
Parallel Peeling of Invertible Bloom
Lookup Tables in a Constant Number

of Rounds

Michael T. Goodrich1(B), Ryuto Kitagawa1, and Michael Mitzenmacher2

1 University of California, Irvine, USA
goodrich@acm.org

2 Harvard University, Cambridge, USA

Abstract. Invertible Bloom lookup tables (IBLTs) are a compact way of
probabilistically representing a set of .n key-value pairs so as to support
insertions, deletions, and lookups. If an IBLT is not overloaded (as a func-
tion of its size and number of key-value pairs that have been inserted),
then reporting all the stored key-value pairs can also be done via a “par-
allel peeling” process. For the case when the IBLT is represented in
a very compact form, this can be implemented to run in . O(log log n)
parallel rounds, with all but inversely polynomial probability, as shown
in prior work by Jiang, Mitzenmacher, and Thaler, as well as in Gao’s
work on parallel peeling algorithms for random hypergraphs. Although
.O(log log n) is practically constant for reasonable values of . n, there are
nevertheless scenarios (such as in the parallel GPU or MapReduce frame-
works) where parallel peeling is desired to run in a constant number of
rounds, with failure probabilities that are negligible rather than simply
being polynomially small. In this paper, we study simple constant-round
parallel peeling algorithms for IBLTs, focusing on negligible failure prob-
abilities based on table size, number of elements stored, and number of
hash functions. We prove the surprising result that with .O(n log n) space
a one-round parallel peeling process succeeds with high probability while
a two-round parallel peeling process succeeds with overwhelming proba-
bility. We then provide a time-space trade-off theorem for parallel peeling
in a constant .k number of rounds while still maintaining overwhelming
success probability. We also give several new algorithmic applications of
parallel peeling of IBLTs and we experimentally study the effectiveness
of our approach in practice.

1 Introduction

An invertible Bloom lookup table (IBLT) [16,23,36] is a probabilistic hash-
based data structure that concisely represents a set of key-value pairs to support
insertion, deletion, lookup, and (if the IBLT is not overloaded) the listing of
all the stored key-value entries. Previous work on IBLTs has focused primarily
on applications of IBLTs addressing the distributed computing challenges of
set reconciliation, blockchain reconciliation, and network synchronization [16,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Královič and V. Kůrková (Eds.): SOFSEM 2025, LNCS 15539, pp. 70–84, 2025.
https://doi.org/10.1007/978-3-031-82697-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-82697-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-82697-9_6

Parallel Peeling of Invertible Bloom Lookup Tables 71

17,19,21,30,34]. In these applications, one may have a large distributed data
store, and one is interested in synchronizing a set of data files or blocks across
multiple servers.

Invertible Bloom Lookup Tables. When an IBLT . B is first created, it initial-
izes . k arrays .T1, . . . , Tk of .m cells, so each .Ti has .m/k cells. Each of the cells in
a .Ti table stores a constant number of fields, each of which, in turn, corresponds
to a single memory word (we define these fields below), which is initially . 0. An
important feature of an IBLT is that at times the number of key-value pairs in
. B can be large (even larger than . m), but the space used for . B remains . O(m)
words. The insert and delete methods never fail, whereas the listEntries method,
which lists out all the key-value pairs, only guarantees good probabilistic success
when the number of stored key-value pairs, . n, is below an appropriate thresh-
old. (For more details about the thresholds, see the prior works by Goodrich and
Mitzenmacher [23] or Molloy [31,32].)

An IBLT uses a set of . k random hash functions, . h1, . h2,, . hk, to determine
where key-value pairs are stored. In our case, each key-value pair, .(x, y), is placed
into cells .T1[h1(x)], .T2[h2(x)],Tk[hk(x)], respectively, with fields that support
all the IBLT operations. We sometimes refer to this subdivision of the IBLT into
. k tables as “splitting.” Such splitting does not affect the asymptotic behavior
in our analysis and can yield other benefits, including ease of parallelization of
reads and writes into the hash table, as we show. Each cell contains the following
four fields:

– count, which is a (signed) count of the number of key-value pairs that have
been mapped to this cell,

– keySum, which is the XOR of every key, . x, that has been mapped to this cell,
– valueSum, which is the XOR of every value, . y, that has been mapped to this

cell,
– hashSum, which is the XOR of a cryptographic hash, .g(x), of the key, . x, for

every key-value pair, .(x, y), that has been mapped to this cell. This field is
used for error-checking purposes.

Inserting a new key-value pair, .(x, y), involves incrementing the count field
for each cell, .Ti[hi(x)], and XOR-ing into the other fields the respective parame-
ters. Similarly, deleting a key-value pair, .(x, y), involves decrementing the count
field for each cell, .Ti[hi(x)], and XOR-ing into the other fields the respective
parameters, since every number is its own inverse under the XOR operation. For
applications where we are finding symmetric set differences, we also allow for
counts to become negative; that is you can delete a key-value pair that has not
been inserted (as we described in the introduction). Hence a count of negative 1
can correspond to a cell that contains a single item that has been deleted. How-
ever, a count of 1 or negative 1 might correspond to multiple key-value pairs,
some of which have been inserted and some of which have been deleted. The
hashSum field is meant to provide an additional layer of protection to ensure
that a count of 1 or negative 1 truly corresponds to a single key, by comparing
the hash of the key to this field. (Note the hashSum field is not necessary if only
inserting items, or only deleting items that have previously been inserted.)

72 M. T. Goodrich et al.

The listEntries operation is more interesting. The usual way it is described
is in terms of a sequential peeling process, where we look for a cell with a
count field that is . 1 or .−1, remove and report the key-value pair that is stored
there, and repeat. Jiang, Mitzenmacher, and Thaler [27] study a parallel version
of this peeling process, but their approach is focused on optimizing the space
used, not the number of rounds, and their analysis results in a non-constant
number of parallel peeling rounds. Instead, in this paper, we are interested in
parameters that result in one or two or some constant, . k, number of rounds of
parallel peeling. For example, such approaches allow for parallel peeling to be
more easily implemented in the MapReduce framework, since we can specify a
specific number of peeling rounds (possibly even just one round). We describe
pseudocode for a parallel peeling algorithm in Fig. 1.

Fig. 1. Listing entries in an IBLT. Note that in the case of a count that is .−1 we
actually remove its corresponding key-value pair by performing an insert.

One of the unfortunate aspects of the pseudocode for the listEntries algorithm,
from a parallel implementation standpoint, is that the outer loop is a while loop
that implies a conditional number of iterations, which we call peeling rounds.
Implementing parallel peeling can be much easier, however, if we can simply
bound the number of parallel peeling rounds to be one or two or some constant, . k,
and hard code that constant into our implementation, using, say, the MapReduce
framework (which also simplifies combining the XORs for colliding cells). This
desire, therefore, motivates the analysis that follows, which shows how to set the
parameters for an IBLT to guarantee with high probability (or all but negligible
probability) 1 that parallel peeling can succeed in one, two, or . k rounds.

Set Synchronization. For example, using IBLTs allows one to synchronize
two data sets, .S1 and . S2, using storage and communication proportional to the

1 We say that an event occurs with high probability if the failure probability is .1/nc, for
some constant, .c > 0, and with overwhelming probability if the failure probability
is negligible, that is, the failure probability is asymptotically less than .1/nc for any
constant .c > 0.

Parallel Peeling of Invertible Bloom Lookup Tables 73

size of symmetric set difference between the two sets, .n = |S1 ⊕ S2|, rather than
the size of the sets themselves. 2

At a high level, synchronizing a set . S that is intended to be mirrored at two
servers, which we call “Alice” and “Bob,” works as follows. Alice and Bob hold
item sets .SA and .SB, respectively, with .S = SA ∪ SB. Alice and Bob each store
their items in respective IBLTs, .TA and .TB , each holding .m cells, where .m is
linear in the size of the set difference .SA ⊕ SB , and each sends their IBLT to
the other. Then, each of Alice and Bob computes an entrywise table difference
.TA−TB, which allows both Alice and Bob to list out the elements of .SA⊕SB with
high probability, so long as the size of that difference is indeed at most a threshold
that depends only on and is linear in . m. Note that computing the table difference
also yields which set (Alice’s or Bob’s) each element in the symmetric difference
belongs to; we therefore say that IBLTs provide signed symmetric set differences.
While this is an interesting and useful application of IBLTs, in this paper we are
interested in applications of IBLTs to another challenge that arises in large-scale
distributed computing, namely, for data compression [38] and deduplication [44],
which can involve using IBLTs in arguably a more “parallel” way. For instance,
in data compression and deduplication applications, one is often interested in
computing the symmetric or set differences between all pairs of a collection
of sets, not just two. Thus, we desire IBLT difference operations that can be
done quickly in parallel, where each difference itself is computed using a parallel
algorithm, ideally with a constant number of computation rounds.

Prior Work on Parallel Peeling. Computing the entrywise table difference
.TA − TB between two IBLTs .TA and .TB is easy enough to do in parallel, but
listing out the elements of the result in parallel is more challenging. Indeed, the
algorithm for performing such a listing is usually described as a sequential peel-
ing process, where items are removed iteratively one at a time [23,36]. Still, there
is prior work on parallel peeling of various graph structures, e.g., by Cao, Fine-
man, and Russell [10], Goodrich and Pszona [24], Chang, Pettie, and Zhang [11],
Dhulipala, Blelloch, and Shun [14], Ghaffari, Grunau, and Jin [22], Shi, Dhuli-
pala, and Shun [39], and Shi and Shun [40]. More relevant to this paper, Jiang,
Mitzenmacher, and Thaler [27] and Gao [20] provide parallel peeling results for
random hypergraphs and IBLTs. These results yield a super-constant number of
rounds, however, rather than a small constant number of rounds, as would be
desired for the applications we explore here. Specifically, to peel . n items in the
IBLT, their results correspond to .Θ(log log n) rounds of parallel peeling.

Our Results. In this paper, we study constant-round parallel peeling both
theoretically and experimentally. What makes our study of the IBLT data struc-
ture different from prior parallel-peeling results is that here we focus more on
optimizing (parallel) time and work and less on space, which was the focus
in prior works [20,27]. In particular, we guarantee that with high (and, as we
describe later, with overwhelming) probability our parallel peeling process com-

2 We denote the symmetric set difference of two sets, .S1 and .S2, by .S1 ⊕ S2.
Recall that .S1 ⊕ S2 = (S1 − S2) ∪ (S2 − S1), which is sometimes alternatively

denoted as .S1 � S2 or .S1ΔS2.

74 M. T. Goodrich et al.

pletes in a small constant number of rounds—ideally one or two. Past work on
parallel peeling for IBLTs [20,27], instead aimed for a constant number of hash
functions per item, a linear number of cells in the IBLT table, and an asymptot-
ically good, but super-constant, number of rounds (where additional .O(1) terms
were not considered consequential) with high, but not overwhelming probabil-
ity. On the theoretical front, we show that if an IBLT has .O(n log n) cells and
uses .O(log n) hash functions (where suitably chosen constant factors are used
in the order notation), then, with high probability, we can peel the IBLT in a
single parallel round. More surprisingly, we also show that the probability that
we would fail to peel such an IBLT in only two rounds is negligible (recall that
a function is negligible if it approaches zero faster than the reciprocal of any
polynomial, e.g., see Bellare [4]). Further, we provide a full time-space trade-off
between the number of rounds and space needed to achieve constant-round paral-
lel peeling with overwhelming probability. Also, we explicitly describe how to use
IBLTs in some interesting applications, including deduplication and symmetric-
difference minimum spanning trees.

2 Analysis

In this section, we provide our theoretical analysis, showing that, for a table of
.m = O(n log n) cells, parallel peeling succeeds with high probability in one round
and with overwhelming probability in two, and we then provide a time-space
trade-off while achieving overwhelming probability with a constant number of
rounds. We note that in the analysis in this section, we assume that there is
no false positive in the peeling process in checking the hashSum field; that is,
we assume items have only been inserted, or the fingerprints have been chosen
large enough to avoid this issue. Before beginning, we recall that previous work
(e.g., [23]) has shown for an IBLT with .m = cn cells for some constant . c and a
constant number of hash functions . k, if . c is above the threshold where decoding
occurs with high probability, the failure probability is .Θ(n−k+2).

Analysis of One and Two Rounds. As we are focused on such a small num-
ber of rounds, we first explicitly consider the case of a single round and then
analyze the probability of parallel peeling succeeding in two rounds. We note
that something akin to our analysis for one round appeared previously in work
by Eppstein and Goodrich [15], but we nevertheless provide a complete analysis
of one round parallel peeling to set the table for our other results, which are
novel.

For concreteness, we consider an IBLT with .m = cn log2 n cells for some
constant . c. Each of . n items hashes to .log2 n cells (we assume . n is a power of two
for convenience). As we previously described, we assume the IBLT is split ; that
is, there are .log2 n subtables, each with .cn cells, and the . jth hash of each item is
independently and uniformly chosen in the . jth subtable. Call a cell single if it
holds exactly one item. We show for sufficiently large constant . c each item has
at least one hash to a single cell with high probability, implying peelability in a
single round.

Parallel Peeling of Invertible Bloom Lookup Tables 75

Theorem 1. For a table of .m = cn log2 n cells using .log2 n hash functions,
where .c ≥ 1 is a constant, an IBLT peels in one round with probability at least
.1 − n−c′+1 where .c′ = − log2(1 − e−1/c).

Proof: Let .Xi,j be a random variable such that .Xi,j = 1 if the . jth hash of the
. ith item is not single and 0 otherwise. Since the . jth table has .cn cells, we have

. Pr(Xi,j = 0) = (1 − 1/(cn))n−1 ≥ e−1/c.

(The inequality holds as long as .c ≥ 1 for example.) Since subtables are inde-
pendent, we therefore have the probability that no hash for the . ith item is single
is at most

. (1 − e−1/c)log2 n = nlog2(1−e−1/c) = n−c′
,

for .c′ = − log2(1−e−1/c). By a union bound, all items hash to at least one single
cell with probability .n−c′+1, and one can choose . c to obtain any suitably small
probability that is inversely polynomial in . n. . �

Thus, in our setup, parallel peeling succeeds in one round with high proba-
bility and with reasonable constant factors. For example, one can peel in a single
round with probability at least .1 − 1/n using slightly less than .3.5n log2 n cells,
and with probability at least .1 − 1/n2 with slightly less than .7.5n log2 n cells.
Further, we expect a threshold where the probability that one round suffices
jumps toward 1 at slightly over .1.443n log2 n cells, since .1.443 ≈ 1/ ln 2 and at
.c = 1/ ln 2 we have .c′ = 1.

We note the above proof doesn’t really require .c ≥ 1, in that for smaller . c we
have that .(1−1/(cn))n−1 = e−1/c(1−o(1)) and the proof remains essentially the
same. This fact will be helpful in what follows. Also, the proof naturally extends
to other scenarios, such as if one uses .α log n hash functions for some constant
. α (or some larger number of hash functions).

We now consider just the case of two rounds. We use the same setup as
before. For an item to be peeled within two rounds, either

– one of its cells is single, or
– one of its cells has that all the other items that hash to that cell are peeled

after the first round.

We prove that with just two rounds the failure probability is negligible; specifi-
cally, the probability of failing to peel every item is .n−Ω(log n).

Theorem 2. For a table of .m = cn log2 n cells using .log2 n hash functions,
where .c > 0 is a constant, an IBLT peels in two rounds with probability at least
.1 − n−Ω(log n).

Proof: Consider a specific item . y. Let .Yj be the number of other items that
hash to the same cell as . y in the . jth subtable. We first note that .Yj is at most
.(ln n)2 with probability at least .1 − n−Ω(log n). This follows readily from the
Poisson approximation of the number of items that hash to each cell, along
with Stirling’s approximation. We therefore assume that every cell has at most

76 M. T. Goodrich et al.

.(ln n)2 items that hash to it henceforth, as this conditioning does not affect our
arguments further. Let .Xi = 1 if . y is single in the . ith table or all other items that
share the cell in the . ith table all peel after the first round. Otherwise .Xi = 0.
We wish to show that the probability that all .Xi = 0 is .n−Ω(log n).

First consider .X1. Let . z be some other item in the same cell. Following the
same argument as in the proof of Theorem 1, the probability that . z is not single
in at least one of the other subtables is

.
(
1 − (1 − 1/(cn))n−1

)log2 n−1
,

which is at most .n−c1 , for some constant . c1. As we have assumed .Y1 is at most
.(ln n)2, by a union bound, the probability any of the items is not single in at
least one other subtable is at most .(ln n)2n−c1 , and this shows the probability
.X1 = 0 is at most .(ln n)2n−c1 .

If the .Xi were all independent, we would now be done. However, the . Xi

are only “roughly independent”; there are unfortunately some problematic cases
to consider. For example, consider .Pr(X2 = 1 | X1 = 0). That is, what is the
probability the second subtable allows us to peel the item . y even though the
first subtable does not. A difficult subcase showing the dependency is when the
same second item hashes to the same location as . y in both hash tables. That is,
the reason .X1 = 0 might be that there is an item . z in the second hash table at
the same location as . y in both the first and second table.

We circumvent the dependency by showing the following two conditions hold:

1. With probability .1 − n−Ω(log n), at least .(log2 n)/2 subtables have no items
in the cell with . y that also appear with . y in earlier subtables.

2. For each such subtable, the event .Xi = 0 satisfies . Pr(Xi = 0 | X1 = 0,X2 =
0, . . . , Xi−1 = 0) = O(n−c2), for some constant . c2.

The result would then follow, as (implicitly conditioning on none of the rare
.n−Ω(log n) events we have considered occurring)

. Pr(X1 = 0, X2 = 0, . . . , Xlog2 n = 0) =

. Pr(X1 = 0)

log2 n∏

i=2

Pr(Xi = 0 | X1 = 0, X2 = 0, . . . , Xi−1 = 0),

and the right hand side would have at least .(log2 n)/2 terms that were .O(n−c2).
For the first condition, as we sequentially consider each new subtable, there

are at most .O((log n)3) items that share a cell with . y. The probability that in a
new subtable any of these elements are in the same cell as . y is at most . q, where
. q is .O((log n)3)/n. The probability at least .(log2 n)/2 subtables would fail to
avoid such elements is at most

.

log2 n∑

i=(log2 n)/2

(
log2 n

i

)
qi(1 − q)log2 n−i,

which is .n−Ω(log n).

Parallel Peeling of Invertible Bloom Lookup Tables 77

For the second condition, following previous work, it is useful to think of
gathering a history of all the item-cell pairs we have seen as we explore the
hash table subtable by subtable. We start with . y and its position in all the
tables. In the first subtable, we consider all the items that share the cell with
. y; we then consider the cells for those items in all the other tables (to check
if those other items are single in some table, and are hence peeled in the first
round), and correspondingly all the items in those cells (which, because we have
now seen them, we must consider their effect on the conditioning). Similarly, at
the second table, we consider all the items that share the cell with . y; we then
consider the cells for those items in all the other tables, and correspondingly
all the items in those cells. Under our assumption that any cell contains at
most .(ln n)2 items, we see that this history can only consist of .O((log n)6) item-
cell pairs throughout the process.

Now consider .Pr(Xi = 0 | X1 = 0,X2 = 0, . . . , Xi−1 = 0) for some subtable . i
where the items colliding with . y are all distinct from other levels. The past history
introduces some conditioning in evaluating whether each of these items is single
in another subtable, because we know the location of some items in other tables
in our history. However, we only know at most .O((log n)6) item-cell pairs in our
history. This has at worst a .1−o(1) effect on the probability .(1−1/(cn))n−1 that
an item colliding with . y in the . ith table is single in another table, as from the cal-
culation in the proof of Theorem 1. In particular, any such new item that collides
with . y must avoid cells known to contain other items in other subtables. As we
have said, there are .polylog(n) such cells from our history, so this happens with
probability .1 − polylog(n)/(cn) in any given subtable. And it can affect the num-
ber of other items that might collide with the new item (instead of .n − 1 other
items may be .n − polylog(n), as .polylog(n) items might already their position
known in a subtable). It remains the case that any new item is single in each sub-
table with probability .(1 − polylog(n)/(cn))n−polylog(n) = e−1/c(1 − o(1)), and
correspondingly each new item is single in some other subtable with probability
at least .1 − n−c3 , for some constant . c3. The probability that all new items in the
. ith subtable are not single is then .polylog(n)/nc3 = O(n−c2) for some constant
. c2, giving the result. . �

A Time-Space Trade-Off for Constant-Round Peeling. Theorem 2 shows
parallel peeling succeeds in two rounds with overwhelming probability. Let us
next provide our time-space trade-off.

Theorem 3. For a table of .m = cn(log2 n)1/k cells using .(log2 n)1/k hash func-
tions, where where . k is a positive integer constant and .c > 0 is a constant, an
IBLT peels in .k + 1 rounds with probability at least .1 − n−Ω((log n)1/k).

Proof: We sketch the proof, since it follows roughly the same conceptual frame-
work as the proof of Theorem 2. Consider a specific item, . y. For . y not to be peeled
in .k + 1 rounds, in the . ith subtable there must be some element .zi that has not
been peeled after . k rounds in the same cell as . y; for each . zi, in each of the
other subtables there must be some element that has not been peeled after . k −1
rounds in the same cell as . zi, and so on.

78 M. T. Goodrich et al.

Accordingly, the failure of an IBLT to peel corresponds to what is commonly
referred to as a witness tree (e.g., [41]), with the root of the tree being an
element . y not peeled after .k + 1 rounds, connected by labeled edges to children
that correspond to elements that share a cell with . y in some subtable that are
not peeled after . k rounds, with the label denoting which subtable . y and the other
element share a cell. (An element can conceivably be in more than one labeled
edge.) These elements have children corresponding to elements that share a cell
with them in some other subtable (other than the one in the edge connecting
them to the root) that are not peeled after .k − 1 rounds, and so on.

We can again use the fact that there are at most .(ln n)2 elements in any cell
with probability at least .1−n−Ω(log n) to limit the size of the tree built this way,
so that with overwhelming probability the tree has size polylogarithmic in . n.

We think of going through this tree in a breadth first manner from the
root, and temporarily assume that elements are not repeated as we expand this
recursive exploration of the table and likewise ignore dependencies introduced by
knowledge of where elements we have seen in the tree are placed. The probability
that an element . q is not single in at least one of .(log2 n)1/k − 1 subtables is

.
(
1 − (1 − 1/(cn))n−1

)(log2 n)1/k−1
,

which is at most .c
(log2 n)1/k

1 , for some constant .c1 < 1 and sufficiently large . n. The
probability that an element . q′ in a cell is not peeled after two rounds, implying
that in all of the other .(log2 n)1/k − 1 subtables there is some element in the
same cell as . q′ that is not peeled after 1 round, is at most

. (ln n)2(log2 n)1/k
(
c
(log2 n)1/k

1

)(log2 n)1/k−1

≤ c
(log2 n)2/k

2 ,

for some constant .c2 < 1 and sufficiently large . n. Continuing in this manner, the
probability an element sharing a cell with . y in one of its subtables has not been
peeled for sufficiently large . n is bounded by

. c
(log2 n)k/k

k = nlog2 ck ,

where .ck < 1. The result would correspondingly follow, but for the assumptions
that elements in the table are not repeated and that dependencies can be ignored.

As in the proof of Theorem 2, however, because the witness tree is only
polylogarithmic in size, this does not affect the asymptotics of the result; the
dependencies can be dealt with by using the fact that we only see a polyloga-
rithmic number of elements throughout the tree, and most of the cells will not
contain repeated elements from the tree. . �

3 Applications

In this section, we describe some applications of constant-round parallel peeling
algorithms for IBLTs to a simplified deduplication problem.

Parallel Peeling of Invertible Bloom Lookup Tables 79

All-Pairs Signed Symmetric Set Differences. We begin by describing how
to use an IBLT for computing the (signed) symmetric set differences between
every pair of a collection of .N sets, .S1, S2, . . . , SN , by adapting an approach of
Goodrich and Mitzenmacher [23] to our framework. (Note this is equivalent to
finding the set difference between every pair of sets.) Let .n > 1 be an upper
bound for the anticipated size of any difference, .Si ⊕ Sj . (Note that . n can be
much smaller than the size of any . Si.) We begin by computing an IBLT, .TSi

, for
each set, . Si, of .O(n log n) cells, and with .O(log n) hash functions (and subtables),
based on the theoretical and/or experimental analysis we provide above. In this
case, we store each element, . x, from a set, . Si, as a key-value pair, .(x, 1), since
we are treating the . Si’s as sets.

For each pair, .(i, j), where .i �= j, .i, j = 1, 2, . . . , N , we compute a set-
difference IBLT, .Ti,j , by computing an indexed difference of the corresponding
count fields in .TSi

and .TSj
and an indexed XOR of the corresponding keySum,

valueSum, and hashSum fields. We emphasize that in the results of this section,
we assume that cell operations (such as XORing the various fields of a cell) are
unit cost, even if the fields are large. (As we have noted, in theory the hashSum
field may need to be .ω(log n) bits for some applications and/or for negligible
failure probability; in practice, we expect all fields to fit in one or a small con-
stant number of machine words.) Thus, .Ti,j is a representation of the signed
symmetric set difference, 3 .Si ⊕ Sj , where each element, . x, that is in .Si and not
in . Sj , adds . 1 to its respective count fields, and each element, . x, that is in . Sj

and not in . Si, adds .−1 to its respective count fields. We then apply the method
described in Sect. 1 to perform a parallel peeling to list of the elements in .Ti,j ,
optionally noting which elements in the difference are from .Si and which are
from . Sj .

Theorem 4. Given .N sets, .S1, S2, . . . , SN , if the size of the difference between
two sets, .Si and . Sj, is at most a given size parameter, .n > 1, then the probability
that our algorithm will fail to compute the signed set difference between .Si and
.Sj in at most two rounds is negligible as a function of . n. The total work needed
is .O(NM log n + N2n log n).

Proof: The work bound follows from the work need to insert each element into
its set’s IBLT and then perform all the set differences. The probability bounds
follow by Theorem 2. . �

Deduplication via Difference Encodings. Consider now a simple deduplica-
tion [44] problem. Suppose we are given a collection of sets, .S = {S1, S2, . . . , SN}.
For example, each .Si could represent a file or a database, and its elements could
be disk blocks, database rows, or identifiers for disk blocks or database rows
derived from a cryptographic hash function, such as SHA-256. In deduplication
applications, it is anticipated that there are a lot of common elements among

3 Recall that we say that .Si ⊕ Sj is a signed symmetric difference if we can sepa-
rately identify the members of .Si − Sj and .Sj − Si, that is, the members of .Si not
in .Sj and the members of .Sj not in .Si.

80 M. T. Goodrich et al.

the sets in . S; hence, we would like to represent each .Si concisely, e.g., just in
terms of a small number of differences with another set in . S.

One such representation is a difference encoding of . S, which is a
(re)ordering of the sets in . S, as .(S1, S2, . . . , SN), such that, for .i > 1, each
set, . Si, is encoded in terms of the differences between .Si and some .Sj where
.j < i. That is, we encode .Si with the signed symmetric difference, .Si ⊕Sj . Thus,
if there is considerable overlap of elements among the sets in . S, then a difference
encoding could save a lot of memory space over explicitly representing each set
in . S. The corresponding optimization problem, therefore, is to find an ordering
of the sets and a difference encoding that minimizes the total amount of stor-
age required, over all possible orderings and difference encodings. Finding such
a minimum difference encoding might at first seem like a computationally
difficult problem, e.g., since there are .N ! possible orders and each one can have
.(N − 1)! difference encodings. Nevertheless, as we show below, we can solve this
problem quickly in parallel with reasonable work.

Symmetric-Difference MSTs. As has been well-known since at least the
1950 s, e.g., see Restle [37], given a collection of sets, .S = {S1, S2, . . . , SN}, and
a measure function, . m, for sets (such as their size if all the sets are finite), then
.d(Si, Sj) = m(Si ⊕ Sj) is a distance metric. In our case, since the sets we are
dealing with are finite, we define .m(S) to be the size of the set, . S, which we
denote as .|S|.

Define a graph, . G, which we call the symmetric-difference graph , such
that each set, . Si, in . S is associated with a vertex, . i, in . G, and each edge, .(i, j),
has weight equal to .|Si ⊕ Sj |.
Lemma 1. Finding a minimum difference encoding for a collection of sets, . S =
{S1, S2, . . . , SN}, can be reduced to finding a minimum spanning tree (MST) in
the symmetric-difference graph, . G, for . S.

Proof: Let .H be a spanning tree of . G. We can derive a difference encoding of . S
from .H by choosing the string associated with a vertex in .H (it doesn’t matter
which one) to be the first string in the order. We then root the tree .H at this
first vertex and order the remaining vertices according to a preorder traversal
of . H, and let this be the ordering of the corresponding strings. In this way, we
are guaranteed that for each vertex, . i, its parent in .H appears earlier in the
ordering. We then encode every vertex, . i, besides the first one in terms of the
symmetric difference between .Si and . Sj , where . j is the parent of . i in . H. Thus,
.H corresponds to a difference encoding of . S.

Alternatively, let .D be a difference encoding of . S and let the corresponding
order be .(S1, S2, . . . , SN). For each set, . Si, for .i > 1, choose the (directed) edge,
.(i, j), in .G such that .Si is encoded as a difference with . Sj , and let .H be the
resulting subgraph of . G. Then .H has no cycles, because each vertex, .i > 1, we
chose an out-going edge to a vertex for . j where .j < i. In addition, for the same
reason, .H is connected, with each directed path leading to the first vertex (for
. S1). Thus, .H is a spanning tree, with .n − 1 edges.

Parallel Peeling of Invertible Bloom Lookup Tables 81

Therefore, every spanning tree corresponds to a difference encoding and every
difference encoding corresponds to a spanning tree; hence, an MST for .G will
correspond to a minimum difference encoding for . S. . �

A major computational bottleneck for solving the above symmetric-
difference MST problem is in constructing a representation of the symmetric-
difference graph, . G. Of course, since we are interested in finding an MST in . G,
it is sufficient to construct a representation of . G such that every edge has weight
at most some size threshold, .n > 0, while keeping .G connected. Typically, we
desire . n to be much smaller than . M , the average size of each set in . S.

Our method for constructing . G is to use IBLTs and our parallel peeling algo-
rithm. Namely, we use our algorithm for the all-pairs set difference problem. We
define a reasonable threshold, . n, for the maximum expected symmetric differ-
ence so that .G is connected, and run our all-pairs set difference algorithm of
Theorem 4. Note that if our threshold, . n, is large enough, then the probability
that any of our parallel peeling algorithms fail after two rounds is negligible in
. n, by Theorem 2; hence, if our peeling algorithm fails for some pair .(Si, Sj), we
can safely assume that .|Si ⊕ Sj | > n. Thus, if after running our all-pairs set
difference algorithm, this results in a graph, . G, that is not connected, then we
double our estimate for . n and run it again. Since we double the value of . n in
each such run and our work bound is at least linear in . n, the work needed the
runs forms a geometric sequence that is dominated by the work for the last run.
This gives us the following:

Theorem 5. Given a collection, .S = {S1, S2, . . . , SN}, of .N sets, with average
size, . M , we can determine a threshold value, . n, and we can construct a connected
subgraph of the symmetric-difference graph, . G, for . S, containing every edge with
weight at most . n in .O(log n) rounds in parallel, with total work . O(NM log n +
N2n log n), with a failure probability that is negligible in . n.

Given such a connected subgraph of the symmetric-difference graph, . G,
we can then compute an MST in .G using any known parallel MST algo-
rithm, e.g., see [2, 5,13,28]. Note that the above method also applies to a set,
.S = {s1, s2, . . . , sN}, of .N character strings of length, .M ≥ 1, each, since we can
construct a set, . Si, from each character string, . si, by defining each element in . Si

to be the pair, .(k, si[k]). In this case, the symmetric-difference graph, . G, would be
defined so that each string .si corresponds to a vertex and the weight of an edge,
.(i, j), is the Hamming distance 4 between the strings .si and . sj . This approach
could be used, for example, to concisely encode a set of DNA strings where dif-
ferences are character swaps or replacements (but not insertions or deletions). In
this case, the minimum difference encoding would provide an optimized concise
encoding of all the strings in . S.

4 Recall that the Hamming distance between two strings, . s and . t, is the number of
positions, . i, where .s[i] �= t[i].

82 M. T. Goodrich et al.

References

1. Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang, Z.L.:
Unreeling Netflix: understanding and improving multi-CDN movie delivery. In:
IEEE INFOCOM, pp. 1620–1628 (2012). https://doi.org/10.1109/INFCOM.2012.
6195531

2. Adler, M., Dittrich, W., Juurlink, B., Kuty�lowski, M., Rieping, I.: Communication-
optimal parallel minimum spanning tree algorithms. In: 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 27–36 (1998)

3. B. Jenkins: A hash function for hash table lookup. https://burtleburtle.net/bob/
hash/doobs.html (1997)

4. Bellare, M.: A note on negligible functions. J. Cryptology 15(4) (2002)
5. Bentley, J.L.: A parallel algorithm for constructing minimum spanning trees. J.

Algorithms 1(1), 51–59 (1980). https://doi.org/10.1016/0196-6774(80)90004-8
6. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
7. Böttger, T., Cuadrado, F., Tyson, G., Castro, I., Uhlig, S.: Open Connect every-

where: a glimpse at the internet ecosystem through the lens of the Netflix CDN.
SIGCOMM Comput. Commun. Rev. 48(1), 28–34 (2018). https://doi.org/10.
1145/3211852.3211857

8. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2004)

9. Brodtkorb, A.R., Hagen, T.R., Schulz, C., Hasle, G.: GPU computing in dis-
crete optimization. Part I: Introduction to the GPU. EURO J. Trans. Logistics
2(1), 129–157 (2013). https://doi.org/10.1007/s13676-013-0025-1, https://www.
sciencedirect.com/science/article/pii/S2192437620600267

10. Cao, N., Fineman, J.T., Russell, K.: Parallel shortest paths with negative edge
weights. In: 34th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 177–190 (2022)

11. Chang, Y.J., Pettie, S., Zhang, H.: Distributed triangle detection via expander
decomposition. In: 13th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 821–840. SIAM (2019)

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

13. Dehne, F., Gotz, S.: Practical parallel algorithms for minimum spanning trees.
In: 17th IEEE Symposium on Reliable Distributed Systems, pp. 366–371 (1998).
https://doi.org/10.1109/RELDIS.1998.740525

14. Dhulipala, L., Blelloch, G., Shun, J.: Julienne: a framework for parallel graph
algorithms using work-efficient bucketing. In: 29th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 293–304 (2017)

15. Eppstein, D., Goodrich, M.T.: Straggler identification in round-trip data streams
via Newton’s identities and invertible Bloom filters. IEEE Trans. Knowl. Data Eng.
23(2), 297–306 (2010) (to appear)

16. Eppstein, D., Goodrich, M.T.: Straggler identification in round-trip data streams
via Newton’s identities and invertible Bloom filters. IEEE Trans. Knowl. Data Eng.
23(2), 297–306 (2010)

17. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the difference?
efficient set reconciliation without prior context. ACM SIGCOMM Comput. Com-
mun. Rev. 41(4), 218–229 (2011)

https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1109/INFCOM.2012.6195531
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1016/0196-6774(80)90004-8
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1145/3211852.3211857
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://doi.org/10.1007/s13676-013-0025-1
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://www.sciencedirect.com/science/article/pii/S2192437620600267
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525
https://doi.org/10.1109/RELDIS.1998.740525

Parallel Peeling of Invertible Bloom Lookup Tables 83

18. Fagerjord, A., Kueng, L.: Mapping the core actors and flows in streaming video
services: what Netflix can tell us about these new media networks. J. Media Bus.
Stud. 16(3), 166–181 (2019). https://doi.org/10.1080/16522354.2019.1684717

19. Fu, W., Abraham, H.B., Crowley, P.: Synchronizing namespaces with invertible
Bloom filters. In: ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pp. 123–134 (2015). https://doi.org/10.1109/
ANCS.2015.7110126

20. Gao, P.: Analysis of the parallel peeling algorithm: a short proof (2014).
arxiv.org/abs/1402.7326

21. Gentili, M.: Set Reconciliation and File Synchronization Using Invertible Bloom
Lookup Tables. Ph.D. thesis, Harvard Univ. (2015)

22. Ghaffari, M., Grunau, C., Jin, C.: Improved MPC algorithms for MIS, matching,
and coloring on trees and beyond. In: 34th International Symposium on Distributed
Computing, pp. 34:1–34:18 (2020)

23. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. In: 49th
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 792–799. IEEE (2011). arxiv.org/abs/1101.2245

24. Goodrich, M.T., Pszona, P.: External-memory network analysis algorithms for nat-
urally sparse graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 664–676. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23719-5 56

25. Hijma, P., Heldens, S., Sclocco, A., van Werkhoven, B., Bal, H.E.: Optimization
techniques for GPU programming. ACM Comput. Surv. 55(11) (2023). https://
doi.org/10.1145/3570638

26. Hussain, A., Aleem, M.: GoCJ: Google cloud jobs dataset for distributed and cloud
computing infrastructures. Data 3(4), 38 (2018)

27. Jiang, J., Mitzenmacher, M., Thaler, J.: Parallel peeling algorithms. ACM Trans.
Parallel Comput. 3(1) (2017). https://doi.org/10.1145/2938412

28. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce.
In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 938–948 (2010).
https://doi.org/10.1137/1.9781611973075.76, https://epubs.siam.org/doi/abs/10.
1137/1.9781611973075.76

29. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 938–948 (2010)

30. Mizrahi, A., Bar-Lev, D., Yaakobi, E., Rottenstreich, O.: Invertible Bloom lookup
tables with listing guarantees. arXiv:2212.13812 (2022)

31. Molloy, M.: The pure literal rule threshold and cores in random hypergraphs.
In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 672–681.
Society for Industrial and Applied Mathematics (2004)

32. Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Struct.
Algorithms 27(1), 124–135 (2005)

33. Odun-Ayo, I., Ajayi, O., Akanle, B., Ahuja, R.: An overview of data storage in cloud
computing. In: IEEE International Conference on Next Generation Computing and
Information Systems (ICNGCIS), pp. 29–34. IEEE (2017)

34. Ozisik, A.P., Andresen, G., Levine, B.N., Tapp, D., Bissias, G., Katkuri, S.:
Graphene: efficient interactive set reconciliation applied to blockchain propaga-
tion. In: ACM SIGCOMM, pp. 303–317 (2019). https://doi.org/10.1145/3341302.
3342082

35. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science
grids: a viable solution? In: ACM Int. Workshop on Data-Aware Distributed Com-
puting, pp. 55–64 (2008). https://doi.org/10.1145/1383519.1383526

https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1080/16522354.2019.1684717
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
https://doi.org/10.1109/ANCS.2015.7110126
http://arxiv.org/1402.7326
http://arxiv.org/1101.2245
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1007/978-3-642-23719-5_56
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
https://doi.org/10.1145/2938412
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.76
http://arxiv.org/abs/2212.13812
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526
https://doi.org/10.1145/1383519.1383526

84 M. T. Goodrich et al.

36. Pontarelli, S., Reviriego, P., Mitzenmacher, M.: Improving the performance of
invertible Bloom lookup tables. Inf. Process. Lett. 114(4), 185–191 (2014)

37. Restle, F.: A metric and an ordering on sets. Psychometrika 24(3), 207–220 (1959)
38. Sayood, K.: Introduction to Data Compression. Morgan Kaufmann (2017)
39. Shi, J., Dhulipala, L., Shun, J.: Parallel clique counting and peeling algorithms. In:

SIAM Conference on Applied and Computational Discrete Algorithms (ACDA),
pp. 135–146 (2021). https://doi.org/10.1137/1.9781611976830.13, https://epubs.
siam.org/doi/abs/10.1137/1.9781611976830.13

40. Shi, J., Shun, J.: Parallel algorithms for butterfly computations. In: Sympo-
sium on Algorithmic Principles of Computer Systems (APOCS), pp. 16–30
(2020). https://doi.org/10.1137/1.9781611976021.2, https://epubs.siam.org/doi/
abs/10.1137/1.9781611976021.2

41. Vöcking, B.: How asymmetry helps load balancing. J. ACM 50(4), 568–589 (2003).
https://doi.org/10.1145/792538.792546

42. Wilder, B.: Cloud Architecture Patterns: Using Microsoft Azure. ”O’Reilly Media,
Inc.” (2012)

43. Wittig, M., Wittig, A.: Amazon Web Services in Action. Simon and Schuster (2018)
44. Xia, W., et al.: A comprehensive study of the past, present, and future of data

deduplication. Proc. IEEE 104(9), 1681–1710 (2016)

https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.13
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://doi.org/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611976021.2
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546
https://doi.org/10.1145/792538.792546

	Parallel Peeling of Invertible Bloom Lookup Tables in a Constant Number of Rounds
	1 Introduction
	2 Analysis
	3 Applications
	References

