column) and timestamp for further analysis
and calibration. They are organized in XML format, with an
example shown in Listing 1.

IDE Features CodeGRITS recorded the use of various
IDE features during programming. These include utilizing
the clipboard, executing the program, employing a debug-
ger (e.g., setting a breakpoint), switching among files, and
navigating the code (e.g., Find, GotoDeclaration, and
FindUsages). The usage log of IDE features also in-
cluded actions related to the interaction with Copilot, such as
copilot.applyInlays, which represents accepting the
code generated by Copilot.

Keyboard and Mouse Events CodeGRITS collected all key-
board events, including typing and navigating by keystrokes.
It also detected keyboard events with special functions such
as Enter, Backspace, or Escape. Additionally, the plugin
recorded mouse scrolling behaviors, both vertical and horizon-
tal.

File Logging To enable the recovery of any code file at
any time point during the tasks, we use CodeGRITS to record
the entire content of the current code file whenever the devel-
oper opens, closes, or makes edits. Additionally, CodeGRITS
records the console output whenever the developer executes
the code.

Listing 1. An example of IDE tracking data, including IDE features (top),
keyboard events (middle), and file logging (bottom).

<!-- IDE Feat
<action

res ——~>

id="ReformatCode" path="/src/Reptile.java"
timestamp="1662928377436"/>
id="copilot.applyInlays" path="/src/Lion.java"
timestamp="1662928415454"/>
id="GotoDeclaration" path="/src/Lion.java"
timestamp="1662928462655"/>

id="RunClass" path="/src/ZooSystem. java"
timestamp="1662928498642"/>

Events ——>

id="EditorPaste" path="/src/Lion.java"
timestamp="1662928472075"/>

<typing column="4" length="13" line="8"

<action
<action
<action

<l-- Keyboarc

<action

path="/src/Reptile.java" string="System.out"
timestamp="1662928450732"/>

type="vertical" path="/src/ZooSystem. java"
offset="693" timestamp="1662928825827"/>

! File Logging

id="fileLog" timestamp="1662928820593"
info="fileOpened" path="/src/ZooSystem. java"/>
id="fileLog" timestamp="1662928828525"
info="fileChanged" path="/src/Lion. java"/>
id="outputLog" timestamp="1662928831632"/>

<scroll

<log
<log

<log

2) Eye Tracking: CodeGRITS collects raw gaze data and
maps them to semantic source code entities, such as tokens and
nodes in abstract syntax trees (ASTs). The sampling frequency
was 60 Hz. A sample of gaze data and the semantic source
code entities is shown in Listing 2.

Raw Gaze Data Each sample in the raw eye tracker data
includes (z,y) relative coordinates on the screen, as well as
the diameters of the pupils and their corresponding validity
codes provided by the Tobii Pro SDK. We excluded invalid
data from our analysis based on Tobii Pro’s recommendations®.
Each gaze point is recorded with a timestamp.

Location, Token & AST To extract semantic informa-
tion from gazes, such as their corresponding code tokens,
CodeGRITS calculated the relative location in the code editor,
and then mapped it to specific locations (line, column) in the
code file and their corresponding tokens. It then used IntelliJ’s
Program Structure Interface (PSI)’ to determine the token,
token type, and AST hierarchy associated with the gaze.

Ohttps://developer.tobiipro.com/commonconcepts/validitycodes.html
7https://plugins.jetbrains.com/docs/intellij/psi.html



Listing 2. An example of gaze data collected from the eye tracker, with the
computed location, token, and AST hierarchy.

! Eye Tracking g
<gaze x="545" y="306" path="/src/ZooSystem. java"
line="26" column="12" gaze_validity="1.0"

pupil_diameter="3.277" pupil_validity="1.0"

start_timestamp="1669258026407" duration="286"

end_timestamp="1669258026693" count="18">
<ast_type="IDENTIFIER" token="printSummaryView">

<level end="26:24" start="26:8"

tag="Psildentifier:printSummaryView"/>
end="26:24" start="26:8"
tag="PsiReferenceExpression"/>
end="26:31" start="26:8"
tag="PsiMethodCallExpression"/>
end="26:32" start="26:8"
tag="PsiExpressionStatement"/>
end="32:5" start="5:4"
tag="PsiMethod:setupAnimals"/>
end="499:27" start="3:0"
tag="PsiClass:ZooSystem"/>

<level
<level
<level
<level
<level

</ast>
</gaze>

IV. RESEARCH METHODS

In this section, we discuss the methods used to analyze the
data collected from the study.

A. Quantitative Analysis

1) Gaze Pattern Metrics: Fixation refers to stabilization of
the eye at one location for a period of time, which is commonly
used in eye-tracking studies and is often considered to be asso-
ciated with visual attention and cognitive workload [60], [61].
Following the practice recommended in previous research [54],
we identified fixations by extracting gazes on the same token
with durations longer than 200 ms, and we considered the
transitions between two fixations within 50 ms as saccades. We
computed the following metrics using the definitions provided
in [54] to analyze the cognitive processes of the participants.

o Fixation Time: Total duration of all fixations in seconds.

o Fixation Count: Total number of fixations.

e Average Fixation Duration: Average duration of each
fixation in seconds.

o Saccade Time: Total duration of all saccades in seconds.

e Saccade Count: Total number of saccades.

e Average Saccade Length: Average length of each saccade
in pixels.

e Saccade Fixation Ratio: Ratio of saccade time to fixation
time, indicating the balance between exploration and
exploitation during programming.

2) Developer Behavior Categorization: The data collector
tracked rich low-level data within the IDE (Listing 1). Among
these, many can be aggregated for analysis. For example, Run,
RunClass, and Rerun all indicate that the user ran the
code to view output information. Debug, StepOver, and
ToggleLineBreakpoint all represent behaviors related
to using the debugger; whereas ToggleInsertState or
EditorLeftWithSelection have no clear significance

for understanding developer behavior. Therefore, we filtered
and aggregated these low-level tracking data to achieve the
high-level categorization shown in Table II.

For eye tracking data, based on the fixations calculated in
Section IV-Al, we classified the tokens that the developer
looks at into three types: code, comment, and document. This
classification allowed us to identify three types of reading be-
haviors (Behavior 1-3 shown in Table II). For IDE interaction
data, we first counted the number of occurrences for all the
original data’s “id”. An author categorized them according to
the similarity of their underlying activity types in initial high-
level behaviors and discarded data that were not meaningful
for understanding developer behavior. Subsequently, another
author reviewed and, if necessary, revised the categorizations
and definitions of behaviors. The disagreement cases were
discussed to reconcile differences and establish a cohesive
categorization (Behavior 4-11 shown in Table II).

B. Qualitative Analysis

For the qualitative analysis of interview transcripts, we fol-
lowed established open-coding procedures [62], [63]. Initially,
two authors independently performed qualitative coding on
the transcripts. Subsequently, they discussed their findings to
achieve agreement and formed a consolidated codebook. Using
this codebook, we conducted a thematic analysis to identify
emerging themes from the interviews. These themes were
refined and developed into study findings.

V. STUDY RESULT

In this section, we report the results for our three RQs.
Except for Fig. 3, all calculations of frequency or time were
averaged across each task for all participants.

A. RQI. Developers’ Perceptions of LLM-Generated Code

We asked the fourteen participants from the Non-Informed
group at the start of the interview, “During the tasks, did you
realize that the code you just validated was actually generated
by LLM?” Almost 80% (11/14) of them reported they did not
realize it. This indicates that if not clearly informed, developers
may not consider the provenance of the code, or they may
implicitly assume that the code was written by a human.
However, different perceptions of the code provenance impact
validation and repair strategies, workload, and performance,
which is further discussed in Section V-C.

Many participants (11 out of 28) indicated that the code had
a good coding style and readability, even better than human-
written code. For example, P21 reported, “[/LLM-generated
code] does follow human formatting guidelines; variable
names and everything were verbose and easy to use.” They
stated that the LLM-generated code is clean and professional,
because “it writes better variable names or method names. In
practice, many programmers tend to use very simple names.”
(P25) Thus, “it provides a pretty good starting point to
validate.” (P10) P14, P15, P17, P21, P23, and P25 highlighted
that LLM-generated code shows better understandability as it



TABLE II
CATEGORIZATION OF DEVELOPER BEHAVIOR EMERGED FROM IDE AND EYE TRACKING DATA.

Index | Behavior | Tracking Data
1 Reading Document Consecutive fixations on the instructional document
2 Reading Code Consecutive fixations on the code
3 Reading Comment Consecutive fixations on the comment
4 Switching Files Opening, closing, or changing the selection of a file
5 Scrolling Scrolling a file via mouse wheel, arrow keys, or touchpad gestures
6 Tracing Code Searching tokens, finding usages or going to declarations
7 Running for Output Running the class to obtain execution output
8 Employing Debugger | Utilizing debugger and its corresponding features (e.g., toggling breakpoints)
9 Invoking Copilot Accepting, rejecting, or browsing code generated from Copilot
10 Utilizing Clipboard Copying, cutting, or pasting contents
11 Keystrokes Typing Typing characters using keystrokes

contains more detailed comments compared to human-written
code.

However, participants reported that LLM made some mis-
takes that human developers would not. “Sometimes I do not
see why anyone would ever think that this was the right way
to write this code.” (P24) For example, in Task 1, an algorithm
design problem, Copilot used a series of if statements to hard-
code the test samples. P19, P21, P24, and P26 all expressed
confusion: “When I saw the hardcoded ‘1°, 2°, and ‘3’ in
the path reconstruction, I was really confused and thought
there would be some special meanings. But it turns out that
Al just hard-coded the example output.” (P21). Regarding the
bugs in Figure 2, participants described them as “ridiculous”
and “lacking common sense”: “Default values are given in
the instructions, but the constructor has some errors. A lion
cannot have a beak, feathers, or lay eggs.” (P16).

Additionally, P10, P14, P26, and P28 also reported that
the LLM-generated code often contains many repetitions.
“They put out the exact same code over and over again for
every button, which is difficult to read through.” (P28). P26
expressed concerns about it: “If I send this to my manager, they
will reject my code; these repetitive for-loops are horrible.”
Additionally, the LLM-generated code “focuses too much on
the prompts but loses the context of the code,” (P14) and “may
contain undefined variables,” (P10)

P6, P16, P25, and P27 also mentioned that errors in LLM-
generated code and human-written code tend to manifest in
different areas. “Humans are more error-prone than Copilot
when it comes to details; for the logic [of code], I think
Copilot is more error-prone”. (P25) This also affects their
validation and repair approaches, which is discussed more in
Section V-B.

P14, P25, and P26 noted that Copilot lacks multimodal
capabilities. For the GUI task in Task 2, a human developer
would find “easy,” but “Copilot is not multimodal; it doesn’t
understand the layout of the calculator frontend. The text
description lacks detail to accurately describe the layout of
each button, which is probably why it just generates the buttons
randomly.” (P25)

Key findings: If developers are not informed, they might
not recognize that the code is generated by an LLM.
LLM-generated code performs well in terms of coding
style and readability. They also often include more com-
ments. However, it tends to make unique mistakes that
are uncommon for human developers. Such errors include
repetitive structures, a lack of contextual understanding,
and generally better performance in syntax than in logic.
Additionally, LLMs’ lack of multimodal capabilities,
such as understanding visual layouts in front-end tasks,
further differentiates the types of errors they are prone to
make.

-

B. RQ2. Strategies to Validate and Repair Code

Based on the categorization of developer behaviors in
Section IV-A2, we calculated the frequency of transition
sequences of behaviors and selected some high-frequency
patterns in Fig. 3. Combining the findings of the interviews
with tracked data, we identified the following validation and
repair strategies used by the participants.

1) General Strategies for Validation and Repair: In general,
participants reported in the interview that errors in LLM-
generated code were found to be comparable to those made
by humans, leading them to employ common validation and
repair strategies as they normally would. The strategies they
described are a mix of the following four aspects:

o Context Comprehension. Many participants (11/28) re-
ported that they would first go through all the code
to understand its overall functionality, then search for
the cause of bugs. For example, P21 stated “I have
to read the initial code and try to understand what it
does, and then understand why its way of doing things
is wrong.” P20 said “First I read through the code to
conceptualize them in my mind.” This strategy aligns with
previous theories about debugging, suggesting that an
initial comprehension of the code helps form the context
in the developer’s mind, which serves as the basis for
further bug locating and repairing [44], [64].

o Step-by-Step Validation. P24 and P28 reported that they
would check the code’s control flow step-by-step in mind
to locate bugs. P24 states, “I typically stare at the code
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for a good amount of time and try to understand what
the variables are, like what’s being sent where and their
types. 1 just try to narrow down the lines as to where it
might be going wrong so that I can find the lines that are
causing the problem.” They also use some tools for trac-
ing code in the IDEs to help navigate and understand the
process. P17 states, “I like to use ‘GotoDeclaration’ and
‘FindUsages’ to jump between sections” The data from
IDE tracking also supports their reports. On average, par-
ticipants used GotoDeclaration and FindUsages
1.81 times per task.

e Running for Output. Participants often run the code to
validate the presence and find the causes of bugs based
on the output, as shown in Pattern #4 of Fig. 3. On the
one hand, this output is the final result required by the
code, such as the testing of some samples in Task 1, or
the visualization of the GUI in Task 2 — “Typically, I first
run the program and see how it functions, especially for
the GUL” (P25). On the other hand, participants might
manually insert some print statements to test the inter-
mediate states of program execution, which is consistent
with previous studies [43]. For example, P24 stated, “/
typically use if statements and print statements frequently
to determine whether this condition is true at this time.”
P28 also reported “Copilot was very convenient to write
for loops that print everything for me.”

o Employing Debugger. As shown in Pattern #5 of Fig. 3,
P7, P23, P25, and P26 also report using the default
debugger in IDE to help with this process, i.e., toggling
breakpoints and stepping through the code. However,

inserting print statements and then running the entire code
is much more common (7.483 > 2.362, Student’s t-test,
p-value = 3.45e-5 < 0.01); this might be due to their
unfamiliarity with the IDE debugger [47].

2) Difference for LLM-Generated Code: Although the val-
idation and repair of LLM-generated code is reported to
be similar to that of human-written code, we also observe
some differences. First, as shown in Pattern #2 of Fig. 3,
developers tend to switch fixations consecutively between code
and comment. Since the comments in the task projects are
mainly used as prompts for Copilot to generate buggy code,
we hypothesize that developers are trying to disambiguate the
mismatch between the code and the prompt. For example, P14
states, “There’s a gap between the comment and the code to
validate”; P13 states, “I need to match the expected output
[code] to the input [prompt] provided to Copilot.” Otherwise,
P3 also reported, “Switching between instructions and code
is annoying and challenging.”” This phenomenon was also
observed in other studies like [65] and [66].

Second, participants also reported that LLM-generated code
might offer a different perspective from human thoughts,
potentially making validation and repair easier. P4 stated,
“Copilot has a completely different thinking angle; debugging
my own code, I would fall into the same traps,” while P23
stated, “Copilot can get things wrong as well, but it usually
errs in a different way. From the two together, you can find
the right solution.”

Third, some LLM-generated code contains numerous erro-
neous statements that are difficult to fix by modifying only
small parts. Participants tend to delete or comment out almost
all of them and rewrite the code themselves. For example,
P17 stated, “With the layout, I just completely threw out the
existing layout and kind of made one that worked myself.”
P25 mentioned, “Especially for the first task, I must say this
is not a complex task, but I spent a lot of time figuring out
the details [of the LLM-generated code]. [...] If I can do it
next time, maybe I will just delete the entire code and write it
myself.”

Fourth, As stated in Section V-A, participants think that
LLM is more likely to make errors in the overall logic of the
code, while humans are more likely to make mistakes in the
details. For example, P25 states that “I will focus more on the
logic of the code if it is generated by LLM, probably because
I don’t think Copilot can generate really complicated logic”;
LLM rarely makes mistakes in generating similar, repetitive
code blocks — “If you use LLM to generate similar code, it
tends to be either all correct or all incorrect.” Therefore, “If
it is a similar bunch of code, I would trust the LLM; as for
logic details, I will double-check the correctness of the LLM-
generated code.” P27 also stated, “[I] focus 100% more on
the structure. I suppose LLM would do better with syntax.”

Lastly, another challenge of validating and repairing LLM-
generated code is not knowing the reasoning behind LLM’s
decisions and not being able to communicate with the author.
P26 stated, “If I write the code myself, I generally know the
logical thought process behind it. [...] I don’t see how LLM is



thinking about it.” P1 stated, “I can ask a human coder about
their ideas, but I don’t know how Copilot generates its code.”

3) Role of Copilot in Validation and Repair: In our study,
we allowed participants to use Copilot in the validation and
repair process. They reported that using Copilot itself was
helpful. On average, participants used Copilot to generate more
characters than through keystroke typing (362.84 > 131.31,
Student’s t-test, p-value = 0.0007 < 0.01). However, there is
no statistically significant difference between the characters
generated by Copilot and those from clipboard operations, i.e.,
copy-paste or cut-paste (362.84 > 324 .41, Student’s t-test, p-
value = 0.86 > 0.10).

Participants reported that Copilot facilitates the process of
idea exploration, provides syntax suggestions while accelerat-
ing the speed of coding. For example, P7 stated, “I change
my approach. [...] First, I see if Copilot can give me some
useful information, then I validate it.”; P2 stated, “If I don’t
know anything, I can just use Copilot to generate code; it
gives me an idea of what to do next.”’; P24 commented, “fA[
is] very helpful when I don’t know the Java syntax, [like] how
to convert an ArrayList to an Array.”; P4 mentioned, “Copilot
could replace Google searches and original documentation;
you describe what you want and it understands what you
mean.” These findings are also consistent with previous re-
search [4], [13].

Notably, we also observed that participants used Copilot to
generate inline comments to help understand the code itself.
P25 states, “I think if that line of code has a bug, generating
the comments directly from the code will help me figure it out.”

e N

Key findings: Developers generally apply similar vali-
dation and repair strategies to both LLM-generated and
human-written code, which include context comprehen-
sion, step-by-step validation, running tests for output,
and using debuggers. However, our study identified sev-
eral new behaviors specific to handling LLM-generated
code: developers frequently switch between code and
comments, often completely delete and rewrite code, and
exhibit a shifted focus from syntax to logic. Copilot
was frequently used to enhance the process, particularly
through the generation of inline comments that help

clarify the code’s functionality.
\. J/

C. RQ3. Effects of Code Provenance Informing

In this section, we investigate the impact of code prove-
nance, i.e., whether the code was written by LLM or humans,
on developers. We compare the differences between the In-
formed and Non-Informed groups based on our tracked data.

1) Bug Fixing Success Rate: We first analyze the success
rate of fixing the bugs in Table II for each group. As shown in
Fig. 4, we observed that the Informed group performs better
than the Non-Informed group (average success rate 0.577
> 0.446, Student’s t-test, p-value = 0.0417 < 0.05). When
participants were informed that the code was actually written
by Copilot, compared to those who were not informed, they
performed better on 8§ bugs, the same on 3 bugs, and worse

Success Rates of Two Groups on Different Bugs
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Fig. 4. The success rates of bug validating and repair of the Informed group
and the Non-Informed group.

on 1 bug. Thus, the reasons behind such a different success
rate warrant further exploration.

2) Developer Behaviors: As stated in Section V-B2, partic-
ipants showed a high frequency of fixation switching between
code and comments. Thus, we first computed the ratio of
time spent on code to comments to see if there were any
differences between the two groups. These metrics can be
inferred from eye-tracking data, i.e., Behaviors 1-3 in Table II.
The results suggest that the Informed group had a higher Time
on Code/Time on Comment ratio, which is partially significant
(0.233 > 0.179, Student’s t-test, p-value = 0.093 < 0.10). The
Pearson correlation analysis also showed that the higher ratio
was positively correlated with the success rates across 12 bugs
for each person (0.103 with a p-value of 0.066 < 0.10).

Additionally, the Informed group showed significantly less
time reading the original document (48.6 < 67.4, Student’s
t-test, p-value = 0.029 < 0.05). Since the comments mainly
consist of task content mentioned in the document and serve
as prompts for Copilot to generate buggy code, these results
indicate that developers focus more on the prompts given to
the LLM when they know the code was generated by LLM.

As shown in Fig. 5, we calculated the frequency of devel-
oper behaviors, excluding reading (Behaviors 4-11 in Table II),
for both groups. From the (partially) statistically significant
results, we make the following two observations:

o If informed that the code was generated by LLM, par-
ticipants use tracing code features (e.g., Find, GotoDec-
laration, FindUsages) more frequently (4.606 > 2.784,
Student’s t-test, p-value = 0.078 < 0.10). Figure 6 in
Section V-C3 also shows that they have higher Saccade
Time (2.303 > 1.705, Student’s t-test, p-value = 0.076
< 0.10), which indicate greater search effort [67]. This
may be because they focus more on the high-level logic
of the code than on the low-level details, as stated in
Section V-B2.

o If informed that the code is generated by LLM, partici-
pants use Copilot more (11.21 > 6.081, Student’s t-test,
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Fig. 5. Comparison of the frequency of different types of developer behaviors
between the Informed group (left) and the Non-Informed group (right).

p-value = 0.093 < 0.10) and the clipboard less (7.758
< 11.32, Student’s t-test, p-value = 0.017 < 0.05). Note
that most of the participants (20 out of 28) had not used
Copilot prior to the study, but they were evenly distributed
into two groups (10 in each), so the experimental results
should not be affected by this factor.
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Fig. 6. Comparison of self-reported workload measured by NASA-TLX
and eye-tracking-related metrics between the Informed group (left) and Non-
Informed group (right).

3) Cognitive Workload: We also calculated the workload
metrics based on NASA-TLX [32] and the gaze pattern metrics
described in Section IV-A1l. As shown in Fig. 6, the Informed
group had higher self-reported effort (6.394 > 5.595, Student’s
t-test, p-value = 0.042 < 0.05), fixation time (254.3 > 206.7,
Student’s t-test, p-value = 0.050 = 0.05), and average fixation
duration (0.493 > 0.438, Student’s t-test, p-value = 0.090 <
0.10). Both fixation time and average fixation duration indicate

greater visual attention and cognitive workload, as demon-
strated in previous studies [60], [61]. The results suggest that
developers who are informed that the code is generated by
LLM tend to have a higher cognitive workload.

However, there is controversy among participants regard-
ing their understanding of the impact of code provenance
awareness on cognitive workload. For example, P28 stated,
“I think I would be more concerned [if I am aware of the
provenance]. I would have to be more careful in figuring
out what’s going on. I don’t trust LLM enough for an entire
project.” Meanwhile, P25 states, “I think the workload will be
reduced if 1 know the code is generated by LLM because I
only need to focus on some specific logic details instead of
focusing on a similar bunch of code.” Since our study design
is a between-subjects study, participants’ guesses are based on
their previous code validation and repair experience and may
have recall biases [20].

Key findings: When developers are informed that the
code is generated by LLM, they perform better in vali-
dating and repairing the code. Subsequently, they tend
to spend more time examining the prompts provided
to Copilot compared to the code, and spend less time
reading documents. When informed, developers make a
greater search effort by using tracing code features more
frequently and exhibit higher saccade times. They also
used Copilot more frequently and used the clipboard less
frequently. Finally, they experience a higher cognitive
workload, as indicated by self-reported effort, fixation
time, and average fixation duration.

VI. IMPLICATIONS

Code provenance awareness. Developers may not realize
that the code is generated by LLMs unless explicitly in-
formed. Awareness of code provenance enhances their ability
to effectively validate and repair code, likely due to a more
focused approach to the generation prompts and a better
understanding of potential issues to anticipate. This suggests
the importance of labeling LLM-generated code, which could
assist developers in better managing such code and inform the
development of automated tools for recognizing and validating
generation prompts. Additionally, for LLM-generated code,
developing better tools to help developers understand and
revise the underlying prompts could be beneficial.

Improved logic in generated code. LLM-generated code
typically excels in syntax but falls short in logic, prompting
developers to focus differently during validation and repair
tasks. Future tools could benefit from aiding developers in
understanding and managing the logic of generated code. One
potential approach is to design interfaces that allow developers
greater control over the logic, while LLMs handle the syntax.
Tools like CoLadder [66], which supports hierarchical task
decomposition of prompts before generating code, exemplify
opportunities for advancement in this area.

Multimodal capability. LLMs currently lack the capability
to understand the multimodal context of programming tasks,



such as visual layouts in Ul development. This limitation
underscores the need for AI models and interfaces that can
effectively integrate multimodal information into code gen-
eration processes. Enhancing how generated code can be
validated in conjunction with other modal information (e.g.,
audio, images, GUI layouts) is crucial for comprehensive
development environments.

Reducing switching costs. The frequent switching between
code and comments/prompts observed during the validation
and repair of LLM-generated code indicates a need for im-
proved interfaces in development tools. Visualization tools that
seamlessly connect prompts with generated code could reduce
these switching costs, fostering a deeper and more efficient
understanding for developers.

VII. THREATS TO VALIDITY

Our study faces several validity threats, one of which
involves the selection of programming tasks. We chose three
light-weight tasks in a popular programming language (i.e.,
Java), designed to represent typical types of programming
tasks, and iteratively invoked Copilot to generate code with
representative error types. Despite this, the tasks selected may
not fully capture the complexity and diversity of real-world
programming tasks that developers encounter.

Participant selection poses another threat to validity. Our
participants consist of mostly undergraduate and graduate stu-
dents in Computer Science, and their experience may not fully
represent that of professional developers. However, the focus
of our study was not on the impact of expertise, making the use
of students a potentially acceptable option [68]. To enhance the
ecological validity of our findings, a future longitudinal study
in actual software development settings would be beneficial.

Furthermore, eye tracking often shows drift after prolonged
use [69]. To mitigate this effect, we performed a calibration
before each task. To account for the validity of the conclusions,
we used well-documented eye-tracking metrics and analy-
ses [54]. We also complemented the eye-tracking metrics with
self-reported workload via NASA-TLX [32] as a supplement.

VIII. CONCLUSION AND FUTURE WORK

We conducted a lab study with 28 participants to observe
their behavior while validating and repairing LLM-generated
code. Participants completed three Java programming tasks
with erroneous code generated by GitHub Copilot. We gath-
ered data through IDE tracking, eye-tracking, surveys, and
semi-structured interviews.

Our findings indicate that, without explicit notification,
developers often fail to recognize the provenance of the code,
which can impact their performance, behaviors, and cognitive
workload. Although the LLM-generated code exhibits good
readability and style, it introduces errors that differ from typ-
ical human-made errors. Although developers generally apply
familiar validation and repair strategies, they also demonstrate
unique behaviors in this context. These observations under-
score the need for new tools and methods tailored to support
developers in the LLM era.

In the future, we plan to systematically investigate the char-
acteristics of LLM-generated code from a human perception
perspective, complementing our behavior-centric approach.
This effort will inform the development of more effective tools
for developers working with LLM-generated code. Addition-
ally, we plan to expand our research to include professional
developers in long-term, real-world studies. We also intend to
incorporate additional biometric sensors, such as heart rate
monitors and fMRI, to gain a better understanding of the
cognitive processes involved in software development.
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