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Abstract. Invertible Bloom lookup tables (IBLTs) are a compact way of 
probabilistically representing a set of .n key-value pairs so as to support 
insertions, deletions, and lookups. If an IBLT is not overloaded (as a func-
tion of its size and number of key-value pairs that have been inserted), 
then reporting all the stored key-value pairs can also be done via a “par-
allel peeling” process. For the case when the IBLT is represented in 
a very compact form, this can be implemented to run in . O(log log n)
parallel rounds, with all but inversely polynomial probability, as shown 
in prior work by Jiang, Mitzenmacher, and Thaler, as well as in Gao’s 
work on parallel peeling algorithms for random hypergraphs. Although 
.O(log log n) is practically constant for reasonable values of . n, there are 
nevertheless scenarios (such as in the parallel GPU or MapReduce frame-
works) where parallel peeling is desired to run in a constant number of 
rounds, with failure probabilities that are negligible rather than simply 
being polynomially small. In this paper, we study simple constant-round 
parallel peeling algorithms for IBLTs, focusing on negligible failure prob-
abilities based on table size, number of elements stored, and number of 
hash functions. We prove the surprising result that with .O(n log n) space 
a one-round parallel peeling process succeeds with high probability while 
a two-round parallel peeling process succeeds with overwhelming proba-
bility. We then provide a time-space trade-off theorem for parallel peeling 
in a constant .k number of rounds while still maintaining overwhelming 
success probability. We also give several new algorithmic applications of 
parallel peeling of IBLTs and we experimentally study the effectiveness 
of our approach in practice. 

1 Introduction 

An invertible Bloom lookup table (IBLT ) [  16,23,36] is a probabilistic hash-
based data structure that concisely represents a set of key-value pairs to support 
insertion, deletion, lookup, and (if the IBLT is not overloaded) the listing of 
all the stored key-value entries. Previous work on IBLTs has focused primarily 
on applications of IBLTs addressing the distributed computing challenges of 
set reconciliation, blockchain reconciliation, and network synchronization [ 16, 
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17,19,21,30,34]. In these applications, one may have a large distributed data 
store, and one is interested in synchronizing a set of data files or blocks across 
multiple servers. 

Invertible Bloom Lookup Tables. When an IBLT . B is first created, it initial-
izes . k arrays .T1, . . . , Tk of .m cells, so each .Ti has .m/k cells. Each of the cells in 
a .Ti table stores a constant number of fields, each of which, in turn, corresponds 
to a single memory word (we define these fields below), which is initially . 0. An  
important feature of an IBLT is that at times the number of key-value pairs in 
. B can be large (even larger than . m), but the space used for . B remains . O(m)
words. The insert and delete methods never fail, whereas the listEntries method, 
which lists out all the key-value pairs, only guarantees good probabilistic success 
when the number of stored key-value pairs, . n, is below an appropriate thresh-
old. (For more details about the thresholds, see the prior works by Goodrich and 
Mitzenmacher [ 23] or Molloy [ 31,32].) 

An IBLT uses a set of . k random hash functions, . h1, . h2, .. . ., . hk, to determine 
where key-value pairs are stored. In our case, each key-value pair, .(x, y), is placed 
into cells .T1[h1(x)], .T2[h2(x)], .. . . .Tk[hk(x)], respectively, with fields that support 
all the IBLT operations. We sometimes refer to this subdivision of the IBLT into 
. k tables as “splitting.” Such splitting does not affect the asymptotic behavior 
in our analysis and can yield other benefits, including ease of parallelization of 
reads and writes into the hash table, as we show. Each cell contains the following 
four fields: 

– count, which is a (signed) count of the number of key-value pairs that have 
been mapped to this cell, 

– keySum, which is the XOR of every key, . x, that has been mapped to this cell, 
– valueSum, which is the XOR of every value, . y, that has been mapped to this 

cell, 
– hashSum, which is the XOR of a cryptographic hash, .g(x), of the  key,  . x, for  

every key-value pair, .(x, y), that has been mapped to this cell. This field is 
used for error-checking purposes. 

Inserting a new key-value pair, .(x, y), involves incrementing the count field 
for each cell, .Ti[hi(x)], and XOR-ing into the other fields the respective parame-
ters. Similarly, deleting a key-value pair, .(x, y), involves decrementing the count 
field for each cell, .Ti[hi(x)], and XOR-ing into the other fields the respective 
parameters, since every number is its own inverse under the XOR operation. For 
applications where we are finding symmetric set differences, we also allow for 
counts to become negative; that is you can delete a key-value pair that has not 
been inserted (as we described in the introduction). Hence a count of negative 1 
can correspond to a cell that contains a single item that has been deleted. How-
ever, a count of 1 or negative 1 might correspond to multiple key-value pairs, 
some of which have been inserted and some of which have been deleted. The 
hashSum field is meant to provide an additional layer of protection to ensure 
that a count of 1 or negative 1 truly corresponds to a single key, by comparing 
the hash of the key to this field. (Note the hashSum field is not necessary if only 
inserting items, or only deleting items that have previously been inserted.)
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The listEntries operation is more interesting. The usual way it is described 
is in terms of a sequential peeling process, where we look for a cell with a 
count field that is . 1 or .−1, remove and report the key-value pair that is stored 
there, and repeat. Jiang, Mitzenmacher, and Thaler [ 27] study a parallel version 
of this peeling process, but their approach is focused on optimizing the space 
used, not the number of rounds, and their analysis results in a non-constant 
number of parallel peeling rounds. Instead, in this paper, we are interested in 
parameters that result in one or two or some constant, . k, number of rounds of 
parallel peeling. For example, such approaches allow for parallel peeling to be 
more easily implemented in the MapReduce framework, since we can specify a 
specific number of peeling rounds (possibly even just one round). We describe 
pseudocode for a parallel peeling algorithm in Fig. 1. 

Fig. 1. Listing entries in an IBLT. Note that in the case of a count that is .−1 we 
actually remove its corresponding key-value pair by performing an insert. 

One of the unfortunate aspects of the pseudocode for the listEntries algorithm, 
from a parallel implementation standpoint, is that the outer loop is a while loop 
that implies a conditional number of iterations, which we call peeling rounds. 
Implementing parallel peeling can be much easier, however, if we can simply 
bound the number of parallel peeling rounds to be one or two or some constant, . k, 
and hard code that constant into our implementation, using, say, the MapReduce 
framework (which also simplifies combining the XORs for colliding cells). This 
desire, therefore, motivates the analysis that follows, which shows how to set the 
parameters for an IBLT to guarantee with high probability (or all but negligible 
probability) 1 that parallel peeling can succeed in one, two, or . k rounds. 

Set Synchronization. For example, using IBLTs allows one to synchronize 
two data sets, .S1 and . S2, using storage and communication proportional to the

1 We say that an event occurs with high probability if the failure probability is .1/nc, for  
some constant, .c > 0, and with overwhelming probability if the failure probability 
is negligible, that is, the failure probability is asymptotically less than .1/nc for any 
constant .c > 0. 
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size of symmetric set difference between the two sets, .n = |S1 ⊕ S2|, rather than 
the size of the sets themselves. 2

At a high level, synchronizing a set . S that is intended to be mirrored at two 
servers, which we call “Alice” and “Bob,” works as follows. Alice and Bob hold 
item sets .SA and .SB, respectively, with .S = SA ∪ SB. Alice and Bob each store 
their items in respective IBLTs, .TA and .TB , each holding .m cells, where .m is 
linear in the size of the set difference .SA ⊕ SB , and each sends their IBLT to 
the other. Then, each of Alice and Bob computes an entrywise table difference 
.TA−TB, which allows both Alice and Bob to list out the elements of .SA⊕SB with 
high probability, so long as the size of that difference is indeed at most a threshold 
that depends only on and is linear in . m. Note that computing the table difference 
also yields which set (Alice’s or Bob’s) each element in the symmetric difference 
belongs to; we therefore say that IBLTs provide signed symmetric set differences. 
While this is an interesting and useful application of IBLTs, in this paper we are 
interested in applications of IBLTs to another challenge that arises in large-scale 
distributed computing, namely, for data compression [ 38] and deduplication [ 44], 
which can involve using IBLTs in arguably a more “parallel” way. For instance, 
in data compression and deduplication applications, one is often interested in 
computing the symmetric or set differences between all pairs of a collection 
of sets, not just two. Thus, we desire IBLT difference operations that can be 
done quickly in parallel, where each difference itself is computed using a parallel 
algorithm, ideally with a constant number of computation rounds. 

Prior Work on Parallel Peeling. Computing the entrywise table difference 
.TA − TB between two IBLTs .TA and .TB is easy enough to do in parallel, but 
listing out the elements of the result in parallel is more challenging. Indeed, the 
algorithm for performing such a listing is usually described as a sequential peel-
ing process, where items are removed iteratively one at a time [ 23,36]. Still, there 
is prior work on parallel peeling of various graph structures, e.g., by Cao, Fine-
man, and Russell [ 10], Goodrich and Pszona [ 24], Chang, Pettie, and Zhang [ 11], 
Dhulipala, Blelloch, and Shun [ 14], Ghaffari, Grunau, and Jin [ 22], Shi, Dhuli-
pala, and Shun [ 39], and Shi and Shun [ 40]. More relevant to this paper, Jiang, 
Mitzenmacher, and Thaler [ 27] and  Gao [  20] provide parallel peeling results for 
random hypergraphs and IBLTs. These results yield a super-constant number of 
rounds, however, rather than a small constant number of rounds, as would be 
desired for the applications we explore here. Specifically, to peel . n items in the 
IBLT, their results correspond to .Θ(log log n) rounds of parallel peeling. 

Our Results. In this paper, we study constant-round parallel peeling both 
theoretically and experimentally. What makes our study of the IBLT data struc-
ture different from prior parallel-peeling results is that here we focus more on 
optimizing (parallel) time and work and less on space, which was the focus 
in prior works [ 20,27]. In particular, we guarantee that with high (and, as we 
describe later, with overwhelming) probability our parallel peeling process com-

2 We denote the symmetric set difference of two sets, .S1 and .S2, by  .S1 ⊕ S2. 
Recall that .S1 ⊕ S2 = (S1 − S2) ∪ (S2 − S1), which is sometimes alternatively 

denoted as .S1 � S2 or .S1ΔS2. 
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pletes in a small constant number of rounds—ideally one or two. Past work on 
parallel peeling for IBLTs [ 20,27], instead aimed for a constant number of hash 
functions per item, a linear number of cells in the IBLT table, and an asymptot-
ically good, but super-constant, number of rounds (where additional .O(1) terms 
were not considered consequential) with high, but not overwhelming probabil-
ity. On the theoretical front, we show that if an IBLT has .O(n log n) cells and 
uses .O(log n) hash functions (where suitably chosen constant factors are used 
in the order notation), then, with high probability, we can peel the IBLT in a 
single parallel round. More surprisingly, we also show that the probability that 
we would fail to peel such an IBLT in only two rounds is negligible (recall that 
a function is negligible if it approaches zero faster than the reciprocal of any 
polynomial, e.g., see Bellare [ 4]). Further, we provide a full time-space trade-off 
between the number of rounds and space needed to achieve constant-round paral-
lel peeling with overwhelming probability. Also, we explicitly describe how to use 
IBLTs in some interesting applications, including deduplication and symmetric-
difference minimum spanning trees. 

2 Analysis  

In this section, we provide our theoretical analysis, showing that, for a table of 
.m = O(n log n) cells, parallel peeling succeeds with high probability in one round 
and with overwhelming probability in two, and we then provide a time-space 
trade-off while achieving overwhelming probability with a constant number of 
rounds. We note that in the analysis in this section, we assume that there is 
no false positive in the peeling process in checking the hashSum field; that is, 
we assume items have only been inserted, or the fingerprints have been chosen 
large enough to avoid this issue. Before beginning, we recall that previous work 
(e.g., [ 23]) has shown for an IBLT with .m = cn cells for some constant . c and a 
constant number of hash functions . k, if  . c is above the threshold where decoding 
occurs with high probability, the failure probability is .Θ(n−k+2). 

Analysis of One and Two Rounds. As we are focused on such a small num-
ber of rounds, we first explicitly consider the case of a single round and then 
analyze the probability of parallel peeling succeeding in two rounds. We note 
that something akin to our analysis for one round appeared previously in work 
by Eppstein and Goodrich [ 15], but we nevertheless provide a complete analysis 
of one round parallel peeling to set the table for our other results, which are 
novel. 

For concreteness, we consider an IBLT with .m = cn log2 n cells for some 
constant . c. Each of  . n items hashes to .log2 n cells (we assume . n is a power of two 
for convenience). As we previously described, we assume the IBLT is split ; that 
is, there are .log2 n subtables, each with .cn cells, and the . jth hash of each item is 
independently and uniformly chosen in the . jth subtable. Call a cell single if it 
holds exactly one item. We show for sufficiently large constant . c each item has 
at least one hash to a single cell with high probability, implying peelability in a 
single round.
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Theorem 1. For a table of .m = cn log2 n cells using .log2 n hash functions, 
where .c ≥ 1 is a constant, an IBLT peels in one round with probability at least 
.1 − n−c′+1 where .c′ = − log2(1 − e−1/c). 

Proof: Let .Xi,j be a random variable such that .Xi,j = 1 if the . jth hash of the 
. ith item is not single and 0 otherwise. Since the . jth table has .cn cells, we have 

. Pr(Xi,j = 0) = (1 − 1/(cn))n−1 ≥ e−1/c.

(The inequality holds as long as .c ≥ 1 for example.) Since subtables are inde-
pendent, we therefore have the probability that no hash for the . ith item is single 
is at most 

. (1 − e−1/c)log2 n = nlog2(1−e−1/c) = n−c′
,

for .c′ = − log2(1−e−1/c). By a union bound, all items hash to at least one single 
cell with probability .n−c′+1, and one can choose . c to obtain any suitably small 
probability that is inversely polynomial in . n. . �

Thus, in our setup, parallel peeling succeeds in one round with high proba-
bility and with reasonable constant factors. For example, one can peel in a single 
round with probability at least .1 − 1/n using slightly less than .3.5n log2 n cells, 
and with probability at least .1 − 1/n2 with slightly less than .7.5n log2 n cells. 
Further, we expect a threshold where the probability that one round suffices 
jumps toward 1 at slightly over .1.443n log2 n cells, since .1.443 ≈ 1/ ln 2 and at 
.c = 1/ ln 2 we have .c′ = 1. 

We note the above proof doesn’t really require .c ≥ 1, in that for smaller . c we 
have that .(1−1/(cn))n−1 = e−1/c(1−o(1)) and the proof remains essentially the 
same. This fact will be helpful in what follows. Also, the proof naturally extends 
to other scenarios, such as if one uses .α log n hash functions for some constant 
. α (or some larger number of hash functions). 

We now consider just the case of two rounds. We use the same setup as 
before. For an item to be peeled within two rounds, either 

– one of its cells is single, or 
– one of its cells has that all the other items that hash to that cell are peeled 

after the first round. 

We prove that with just two rounds the failure probability is negligible; specifi-
cally, the probability of failing to peel every item is .n−Ω(log n). 

Theorem 2. For a table of .m = cn log2 n cells using .log2 n hash functions, 
where .c > 0 is a constant, an IBLT peels in two rounds with probability at least 
.1 − n−Ω(log n). 

Proof: Consider a specific item . y. Let  .Yj be the number of other items that 
hash to the same cell as . y in the . jth subtable. We first note that .Yj is at most 
.(ln n)2 with probability at least .1 − n−Ω(log n). This follows readily from the 
Poisson approximation of the number of items that hash to each cell, along 
with Stirling’s approximation. We therefore assume that every cell has at most
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.(ln n)2 items that hash to it henceforth, as this conditioning does not affect our 
arguments further. Let .Xi = 1 if . y is single in the . ith table or all other items that 
share the cell in the . ith table all peel after the first round. Otherwise .Xi = 0. 
We wish to show that the probability that all .Xi = 0 is .n−Ω(log n). 

First consider .X1. Let  . z be some other item in the same cell. Following the 
same argument as in the proof of Theorem 1, the probability that . z is not single 
in at least one of the other subtables is 

. 
(
1 − (1 − 1/(cn))n−1

)log2 n−1
,

which is at most .n−c1 , for some constant . c1. As we have assumed .Y1 is at most 
.(ln n)2, by a union bound, the probability any of the items is not single in at 
least one other subtable is at most .(ln n)2n−c1 , and this shows the probability 
.X1 = 0 is at most .(ln n)2n−c1 . 

If the .Xi were all independent, we would now be done. However, the . Xi

are only “roughly independent”; there are unfortunately some problematic cases 
to consider. For example, consider .Pr(X2 = 1 | X1 = 0). That is, what is the 
probability the second subtable allows us to peel the item . y even though the 
first subtable does not. A difficult subcase showing the dependency is when the 
same second item hashes to the same location as . y in both hash tables. That is, 
the reason .X1 = 0 might be that there is an item . z in the second hash table at 
the same location as . y in both the first and second table. 

We circumvent the dependency by showing the following two conditions hold: 

1. With probability .1 − n−Ω(log n), at least  .(log2 n)/2 subtables have no items 
in the cell with . y that also appear with . y in earlier subtables. 

2. For each such subtable, the event .Xi = 0 satisfies . Pr(Xi = 0 | X1 = 0,X2 =
0, . . . , Xi−1 = 0) = O(n−c2), for some constant . c2. 

The result would then follow, as (implicitly conditioning on none of the rare 
.n−Ω(log n) events we have considered occurring) 

. Pr(X1 = 0, X2 = 0, . . . , Xlog2 n = 0) =

. Pr(X1 = 0)

log2 n∏

i=2

Pr(Xi = 0 | X1 = 0, X2 = 0, . . . , Xi−1 = 0),

and the right hand side would have at least .(log2 n)/2 terms that were .O(n−c2). 
For the first condition, as we sequentially consider each new subtable, there 

are at most .O((log n)3) items that share a cell with . y. The probability that in a 
new subtable any of these elements are in the same cell as . y is at most . q, where 
. q is .O((log n)3)/n. The probability at least .(log2 n)/2 subtables would fail to 
avoid such elements is at most 

. 

log2 n∑

i=(log2 n)/2

(
log2 n

i

)
qi(1 − q)log2 n−i,

which is .n−Ω(log n).
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For the second condition, following previous work, it is useful to think of 
gathering a history of all the item-cell pairs we have seen as we explore the 
hash table subtable by subtable. We start with . y and its position in all the 
tables. In the first subtable, we consider all the items that share the cell with 
. y; we then consider the cells for those items in all the other tables (to check 
if those other items are single in some table, and are hence peeled in the first 
round), and correspondingly all the items in those cells (which, because we have 
now seen them, we must consider their effect on the conditioning). Similarly, at 
the second table, we consider all the items that share the cell with . y; we then 
consider the cells for those items in all the other tables, and correspondingly 
all the items in those cells. Under our assumption that any cell contains at 
most .(ln n)2 items, we see that this history can only consist of .O((log n)6) item-
cell pairs throughout the process. 

Now consider .Pr(Xi = 0 | X1 = 0,X2 = 0, . . . , Xi−1 = 0) for some subtable . i
where the items colliding with . y are all distinct from other levels. The past history 
introduces some conditioning in evaluating whether each of these items is single 
in another subtable, because we know the location of some items in other tables 
in our history. However, we only know at most .O((log n)6) item-cell pairs in our 
history. This has at worst a .1−o(1) effect on the probability .(1−1/(cn))n−1 that 
an item colliding with . y in the . ith table is single in another table, as from the cal-
culation in the proof of Theorem 1. In particular, any such new item that collides 
with . y must avoid cells known to contain other items in other subtables. As we 
have said, there are .polylog(n) such cells from our history, so this happens with 
probability .1 − polylog(n)/(cn) in any given subtable. And it can affect the num-
ber of other items that might collide with the new item (instead of .n − 1 other 
items may be .n − polylog(n), as  .polylog(n) items might already their position 
known in a subtable). It remains the case that any new item is single in each sub-
table with probability .(1 − polylog(n)/(cn))n−polylog(n) = e−1/c(1 − o(1)), and  
correspondingly each new item is single in some other subtable with probability 
at least .1 − n−c3 , for some constant . c3. The probability that all new items in the 
. ith subtable are not single is then .polylog(n)/nc3 = O(n−c2) for some constant 
. c2, giving the result. . �

A Time-Space Trade-Off for Constant-Round Peeling. Theorem 2 shows 
parallel peeling succeeds in two rounds with overwhelming probability. Let us 
next provide our time-space trade-off. 

Theorem 3. For a table of .m = cn(log2 n)1/k cells using .(log2 n)1/k hash func-
tions, where where . k is a positive integer constant and .c > 0 is a constant, an 
IBLT peels in .k + 1 rounds with probability at least .1 − n−Ω((log n)1/k). 

Proof: We sketch the proof, since it follows roughly the same conceptual frame-
work as the proof of Theorem 2. Consider a specific item, . y. For . y not to be peeled 
in .k + 1 rounds, in the . ith subtable there must be some element .zi that has not 
been peeled after . k rounds in the same cell as . y; for  each  . zi, in each of the  
other subtables there must be some element that has not been peeled after . k −1
rounds in the same cell as . zi, and so on.
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Accordingly, the failure of an IBLT to peel corresponds to what is commonly 
referred to as a witness tree (e.g., [ 41]), with the root of the tree being an 
element . y not peeled after .k + 1 rounds, connected by labeled edges to children 
that correspond to elements that share a cell with . y in some subtable that are 
not peeled after . k rounds, with the label denoting which subtable . y and the other 
element share a cell. (An element can conceivably be in more than one labeled 
edge.) These elements have children corresponding to elements that share a cell 
with them in some other subtable (other than the one in the edge connecting 
them to the root) that are not peeled after .k − 1 rounds, and so on. 

We can again use the fact that there are at most .(ln n)2 elements in any cell 
with probability at least .1−n−Ω(log n) to limit the size of the tree built this way, 
so that with overwhelming probability the tree has size polylogarithmic in . n. 

We think of going through this tree in a breadth first manner from the 
root, and temporarily assume that elements are not repeated as we expand this 
recursive exploration of the table and likewise ignore dependencies introduced by 
knowledge of where elements we have seen in the tree are placed. The probability 
that an element . q is not single in at least one of .(log2 n)1/k − 1 subtables is 

. 
(
1 − (1 − 1/(cn))n−1

)(log2 n)1/k−1
,

which is at most .c
(log2 n)1/k

1 , for some constant .c1 < 1 and sufficiently large . n. The  
probability that an element . q′ in a cell is not peeled after two rounds, implying 
that in all of the other .(log2 n)1/k − 1 subtables there is some element in the 
same cell as . q′ that is not peeled after 1 round, is at most 

. (ln n)2(log2 n)1/k
(
c
(log2 n)1/k

1

)(log2 n)1/k−1

≤ c
(log2 n)2/k

2 ,

for some constant .c2 < 1 and sufficiently large . n. Continuing in this manner, the 
probability an element sharing a cell with . y in one of its subtables has not been 
peeled for sufficiently large . n is bounded by 

. c
(log2 n)k/k

k = nlog2 ck ,

where .ck < 1. The result would correspondingly follow, but for the assumptions 
that elements in the table are not repeated and that dependencies can be ignored. 

As in the proof of Theorem 2, however, because the witness tree is only 
polylogarithmic in size, this does not affect the asymptotics of the result; the 
dependencies can be dealt with by using the fact that we only see a polyloga-
rithmic number of elements throughout the tree, and most of the cells will not 
contain repeated elements from the tree. . �

3 Applications 

In this section, we describe some applications of constant-round parallel peeling 
algorithms for IBLTs to a simplified deduplication problem.



Parallel Peeling of Invertible Bloom Lookup Tables 79

All-Pairs Signed Symmetric Set Differences. We begin by describing how 
to use an IBLT for computing the (signed) symmetric set differences between 
every pair of a collection of .N sets, .S1, S2, . . . , SN , by adapting an approach of 
Goodrich and Mitzenmacher [ 23] to our framework. (Note this is equivalent to 
finding the set difference between every pair of sets.) Let .n > 1 be an upper 
bound for the anticipated size of any difference, .Si ⊕ Sj . (Note that . n can be 
much smaller than the size of any . Si.) We begin by computing an IBLT, .TSi

, for  
each set, . Si, of .O(n log n) cells, and with .O(log n) hash functions (and subtables), 
based on the theoretical and/or experimental analysis we provide above. In this 
case, we store each element, . x, from a set,  . Si, as a key-value pair, .(x, 1), since 
we are treating the . Si’s as sets. 

For each pair, .(i, j), where .i �= j, .i, j = 1, 2, . . . , N , we compute a set-
difference IBLT, .Ti,j , by computing an indexed difference of the corresponding 
count fields in .TSi

and .TSj
and an indexed XOR of the corresponding keySum, 

valueSum, and  hashSum fields. We emphasize that in the results of this section, 
we assume that cell operations (such as XORing the various fields of a cell) are 
unit cost, even if the fields are large. (As we have noted, in theory the hashSum 
field may need to be .ω(log n) bits for some applications and/or for negligible 
failure probability; in practice, we expect all fields to fit in one or a small con-
stant number of machine words.) Thus, .Ti,j is a representation of the signed 
symmetric set difference, 3 .Si ⊕ Sj , where each element, . x, that is in .Si and not 
in . Sj , adds . 1 to its respective count fields, and each element, . x, that is in . Sj

and not in . Si, adds .−1 to its respective count fields. We then apply the method 
described in Sect. 1 to perform a parallel peeling to list of the elements in .Ti,j , 
optionally noting which elements in the difference are from .Si and which are 
from . Sj . 

Theorem 4. Given .N sets, .S1, S2, . . . , SN , if the size of the difference between 
two sets, .Si and . Sj, is at most a given size parameter, .n > 1, then the probability 
that our algorithm will fail to compute the signed set difference between .Si and 
.Sj in at most two rounds is negligible as a function of . n. The total work needed 
is .O(NM log n + N2n log n). 

Proof: The work bound follows from the work need to insert each element into 
its set’s IBLT and then perform all the set differences. The probability bounds 
follow by Theorem 2. . �

Deduplication via Difference Encodings. Consider now a simple deduplica-
tion [ 44] problem. Suppose we are given a collection of sets, .S = {S1, S2, . . . , SN}. 
For example, each .Si could represent a file or a database, and its elements could 
be disk blocks, database rows, or identifiers for disk blocks or database rows 
derived from a cryptographic hash function, such as SHA-256. In deduplication 
applications, it is anticipated that there are a lot of common elements among

3 Recall that we say that .Si ⊕ Sj is a signed symmetric difference if we can sepa-
rately identify the members of .Si − Sj and .Sj − Si, that is, the members of .Si not 
in .Sj and the members of .Sj not in .Si. 
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the sets in . S; hence, we would like to represent each .Si concisely, e.g., just in 
terms of a small number of differences with another set in . S. 

One such representation is a difference encoding of . S, which is a 
(re)ordering of the sets in . S, as  .(S1, S2, . . . , SN ), such that, for .i > 1, each  
set, . Si, is encoded in terms of the differences between .Si and some .Sj where 
.j < i. That is, we encode .Si with the signed symmetric difference, .Si ⊕Sj . Thus,  
if there is considerable overlap of elements among the sets in . S, then a difference 
encoding could save a lot of memory space over explicitly representing each set 
in . S. The corresponding optimization problem, therefore, is to find an ordering 
of the sets and a difference encoding that minimizes the total amount of stor-
age required, over all possible orderings and difference encodings. Finding such 
a minimum difference encoding might at first seem like a computationally 
difficult problem, e.g., since there are .N ! possible orders and each one can have 
.(N − 1)! difference encodings. Nevertheless, as we show below, we can solve this 
problem quickly in parallel with reasonable work. 

Symmetric-Difference MSTs. As has been well-known since at least the 
1950 s, e.g., see Restle [ 37], given a collection of sets, .S = {S1, S2, . . . , SN}, and  
a measure function, . m, for sets (such as their size if all the sets are finite), then 
.d(Si, Sj) = m(Si ⊕ Sj) is a distance metric. In our case, since the sets we are 
dealing with are finite, we define .m(S) to be the size of the set, . S, which  we  
denote as .|S|. 

Define a graph, . G, which we call the symmetric-difference graph , such 
that each set, . Si, in  . S is associated with a vertex, . i, in  . G, and each edge, .(i, j), 
has weight equal to .|Si ⊕ Sj |. 
Lemma 1. Finding a minimum difference encoding for a collection of sets, . S =
{S1, S2, . . . , SN}, can be reduced to finding a minimum spanning tree (MST) in 
the symmetric-difference graph, . G, for  . S. 

Proof: Let .H be a spanning tree of . G. We can derive a difference encoding of . S
from .H by choosing the string associated with a vertex in .H (it doesn’t matter 
which one) to be the first string in the order. We then root the tree .H at this 
first vertex and order the remaining vertices according to a preorder traversal 
of . H, and let this be the ordering of the corresponding strings. In this way, we 
are guaranteed that for each vertex, . i, its parent in .H appears earlier in the 
ordering. We then encode every vertex, . i, besides the first one in terms of the 
symmetric difference between .Si and . Sj , where . j is the parent of . i in . H. Thus,  
.H corresponds to a difference encoding of . S. 

Alternatively, let .D be a difference encoding of . S and let the corresponding 
order be .(S1, S2, . . . , SN ). For each set, . Si, for  .i > 1, choose the (directed) edge, 
.(i, j), in  .G such that .Si is encoded as a difference with . Sj , and let .H be the 
resulting subgraph of . G. Then .H has no cycles, because each vertex, .i > 1, we  
chose an out-going edge to a vertex for . j where .j < i. In addition, for the same 
reason, .H is connected, with each directed path leading to the first vertex (for 
. S1). Thus, .H is a spanning tree, with .n − 1 edges.
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Therefore, every spanning tree corresponds to a difference encoding and every 
difference encoding corresponds to a spanning tree; hence, an MST for .G will 
correspond to a minimum difference encoding for . S. . �

A major computational bottleneck for solving the above symmetric-
difference MST problem is in constructing a representation of the symmetric-
difference graph, . G. Of course, since we are interested in finding an MST in . G, 
it is sufficient to construct a representation of . G such that every edge has weight 
at most some size threshold, .n > 0, while keeping .G connected. Typically, we 
desire . n to be much smaller than . M , the average size of each set in . S. 

Our method for constructing . G is to use IBLTs and our parallel peeling algo-
rithm. Namely, we use our algorithm for the all-pairs set difference problem. We 
define a reasonable threshold, . n, for the maximum expected symmetric differ-
ence so that .G is connected, and run our all-pairs set difference algorithm of 
Theorem 4. Note that if our threshold, . n, is large enough, then the probability 
that any of our parallel peeling algorithms fail after two rounds is negligible in 
. n, by Theorem 2; hence, if our peeling algorithm fails for some pair .(Si, Sj), we  
can safely assume that .|Si ⊕ Sj | > n. Thus, if after running our all-pairs set 
difference algorithm, this results in a graph, . G, that is not connected, then we 
double our estimate for . n and run it again. Since we double the value of . n in 
each such run and our work bound is at least linear in . n, the work needed the 
runs forms a geometric sequence that is dominated by the work for the last run. 
This gives us the following: 

Theorem 5. Given a collection, .S = {S1, S2, . . . , SN}, of  .N sets, with average 
size, . M , we can determine a threshold value, . n, and we can construct a connected 
subgraph of the symmetric-difference graph, . G, for  . S, containing every edge with 
weight at most . n in .O(log n) rounds in parallel, with total work . O(NM log n +
N2n log n), with a failure probability that is negligible in . n. 

Given such a connected subgraph of the symmetric-difference graph, . G, 
we can then compute an MST in .G using any known parallel MST algo-
rithm, e.g., see [ 2, 5,13,28]. Note that the above method also applies to a set, 
.S = {s1, s2, . . . , sN}, of  .N character strings of length, .M ≥ 1, each, since we can 
construct a set, . Si, from each character string, . si, by defining each element in . Si

to be the pair, .(k, si[k]). In this case, the symmetric-difference graph, . G, would be 
defined so that each string .si corresponds to a vertex and the weight of an edge, 
.(i, j), is the Hamming distance 4 between the strings .si and . sj . This approach 
could be used, for example, to concisely encode a set of DNA strings where dif-
ferences are character swaps or replacements (but not insertions or deletions). In 
this case, the minimum difference encoding would provide an optimized concise 
encoding of all the strings in . S.

4 Recall that the Hamming distance between two strings, . s and . t, is the  number  of  
positions, . i, where  .s[i] �= t[i]. 
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