
Explaining Model Parameters Using the Product
Space ω

Ethan Payne1[0000→0002→6620→8336], David Patrick1,2[0000→0003→2556→8818], and
Amanda S. Fernandez1[0000→0003→2397→0838]

1 The University of Texas at San Antonio, TX, USA
2 Texas State University, San Marcos, TX, USA

Abstract. With the increasing interest in explainable attribution for
deep neural networks, it is important to consider not only the importance
of individual inputs, but also the model parameters themselves. Existing
methods, such as Neuron Integrated Gradients [18] and Conductance [6],
attempt model attribution by applying attribution methods, such as In-
tegrated Gradients, to the inputs of each model parameter. While these
methods seem to map attributions to individual parameters, these are
actually aggregated feature attributions which completely ignore the pa-
rameter space and also su!er from the same underlying limitations of
Integrated Gradients. In this work, we compute parameter attributions
by leveraging the recent family of measures proposed by Generalized
Integrated Attributions, by instead computing integrals over the prod-
uct space of inputs and parameters. This usage of the product space
allows us to now explain individual neurons from varying perspectives
and interpret them with the same intuition as inputs. To the best of our
knowledge, ours is the first method which actually utilizes the gradient
landscape of the parameter space to explain each individual weight and
bias. We confirm the utility of our parameter attributions by computing
exploratory statistics for a wide variety of image classification datasets
and by performing pruning analyses on a standard architecture, which
demonstrate that our attribution measures are able to identify both im-
portant and unimportant neurons in a convolutional neural network.

Keywords: Attribution · Saliency · Influence · Integrated Gradients ·
Expected Gradients · Explainability · Causal Inference · Pruning · Un-
learning

1 Introduction

As deep learning architectures grow in size and complexity, the push for ex-
plainability of model predictions and performance continues. While existing at-
tribution methods are able to generate importance values for model inputs and
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extracted features, it is also critical to consider the model parameters themselves
in the context of the ambient parameter space.

We first briefly summarize the several types of attributions for clarity of
terminology in the following subsections. Figure 1 provides an illustration of
these attribution types.

Input attributions assign importance values, or some other value of inter-
est, to each dimension of the input. For the particular case of image recognition
this means assigning importance values to each pixel of the input, or ideally to
each pixel’s color channels individually.

Intermediate Feature Attributions assign importance values to the fea-
ture maps generated by layers and modules within a neural network, in a method
similar to input attribution. Since these feature maps are simply transformations
of the input data, we can conveniently treat them using the same attribution
methodology as we used for inputs.

Parameter Attributions facilitate computing importance values for indi-
vidual model parameters, i.e. the weights and biases in a convolutional neural
network. Since the model itself is an entirely di!erent class of object than ei-
ther the inputs or extracted features, we must develop a new methodology for
extending the theory of attributions to the parameter space.

1.1 Our Contribution

In this work, we achieve a more complete and faithful method of parameter
attribution, leveraging the reformulated attribution framework of Generalized
Integrated Attributions [21]. Similar to Neuron Integrated Gradients [18] and
Conductance [6], we assign an integrated measure to a parameter within a model.
However, unlike these previous methods, we do not aggregate path-integrated
feature attributions, but rather use the generalized volume-integral formulation
proposed in [21], and account for the parameter space by integrating over the
product space of inputs and parameter values. By integrating over a set in the
parameter space, we are able to interpret the resulting parameter attributions
using the same theory as for input and feature attributions. Additionally, this
formulation allows us to assign unique attribution values to each weight and
bias in a convolutional neural network, which was not possible using previous
methods.

To ensure that the computed measures reflect the dataset of interest rather
than some arbitrary or counterfactual baseline value, we follow the approaches
of Expected Gradients [7] and Generalized Integrated Attributions [21] and take
the expectation in the input space over a set from the training dataset. Using this
new formulation of Parameter Explanations using the Product Space (PEPS), we
are able to extend each of the measures proposed in [21] to model parameters
in addition to inputs. Our experiments confirm that our measures are able to
successfully identify important and unimportant neurons, and we summarize
our findings regarding the distribution of these measures for several datasets,
model training statuses, and hyperparameter combinations using exploratory
plots. Furthermore, our measures are able to un-learn a specific class from the
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trained model without destroying the model’s performance on the remaining
classes, and we identify several trends within the distributions of our attributions
which might be used for future training diagnostics and improved robustness.

Fig. 1: Mock-up visualization of attributions corresponding to di!erent types
of explainable objects. Even once the extracted features cease to resemble the
original input, we can still compute attributions using the same methodology
as used for input attributions. However, model parameters require a di!erent
approach in order to reflect the behavior of the model’s own gradient landscape.

2 Related Work

2.1 Input Attributions

Many methods for attributing model predictions to specific features of the input
utilize information contained in the model gradients [20,19,24,22,3,8]. Sundarara-
jan et al. devised an attribution method called Integrated Gradients [22] which
computes the integral of feature gradients over a linear path from an input to
a reference. The value of this integral can then be tracked with respect to each
pixel of the input in order to obtain a pixel-wise attribution map. In a similar
approach, DeepLift [17] propagates contribution scores according to di!erences
from a reference, which, akin to integrated gradients, requires some justification
for correct or appropriate reference values. By incorporating the theory asso-
ciated with classical Shapley values, Lundberg et al.[14] contextualize several
attribution methods such as DeepLift as additive explanations, and uses the
theory of SHAP values to unify these di!erent approaches to attribution under
a single framework. Ancona et al. [2] show that many gradient-based attribution
methods are closely related and can be described with a unified formulation, and
propose the metric Sensitivity-n to evaluate these methods.

In contrast to gradient-based methods, other approaches to quantifying fea-
ture importance such as the search-based Parallel Local Search (PLS) [10] are
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able to outperform other state-of-the-art attribution methods. Still, while these
search-based methods can be highly useful, they lack much of the a-priori and
intuitive explainability o!ered by gradient-based methods.

A recent reformulation known as Expected Gradients [7] was proposed by
Erion et al. to directly improve upon the original method of Integrated Gradi-
ents, by computing attributions as an expected value of gradients over the input
dataset, thus alleviating the issue of counterfactual baselines. This prompted
yet another recent reformulation in the form of Generalized Integrated Gradi-
ents [21].

2.2 Intermediate Feature Attributions

It can often be beneficial to consider the intermediate features extracted by ma-
chine learning models when collecting attribution information, either for the pur-
pose of improving input attributions as in [3], or in order to assign attributions
to model parameters. Using an integration-based method similar to Integrated
Gradients, Leino et al. [13] compute an influence-directed attribution measure
which can be applied to internal neurons within a model. In two very similar
approaches, Shrikumar et al. [18] and Dhamdhere et al. [6] propose Neuron Inte-
grated Gradients and Conductance respectively by applying the principles of In-
tegrated Gradients to the inputs of a given parameter. These feature attributions
are then pooled and assigned to the parameter. Although these methods do as-
sign attribution values to individual model parameters, these values are actually
aggregated feature attributions rather than representations of the model’s own
gradient landscape. Additionally, since both of these methods integrate feature
gradients over a path in the input space, these aggregated feature attributions
are relevant only to this path, entirely neglecting the parameter space itself.

2.3 Parameter Attributions

While methods like [24] intentionally avoid using gradient information when
determining neuron importance, our experiments demonstrate that there is a
wealth of useful information available within model gradients. Other work on
neuron-level analysis has been conducted in the Natural Language Processing
(NLP) space [16], but it remains to extend these methods to other domains such
as vision. Our method is also similar to the Shapley-value approach of [9], which
uses permutations of model parameters in a multi-armed bandit algorithm to
determine neuron importance values, as well as the neuron ablation approach
of [1] which uses majority voting. While these two methods can be e!ective for
specific use cases, such algorithmic approaches lack the flexibility, intuition, and
generalizability of our method for accomodating diverse subjective user needs.

3 Approach

While previous methods consider only integrals within the input space with re-
spect to a single point in parameter space (the model weight state), we instead
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consider the product space of inputs and parameter values (Figure 2). By inte-
grating over a set in the product space, we can explain a parameter not only
with respect to a given set of inputs, but also with respect to other possible
parameter values. We verify the e!ectiveness of this method in section 4.

Fig. 2: For each neuron, we integrate over the product space of inputs and param-
eter values in order to collect importance information about that parameter’s
relation to the set of inputs. Pictured above, we visualize the product space
corresponding to three samples for weight wi and three input samples from the
dataset.

3.1 Parameter Explanations using the Product Space (PEPS)

We first recall the formulation of Generalized Integrated Gradients in Equation
1 from [21] for an input x and a model F , over a set Sx in the input space, as
well as the even more general Equation 2 for an attribution function A and a
distribution pSx :

GeneralizedIntegratedGrads(Sx) ::=
1

|Sx|

∫

Sx
→F (x)dx

= ESx [→F ]

(1)

GeneralizedIntegratedAttribution(A, F, Sx, pSx)

::=

∫

Sx
A(F, x)pSx(x)dx

(2)
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We apply this formulation to model attributions rather than input attribu-
tions by treating a parameter or parameter group (such as a convolutional filter)
ω as we treated the input x for input attribution. This simultaneous e!ect of
inputs and parameters yields a tuple representing a single point (x, ω) in the
input↑ parameter product space. We can now compute the gradients of the pa-
rameter ω with respect to the input x, so we then integrate over a set of interest
Sω and distribution pSω in the parameter space as well as over a set of interest
Sx and distribution pSx in the input space to obtain Equations 3 and 4:

GeneralizedModelIntegratedGradients(Sx, Sω)

::=
1

|Sx|

∫

Sx

1

|Sω|

∫

Sω
→Fω (x) dωdx

=
1

|Sx||Sω|

∫

Sx

∫

Sω
→Fω (x) dωdx

=ESx [ESω [→Fω (x)]]

=ESx↑Sω [→Fω (x)]

(3)

GeneralizedIntegratedModelAttribution(A, Sx, pSx , Sω, pSω )

::=

∫

Sx

[∫

Sω
A(ω, x)pSω (ω)dω

]
pSx(x)dx

=

∫

ε↓Sx↑Sω
A(ε)pSx↑Sω (ε)dε

(4)

Using this method, we can compute model attributions corresponding to
each of the input attribution statistics proposed in [21]: Expected/Integrated
Gradients, Gradient Variance, Stability, and Consistency. We compute these at-
tributions for each parameter (weights, biases, etc.), and just as individual pixel
attributions can be aggregated to obtain an attribution for an entire image, we
can also aggregate parameter attributions as desired to obtain coarser attribu-
tions for parameter groups, modules, layers, or the entire model (Equations 5
6).

Attribution(Parameter Group) = E [Attributions(ω)]
ω ↓ Parameter Group

(5)

Attribution(Model) = E [Attribution(Parameter Group)]
Parameter Group ↓ Model

(6)

Note that this aggregation step is sensitive, as positive and negative measure
values can potentially cancel out and obfuscate the true e!ect at the filter and
model-level. For more accurate and thorough attributions, alternative aggrega-
tion methods can be applied to combine hierarchically nested attributions, or
individual filters and even the entire model might be treated as a single entity
for computation of each integrated measure, though this approach may require
additional overhead or special considerations with respect to sampling the latent
parameter space.



Explaining Model Parameters Using the Product Space 7

4 Evaluation

We perform two types of quantitative analysis to demonstrate the utility of our
method. We first perform pruning experiments to verify that our novel attri-
bution measures are able to identify important and unimportant neurons in a
trained model. We then collect additional distributional information for a wider
variety of datasets to confirm that our attributions can distinguish between a
trained model and an untrained model. For each integrated attribution measure,
we select our set Sω to be the ball centered at a parameter of locality radius hy-
perparameter ϑ proposed in [21]. We choose our ϑ values from a large range in
our experiments in an attempt to sample both local and nonlocal gradient be-
havior. We also fix Sx to be the training set, and follow the same Monte Carlo
integration method of [21] in which we sample points from Sx and Sω.

4.1 Pruning

We demonstrate the e!ectiveness of our method in determining neuron impor-
tance by performing a series of pruning experiments (Figures 3, 4, and 6) as
was the approach of [9,1], in which we set a proportion of individual model pa-
rameters to zero. If model performance degrades faster or slower when pruning
according to ranked attribution values compared to pruning randomly, then we
will have successfully identified the important or unimportant neurons respec-
tively. In each experiment, we prune the same proportion of weight and bias
parameters from each layer, except for the final output layer which we leave
intact.

Pruning Experiments We perform experiments for the CIFAR-10 dataset
[11], shown in Figure 3, using a ResNet-18 architecture trained for 20 epochs
using a standard categorical cross-entropy with learning rate of 0.01 with no
momentum or weight decay, and a batch size of 32. We also perform similar
experiments for the ImageNet dataset [5], shown in Figure 4, using a pretrained
ResNet-34 architecture. For all pruning experiments, we show the mean F1-Score
on the respective test set over 10 replicates and the associated 95% confidence
interval. We investigate the e!ect of our locality radius ϑ for 32 input sample
points and 32 parameter sample points. We also include an investigation of the
e!ect of the number of sample points in the input space and parameter space
for in our supplemental information, and we briefly show the benefit of larger
sample sizes in Figure 5. We can notice from Figures 3 and 4 that our Integrated
Gradients and Gradient Variance measures are able to successfully identify im-
portant neurons for all three of the tested locality radii, but that our Stability
measure identifies important neurons for a large radius and unimportant neu-
rons for a small radius. We note the our Consistency measure currently only
appears useful for large radii, so this may indicate that we need to explore a
wider range of radii and sample points in future studies. We also assume that
first multiplying our attributions by ↔1 will result in the opposite behavior as
observed in Figures 3 and 4, but we must confirm this in future studies.
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Fig. 3: Pruning of a ResNet-18 model trained on CIFAR-10. We can observe
that di!erent choices of locality radius ϑ reveal di!erent types of attribution
information for certain measures. For each of the four measures, we observe
statistically significant di!erences from random pruning, verifying that we have
collected information relevant to the model’s performance.

Fig. 4: Pruning of a ResNet-34 model trained on Imagenet. Note the same overall
trends for each measure as observed for the CIFAR-10 dataset in Figure 3, indi-
cating that the utility of our measures successfully generalizes to larger datasets.
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Fig. 5: Pruning of a ResNet-18 model trained on CIFAR-10 for varying input
and parameter sample sizes. In general we observe that increased sample size
results in more accurate attributions reflecting a neurons relative importance or
unimportance.

Pruning to Target a Single Class We also demonstrate the ability of our
method to select for neurons important to a specific class. By fixing Sx as a spe-
cific subset of the input space (i.e. a specific class), we can determine a neuron’s
importance with respect to that class. We otherwise perform these experiments
using the same methodology as Figures 3 and 4. Shown in Figure 6 are the
two experiments which demonstrate the most selectivity for a single class while
preserving performance on the remaining classes, the remaining experiments are
available in supplemental information. Our results show resounding success in
destroying the model’s test set F1-Score for the targeted class, which may prove
to be useful for applications related to unlearning [4].

4.2 Distributional Analysis

We investigate the distribution of our attribution measures for trained and ran-
domly initialized models using several small-scale image classification datasets:
CIFAR-10 [11], MNIST [12], FashionMNIST [23], and SVHN [15], using a ResNet-
18 architecture trained using the same methodology as for the pruning exper-
iments, except for that on the smaller datasets (MNIST, FashionMNIST, and
SVHN) we trained only for 10 epochs. We also include data for partial training
on the CIFAR-10 dataset (10 out of 20 epochs) to further illustrate how the dis-
tributions converge as the model trains. For these distribution analyses we use
10 sample points from the input space and 20 sample points from the parameter



10 E. Payne et al.

Fig. 6: Single-class targeted pruning of a ResNet-18 model trained on CIFAR-
10. Note that we are able to reduce the F1-Score for the targeted class to zero
while maintaining ↗ .60 F1-Score on the overall dataset. This indicates that our
measures could be used to very e!ectively unlearn specific classes as needed for
privacy or security applications.

space, and we investigate the distributions of measures corresponding to ϑ = 1.0
and ϑ = 104.

We demonstrate below that the distributions of each of our four integrated
model attribution measures are highly dependent on model training status. See
Figures 7, 8, 9, and 10 for histograms and discussion of Integrated Gradients,
Gradient Variance, Stability, and Consistency. We can observe distributions re-
sembling several parametric families in the generated histograms, namely the
Student’s t-distribution for Integrated Gradients, the Gamma distribution for
Gradient Variance, and possibly Beta distributions for Stability and Consis-
tency. While we do not in this study fit any parametric distributions to the
data, these distinct distributions o!er a quantitative and parametric source of
model explanation and evaluation.

5 Conclusions

We have developed a novel methodology for explaining model parameters, and
have verified its ability to identify important and unimportant neurons. By con-
sidering the product space of inputs and parameter values, we are now able to
generalize the family of integrated attribution measures proposed in [21] from
only input and intermediate feature attribution to also accommodate parameter
attribution. We have identified several unique sources of parameter attribution
information by using our new formulation to compute the four measures pro-
posed in [21] for varying locality radius. Since the underlying family of attribu-
tions is very diverse, our initial success in identifying important neurons justifies
a much more thorough investigation into the various relevant hyperparameters
(input sample size, parameter sample size, locality radius, etc.) and merits the
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Fig. 7: Parameter-level histograms for the Integrated Gradients measure for mod-
els trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values
outside the .9 quantile are excluded from the histogram range. The attributions
appear to be roughly distributed according to a Student’s t-distribution for both
choices of locality radius ϑ, which is consistent with the fact that Integrated Gra-
dients is computed as a sample mean of gradients in the Monte Carlo integral
assuming gradients in the underlying latent space are normally distributed.

Fig. 8: Filter-level histograms for the Gradient Variance measure for models
trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. For these
histograms we present filter-level attributions rather than parameter-level attri-
butions due to the large volume of extreme values at the parameter-level. Values
outside the .9 quantile are excluded from the histogram range, but even though
we are plotting the filter-level distribution, due to the large number of extreme
values this range restriction still results in distributions which are di"cult to
qualitatively evaluate for locality radius ϑ = 104. The attributions appear to
be distributed according to a gamma distribution for both choices of locality
radius ϑ, which is consistent with the fact that filter attributions are sums of
per-parameter Gradient Variances, which each follow a chi-square distribution
assuming that gradients in the underlying latent space are normally distributed.
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Fig. 9: Parameter-level histograms for the Stability measure for models trained
on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values outside the
.9 quantile are excluded from the histogram range. The attributions appear to
be similarly distributed for both choices of locality radius ϑ, and while there does
appear to be some dependence on model training for the CIFAR-10 (ϑ = 1.0)
results, any additional trends are not immediately qualitatively clear. Since the
Stability measure is defined on a bounded support of [↔1, 1] as the expectation of
a cosine, we should strongly consider distributions such as the beta distribution
for development of future statistical tests and inferences based on Stability.

Fig. 10: Parameter-level histograms for the Consistency measure for models
trained on CIFAR-10, FashionMNIST, MNIST, and SVHN datasets. Values out-
side the .9 quantile are excluded from the histogram range. We can note the two
distinct paradigms for locality radius ϑ = 1.0 and ϑ = 104, and a clear distinction
between the distributions for trained and untrained models in both cases. Like
the Stability measure, since the Consistency measure is defined on a bounded
support of [↔1, 1], we should be mindful of this when developing any statistical
tests.
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development of additional measures beyond the four which we have explored in
this work. Furthermore, we have demonstrated our method’s ability to identify
neurons important specifically for single classes. If our parameter attributions
are incorporated into more sophisticated unlearning and model reduction meth-
ods, we will likely observe even better utility. We have also identified several
preliminary trends and patterns with respect to the distributions of Integrated
Gradients, Gradient Variance, Stability, and Consistency for trained versus un-
trained models. Our study confirms that this family of attribution measures is a
rich source of relevant model information which begs further study toward the
end of both explaining and improving model behavior. Since our methodology
is immediately applicable to any machine learning model for which parameter
gradients can be computed, and can accommodate any new measures developed
using the framework of Generalized Integrated Attributions, we should expect
the utility of this method to only increase as additional novel and useful inte-
grated measures continue to be proposed.

5.1 Future Work

While we include much additional pruning data in the supplemental information,
we should still explore a wider range of locality radii and perform experiments in
which we prune in ascending order of attribution value as opposed to descending
value, or in which we sort each parameter using multiple attribution measures at
once. Additionally, While we have collected data for the Resnet-18 and Resnet-34
architectures for several image datasets, we can also investigate a wider variety
of model architectures and data tasks beyond image recognition.

In the future we may be able to visualize the semantic e!ect and role of the
model’s important parameters by inspecting the types of features extracted by
these parameters. This, coupled with input and feature attribution, may give us
a broader understanding of model attention.

The qualitative trends observed in the distributional study above justify a
more rigorous statistical analysis such as Analysis of Variance (ANOVA) in the
future to search for higher order and mixed e!ects. The distributions of each
attribution measure can also be fit to parametric distributions such as Student’s
t, gamma, and beta distributions in order to directly quantify the e!ect of model
training and other hyperparameters. In particular, since we directly derived that
Integrated Gradients and Gradient Variance measures should follow Student’s
t and gamma distributions respectively, we can immediately begin developing
statistical tests to explain and improve models based on these two measures.
We can additionally continue to collect more data regarding how attributions
depend on model training and accuracy. We can similarly continue to investigate
how hyperparameters such as the locality radius ϑ, the training dataset, number
of classes, and filter size a!ect the distribution of attributions. We might also
inspect class-wise attribution distributions as a means of further quantifying and
explaining how each model responds to a particular class.

Finally, though out-of-scope for this work, future studies should pursue train-
ing models using the method of attribution priors proposed by [7]. It is possible
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that the attribution measures studied in this work could be used to train models
more robustly and accurately, so any such opportunities for explainable improve-
ment should be investigated.
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