

BACKGROUND

- Wildfires elevate fine particulate matter ($PM_{2.5}$) to hazardous concentrations.
- Variability in construction/performance of DIY air cleaners is an ongoing concern.
- Materials used during construction may emit harmful volatile organic compounds (VOCs).

MATERIALS AND METHODS

- Using the same set of instructions, materials, and location of assembly, seven Corsi-Rosenthal Boxes (CR Boxes) were built by individuals with no prior DIY air cleaner experience (Fig. 1).
- A point system was created to track qualitative number of mistakes made during construction.

Fig. 1: Images of CR Box

- Using the pull-down method, $PM_{2.5}$ clean air delivery rates (CADRs) were determined in an environmentally controlled chamber (Fig. 2) under simulated wildfire conditions.
- Results were compared to the literature to explore variability in CR Box efficacy across studies.
- Freshly constructed CR Boxes were allowed to off-gas VOCs in the chamber for 24–72 hours.

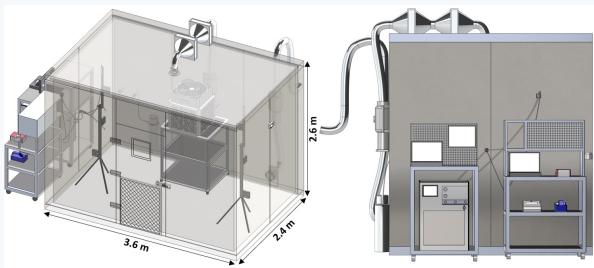
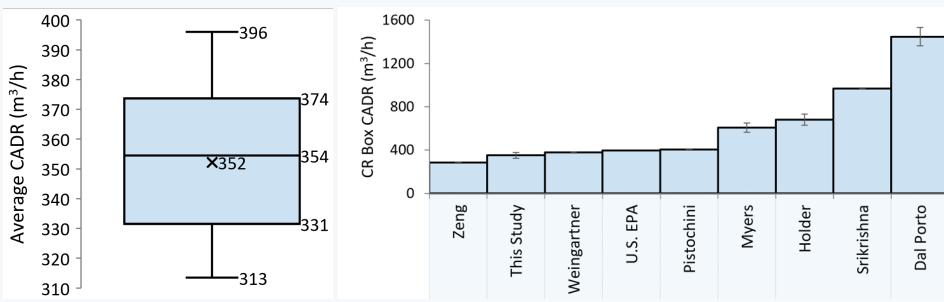
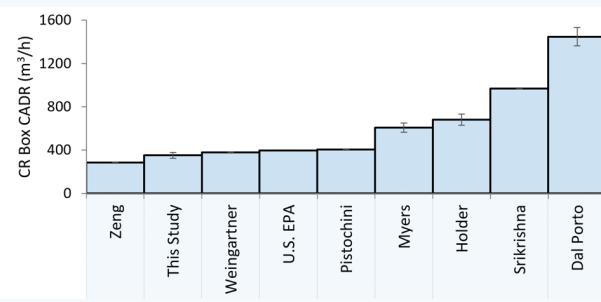
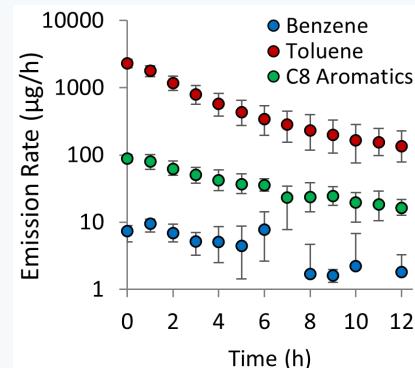




Fig. 2: 3D model of environmentally controlled chamber


- Using experimentally determined CADRs and VOC emission rates, $PM_{2.5}$, benzene, toluene, and C8 aromatics concentrations were modeled at four air exchange rates (AERs) during a hypothetical wildfire event; the tradeoff between building airtightness, particle removal effectiveness, and VOC off-gassing from a newly built CR Box was assessed.

RESULTS AND DISCUSSION

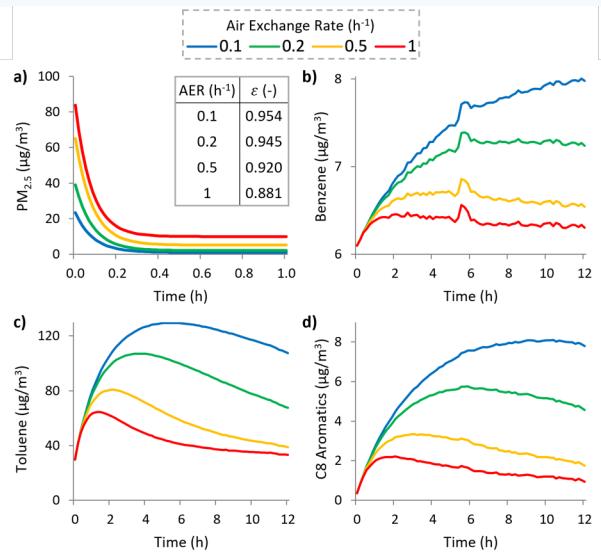

- Average (\pm SD), particle number-based CADR = $352 \pm 40 \text{ m}^3/\text{h}$ (Fig. 3); many higher-cost commercial air cleaners are outperformed by CR Boxes
- Relative standard deviation = 7.6%; CADRs are modestly variable
- Modest correlation ($R^2 = 0.64$) exists between CADR and mistakes made during construction; builds with 3–4 vs. 0–2 mistakes produce CADRs ~12% lower
- Wide range of experimentally determined CR Box CADRs observed across the literature (285–1448 m^3/h); likely due to differences in materials (including filter type), challenge aerosols tested, and evaluation protocol (Fig. 4)

Fig. 3: Box plot of $PM_{2.5}$ CADRs (m^3/h) for this studyFig. 4: Average (\pm SD when applicable) CADR (m^3/h) for 8 studies that have evaluated CR Box efficacy

- VOC off-gassing due to duct tape use
- Toluene and C8 aromatics emission rates are initially 2289 and 89 $\mu\text{g}/\text{h}$, respectively, but decrease by 94% and 82% after 12 hours (Fig. 5)
- While VOC emissions are well below short-term permissible exposure limits, toluene concentrations approach the odor threshold for sensitive individuals (160 ppb)

Fig. 5: Log-scale average (\pm min. and max) VOC emission rates ($\mu\text{g}/\text{h}$) over 12 hours

- CR Box effectiveness ranges from 0.881–0.954; $PM_{2.5}$ concentrations are brought to steady state in <30 minutes at all AERs (Fig. 6a)
- CR Boxes bring $PM_{2.5}$ concentrations below the U.S. EPA's 24-hour outdoor threshold (35 $\mu\text{g}/\text{m}^3$) in <5 minutes at all AERs (Fig. 6a)
- Even when the room is most airtight (0.1 h^{-1}), VOC concentrations remain well below governmental exposure limits (Figs. 6b, c, and d)

Fig. 6: a) Modeled $PM_{2.5}$ concentration vs. time plot at four AERs over 1 hour. Modeled b) benzene, c) toluene, and d) C8 aromatics concentration vs. time plots at four AERs over 12 hours

CONCLUSION

- Benefits associated with $PM_{2.5}$ reduction during a wildfire event outweigh adverse impacts from short-term VOC emissions. CR Boxes are a safe, effective, and inexpensive alternative to commercially available portable air cleaners.