CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Maintaining Light Spanners via Minimal Updates

David Eppstein *

Abstract

We study the problem of maintaining a lightweight
bounded-degree (1 + ¢)-spanner of a dynamic point set
in a d-dimensional Euclidean space, where € > 0 and d
are arbitrary constants. In our fully-dynamic setting,
points are allowed to be inserted as well as deleted, and
our objective is to maintain a (1 4 €)-spanner that has
constant bounds on its maximum degree and its lightness
(the ratio of its weight to that of the minimum spanning
tree), while minimizing the recourse, which is the num-
ber of edges added or removed by each point insertion
or deletion. We present a fully-dynamic algorithm that
handles point insertion with amortized constant recourse
and point deletion with amortized O(log A) recourse,
where A is the aspect ratio of the point set.

1 Introduction

Spanners are sparse subgraphs of a denser graph that
approximate its shortest path distances. Extensive study
has been made of geometric spanners, for which the dense
graph is a complete weighted graph on a point set in
d-dimensional Euclidean space, and where the weight of
an edge (u,v) is simply the Euclidean distance between
u and v. The approximation quality of a spanner is
measured by its stretch factor ¢, where a t-spanner S
is defined by the property that for every two vertices u
and v in the graph, dg(u,v) < t-d(u,v). Here d and
dg are respectively the Euclidean metric of dimension
d and the shortest path metric induced by the spanner.
In other words, the Euclidean distances are stretched by
a factor of at most ¢ in the spanner.

In this paper, we study the problem of maintaining
1 + e-spanners under a dynamic model in which points
are inserted and removed by an adversary and our goal is
to minimize the recourse, which is the number of changes
we make to the edge set of the spanner. The recourse
should be distinguished from the time it takes us to
calculate the changes we make, which might be larger;
our use of recourse instead of update time is motivated
by real-world networks, where making a physical change

*Department of Computer Science, University of California,
Irvine, eppstein@uci.edu. Work funded by NSF grant CCF-
2212129.

TDepartment of Computer Science, University of California,
Irvine, khodabah®@uci.edu. Work funded by NSF grant CCF-
2212129.

Hadi Khodabandeh T

to the network is often more costly than the actual run-
time of the algorithm that decides what changes need
to be made.

As our main contribution in this paper, we construct
a fully-dynamic spanner that maintains, at all times, a
lightness and a maximum degree that are bounded by
constants. Our maintenance regime achieves amortized
constant recourse per point insertion, and amortized
O(log A) recourse per point deletion. We state and
prove our bounds in the following theorem:

Theorem 18 Our fully-dynamic spanner construc-
tion in d-dimensional Euclidean spaces has a stretch-
factor of 1 4+ € and a lightness that is bounded by a
constant. Furthermore, this construction performs an
amortized O(1) edge updates following a point insertion,
and an amortized O(log A) edge updates following a
point deletion.

1.1 Related work

Geometric t-spanners have numerous applications in net-
work design problems [15]. Finding a sparse lightweight
t-spanner is the core of many of these applications. The
existence of such spanners and efficient algorithms for
constructing them have been considered under different
settings and constraints [3,12,17]. In offline settings,
where the point set is given as a whole to the algorithm,
the prominent greedy spanner algorithm is well known
for its all-in-one quality due to its optimal performance
under multiple measures including sparsity (its number
of edges), lightness (the weight of the spanner divided
by the weight of the minimum spanning tree), and max-
imum degree [1,4]. The output of the greedy spanner
also has low crossing number in the plane and small
separators and separator hierarchies in doubling metric
spaces [8,14]. However, in some applications, the points
of an input set may repeatedly change as a spanner for
them is used, and a static network would not accurately
represent their distances. The dynamic model, detailed
below, deal with these types of problems.

In the dynamic model, points are inserted or removed
one at a time, and the algorithm has to maintain a t-
spanner at all times. In this setting the algorithm is
allowed to remove previous edges. For n points in d-
dimensional Euclidean space, Arya, Mount, and Smid [2]
designed a spanner construction with a linear number of
edges and O(logn) diameter under the assumption that
a point to be deleted is chosen randomly from the point

36" Canadian Conference on Computational Geometry, 2024

set, and a point to be inserted is chosen randomly from
the new point set. Bose, Gudmundsson, and Morin [5]
presented a semi-dynamic (1 + £)-spanner construction
with O(logn) maximum degree and diameter. Gao,
Guibas, and Nguyen [9] designed the deformable spanner,
a fully-dynamic construction with O(log A) maximum
degree and O(log A) lightness, where A is the aspect
ratio of the point set, defined as the ratio of the length
of the largest edge divided by the length of the shortest
edge.

In the spaces of bounded doubling dimension,
Roditty [16] provided the first dynamic spanner con-
struction whose update time (and therefore recourse)
depended solely on the number of points (O(logn) for
point insertion and O(n!/3) for point removal). This
was later improved by Gottlieb and Roditty [11], who
extended this result in doubling metrics and provided a
better update time as well as the bounded-degree prop-
erty. The same authors further improved this construc-
tion to have an asymptotically optimal insertion time
(and therefore recourse) of O(logn) under the algebraic
decision tree model [10] but logarithmic lightness.

It is worth to mention that none of the work mentioned
above in the dynamic setting achieve a sub-logarithmic
lightness bound on their output. The problem of main-
taining a light spanner in this setting has remained open
until now.

2 Preliminaries and overview

In this section, we cover the notations as well as impor-
tant definitions and facts that we use throughout the
paper. We also provide an overview of what to expect in
the upcoming sections and the methods we use to reach
our bounds on the recourse.

Notation. We denote the current point set by V' and
its aspect ratio (as defined earlier) by A. We use the
notations ||e|| and ||P|| for the Euclidean length of an
edge e and a path P, respectively. We also refer to the
Euclidean distance of two points u and v by |luv| or
d(u,v), interchangeably. The notation |E| is used when
we are referring to the size of a set E. Also, for a spanner
S, the weight of S is shown by w(S5).

2.1 Overview

We build our spanners on top of a hierarchical clustering
(T, R) of the point set that we maintain dynamically as
the point set changes over time. The tree T represents
the parent-child relationship between the clusters, and
the constant R specifies how cluster radii magnify on
higher levels. Each cluster C € T is specified by a pair
C = (p,1) where p € R? is one of the given points at the
center of the cluster and [€ Z is the level of the cluster.
The level of a cluster determines its radius, R'. It is

possible for the same point to be the center of multiple
clusters, at different levels of the hierarchy.

We maintain our hierarchy so that after a point in-
sertion, a cluster is added centered at the new point,
and after a point deletion, each cluster with the deleted
point as its center is removed. Meanwhile, we maintain
a separation property on the hierarchy to help us build a
sparse spanner. Additional edges of our sparse spanner
connect pairs of clusters of the same level. Each such
edge ensures that pairs of descendants of its endpoints
have the desired stretch-factor. These edges form a
bounded-degree graph on the clusters at each level, but
this property alone would not ensure bounded degree
for our whole spanner, because of points that center
multiple clusters. Instead, we redistribute the edges of
large degree points to derive a bounded-degree spanner.

Maintaining bounded lightness on the other hand is
done through an iterative pruning process. We start
by removing certain edges to decrease the weight of the
spanner, which in turn might cause some other pairs
that previously used the removed edge in their shortest
paths to not meet the stretch bound of 1 4+ . We fix
those pairs by adding an edge between them, which again
increases the weight of the spanner. This causes a chain
of updates that alternatively improve the stretch and
worsen the weight of the spanner, or improve the weight
and worsen the stretch of the spanner. We show that
this sequence of updates, which we call maintenance
updates, if performed properly and for the right pairs,
will indeed not end in a loop, and even more strongly,
will terminate after an amortized constant number of
iterations. This will be covered in section 4.

The rest of this section includes the techniques we use
for our light-weight spanner construction. We start with
one of these techniques which is called the bucketing
technique. Instead of enforcing the stretch bound and
the lightness bound on the whole spanner, we partition
its edges into a constant number of subsets and we
enforce our criteria on these subsets. This partitioning
is necessary for the purpose of our analysis.

Bucketing. We maintain a partition of the span-
ner edges into a constant number of subsets. As we
mentioned before, our invariants are enforced on these
subsets instead of the whole spanner. Let C > ¢ > 1 be
constants that we specify later. We partition the edges of
the spanner into k = [log, C' subsets, So, S1, -+ ,Sk—1,
so that for each set S; and any pair of edges e, f € .5;
such that |le|| > ||f]|, one of the following two cases
happen: (i) cither ell/I|f]| < ¢ or (i) [lell/I[£] > C. In
other words, the edge lengths in the same set are either
very close, or very far from each other.

Such partitioning can be maintained easily by as-
signing an edge e to the set with index index(e) =
|log.|le]|]] mod k. We refer to this as the index of
the edge e. We also define the size of an edge e as

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

size(e) = |(log.|le|)/k]. By definition, if index(e) = i
and size(e) = j, then **0 < ||| < +HL We
similarly define the index and the size for any pair
(u,v) of vertices that are not necessarily connected
in the spanner: index(u,v) = |log.|luv|] mod k, and
size(u, v) = | (logl[uv]})/k).

Invariants. In order to construct a light-weight span-
ner, we start from our sparse dynamic spanner construc-
tion. To distinguish the edges of our light spanner with
the edges of our sparse spanner, we call the edges of
our sparse spanner the potential pairs, since a carefully
filtered set of those edges will make up our light-weight
spanner. After bucketing the potential pairs, since we
maintain the edges of each bucket separately, we must
find per-bucket criteria that guarantee the the main prop-
erties we expect from our spanner: the stretch-factor
and the lightness. We call these criteria the invariants.
To make sure the union of the buckets meets the stretch
bound, we generalize the notion of stretch factor to work
on individual buckets and we call it Invariant 1.

e Invariant 1. For each pair of vertices (u,v) ¢ S;
with index 4, there must exist a set of edges e; =
(x1,91),e2 = (w2,92),..., e = (x,) in S; such
that

l -1
S el (142) <||ux1 S] + IIyzvl)
=1

i=1
< (1+¢)|juv].

In other words, © must reach v by a path of cost
at most (1 4)||uv|| where the cost of every edge
e € S; is ||e]| and the cost of every edge e ¢ S; is
(1+¢)lell.

Lemma 1 If Invariant 1 holds for all S;, then S =
Uf:_ol Si is a (1 + ¢)-spanner.

Proof. [Proof of Lemma 1] Let (u,v) be a pair of
vertices. We find a (1 + &)-path between u and v using
edges in S. Let ¢ = index(u,v). By Invariant 1 there
exists a set of edges e; = (x1,y1), €2 = (z2,92),...,e; =
(1, y1) in S; such that

(u,v) and it terminates because the length of each miss-
ing edge in a replacement path is smaller than the length
of the edge that is being replaced (otherwise Invariant 1
would not hold). O

Furthermore, we bound the weight of the spanner
by ensuring the second invariant, which is the leapfrog
property on S;. [7]

e Invariant 2. Let (u,v) € S;. For every subset of

edges ey = (r1,y1),e2 = (2,92),...,e1 = (z1, 1)
in .S; the inequality

l -1
> el +(14¢) (usmll + 3 lyiial + ||yw||>
=1

i=1
> (1+&")|Juv||

holds, where &’ < ¢ is a positive constant. In other
words, u should not be able to reach v by a (short)
path of cost (1 + &')||uv||, where the edge costs are
the same as in Invariant 1.

The leapfrog property leads to a constant upper bound
on the lightness of S;, for each 0 < i < k. And since the
weight of the minimum spanning tree on the end-points
of each S; is at most a constant factor of the weight of
the minimum spanning tree on the whole point set, this
implies a constant upper bound on the lightness of the
spanner S = Ui:ol S;. As well as the weight bound, we
prove, in the following lemma, that Invariant 2 implies a
similar result to the packing lemma, but for the number
of edges on the same level.

Lemma 2 (Edge packing) Let E be a set of edges
(segments) with the same index and the same level that
18 consistent with Invariant 2. Also, assume that E is
contained in a ball of radius R, and the minimum edge
size in ¥ is r. Then

|B| < Cu(R/r)*
where Cy = (2(1 + €)/¢")??d? is a constant.

Proof. [Proof of Lemma 2] A simple observation is
that for any two segments (u, v) and (y, z) in F we must

! -1 have ,
> lleall++e) | uzall + > llyswisall + vl) < (1+e)Juv]. max([Jugl], [[v2]) > ——— -7
=1 i—1 2(1+¢)

Consider the path P = uz1y1x2ys2 - - - 2;y;v between u
and v. We call this path the replacement path for (u,v).
The edges z1y1, Zaya, ..., 21y, are present in S; (and
therefore present in S) but the other edges of the re-
placement path are missing from S;. A similar procedure
can be performed on the missing pairs recursively to find
and replace them with their corresponding replacement
paths. This recursive procedure yields a (1 4 &)-path for

because otherwise, assuming that ||uv| > ||yz||, for the
pair (u,v) and the sequence e; = (y, z), the left hand
side of the inequality in Invariant 2 would be at most

/

2(1+¢) - 72(11 5

o flyzll < (1+€)fuv]]

contradicting the fact that F is consistent with Invariant
2. Thus, given a covering of a ball of radius R with

36" Canadian Conference on Computational Geometry, 2024

M balls of radius v’ = 2(157_;_5) - r, every segment in F
has its endpoints in a unique pair of balls, otherwise
Invariant 2 will be compromised. Hence, |E| < M?. A
simple calculation yields a covering with M < (2(1 +

£)/")?dY?(R/r)¢ balls. O

We can simplify the two invariants by defining a dis-
tance function d; over the pairs of vertices,

Definition 1 Let S} be a complete weighted graph over
the vertices such that the weight of an edge e in S} is
defined as

ifeeS;

wiey— LIl
(L+e)lel ifed s

We define an extended path between u and v in S; as
a path between u and v in SF that only uses edges (y, z)
where size(y, z) < size(u,v). We also define the length
of an extended path as the sum of its edge weights in S} .
Finally, we define df(u,v) as the length of the shortest
extended path between u and v.

Using this new distance function we can rephrase the
two invariants as follows.

e Invariant 1. For every pair (u,v) ¢ S; with
index(u,v) = 4, we have d}(u,v) < (14 ¢)d(u,v).

o Invariant 2. For every pair (u,v) € S;, we have
df (u,v) > (1 +¢&)d(u,v).

It is worth noting that these forms are not exactly
equivalent to the previous forms, as we are only consid-
ering paths of lower level edges in the definition of d,
while a short path in the spanner could potentially con-
tain an edge of the same level. This provides a stronger
variation of Invariant 1, which still implies a 1+ ¢ stretch
for the spanner. However, this change weakens Invariant
2. But as we will see, a careful addition of the same-level
edges can prevent any possible violations of Invariant 2
that could be caused by this new form.

Maintaining the invariants. The quality of our
light-weight dynamic spanner depends on the two invari-
ants we introduced above, and an update like a point
insertion or removal could cause one of them to break,
if not both. Therefore, we establish a procedure that
addresses the inconsistencies and enforces the invariants
to hold at all times.

The procedure for fixing a violation of Invariant 1
is straightforward: as long as there exists a pair (u,v)
that violates Invariant 1 for its corresponding subset S,
add an appropriate potential pair to S; that connects
an ancestor of u to an ancestor of v in the hierarchy 7.
This resolves the inconsistency for (u,v) if the ancestors
are chosen properly, but it might cause other pairs to
violate Invariant 2 because of this edge addition. We will

prove that if certain criteria are met, there would be no
side effect on the same-level pairs and the addition can
only result in a constant amortized number of inflicted
updates on higher level pairs.

Fixing a violation of Invariant 2, on the other hand,
is more tricky. After we remove the violating edge (u,v)
from its subset S;, the effect on higher level pairs would
be similar to the previous case, but removing (v, v) might
cause multiple updates on the same level, which in turn
cascade to higher levels. We therefore analyze the re-
moval of (u, v) together with the subsequent additions of
same-level edges that aim to fix the incurred violations
of Invariant 1, and we prove that a constant amortized
bound on the number of inflicted updates on higher
level pairs would still hold. We get to the details of our
maintenance updates in section 4.3.

Amortized analysis. We analyze the effects of an
update (edge addition and removal) on higher level pairs
using a potential function, for each S; separately. We
define our potential function over the potential pairs in
S;. The change in the potential function shows how much
a pair is close to violating one of the invariants. The
higher the potential, the closer the pair is to violating the
invariants. This enables us to assign a certain amount
of credit to each update, that can be used to pay for the
potential change of the updated pair and the affected
pairs, which in turn results on an amortized upper bound
on the number of edge updates in the future. Therefore,
for a potential pair (u,v) with index 7 and following an
update in S;,

o if (u,v) € S; and d}(u,v) decreases, or
o if (u,v) ¢ S;, and d} (u,v) increases,

we increase the potential of the pair (u,v) to account
for its future violation of the invariants.

More specifically, we define the potential function
pi(u,v) of a potential pair (u,v) in S; as

d; (u,v)
(1+¢)—)

Cy - (dj((qm) -1+ 6’))

if (u,v) € S;
if (u,v) ¢ S; and
index(u,v) =1

pi(u,v) =

where Cy > 1 is a positive constant coefficient that we
specify later. This implies that if p;(u,v) < e —¢’, then
both invariants would hold for the pair (u,v) (in S;).
Based on this observation, we define a potential function
on S; in the following way,

o= Y

(u,v)€eP;US;

pi(u,v)

where P; is the set of potential pairs with index 7. We
simply define the potential of the whole spanner as

o=

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

We add another term to this potential function later
in section 4 to account for future edges between the
existing nodes.

n

* Pmax
d* = (I)“r B ‘Zl(Dma:L’ —degsl(”i))

We first prove some bounds on ® but we ultimately
use the adjusted potential function ®* to prove our
amortized bounds on the number of updates. In the
remainder of this paper, we specify our sparse and light-
weight construction in more details, and we will provide
our bounds on the recourse in each case separately.

3 Sparse spanner

In this section, we introduce our dynamic construction
for a sparse spanner with constant amortized recourse per
point insertion and O(log A) recourse per point deletion.
We build our spanner on top of a hierarchical clustering
that we design early in this section.

Krauthgamer and Lee [13] showed how to maintain
such hierarchical structures in O(log A) update time
by maintaining e-nets. However, this hierarchy is not
directly applicable to our case since a point can appear
log A times on its path to root, which would imply a
O(log A) bound on the degree of the spanner instead
of a constant bound. Cloe and Gottlieb [6] improved
the update time of this hierarchy to O(logn). Gottlieb
and Roditty [10] later introduced a new hierarchical
construction with the same update time for their fully-
dynamic spanner, which also satisfied an extra close-
containment property. Here, we introduce a simpler
hierarchy that suits our needs and does not require the
close-containment property. Our hierarchy performs con-
stant cluster updates for a point insertion and O(log A)
cluster updates for a point deletion.

Our hierarchy consists of a pair (7, R) where T is a
rooted tree of clusters and R > 0 is a constant. Every
cluster C € T is associated with a center ¢(C) € V and
a level [(C) € Z. The level of a cluster specifies its
radius; C covers a ball of radius R'©) around ¢(C). We
denote the parent of C in T by p(C). The root of T,
denoted by 7T .root, is the only cluster without a parent.
Furthermore, the level of a parent is one more than of
the child, i.e. I(p(C)) = 1+1(C), for all C € T except the
root. A parent must cover the centers of its children.

Besides these basic characteristics, we require our
hierarchy to satisfy the separation property at all times.
This property states that the clusters at the same level
are separated by a distance proportional to their radii,

Definition 2 (Separation property) For any pair
of same-level clusters C1,Co € T on level j,

d(C(Cl), C(CQ)) > Rj

Each point at the time of insertion creates a single
cluster centered at the inserted point, and during the
future insertions, might have multiple clusters with dif-
ferent radii centered at it. In fact, each point could have
clusters centered at it in at most O(log A) levels. At
the time of deletion, any cluster that is centered at the
deleted point will be removed.

Our clusters are of two types: explicit clusters and
implicit clusters. Explicit clusters are the ones we create
manually during our maintenance steps. Implicit clusters
are the lower level copies of the explicit clusters that
exist in the hierarchy even though we do not create them
manually. Therefore, if a cluster C = (p,1) is created
in the hierarchy at some point, we implicitly assume
clusters (p,i) for ¢ < [exist in the hierarchy after this
insertion, and they are included in their corresponding
T; as well. We maintain the separation property between
all clusters, including the implicit ones. We use these
implicit clusters for constructing our spanner.

3.1 Maintaining the hierarchy

We initially start from an empty tree 7 and a constant
R that we specify later.

Point insertion. Let 7; be the set of clusters
with level 4, i.e. Tgze(T.roor)y Only contains the root,
Tsize(T .root)—1 contains root’s children, etc. Upon the in-
sertion of a point p, we look for the lowest level (between
explicit clusters) 7 that p is covered in 7;. We insert
C = (p,i— 1) into the hierarchy. Since p is covered in T},
we can find a cluster C’ = (p, i) that covers p and assign
it as the parent of C (Algorithm 1).

In the case that p is not covered in any of the levels in
T, which we handle by replicating the root cluster from
above until it covers the new point, then the insertion
happens the same way as before.

Algorithm 1 Inserting a point to the hierarchy.

1: procedure INSERT-TO-HIERARCHY (T, R, p)
if |[T| =0 then
Add a root cluster C = (p,0) to T.
return C
Let ¢ be the lowest level in T.
while 7; does not cover p do
Increase 7 by 1.
if @ > size T.root then
Create a new cluster C = (T .root, size(T .root) + 1).
10: Make C the new root of the hierarchy.
11: The old root becomes a child of C.
12: Let C’ be a cluster in 7; that covers p.
13: Create a cluster C = (p, size(C’) — 1) and add it as a child
of C'.

b

© 0D

The basic characteristics of the hierarchy hold after
an insertion. We now show that the separation property
holds after the insertion of a new cluster C = (p,).
Assume, on the contrary, that there exists a cluster
C' = (g,1) that (C,C’) violates the separation property.

36" Canadian Conference on Computational Geometry, 2024

C is inserted on level [, thus p is not covered by 7;.

According to the assumption, d(q,p) < R!, meaning
that C’ covers p. This contradicts the fact that 7; does
not cover p since C’ € 7;. A similar argument shows that
the separation property holds for the implicit copies of
C as well.

Point deletion. Upon the deletion of a point p, we

remove all the clusters centered at p in the hierarchy.

The clusters centered at p create a chain in 7 that starts
from the lowest level explicit copy of p and ends at the
highest level copy. We remove this chain level by level,
starting from the lowest level cluster C = (p,1) that is
centered at p. Upon the removal of C, we loop over
children of C one by one, and we try to assign them to a
new parent. If we find a cluster on level [+ 1 that covers
them, then we assign them to that cluster, otherwise we
replicate them on one level higher and we continue the
process with the remaining children. After we are done
with (p,l), we repeat the same process with (p,l + 1),
until no copies of p exist in the hierarchy (Algorithm 2).

Algorithm 2 Deleting a point from the hierarchy.

1: procedure DELETE-FROM-HIERARCHY (T, R, p)

Let C = (p,1) be the lowest level (explicit) cluster centered
at p.
3 Delete C from 7 and mark its children.
4 while there exists a marked cluster on level [— 1 do
5: Let C" = (¢, — 1) be a marked cluster.
6.
7
8

!\?

Find a cluster C”” on level [that covers q.
if such cluster exists then
Assign C" as the parent of C’ and unmark C’.
9: else

10: Create C"" = (g,1) and make it the parent of C’.
11: Mark C” and unmark C’.

12: if there still exists a marked cluster in 7 then

13: Increase | by one and repeat the while loop above.

Again, the basic characteristics of the hierarchy hold
after a deletion. We need to show that the separation
property still holds. Immediately after removing the
cluster (p,l) the separation property obviously holds.
After re-assigning a marked child to another parent the
property still holds since no cluster has changed in terms
of their center or level. If a marked child is replicated on
level [+ 1, it means that there was no cluster covering it
on this level, otherwise it would have been assigned as
its new parent. Therefore, the separation property holds
after the replication on level [+ 1. We will prove more
properties of our hierarchy later on when we define the
spanner.

3.2 The initial spanner

Our initial spanner is a sparse spanner that is defined on
the hierarchy 7 and it has bounded cluster degree but
not bounded point degree. The reason that a bounded
degree on the clusters would not imply a bounded degree
on the point set is that every point could have multiple

clusters centered at it, each of which have a constant
number of edges connected to them. This would cause
the degree of the point to get as large as Q(log A). Later
we will fix this issue by assigning edges connected to
large degree points to other vertices.

The initial spanner consists of two types of edges.
The first type that we already mentioned before, is the
edges that go between clusters of the same level. These
edges guarantee a short path between the descendants
of the two clusters, similar to a spanner built on a well-
separated pair decomposition. And the second type is
the parent-child edges, that connect every node to its
children. The edge weight between two clusters is the
same as the distance between their centers.

We define the spanner formally as follows,

Definition 3 (Initial spanner) Let (T, R) be a hier-
archy that satisfies the separation property. We define
our sparse spanner Sy to be the graph on the nodes of T
that contains the following edges,

o Type I. Any pair of centers p and q whose clusters
are located on the same level and d(p,q) < X- R! are
connected together. Here, \ is a fized constant.

o Type II. Any cluster center in T is connected to the
centers of its children in T .

Note that the implicit clusters are also included in
this definition. Meaning that if two implicit same-level
clusters are close to each other then there would be an
edge of type I between them. We show that the spanner
Sp has a bounded stretch.

Lemma 3 (Stretch-factor) For large enough A\ =
O(e7Y) the stretch-factor of Sy would be bounded from
above by 1 + €.

Proof. Let p and ¢ be two points in the point set, and
also let C = (p,1) and C’ = (g,l') be the highest level
clusters in 7 that are centered at p and g, respectively.
By symmetry, assume [> . If d(p,q) < \- R, then
there is an edge between the (possibly implicit) cluster
(p,') and C’. This edge connects p and ¢ together,
therefore the stretch would be equal to 1 for this pair.
If d(p,q) > X~ RY, we perform an iterative search for
such shortcut edge. Start with C = (p,!’) and C’ = (gq,1)
and every time that the inequality d(p,q) < A- R is not
satisfied set C and C’ to their parents and set I’ =1 + 1
and check for the inequality again. We show that the
inequality eventually will be satisfied. Let p; and g;
be the centers of C and C’ on the i-th iteration of this
iterative process (i = 1,2,...), and let I’ have its initial
value before any increments. We have d(p;41,p;) < RV
and d(gi11,¢;) < R By the triangle inequality,

Ad(Pit1, qir1) < d(pir1, pi)+d(pi, i) +d(gis1, i) < 2R H4d(ps, ¢;)

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Denote the ratio d(p;, ¢;)/R' TP~ by x;. We have,
;
Tip1 <2+ 7

Therefore, x; is roughly being divided by R on every
iteration and it stops when x; < A. We can easily see
that the loop terminates and the value of x; after the
termination would be greater than A/R. This particu-
larly shows that the edge between C and C’ is a long
shortcut edge when A is chosen large enough, since its
length is more than A/R times the radius of the centers
it is connecting.

Now we show that this shortcut edge would be good
enough to provide the 1 + € stretch factor for the initial
points, p and ¢. Note that because of the parent-child
edges, p can find a path to ¢ by traversing p;s in the
proper order and using edge between p; and ¢; and
traversing back to q. We show that the portion of the
path from p to p; (and similarly from ¢ to ¢;) is at most
RlP:l_ L We prove it only for p, the argument for ¢ is
similar. Note that if the termination level I’ +7 < [then
p; = p and this path length from p to p; would be 0,
confirming our claim for p. Therefore, we assume the
termination level is above the level of p. The length of
the path from p to p; that only uses type II edges would
be at most

Rl +i4+1 1

RlJrl . Rl,Jri <
+ + 1

Thus the length of the path from p to ¢ would be at

most
Rl/+i+1 1

R-1
On the other hand, by the triangle inequality,

2 + d(pi, i)

Rl’+i+1 -1
(p.q) = d(pi, a:) 71
Finally, the stretch-factor of this path would be at most

Vil
2 Bt + d(pi, @:)

d(ph%') -2 %

A simple calculation yields that this fraction is less than
1+ewhen A\=2(2+¢)e !R=0("1). O

Next, we show that the degree of every cluster in Sy
is bounded by a constant. Note that this does not imply
a bounded degree on every point, since a point could be
the center of many clusters.

Lemma 4 (Degree bound) The degree of every clus-
ter in Sy is bounded by O(e~9).

Proof. We first prove that the type I degree of every
cluster C = (p, 1) is bounded by a constant. Let C’ = (g, 1)

be a cluster that has a type I edge to C. This means that
d(p,q) < X-R'. By the separation property, d(p,q) > R'.
Thus, by the packing lemma there are at most

AP = 0(e™7)

type I edges connected to C. The last bound comes from
the fact that a choice of A = O(¢~!) would be enough
to have a bounded stretch.

Now we only need to show that the parent-child edges
also add at most a constant degree to every cluster, which
is again achieved by the packing lemma. Because the
children of this cluster are located in a ball of radius R!
around its center, p, and they are also pair-wise separated
by a distance of at least R'~!, we can conclude that the
number of children of C would be upper bounded by
d¥?RY = O(1). O

Representative assignment. So far we showed how
to build a spanner that has a bounded degree on each
cluster and the desired stretch-factor of 1 4 ¢. But this
spanner does not have a degree bound on the actual point
set and that is a property we are looking for. Here, we
show how to reduce the load on high degree points and
distribute the edges more evenly so that the bounded
degree property holds for the point set as well.

The basic idea is that for every cluster C in the hier-
archy, we pick one of lower level clusters, say C’, to be
its representative and play its role in the final spanner,
meaning that all the spanner edges connecting C to other
clusters will now connect C’ to those clusters after the
re-assignment. This re-assignment will be done for every
cluster in the hierarchy until every cluster has a repre-
sentative. Only then we can be certain that the spanner
has a bounded degree on the current point set. Since
by Lemma 4 the degree of every center is bounded by
a constant, we only need to make sure that every point
is representing at most a constant number of clusters in
the hierarchy.

First, we define the level of a point p, denoted by
size(p) to be the level of the highest level cluster that
has p as its center, i.e. size(p) = max, el

Definition 4 (Representative assignment) Let T
be a hierarchy. We define the representative assignment
of T to be a function L that maps every cluster C = (p,1)
of T to a point q in the point set such that | > size(q)
and d(p,q) < R'. We say L has bounded repetition b if
|£71(q)| < b for every point q.

Connecting the edges between the representatives in-
stead of the actual centers would give us our bounded-
degree spanner.

Definition 5 (Bounded-degree spanner) Define
the spanner Sy to be the spanner connecting the pair
(L(C), L(C")) for every edge (C,C") € Sp.

36" Canadian Conference on Computational Geometry, 2024

Now we show that this re-assignment of the edges
would not affect the stretch-factor and the degree bound
significantly if the clusters are small enough, or equiva-
lently, A is chosen large enough.

Lemma 5 (Stretch-factor) For large enough A =
O(e71) and any representative assignment L the stretch-
factor of S1 would be bounded from above by 1+ €.

Proof. The proof works in a similar way to the proof
of Lemma 3. A shortcut edge would still provide a good
path between two clusters even after its end points are
replaced by their representatives. The path from a p to
p; will be doubled at most since a representative could be
as far as a child from the center of a cluster. Therefore,
the stretch-factor of the path between p and ¢ will be

Rll+i+17

4. Tll + d(piv Qi)

d(pi, ;) — 4+ T

Again, this fraction is less than 1 + ¢ when A = 4(2 +
g)eTIR=0(e). O

To construct a bounded-repetition representative as-
signment we pay attention to the neighbors of lower
level copies of a cluster. Let C = (p,1) be a cluster that
we want to find a representative for. As we mentioned
before, (p,l’) exists in the hierarchy for all I’ < {. If I
is small enough, i.e. I’ <1 —logg A, then the neighbors
of (p, ") will be located within a distance X - R' = R of
p, making them good candidates to be a representative
of C. Therefore, having more neighbors on lower levels
means having more (potential) representatives on higher
levels. This is how we assign the representatives.

We define a chain to be a sequence of clusters with the
same center that form a path in 7. We divide a chain
into blocks of length logy A. The best way to do this so
that maintaining it dynamically is easy is to index the
clusters in a chain according to their levels and gather
the same indices in the same block. We define the block
index of a cluster in a chain to be |I/logg A], where [
is the level of the cluster. The clusters in a chain that
have the same index form a block.

The first observation is that if we are given two non-
consecutive blocks in the same chain, we can use the
neighbors of the lower level block as representatives
of the higher level block. This is the key idea to our
representative assignment, which we call next block as-
signment. In this assignment, we aim to represent higher
level points with lower level points. Let p be a point
and Py, Ps, ..., Py be all the blocks of the chain that is
centered at p in T, ordered from top to bottom (higher
level blocks to lower level blocks). We say a block is
empty if the clusters in the block have no neighbors in
T. We say the block is non-empty otherwise. We make
a linked list Ly of all the even indexed non-empty blocks,

and a separate linked list £; for all the odd indexed
non-empty blocks. For every element of £y we pick an
arbitrary neighbor cluster of its block in £y (because
the blocks are non-empty such neighbors exists), and
we assign that neighbor to be the representative of the
clusters in that element. More specifically, let B; be a
block in Ly, and let B;;1 be the next block in L. Let C
be an arbitrary cluster in B;; that has a neighbor. This
cluster exists, since B,y is a non-empty block. Let g be
the center of a neighbor of C. We assign L(C’) = ¢ for all
C' € B;. The same approach works for £;. This assigns
a representative to every block in the chain, except the
last block in £y and £,. We assign p itself to be the
representative of the clusters in these blocks.

Now we show that this assignment has bounded repe-
tition. First, we show that our assignment only assigns
lower level points to be representatives of higher level
points.

Lemma 6 Let p and q be two points in the point set
and let size(p) > size(q) . In the next block assignment
q would never be represented by p.

Proof. Assume, on the contrary, that g is represented
by p. Therefore, there exists two same-parity cluster
blocks in the chain centered at ¢ that a cluster centered
at p is connected to the lower block. Let C = (p,)
and C' = (g,1') be the highest clusters centered at p
and ¢, respectively. Since the connection between p and
q is happening somewhere on the third block or lower
on the chain centered at ¢, we can say that d(p,q) <
A- RI'-losr X — R This means that the separation
property does not hold for the lower level copy of C,
(p,l'), and C’, which is a contradiction. O

Now that we proved that points can only represent
higher level points in our assignment, we can show the
bounded repetition property.

Lemma 7 (Bounded repetition) The next block as-
signment L described above has bounded repetition.

Proof. We show that every point represents at most
a constant number of clusters. First, note that the
two bottom clusters of the two block linked lists have a
constant number of clusters in them (to be exact, 2logz A
clusters maximum). So we just need to show that the
number of other clusters that are from other chains and
assigned to the point are bounded by a constant. Let p
be an arbitrary point and let C = (p,l) be the highest
level cluster centered at p. According to the previous
lemma, any point ¢ that has a cluster C’ = (g,!’) that
L(C") = p must have a higher level than p. Therefore,
there exists a lower level copy of ¢ on level [. Also, the
distance between p and ¢ is bounded by \- R! since p and
q are connected on a level no higher than [(remember
that we only represent our clusters with their lower level

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

neighbors). Now we can use the packing lemma, since
all such points ¢ have a cluster centered at them on level
! and therefore separated by a distance of R'. By the
packing lemma, the number of such clusters would be
bounded by d%2\? such points. So the repetition is at
most b = d¥/2\% + 2. O

Corollary 8 The spanner 81 has bounded degree.

3.3 Maintaining the spanner

So far we showed S; has bounded stretch and bounded
degree. Here we show that we can maintain Sy with O(1)
amortized number of updates after a point insertion and
O(log A) amortized number of updates after a point
deletion. We know how to maintain the hierarchy from
earlier in this section. Therefore, we just explain how
to update the spanner, which includes maintaining our
representative assignments dynamically.

Point insertion. We prove the amortized bound by
assigning credits to each node, and using the credit in
the future in the case of an expensive operation. Let
Dy be the degree bound we proved for &;. When
a new point is added to the spanner, we assign D4z
credits to it.

We analyze the edge addition and removals that hap-
pen after the insertion of a point p in the spanner. Note
that although only one explicit cluster is added to T after
the insertion, there might be many new edges between
the implicit (lower level) copies of the new cluster and
other clusters that existed in 7 beforehand. We need to
show that these new edges do not cause a lot of changes
on the spanner after the representative assignment phase.

First, we analyze the effect of addition of p on points ¢
that size(p) > size(q). Similar to the proof of Lemma 6,
we can show that any edges between the chain centered at
p and the chain centered at ¢ will be connected to the top
two cluster blocks of the chain centered at g. This means
that these edges will have no effect on the assignment
of other clusters in the chain centered at ¢, because
each non-empty block is represented by some neighbor
of the next non-empty same-parity block, and the first
two blocks, whether they are empty or not, will not
have any effect on the rest of the assignment. Therefore,
no changes will occur on the representatives of ¢ and
therefore the edges that connect these representatives
together will remain unchanged.

The addition of p as we mentioned, would cause the
addition of some edges in the spanner &1, that we pay
for using the constant amount of credit stored on the
endpoints of those edges. Therefore, we are not spending
more than constant amount of amortized update for this
case.

Second, we analyze the effect of addition of p on points
q that size(p) < sizeq. The outcome is different in this
case. Similar to the previous case we can argue that

any edge between the chain centered at p and the chain
centered at ¢ must be connected to the top two blocks
of the chain centered at p, but they could be connected
to anywhere relative to the highest cluster centered at gq.
This means that they could add a non-empty block in the
middle of the chain centered at ¢. If this happens, then
the assignment of the previous non-empty same-parity
block changes and also the new non-empty block will
have its own assignment. This translates into a constant
number of changes (edge additions and removals) on the
spanner &1 per such point g. We earlier in Lemma 7
proved that there is at most a constant number of such
clusters. This shows that there would be at most a
constant number of changes on the spanner §; from
higher level points.

Finally, we can conclude that overall the amortized
recourse for insertion is bounded by a constant, since
in the first case we could pay for the changes using the
existing credits, and in the second case we could pay for
the changes from our pocket.

Point deletion. After a point deletion, all the clus-
ters centered at that point will be removed from the
hierarchy, and a set of replication to higher levels would
happen to some clusters to fix the hierarchy after the
removal. It is easy to see that the number of cluster
changes (including removal and replication) would be
bounded by a constant. Each cluster change would also
cause a constant number of changes on the edges of the
spanner Sy. Note that a cluster removal can introduce
an empty block to at most a constant number of higher
level points and a cluster replication can also introduce
an empty block to at most a constant number of higher
level points. Therefore, the changes on the representa-
tive assignments would be bounded by a constant after
a single cluster update. Since we have at most O(log A)
levels in the hierarchy, each of which having at most a
constant number of cluster updates, overall we would
have at most O(log A) number of edge changes on S;.
After the removal, we assign full D,,,, credit to any
node that is impacted by the removal. This would make
sure we have enough credits for the future additions.

4 Light spanner

In section 3 we discuss how we maintain our hierarchical
clustering and how we construct and maintain a sparse
spanner on top of this hierarchy so that each point
insertion makes at most O(1) changes on the spanner
and each point deletion makes at most O(log A) changes
on the spanner.

In this section, we introduce our techniques for main-
taining a light spanner that has a constant lightness
bound on top of all the properties we had so far. In
our main result in this section we show that maintain-
ing the lightness in our case is not particularly harder

36" Canadian Conference on Computational Geometry, 2024

than maintaining the sparsity, meaning that it would
not require asymptotically more changes than a sparse
spanner would.

We first analyze the effect of point insertion or deletion
on the potential functions we defined earlier in section 2.
Then we introduce our maintenance updates and we
show our bounds on the recourse of a light spanner.

4.1 Bounding the potential function

In this section we analyze the behavior of our potential
functions, after a point insertion and a point deletion.
These bounds will later help us prove the amortized
bounds on the recourse. We refer to section 2 for the
definition of the potential function.

Single edge update. We start with a simple case
of bounding the potential function after a single edge
insertion, then we consider a single edge deletion, and
finally we extend our results to point insertions and
deletions. We assume the pair that we insert to or delete
from the spanner is an arbitrary pair from the set of
potential pairs, because we only deal with potential pairs
in our light spanner.

First, we consider a single edge insertion. We divide
the analysis into two parts: the effect of the insertion
of the potential pair onto the same level potential pairs,
and the effect of the insertion onto higher level potential
pairs. Recall that the level of a pair was defined in
section 2. We show that the edges of the same level
satisfy a separation property, meaning that two edges in
the same bucket cannot have both their endpoints close
to each other.

Lemma 9 (Edge separation) Let (u,w) and (y, z) be
two potential pairs in the same bucket. Assuming that
(u,w) and (y,z) are not representing clusters from the
same pair of chains in T,

max{d(,), d(w,2)} > 15— max{d(u, w), d(y, =)}

22
Proof. [Proof of Lemma 9] Note that the constraint on
not connecting the same pair of chains in the lemma is
necessary, because in our sparse spanner construction, it
is possible that two points are connected on two different
levels on two different pairs of clusters. These two edges
could potentially go into different non-empty blocks
and get assigned different representatives and cause two
parallel edges between two neighborhoods. While this is
fine with sparsity purposes as long as there is at most a
constant number of such parallel edges, we do not want
to have them in our light spanner since they will make
the analysis harder. Therefore, we assume that the edges
are not connecting clusters centered at the same pair of
points.

Next we show that these two pairs are from two cluster
levels that are not far from each other. Let (u,w) be

an edge on level [of the hierarchy and (y, z) be an edge
on level I’ of the hierarchy. Without loss of generality,
assume that [> I’. We know that the potential pairs
connect same level clusters together. Therefore, the
length of (u,w) could vary between R! and X\ - R!. A
similar inequality holds for (y, z). Thus the ratio of the
length of the two would be at least A"*R!=!". Also, if C
is chosen large enough it is clear that the two edges must
have the same index as well, otherwise the length ratio
of C' between the two edges would make their endpoints
very far from each other. Thus, the edges belong to the
same bucket and index, meaning that the length of their
ratio is at most c¢. So,

ARV < ¢

Now, the separation property on level I’ between the
clusters that these two edges are connecting to each
other states that

l

max{d(u,y),d(w,z)} > R > %

Also according to earlier in this proof, R! > d(u,w)/\.
Thus,

d(u,w) 1
max{d(u, y)ad(waz)} > A2 ¢ = A2 - ¢

O

Now using this lemma we show that the insertion of a
potential pair will not cause any violations of Invariant
2 on the same level.

Lemma 10 Let (u,w) be a potential pair that is inserted
to S; where i = index(u, w). If df (u,w) > (14+¢&’)d(u, w),
then the insertion of (u,w) results in no violations of
Invariant 2 on same or lower level edges, assuming that
1422 >1+¢€.

Proof. [Proof of Lemma 10] It is clear that (u,w) cannot
participate in a shortest-path (in S}) for any of the lower
level pairs, so adding it does not affect any of those pairs.
Also adding (u,w) would not violate Invariant 2 for
the pair itself because of the assumption df(u,w) >
(14 €")d(u,w). Thus we only need to analyze the other
same level edges.

So let (y, z) be a same-level edge in S;. If one of (u,w)
or (y, z) use the other one in its shortest extended path
(in S¥), then by Lemma 9, the length of the path would
be at least

min{d(u, w), d(y, z)} + max{d(u,y),d(w, z)}

> min{d(u,), dy, 2)} + 15— max{d(u, w), d(y, 2)}

10

max{d(u,w),d(y, z)}

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

We also know, from the assumption, that (u,w) and (y, 2)
are same-level edges in S;, so ¢! < d(u,w)/d(y,2) < c.
Therefore, the stretch of the path would be at least

min{d(u, w), d(y, z)} + max{d(u,y),d(w, z)}
max{d(u,w),d(y, z)}
Sc 142 >1+€

Thus the stretch of the path is more than 1+ ¢’, which
shows that this addition would not violate Invariant 2
for any of the two pairs, even though the paths of same
level edges are excluded in df (u, w). O

Note that satisfying the condition in Lemma 10 is easy.
We first choose large enough A to have a fine hierarchy,
then we choose ¢ small enough that ¢ < 1+ A72, then
we choose &’ = ¢71(1+ A72) — 1. Now we show that the
potential change on higher level potential pairs would
be bounded by a constant after the insertion of (u,w).

Lemma 11 Let (u,w) be a potential pair that is inserted
to S; where i = index(u,w). The insertion of (u,w)
results in at most
Cs
ck—1

potential increase on higher level potential pairs in S;,
where

Cs = e(1 + e)det+icy

is a constant (and k is the number of buckets).

Proof. [Proof of Lemma 11] Let (y,z) be an edge of
level j/ > j in S; whose d is decreased by the addition
of (u,w). Thus the shortest extended path between y
and z in S} passes through (u,w). Denote this path
by P’(y, z). Before the addition of (u,w), the length of
the same path in S} was at most || P} (y, z)|| + ed(u, w).
Hence, Ad}(y, z) > —ed(u,w), and the potential change
of this edge would be

—Ad; (y, 2)
d(y, z)

ed(u,w
d(y, 2)

Api(y, z) =) < eckG—3)+1

In the next step, we bound the number of such (y, 2)
pairs. Let r be the minimum length of such edge in level
j'. Both y and z must be within (1 + €)cr Euclidean
distance of u (and w), otherwise the edge (u,w) would
be useless in (y, z)’s shortest path in S;. Thus, all such
pairs are located in a ball B(u, (1 +¢)ecr), and according
to Lemma 2, there would be at most

Cy = (1+¢)4cy

number of them.
Thus, the overall potential change on level 5/ would
be upper bounded by Coec®7=7)+1 Summing this up

11

over j' > j, the overall potential change on higher level
pairs would be at most

G

AD; < Y eCyc"i=I0F = "

J'>J

where C3 = eCse. O

Now we analyze the removal of a potential pair from a
bucket. The difference with the removal is that it could
cause violations of Invariant 1 on its level. Therefore,
we analyze a removal, together with some subsequent
edge insertions that fix any violations of Invariant 1 on
the same level.

Definition 6 (Edge removal process) Let (u,w) be
a potential pair that is located in S; where i =
index(u,w). We define the single edge removal pro-
cess on (u,w) to be the process that deletes (u,w) from
S; and fizes the subsequent violations of Invariant 1 on
the same level by greedily picking a violating pair, and
connecting its endpoints in S;, until no violating pair for
Invariant 1 is left.

We analyze the effect of the edge removal process in
the following two lemmas,

Lemma 12 Let (u,w) be a potential pair that does not
violate Invariant 1 (df(u,w) < (1 + ¢)d(u,w)) and is
deleted from S; (i = index(u,w)), using the edge removal
process. The deletion of (u,w) together with these sub-
sequent insertions results in no violations of Invariant 1
or Invariant 2 on same or lower level edges, assuming
that c 1 (1+A"2) > 1+¢.

Proof. [Proof of Lemma 12] It is clear that (u, w) cannot
participate in a shortest-path (in S}) for any of the
lower level pairs, so deleting it does not affect any of
those pairs. Also, every same level pair that violates
Invariant 1 is fixed after the insertion of subsequent edges.
Therefore, we just need to show there are no violations
of Invariant 2 after these changes. This is also clear by
Lemma 10, because we are only inserting edges (y, z) that
that violate Invariant 1, i.e. df(y,z) > (14 ¢€)d(y,z) >
(14+€")d(y, z), meaning that the assumption of the lemma
holds in this insertion. O

We show a similar bound as edge insertion on the
effect of the edge removal process on higher level pairs.

Lemma 13 Let (u,w) be a potential pair that is deleted
from to S; where i = index(u,w). The edge removal
process on (u,w) results in at most

Cs
ck—1
potential increase on higher level potential pairs in S;,

for some constant Cs that depends on €, €', and c. is a
constant.

36" Canadian Conference on Computational Geometry, 2024

Proof. [Proof of Lemma 13] The edge removal process
can be divided into two phases. The deletion of (u,w),
and the insertion of the subsequent pairs. First, we
show that the potential increase after the edge deletion
is bounded. Let (y, z) be an edge of level j' > j in S;
whose df is increase by the deletion of (u,w). Thus the
shortest extended path between y and z in S} passes
through (u,w). Denote this path by P/ (y,z). After the
removal of (u,w), the length of the same path in S} is at
most || P (y, 2)||+ed(u, w). Hence, Ad}(y, z) < ed(u, w),
and the potential change of this edge would be

Adi(y,2) _ ed(u,w)
d(y, z) d(y,z) —

Again, the number of such (y, z) pairs is bounded by

k(j—5")+1

Api(y,z) =

Cy = (14 ¢)4ctCy

according to Lemma 2. Thus, the overall poten-
tial change on level j° would be upper bounded by
Checki=i"+1, Summing this up over 5/ > j, the overall
potential change on higher level pairs would be at most

Cs

AD; < Y eCyc" it = .

J'>J

where C5 = eCye.

Now, the number of subsequent edge insertions would
also bounded by a constant. Because in order for an
inserted pair (y, z) to violate Invariant 1 after the dele-
tion of (u,w), v and w must be within a distance
c(14¢)d(u, w), otherwise the edge (u, w) would be useless
in their shortest-path. Also since they satisfy Invariant
2, we conclude from Lemma 2 that the number of such
pairs is bounded by a constant. Denote this bound by
Cy. Then the potential on higher level pairs from the
insertions of Cy4 pairs on the same level would be at most
0304/(Ck - 1)

Overall, the potential increase on higher level pairs
from the edge removal process will be Cs/(c* — 1) where
Cs :Cg(C4+1). [l

Adjusted potential function. We have one last
step before analyzing the potential function after a point
insertion and a point deletion. We need to slightly
adjust the potential function to take into account future
edges that might be added between the existing points
because of a new point. As we see in section 3, a new
point can have a large degree in Sy due to its implicit
clusters in multiple levels of the hierarchy. We handled
this by assigning these edges to nearby representatives
and we proved a constant degree bound on &;. But
this still would mean adding a point could increase the
potential function by Q(log A) since logarithmic number
of edges could be added to the sparse spanner. We
fix this issue in our potential function by taking into

account all the future edges that can be incident to a
point. Our adjusted potential function on the whole
spanner, denoted by ®*, has an extra term compared to
the previous potential function @,

n

) Z(Dmaw — degg, (vi))

i=1

* Pmax
P =9
* 2

degs, (v;) is the degree of the i-th point (in any fixed
order, e.g. insertion order) in the sparse bounded degree
spanner Sp, and

Pmaz = max{l +¢,Cy(c —€')}

is the maximum potential value a potential pair can have
in its own bucket given the fact that it does not violate
Invariant 1. Note that the first term is the maximum
of the potential of any pair if its edge is present in the
bucket and the second term is the maximum potential
of the pair if its edge is absent from the bucket and it
is not violating Invariant 1. We will later see why the
assumption that Invariant 1 holds for such pairs is fine.
But this extra term in the potential function will be
used to cover the potential p; of the extra potential pairs
added by the new point.

4.2 Maintaining the light spanner

We are finally ready to introduce our techniques for
maintaining a light spanner under a dynamic point set.
For point insertion, we select a subset of edges added
in the sparse spanner to be present in the light spanner.
We show that the potential increase on ®* after inserting
the new point would be bounded by a constant. Then
we perform the same analysis for point deletion and we
show that the potential increase is bounded by O(log A).
In the last part of this section we introduce our meth-
ods for iteratively improving the weight of the spanner
by showing an algorithm that decreases the potential
function by a constant value in each iteration. This
concludes our results on the recourse for point insertion
and point deletion.

Point insertion. Following a point insertion for a
point p, we insert p into the hierarchy and we update
our sparse spanner S;. There are at most a constant
number of pairs whose representative assignment has
changed, we update these pairs in the light spanner as
well. Meaning that if they were present in the light span-
ner, we keep them present but with the new endpoints,
and if they were absent, we keep them absent. Besides
the re-assignments, there could be some (even more than
a constant) edge insertions into the sparse spanner, but
the degree bound of D,,,, would still hold on every
point. We greedily pick one new edge at a time that its
endpoints violate Invariant 1 in the light spanner, and
we add that edge to the light spanner. (Algorithm 3)

12

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Algorithm 3 Inserting a point to the light spanner.

Algorithm 4 Deleting a point from the light spanner.

1: procedure INSERT-TO-LIGHT-SPANNER(D)
2: Insert p into the hierarchy 7.

3: Make the required changes on the sparse bounded degree
spanner Sj.

4: for any pair (u,w) with updated representative assignment
do

5: Update the endpoints of the edge in the light spanner.

6: for any edge (u,w) added to the sparse spanner do

7 if Invariant 1 is violated for this pair on the light
spanner then

8: Add (u,w) to the light spanner (to its own bucket).

We now analyze the change in the potential function
after performing this function following a point insertion.

Lemma 14 INSERT-TO-LIGHT-SPANNER adds at most
a constant amount to ®*.

Proof. [Proof of Lemma 14] Note that at most a con-
stant number of edges will go through a representative
assignment change. Each representative change can be
divided into removing the old pair and adding the new
one. Each removal will increase the potential of at most
a constant number of pairs on any same or higher level
pairs. This would sum up to a constant amount as we
saw earlier in Lemma 12 and Lemma 13. Also, insert-
ing the updated pairs would also sum up to a constant
amount of increase in the potential function as we saw
in Lemma 10 and Lemma 11.

For the edge insertions however, we will get help from
the extra term in our potential function. Note that any
extra edge that is added between any two points that
existed before the new point will increase both of their
degrees by 1 and therefore, decrease the term

n

Pmax - Z(Dmaz - deg81 (vi))

i=1

by Pmaz- On the other hand, the new pair will either
be added to the light spanner or will satisfy Invariant 1
if not added. Thus, its potential will be at most 1+ ¢
in the first case, and at most Cy(e —€’) in the second
case. In any case, the potential of the new pair is not
more than p,,q., and hence ®* will not increase due to
the addition of the new pair.

Lastly, the new point will introduce a new term
Pmaz * (Dmae — deggs, (Vp41)) in ®* which would also
be bounded by a constant. Overall, the increase in ®*
will be bounded by a constant. O

Point deletion. Following a point deletion, we per-
form the deletion on the hierarchy and update the sparse
spanner accordingly. This would cause at most O(log A)
potential pairs to be deleted from or inserted into the
spanner. The procedure on the light spanner is simple
in this case. We add all the inserted pairs to the light

13

1: procedure DELETE-FROM-LIGHT-SPANNER(p)
2: Delete p from the hierarchy 7.
3: Make the required changes on the sparse bounded degree
spanner Sj.
for any pair (u,w) removed from the sparse spanner do
Remove (u,w) from the light spanner if present.

for any pair (u,w) added to the sparse spanner do
Add (u,w) to the light spanner.
for any pair (u,w) with updated representative assignment
do
9: Update (u,w) in the light spanner as well.

spanner, and we remove the removed pairs from the light
spanner if they are present.

Lemma 15 DELETE-FROM-LIGHT-SPANNER adds at
most O(log A) to ©*.

Proof. [Proof of Lemma 15] The number of edges up-
dated on every level of hierarchy after a point removal is
bounded by a constant. Therefore, the total number of
changes would be bounded by O(log A). Each change
would cause ®* to increase by at most p;,q.. Thus, the
total increase is bounded by O(log A). O

4.3 Maintenance updates

Our maintenance approach is simple, as long as there
exists a potential pair on any .5; that violates either of the
two invariants, we perform the corresponding procedure
to enforce that invariant for that pair. The fact that
the potential function decreases by a constant amount
after each fix is the key to our amortized analysis on the
number of maintenance updates to reach a spanner with
bounded degree and bounded lightness.

Fixing a violation of Invariant 1. In our first
lemma in this section, we show that fixing a violation of
Invariant 1 in the way that we mentioned above, would
decrease the value of the potential function on each S;.

Lemma 16 Let (v,w) be a potential pair with
index(v,w) = 4 that violates Invariant 1, i.e.
di(v,w)/d(v,w) > 14 €. Also, assume that

k> log, (HW)

Then adding the edge (v,w) to S; decreases the overall
potential ®; of S; by at least (¢ — &’).

Proof. [Proof of Lemma 16] Note that adding (v, w)
would have no effect on the potential of the lower level
or same level potential pairs, due to the definition of d}.
We know from Lemma 11 that adding (v, w) to S; would
increase the potential on higher level pairs by at most

36" Canadian Conference on Computational Geometry, 2024

Cs/(ck —1). Also, the potential of the pair itself before
the addition is

plow) = o (G~ 1+2)

On the other hand, after the addition,

d; (v, w)

pi(v,w)=(1+¢)— (. w0)

Therefore,

Api(v,w) = (e =€) + (Cy +1) (1 e d(”w)>

d(v,w)

We know by the assumption that the stretch of the
shortest extended path between v and w would be more
than 1+e¢, since (v, w) is violating Invariant 1. Therefore,

df (v, w)

1 I
te d(v,w)

< —(e—¢€)

Thus,
Api(v,w) < (e —¢€') = (Cp +1)(e — &) = =Cy(e — &)

According to this and what we mentioned earlier in the
proof,

Cs
ck—1

AD; < —Cyle =€)+

and if

k > log, <1+ (C’¢—1C)3(5—6’))

then A®; < —(e —¢’), which is a negative constant. [

Fixing a violation of Invariant 2. Next, we con-
sider the second type of maintenance updates, which
is to fix the violations of Invariant 2. Whenever a pair
(v,w) that violates Invariant 2 is found, the first step
is to remove the corresponding edge from its subset .5;.
Afterwards, we address the same-level violations of In-
variant 1 by greedily adding a pair that violates Invariant
1, until none is left. This is the same as performing the
edge removal process on the violating pair.

Lemma 17 Let (v,w) € S; be an edge that violates
Invariant 2, i.e. df(v,w)/d(v,w) <1+¢'. Also assume

that o0
k > log, (1 + 5/)
E—¢€

Then performing the edge removal process on (v,w) de-
creases the overall potential ®; of S; by at least (¢ — &’).

Proof. [Proof of Lemma 17] Since all the additions and
removals in the edge removal process are happening on
the same level and also due to the definition of dj, there
would be no potential change on any of the same or

lower level pairs. We know from Lemma 13 that deleting
(v,w) from S; would increase the potential on higher
level pairs by at most Cs/(c¥ — 1). The potential of the
pair itself before the deletion is

_ d; (v, w)
pl(”U7U/) = (1 +€) — W
After the deletion,
_ d?(v’w) /
pi(v,w) =Cy - (d(o.) —(1+e¢))

Therefore,

Api(v,w) = =(e =€) = (Cp + 1) (1 te - ch))

d(v,w)

We know by the assumption that the stretch of the short-
est extended path between v and w would be less than
1+ &', since (v, w) is violating Invariant 2. Therefore,

d*
1+¢ — di (v, w) >0
d(v, w)
Thus,
Ap;(v,w) < (e — &)
According to this and what we mentioned earlier in the

proof,
Cs

ck—1

2
k > log, <1+ 05,)
E—¢€

then A®; < —(e—¢’)/2, which is a negative constant. [

A(I),L' < —(5 — 6/) +

and if

Bounding the number of updates. Now that we
introduced our maintenance updates and we analyzed
the change in the potential functions after each of these
updates, we can finally prove our amortized bounds. We
prove that the amortized number of edge updates in
our algorithm after a point insertion is O(1), while the
amortized number of edge updates after a point deletion
is O(log A).

Theorem 18 Our fully-dynamic spanner construction
in d-dimensional Fuclidean spaces has a stretch-factor
of 1 + ¢ and a lightness that is bounded by a constant.
Furthermore, this construction performs an amortized
O(1) edge updates following a point insertion, and an
amortized O(log A) edge updates following a point dele-
tion.

Proof. [Proof of Theorem 18] The stretch factor and
the lightness immediately follow from the fact that our
spanner always satisfies the two invariants, and according
to Lemma 1 and the leapfrog property, that would be
enough for a 1 + ¢ stretch factor and constant lightness.

14

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

In order to prove the amortized bounds on the num-
ber of edge updates after each operation, we recall
that by Lemma 14, the potential change A®* after
a point insertion is bounded by a constant, and by
Lemma 15, the potential change after a point dele-
tion is bounded by O(logA). On the other hand, by
Lemma 16 and Lemma 17, each maintenance update
reduces the potential ®* by at least (¢ — £’)/2, since
the impacted ®; reduces after the maintenance update,
®; for j # ¢ will remain unchanged, and the extra
term 2zez . 37 (Dypap — degg, (v;)) will also remain
unchanged since the sparse spanner is not affected by the
maintenance updates. Therefore, the amortized num-
ber of maintenance updates required after each point
insertion is O(1) while this number after a point dele-
tion is O(log A). Also, the number of edge updates be-
fore the maintenance updates would be bounded by the
same amortized bounds. Thus, we can finally conclude
that the amortized number of edge updates following a
point insertion is O(1), while for a point deletion it is
O(log A). O

References

[1] I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares.
On sparse spanners of weighted graphs. Discrete &
Computational Geometry, 9(1):81-100, 1993.

S. Arya, D. M. Mount, and M. H. M. Smid. Randomized
and deterministic algorithms for geometric spanners of
small diameter. In 35th Annual Symposium on Founda-
tions of Computer Science, Santa Fe, New Mezico, USA,
20-22 November 199/, pages 703-712. IEEE Computer
Society, 1994.

A. S. Biswas, M. Dory, M. Ghaffari, S. Mitrovié, and
Y. Nazari. Massively parallel algorithms for distance
approximation and spanners. In Proceedings of the 33rd
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, pages 118-128, 2021.

G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy
spanners are optimal in doubling metrics. In T. M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019, pages
2371-2379. STAM, 2019.

P. Bose, J. Gudmundsson, and P. Morin. Ordered theta
graphs. Computational Geometry, 28(1):11-18, 2004.

R. Cole and L. Gottlieb. Searching dynamic point sets
in spaces with bounded doubling dimension. In J. M.
Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 574-583. ACM, 2006.

G. Das, G. Narasimhan, and J. Salowe. A new way to
weigh malnourished euclidean graphs. In proceedings
of the sizth annual ACM-SIAM symposium on discrete
algorithms, pages 215-222, 1995.

D. Eppstein and H. Khodabandeh. On the edge cross-
ings of the greedy spanner. In K. Buchin and E. C.

2]

15

[10]

[11]

[12]

[13]

de Verdiere, editors, 37th International Symposium on
Computational Geometry, SoCG 2021, June 7-11, 2021,
Buffalo, NY, USA (Virtual Conference), volume 189 of
LIPIcs, pages 33:1-33:17. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2021.

J. Gao, L. J. Guibas, and A. Nguyen. Deformable
spanners and applications. Computational Geometry,
35(1-2):2-19, 2006.

L.-A. Gottlieb and L. Roditty. An optimal dynamic
spanner for doubling metric spaces. In D. Halperin
and K. Mehlhorn, editors, Algorithms — ESA 2008,
16th Annual European Symposium, Karlsruhe, Ger-
many, September 15-17, 2008, Proceedings, volume 5193
of Lecture Notes in Computer Science, pages 478-489.
Springer, 2008.

L.-A. Gottlieb and L. Roditty. Improved algorithms for
fully dynamic geometric spanners and geometric routing.
In S.-H. Teng, editor, Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 591-600. STAM, 2008.

S. Har-Peled and M. Mendel. Fast construction of nets
in low dimensional metrics, and their applications. In
Proceedings of the twenty-first annual symposium on
Computational geometry, pages 150158, 2005.

R. Krauthgamer and J. R. Lee. Navigating nets: simple
algorithms for proximity search. In J. I. Munro, edi-
tor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pages
798-807. SIAM, 2004.

H. Le and C. Than. Greedy spanners in Euclidean
spaces admit sublinear separators. In J. S. Naor and
N. Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 -
12, 2022, pages 3287-3310. SIAM, 2022.

G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

L. Roditty. Fully dynamic geometric spanners. Algo-
rithmica, 62(3):1073-1087, 2012.

O. Salzman, D. Shaharabani, P. K. Agarwal, and
D. Halperin. Sparsification of motion-planning roadmaps

by edge contraction. The International Journal of
Robotics Research, 33(14):1711-1725, 2014.

	Preamble
	Cover
	Copyright information
	Welcome Note from the Conference Chair
	Sponsors
	Program Committee
	Organizing Committee
	Volunteers
	Invited Speakers

	Conference Program
	Day 1: Wednesday July 17, 2024
	Paul Erdős Memorial talk: The discrete mathematical charms of Paul Erdős by Vaśek Chvátal
	Session 1A
	Hadi Khodabandeh, David EppsteinMaintaining Light Spanners via Minimal Updates video recorded by Hadi Khodabandeh
	Hadi Khodabandeh
	David Eppstein

	Gill Barequet, Noga Keren, Neal Madras, Johann Peters, Adi RivkinOn Totally-Concave Polyominoes presented by Adi Rivkin
	Gill Barequet
	Noga Keren
	Neal Madras
	Johann Peters
	Adi Rivkin

	Joseph O'Rourke, Costin VilcuSkeletal Cut Loci on Convex Polyhedra presented by Joseph O'Rourke
	Joseph O'Rourke
	Costin Vilcu

	Session 1B
	Sándor P. Fekete, Joseph Mitchell, Christian Rieck, Christian Scheffer, Christiane SchmidtDispersive Vertex Guarding for Simple and Non-Simple Polygons presented by Christian Rieck
	Sándor P. Fekete
	Joseph Mitchell
	Christian Rieck
	Christian Scheffer
	Christiane Schmidt

	Byeonguk Kang, Junhyeok Choi, Jeesun Han, Hee-Kap AhnGuarding Points on a Terrain by Watchtowers presented by Byeonguk Kang
	Byeonguk Kang
	Junhyeok Choi
	Jeesun Han
	Hee-Kap Ahn

	Linh Nguyen, Joseph MitchellMultirobot Watchman Routes in a Simple Polygon presented by Linh Nguyen
	Linh Nguyen
	Joseph Mitchell

	Session 2A
	Bruce W Brewer, Haitao WangAn Improved Algorithm for Shortest Paths in Weighted Unit-Disk Graphs presented by Bruce W Brewer
	Bruce W Brewer
	Haitao Wang

	Klára PernicováGrid-edge unfolding orthostacks with rectangular slabs presented by Klára Pernicová
	Klára Pernicová

	Ulrike Stege, Sue Whitesides, Laurie Heyer, William LenhartOn 3-layered Cornerhedra: Optimum Box Partitions for Niches presented by Sue Whitesides
	Ulrike Stege
	Sue Whitesides
	Laurie Heyer
	William Lenhart

	Session 2B
	John Stuart, Jean-Lou De Carufel, Prosenjit BoseThe Exact Routing and Spanning Ratio of arbitrary triangle Delaunay graphs presented by John Stuart
	John Stuart
	Jean-Lou De Carufel
	Prosenjit Bose

	Sarita de Berg, Guillermo Esteban, Rodrigo Silveira, Frank StaalsExact solutions to the Weighted Region Problem presented by Guillermo Esteban
	Sarita de Berg
	Guillermo Esteban
	Rodrigo Silveira
	Frank Staals

	Prosenjit Bose, Jean-Lou De Carufel, Guillermo Esteban, Anil MaheshwariComputing shortest paths amid non-overlapping weighted disks presented by Guillermo Esteban
	Prosenjit Bose
	Jean-Lou De Carufel
	Guillermo Esteban
	Anil Maheshwari

	Session 3A
	Justin G Bruss, William Evans, Jiaxuan LiBurning Simple Polygons presented by Justin G Bruss
	Justin G Bruss
	William Evans
	Jiaxuan Li

	Hyuk Jun Kweon, Honglin ZhuMaximum Overlap Area of Several Convex Polygons Under Translations presented by Hyuk Jun Kweon
	Hyuk Jun Kweon
	Honglin Zhu

	Gleb Dilman, David Eppstein, Valentin Polishchuk, Christiane SchmidtWell-Separated Multiagent Path Traversal presented by Valentin Polishchuk
	Gleb Dilman
	David Eppstein
	Valentin Polishchuk
	Christiane Schmidt

	Session 3B
	Eliot W Robson, Jack Spalding-Jamieson, Da Wei ZhengCarving Polytopes with Saws in 3D presented by Da Wei Zheng
	Eliot W Robson
	Jack Spalding-Jamieson
	Da Wei Zheng

	Rishikesh Gajjala, Jayanth RaviImproved upper bounds for the Heilbronn's Problem for k-gons video recorded by Jayanth Ravi
	Rishikesh Gajjala
	Jayanth Ravi

	Gabriela Araujo-Pardo, Silvia Fernandez, Adriana Hangsberg, Dolores Lara, Amanda Montejano, Déborah OliverosThe exact balanced upper chromatic number of the n-cube over t elements presented by Silvia Fernandez
	Gabriela Araujo-Pardo
	Silvia Fernandez
	Adriana Hangsberg
	Dolores Lara
	Amanda Montejano
	Déborah Oliveros

	Open Problem Session
	Reymond Akpanya, Bastien Rivier, Frederick B StockOpen Problems from CCCG 2024
	Reymond Akpanya
	Bastien Rivier
	Frederick B Stock

	Day 2: Thursday July 18, 2024
	Godfried Toussaint Memorial talk: Geometric Reconfiguration of Graphs Drawn in the Plane by Anna Lubiw
	Session 4A
	Pitchayut Saengrungkongka, Erik Demaine, Nithid Anchaleenukoon, Kaylee Ji, Alex DangComplexity of 2D Snake Cube Puzzles presented by Alex Dang
	Pitchayut Saengrungkongka
	Erik Demaine
	Nithid Anchaleenukoon
	Kaylee Ji
	Alex Dang

	Arun Kumar Das, Tomas VallaOn Erdőes-Szekeres Maker-Breaker games video recorded by Arun Kumar Das
	Arun Kumar Das
	Tomas Valla

	Jaroslav Opatrny, Danny Krizanc, Denis Pankratov, Lata NarayananThe En Route Truck-Drone Delivery Problem presented by Denis Pankratov
	Jaroslav Opatrny
	Danny Krizanc
	Denis Pankratov
	Lata Narayanan

	Session 4B
	Saeed Odak, Cyril Gavoille, Nicolas Bonichon, Nicolas HanusseEuclidean Freeze-Tag Problem on Plane presented by Saeed Odak
	Saeed Odak
	Cyril Gavoille
	Nicolas Bonichon
	Nicolas Hanusse

	Amirhossein Mashghdoust, Stephane DurocherHyperplane Distance Depth presented by Amirhossein Mashghdoust
	Amirhossein Mashghdoust
	Stephane Durocher

	J. Mark Keil, Fraser McLeod, Debajyoti MondalQuantum Speedup for Some Geometric 3SUM-Hard presented by Debajyoti Mondal
	J. Mark Keil
	Fraser McLeod
	Debajyoti Mondal

	Session 5A
	Antonia Kalb, Kevin Buchin, Carolin Rehs, Guangping LiExperimental analysis of oriented spanners on one-dimensional point sets presented by Antonia Kalb
	Antonia Kalb
	Kevin Buchin
	Carolin Rehs
	Guangping Li

	Vinesh Sridhar, Rolf SvenningFast Area-Weighted-Peeling of Convex Hulls for Outlier Detection presented by Vinesh Sridhar
	Vinesh Sridhar
	Rolf Svenning

	Amritendu Shekhar Dhar, Abhishek Rathod, Vijay NatarajanGeometric Localization of Homology Cycles video recorded by Amritendu Shekhar Dhar
	Amritendu Shekhar Dhar
	Abhishek Rathod
	Vijay Natarajan

	Session 5B
	Myroslav Kryven, Stephane DurocherGeneralizing Combinatorial Depth Measures to Line Segments presented by Myroslav Kryven
	Myroslav Kryven
	Stephane Durocher

	Brittany T Fasy, David Millman, Anna SchenfischHow Small Can Faithful Sets Be? Ordering Topological Descriptors presented by Anna Schenfisch
	Brittany T Fasy
	David Millman
	Anna Schenfisch

	Bernardo Abrego, Silvia FernandezOn the crossing number of symmetric configurations presented by Bernardo Abrego
	Bernardo Abrego
	Silvia Fernandez

	Session 6A
	Jonathan Perry, Benjamin RaichelLocal Frechet Permutation presented by Jonathan Perry
	Jonathan Perry
	Benjamin Raichel

	Jens Kristian Refsgaard Schou, Bei WangPersiSort: A New Perspective on Adaptive Sorting Based on Persistence presented by Jens Kristian Refsgaard Schou
	Jens Kristian Refsgaard Schou
	Bei Wang

	Session 6B
	Oswin Aichholzer, Anna Brötzner, Daniel Perz, Patrick SchniderFlips in Odd Matchings presented by Anna Brötzner
	Oswin Aichholzer
	Anna Brötzner
	Daniel Perz
	Patrick Schnider

	Therese Biedl, Prashant GokhaleFinding maximum matchings in RDV graphs efficiently presented by Prashant Gokhale
	Therese Biedl
	Prashant Gokhale

	Best dissertation talk: Simple Drawings of Complete (Multipartite) Graphs: Plane Subdrawings and Isomorphisms by Alexandra Weinberger
	Business meeting

	Day 3: Friday July 19, 2024
	Ferran Hurtado Memorial talk: Finding Cliques in Disk Graphs by Mark Keil
	Session 7A
	Robert D Barish, Tetsuo ShibuyaPolyhedral roll-connected colorings of partial tilings presented by Robert Barish
	Robert D Barish
	Tetsuo Shibuya

	Jayson Lynch, Jack Spalding-JamiesonSlant/Gokigen Naname is NP-complete presented by Jack Spalding-Jamieson
	Jayson Lynch
	Jack Spalding-Jamieson

	Guangya Cai, Ravi JanardanTop-k colored orthogonal range search presented by Guangya Cai
	Guangya Cai
	Ravi Janardan

	Session 7B
	Minati De, Ratnadip Mandal, Subhas C. NandySet Cover and Hitting Set Problems for Some Restricted Classes of Rectangles video recorded by Ratandip Mandal
	Minati De
	Ratnadip Mandal
	Subhas C. Nandy

	Ryan Knobel, Adrian Salinas, Robert Schweller, Tim WylieBuilding Discrete Self-Similar Fractals in Seeded Tile Automata presented by Ryan Knobel
	Ryan Knobel
	Adrian Salinas
	Robert Schweller
	Tim Wylie

	List of Authors

