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Abstract

When people solve problems, they may try multiple invalid
solutions before finally having an insight about the correct so-
lution. Insight problem-solving is an example of the flexibility
of the human mind which remains unmatched by machines.
In this paper, we present a novel experimental paradigm for
studying insight problem-solving behavior in a physical rea-
soning domain. Using this paradigm and several data-driven
analyses, we seek to quantify what it means to have an insight
during physical problem-solving and identify behavioral traces
that predict subjective insight ratings collected from human
participants. This project aims to provide the first steps to-
wards a computationally informed theory of insight problems
solving.
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Introduction

Imagine you are watching TV and suddenly water starts drip-
ping from the ceiling directly above the TV. Unfortunately,
you can’t move the TV quickly because it is fixed to the wall
so you must find another solution to avoid damage. You have
a bucket handy in the basement but you just can’t get the
bucket to stand on its own above or around the TV. While
you’re holding the bucket to prevent the water from damag-
ing the TV, you’re faced with an impasse. What could you
do to avoid having to hold the bucket collecting the water?
You’re starting to get frustrated when suddenly you think of
using your small surfboard. You quickly go grab it and put it
flat on top of the TV such that the water drips into the bucket.

People often experience situations where a problem arises
and the solution to their problem is not immediately obvious.
Whether it is due to a failure to retrieve the right prior knowl-
edge or not thinking about the problem in the right way, peo-
ple may not initially know how to solve a problem, but at an
unpredictable moment, they will suddenly see the solution.

Researchers have spent considerable effort in understand-
ing and characterizing problem-solving behavior (Newell &
Simon, 1972). Problem-solving behavior has been opera-
tionally divided into two distinct classes: analytical problem-
solving and insight problem-solving (Gilhooly & Murphy,
2005). Typically, analytical problems have been problems
for which a logical sequence of steps can be applied to reach
a solution. Importantly, people can report on the steps they
took to generate their solution. Conversely, when people
solve insight problems, they tend to find the solution in a
sudden and unpredictable moment of clarity and have trou-

ble reporting on how they got the solution (Kounios & Bee-
man, 2014; Gilhooly & Murphy, 2005; Chronicle, MacGre-
gor, & Ormerod, 2004). Insight problem-solving has been
studied extensively in the cognitive science literature, with
problems such as the nine-dot problem (Maier, 1930), the
candle/box problem (Duncker & Lees, 1945), the radiation
problem (Duncker & Lees, 1945), and others. How people
solve insight problems and why some problems require in-
sight is still not well characterized computationally and re-
mains a standing issue.

We propose that a major hurdle in advancing our under-
standing of this cognitive phenomenon has been the use of
low-resolution measurement devices: experiments that don’t
generate rich real-time behavioral data that could be used to
help pinpoint the origin of insights. Similar to previous ap-
proaches (Jones, 2003; Stephen & Dixon, 2008; Berckley &
Hattie, 2023) that have utilized high sampling rate of actions,
eye movement and even facial expressions to study insight,
we do so in a 2D game environment specifically designed for
studying insight and focus directly on sampling behavior that
supports problem solving. We designed a physical reasoning
game that attempts to expose the underlying cognitive mech-
anisms supporting insight problem-solving by externalizing
some aspects of cognition. Our game allows us to record at a
high sampling rate the actions people take as well as the in-
formation people sample while solving problems. The task is
designed to require constant interaction from the participants
by introducing a “pressure to act”, thereby limiting offline
processing. We take inspiration from recent work investigat-
ing tool use in a virtual physical environment (Allen, Smith,
& Tenenbaum, 2020). Expanding upon this work, we 1) in-
troduce a dynamic and interactive component to the task and
2) focus on insight problem-solving behavior.

Although multiple cognitive processes underlie insight
problem-solving, we focus on understanding and quantify-
ing behavioral signatures of insight by adopting a data-driven
approach. More specifically, we are interested in dissociating
between three potential sources of insight: individual dif-

ferences in problem-solving behavior, general properties

of problems that might make it more likely that people will
initially reason about them in the wrong way, and aspects

of behavior that support having an insight. Similarly to
previous research, we think of insight as the ability to find
a solution after having initially thought about the problem in



Figure 1: Participant replay screenshot. For illustrative pur-
poses, the full problem is slightly illuminated. At the top (1),
red and green bars show accumulated penalties and rewards.
Participants must use tools (4) dragged from the inventory (2)
to redirect balls shot from a cannon (3) into green zones. The
inventory and the red and green bars at the top are constantly
visible throughout gameplay. Visual feedback (i.e., ball glow)
(5) is given when a ball falls into a red or green zone.

the wrong way, suggesting inadequate or sub-optimal solu-
tions (Öllinger, Jones, & Knoblich, 2014; Knoblich, Ohlsson,
& Raney, 2001). As a first step towards understanding the
computational basis of insight problem-solving, we examine
real-time behavioral signatures and fit statistical models pre-
dicting participant self-reports of insight.

Experiment

A physical reasoning game

Games are becoming increasingly popular experimental tools
for understanding the mind (van Opheusden et al., 2023;
Brändle, Binz, & Schulz, 2021; Allen et al., 2020). A ma-
jor advantage of using games to study the mind is that they
afford tasks that are closer to real-world complexity than tra-
ditional psychological experiments yet they are controllable
and engineered environments (Allen et al., 2023). With this
in mind, we developed a physical reasoning game to study
insight problem-solving behavior.

Our game is inspired by previous games used to study
physical reasoning (Allen et al., 2020) as well as mobile
phone games such as Enigmo. In our 2D game (see Figure
1)1, a ball cannon shoots balls at a constant rate of 1Hz. The
participant must use available tools to redirect them into one
or multiple green zones at the bottom while avoiding the red
zones. The goal is the same for each of the twenty problems
we created: maximize rewards (balls in green zone) and min-
imize penalties (balls in red zone or that time out). Penalties

1See the project website for a demo of our task and ad-
ditional visualizations: https://gureckislab.org/papers/#/
ref/legris2024physicalsolving

and the constant flow of balls impose a pressure to act, en-
couraging participants to act while they think. The trial ends
when either the rewards or penalties bar reaches full capac-
ity, resulting in a win or a loss, respectively. The maximum
capacity of each bar is set to 95 balls.

Each problem/level varies in the following dimensions:

• Position, angle, and length of walls
• Length, count, and position of green and red zones
• Position and angle of ball cannon
• Number of tools k → {0,1,2} available for each type
• Initial velocities of balls

The game provides two types of tools which we name con-
tainers and platforms. Some problems only allow the use of
one type while others allow the use of both types. We de-
signed the problems to vary in difficulty and obviousness of
solution. While certain problems simply require the partici-
pant to reason about the physics of the scene and implement
an easy solution, such as blocking a moving object, other
problems require participants to come up with creative and
less obvious solutions. The problems can be solved using
intuitive actions like blocking, containing and redirecting.
These concepts are useful to solve the problems but many of
them require going beyond these obvious uses and actions.
For example, participants might need to notice an inconspic-
uous gap and use it to redirect the balls appropriately towards
a smaller and less obvious green zone. Yet, another problem
might require using a container for purposes other than con-
taining (i.e., as a platform). We aimed for varied solutions
which differ from each other to avoid transfer between prob-
lems as much as possible.

The different dimensions along which our problems vary
allowed us to restrict the solution space. We designed several
of our problems to have locally sub-optimal solutions. We de-
fine a sub-optimal solution as a solution which, even if it were
implemented at the first time step of the game, would win but
not achieve the maximum score for that problem. Moreover,
we aimed to structure the problems such that the sub-optimal
solutions appeared more intuitive than the harder, but better
optimal ones.

At any time point during gameplay, only a small circu-
lar window around the participant’s cursor is illuminated
(see Figure 1). Given that the scene is always dark other
than around the cursor, the participant must move their cur-
sor to gather information, shift their attention to the differ-
ent elements of the scene, and search for solutions. This
feature allows us to externalize cognitive processes support-
ing problem-solving. For example, by tracing the focus of
this foveated window, we can identify elements within the
scene that were considered to generate solutions. Participants
simultaneously engage in information search and problem-
solving by progressively constructing a mental representation
of the environment and using it to inform their search for a
solution.



Methods

Participants. We recruited 140 participants (62.9 % male,
35 % female, 2.1 % other) on Prolific. Participants varied in
age from 19 to 70 (M= 39.6, SD=11.9) and in weekly gaming
time (M=7 hours, SD=4.49 hours). They were compensated
$7.50 for an expected 30 minutes of their time plus a poten-
tial bonus of up to $1.50 calculated using performance on a
randomly selected problem.

Design. Each participant completed ten randomly sampled
problems out of the twenty total tasks in a random order and
was given a single attempt at each problem.

Procedure. In the first part of the experiment, participants
were given general instructions about the experiment. They
were informed that:

• After every problem, they would be asked about whether
they experienced an Aha! moment (defined below).

• Following the tutorial, they would be tested on their under-
standing of the instructions before proceeding to the sec-
ond part of the experiment.

• A perfect solution exists for every level and it does not re-
quire any further movement of the tools once implemented.

The participants then completed a tutorial with step-by-
step instructions explaining every element of the game, con-
trols, and scoring. Finally, the participants were asked to an-
swer seven comprehension questions to advance to the ex-
periment. If they failed the quiz three times, the participants
were returned to the general instructions and tutorial. This
was done to ensure that participants were comfortable using
the game interface and would follow instructions carefully.

Gameplay. At the beginning of each problem, the game en-
vironment is completely blacked out. Participants only see
the inventory and score bars. After a three-second count-
down, balls are shot at a constant rate into the environment
and a light appears around the cursor allowing the partici-
pants to discover the structure and dynamics of the problem.
During each trial, the red and green zones at the bottom are
hidden but visual feedback (temporary green or red glowing
light around the ball) is shown whenever a ball falls into one
of the zones. This provides clues to the participant about the
position of the zones and signals whether points were gained
or lost. Additionally, at the top of the screen, green and red
bars show accumulated rewards and penalties throughout the
trial. Each level ended when the participant either reached the
maximum number of green or red points. The participant’s fi-
nal score was shown at the end of each problem.

Post-problem insight rating. After each problem, the par-
ticipants were asked whether they experienced an Aha! mo-
ment while solving the problem. Aha! moments were de-
scribed as initially not knowing the solution and subsequently
having a sudden realization while solving the problem. Con-
versely, not having an Aha! moment was described as find-
ing the solution incrementally without any sudden realization

or not solving the problem. If the participant answered that
they had an Aha! moment, they were then asked to rate the
strength of their experienced Aha! moment on a scale of 1
to 5. Participants who did not report an insight were simply
assigned an insight rating of 0.

Figure 2: Violin plots for reported insight ratings for both
won and lost trials.

Data collection

In total, we obtained 1329 complete trials from our 140 par-
ticipants. We first collected data from 40 participants on 20
problems and computed the average insight score for each
problem. We then split the ordered problems into a high in-
sight group and a low insight group, randomly sampling 2
problems from each category to be used as held-out prob-
lems. Additionally, we replaced one problem with a variation
for which we had not previously collected any data and in-
cluded it in the held-out problems for a total of five held-out
problems. Finally, we also randomly held out 10% of partici-
pants entirely for testing. Our final dataset has a split of 71%
in the training set and 29% in the held-out dataset which we
omit from this study and keep for future work.

Results

General behavioral results

We found strong variation in task difficulty, covering a wide
range of problem solution rates and scores. Participants had
an average solution rate (frequency of wins) across problems
of 48% (SD = 20%) and solution rates ranged from the hard-
est problem at 10% to the easiest problem at 88%. Although
solution rates are indicative of problem difficulty, mean prob-
lem score is also informative since a problem could, for ex-
ample, have a high solution rate but low mean score. This
would indicate that people tend to find a solution but in do-
ing so accumulate a lot of penalties. Problems that have more
obvious solutions but require precise fine-tuning are an ex-
ample of such instances. A participant won if they obtained a
score of 1 or more up to a maximum of 95. A score of 0 corre-
sponds to an unsuccessful attempt at a problem. For example,
if a participant obtained a score of 65, then they accumulated



Figure 3: Participant replay screenshot with ball traces. For
illustrative purposes, the full problem is slightly illuminated.
The white square in the top left corner represents a region of
interest (ROI), a part of the game scene relevant to finding the
optimal solution. As illustrated by the ball traces, 1/3 of the
balls (blue here) fall through the gap where the ROI is situated
while 2/3 of the balls (orange and green here) are shot further.
The solution shown is suboptimal since not all balls fall into
a green zone. The optimal solution requires placing the tool
in the ROI such that it redirects both streams of balls into the
left green zone.

95 reward points and 30 penalty points. The mean problem
score was 20.81 (SD = 27.32), with a minimum mean prob-
lem score of 4.11 and a maximum of 58.25.

We found that participants report an insight in 37% of trials
and that 44% of trials were wins. Participants that won report
an insight rating of 2.40 (SD = 1.81) on average while partic-
ipants that lost report an insight rating of 0.23 (SD = 0.84) on
average. We also observed substantial variation in reports of
insight per problem (see Figure 4). The average insight rating
across tasks was 1.24 (SD = 1.75) with a minimum of 0.21
and a maximum of 2.42.

Qualitative inspection of participant replay data revealed
a wide range of creative solutions for each problem but also
suggested that people often get stuck. Similar to results com-
monly described in the literature, we observed instances of
mental set. Mental set occurs when the problem-solver per-
sists at trying solutions within a restricted part of the solution
space, not exploring other potential options (Ollinger, Jones,
& Knoblich, 2008). As shown and described in Figure 3,
participants sometimes find suboptimal solutions and subse-
quently fail to find other potential and better solutions. Addi-
tionally, we also observed instances of functional fixedness:
the failure to use objects in ways other than their intended
use. This is particularly exemplified in problems where the
container tool must be used as a platform to redirect balls. Fi-
nally, we also observed general failures of noticing how cer-
tain elements of the problems can be used to solve it, even
when the participant explored the full scene with their cursor.

Moreover, we found that participants implement two qual-

itatively different kinds of solutions across levels: static and
dynamic solutions. Static solutions correspond to solutions
where the participant, once satisfied with their solution, does
not move or rotate the tools until the end of the trial. Con-
versely, in dynamic solutions, participants move and rotate
the tools to redirect the balls. For example, a participant
might wait for the container to fill up then move it to a green
zone to drop the balls in it, repeating this sequence of ac-
tions until they win or lose the game. We algorithmically
determined which participants had implemented a static solu-
tion by determining whether there existed a sufficiently long
window (set to approximately 10 seconds) in their replay
data within which the cumulative displacement of tools was
smaller than 1 unit and rotation was smaller than 2 degrees
until the end of the trial. These values were selected to ensure
that only solutions with minor or inconsequential adjustments
maintained for at least 10 seconds from the end of the trial
were counted as static. We determined that 76% of trials from
our training set correspond to static solutions and that 99% of
successful trials (i.e., wins) were trials where the participant
found a static solution. Given that we were only interested in
information preceding or surrounding the moment of insight,
we truncated all trials where a static solution was found to
the time point when the solution was implemented. For trials
where no static solution was found, we use the full behavioral
trace. All subsequent analyses were made using data cleaned
up in this way.

Figure 4: All problems attempted by participants, ordered by
proportion of insight reports. We observe a wide spread of
insight reports between problems.

Predicting insight

To determine aspects of behavior and the different problems
that are predictive of reporting an insight, we fit mixed effects
logistic regression models using features computed from par-
ticipant replay data. We partitioned the data into insight and
no-insight based on whether participants reported an Aha! ex-
perience or not. From qualitative inspection of participant re-
plays, we identified three sources of information from which
we computed various features hypothesized to be predictive
of insight. In total, we generated ten features for all trial data.



Each feature’s associated fit parameter name is indicated in
parentheses.
General information gathering. Given that our experi-
mental paradigm requires participants to actively seek infor-
mation that will enable them to solve each problem, we pro-
pose two features relating to this behavior.

Accumulated information (!1): This feature corresponds to
how much of the problem has been visually explored. How
much one explores is bound to influence what elements of the
scene are part of one’s mental representation and will thus in-
form search for a solution. We thus computed the percentage
of the scene illuminated using cursor movement from partici-
pant replays. This measure excludes green zones and regions
of interest (defined below).

Initial search (!2): This feature corresponds to how much
time the problem-solver spent exploring before dragging a
tool from the inventory. It is meant to capture how much
time was spent getting a general sense of the structure of the
problem before acting. We thus computed the number of time
steps spent moving the mouse before a tool dragged from the
toolbox and normalize by total time spent solving the prob-
lem.
Regions of interest. Each problem in the game has a dif-
ferent structure and certain elements are crucial to finding the
best solution while other elements are irrelevant/distracting.
Focusing on the distractors and failing to identify the relevant
elements should lead to losing or implementing a suboptimal
solution. For each problem, we manually identified areas us-
ing bounding boxes that we call regions of interest (ROIs, see
Figure 2 for an example). We also include in this section fea-
tures related to green zones.

ROI/green zone information (!3,!4): Similarly to accumu-
lated information, this feature corresponds to how much of
ROIs were illuminated by the cursor. We computed the same
measure for green zones separately.

Time spent in ROIs/green zones (!5,!6): This feature
serves as a proxy for time spent processing relevant elements
of the scene. It is computed as the number of time steps spent
looking at ROIs relative to the total time spent finding a so-
lution. Again, we compute the same measure for green zones
separately.

Number of switches between ROIs and green zones (!7):
This feature represents the number of times the participant
switched between looking at the different regions, consider-
ing the combined set of ROIs and green zone regions. We
count mouse movements between ROIs and green zones as
switches if they occurred in 1s or less.
Outlier mouse movement. It is a characterizing aspect
of insight moments that they are sudden and unpredictable
(Danek, 2018; Ohlsson, 1992). Thus, we hypothesized that
this suddenness could be captured using outlier mouse move-
ments. Mouse movement was quantified as the distance the
cursor moved between each frame. Analyses of mouse data
suggested that mouse movement from frame to frame was ex-

Table 1: Fixed effects odds ratios and 95% confidence inter-
vals for full mixed effects model
Signif. codes: ’***’: p < 0.001 and ’**’: p<0.01

OR 2.5% 97.5%
Acc. information** (!1) 0.73 0.58 0.92
Initial search*** (!2) 1.56 1.29 1.89
Green zone information (!3) 1.15 0.96 1.40
Time spent in ROIs*** (!5) 1.68 1.33 2.11
Time spent in green zones (!6) 0.89 0.70 1.10
Number of switches (!7) 1.21 0.95 1.60
Percentile largest mouse move-
ment (!8)

1.17 1.00 1.89

ponentially distributed. Thus, for every participant’s mouse
data, we fit an exponential distribution and identified as out-
liers any value in the top 2.5%. We only consider the last 10
seconds of a trial.

Percentile of largest mouse movement in the last 10 sec-
onds (!8): This feature corresponds to how extreme the
largest mouse movement was in the last 10 seconds.

Number of outlier mouse movements into and out of
ROIs/green zones in the last 10 seconds of the trial (!9,!10):
This feature quantifies how many outlier movements in the
last 10 seconds of a trial were from or into ROIs or green
zones, separately.

Regression models. All features used for statistical model-
ing were z-scored. We fit a mixed effects logistic regression
model with random intercepts for problem and participant
predicting insight. Log likelihood ratio tests found signifi-
cant effects of accumulated information (!1), ∀2(1) = 7.70,
p < .01, initial search (!2), ∀2(1) = 20.71, p < .001 and time
spent in ROIs (!5), ∀2(1) = 19.02, p < .001. All other fixed
effects were not found to be significant. We report odds ra-
tios for all effects which were found to increase or decrease
odds by more than 10% (see Table 1). Odds ratios are ob-
tained by computing the inverse natural logarithm of the log
odds for each predictor. Inspecting odds ratios of the signif-
icant fixed effects, we found that time spent in ROIs has the
strongest positive effect, increasing odds of reporting an in-
sight by 1.67 for each unit (1 SD) of increase of the predictor.
Similarly, the odds of reporting an insight increase by 1.56 for
every unit of increase of initial search. Conversely, accumu-
lated information was found to decrease the odds of reporting
an insight by 0.73 for every unit of increase.

Inspecting random effects, we find that baseline (i.e., all
features held equal at mean value) probability of insight for
95% of participants (SD=0.89) lies in the interval (0.08, 0.74)
suggesting that some participants almost never report an in-
sight while others do so very often. Additionally, we find that
problem random intercepts explain some of the variance in
odd of reporting an insight (SD=0.53).

In Table 2, we report within-sample model accuracy and F1
scores. F1 scores measure predictive accuracy by accounting
for both precision and recall. A log likelihood ratio test con-



Table 2: Model accuracy comparisons
Accuracy F1

Fixed effects only 69.4% 0.50
Participant random inter-
cepts

76.5% 0.61

Mixed effects model 77.6% 0.66

firms a statistically significant fit of the mixed effects logis-
tics regression model compared to a fixed effects only model,
∀2(2) = 43.47, p < .001. We observe strong random effects
of participant resulting in an increase of 7.1% in predictive
accuracy compared to the fixed effects only model. Finally,
we find a marginal increase in predictive accuracy when we
include our full set of features compared to the random inter-
cepts only model.

Since insight and winning are tightly related (that is, in our
task many insights result in winning), we wondered whether
any features could predict insight even amongst those who
won. Thus, we ran regressions that fit to the successful tri-
als only. This subset of data contains 44% of the training set
(417 trials). The insight report rate for this subset was found
to be 74%, which is much higher than that of the full data
set. Since a static solution was implemented in nearly all suc-
cessful trials, we truncated the data at the time point when
the static solution was implemented. We fit a mixed effects
logistic regression on this subset with an additional predic-
tor: whether the solution was optimal or not. To determine
optimality of implemented solutions, we algorithmically ver-
ified for each trial that, within some margin of error, all balls
were redirected to green zones for at least 5 seconds from
the end of truncated trials. Likelihood ratio tests found sig-
nificant effects of initial search (!2), ∀2(1) = 4.44, p < .05,
percentile of the largest mouse movement in the last 10s of
a (truncated) trial (!8), ∀2(1) = 10.67, p < .01, and optimal
solution, ∀2(1) = 9.22, p < .01. The strongest predictor of
insight was optimality, increasing the odds of reporting an in-
sight by 5.79. The percentile of the largest mouse movement
was also found to be a strong predictor of insight, increasing
the odds by 2.17. Interestingly, this model suggests that for
successful trials, there is no variability between problems in
odds of insight.

Discussion

We find that our best statistical model predicts insight with an
accuracy of 77.6% on our training set. As is typical in psy-
chological experiments, individual variability is one of the
strongest contributors to predictive accuracy for our tasks.
Nonetheless, we identify several significant predictors of in-
sight in our task. We find that time spent in ROIs is the
strongest predictor of insight in our main mixed effects logis-
tic regression. Given that ROIs capture the relevant elements
of each problem, it is expected that participants that spent
more of their time looking at ROIs are likely to have found a
solution and this may have resulted in an insight. Our model
also suggests that differences in strategy lead to different out-

comes in insight reports. Initial search, which corresponds to
time spent gathering information about the problem, is posi-
tively predictive of reporting an insight. A potential explana-
tion is that participants that spend a lot of time searching be-
fore acting don’t initially find the solution obvious and/or are
searching for a solution in a directed manner. Given that this
feature is also significant in the model fit on successful trials
only, it is disambiguated from solely predicting success. This
supports our hypothesis that it is predicting insight because
success was preceded by not knowing immediately what the
solution was. Counter to our initial hypothesis, we find that
accumulated information is a negative predictor of insight. A
large proportion of each problem is empty space that has no
relevance to the solution. Although still unclear, participants
that uncover the full scene may also be those that are search-
ing for clues in irrelevant regions because they have not found
a solution. Finally, in the model fit on successful trials only,
we find that participants that found an optimal solution are
substantially more likely to report an insight. This result sug-
gests that optimal solutions in our problems appear less ob-
vious to participants. Accordingly, when such solutions are
found, they are likely to have been found as a result of an
insight.

These results only begin to uncover the behavioral sig-
natures of insight that will allow us to characterize insight
problem-solving computationally. Although we achieve rel-
atively good accuracy at predicting insight, more research
is required to disambiguate the different sources of insight.
A limitation of the current work is that our analyses relied
on participant self-reports without reference to an indepen-
dent measure of insight such as strategy change within a trial
which is difficult to capture because of the complexity of the
dynamics of our task.

Although our ultimate goal is to define insight separately
from the subjective experience that people report post-hoc,
we believe that the current approach is a first step to under-
stand the cognitive underpinnings of insight problem-solving.
Despite the difficulty of observing and studying this covert
cognitive phenomenon, our real-time problem-solving task
seeks to expose aspects of this behavior. We use the high-
resolution data generated by participants to develop a predic-
tive model of insight and find behavioral traces that are signif-
icant predictors of insight. These features suggest ingredients
necessary for a computational model of insight which will ul-
timately lead to an improved understanding of the flexibility
of human problem-solving ability.
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Allen, K. R., Brändle, F., Botvinick, M., Fan, J., Gershman,
S. J., Gopnik, A., . . . al., E. (2023, February). Using games
to understand the mind. doi: 10.31234/osf.io/hbsvj

Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2020,
November). Rapid trial-and-error learning with simulation
supports flexible tool use and physical reasoning. Proc.
Natl. Acad. Sci. U. S. A., 117(47), 29302–29310. doi:
10.1073/pnas.1912341117

Berckley, J., & Hattie, J. (2023, September). Making learning
visible: Observable correlates of the aha! moment when
moving from surface to deep thinking. J. Creat. Behav.,
57(3), 439–449. doi: 10.1002/jocb.589

Brändle, F., Binz, M., & Schulz, E. (2021, February). Explo-
ration beyond bandits. doi: 10.31234/osf.io/9fnmj

Chronicle, E. P., MacGregor, J. N., & Ormerod, T. C. (2004,
January). What makes an insight problem? the roles
of heuristics, goal conception, and solution recoding in
knowledge-lean problems. J. Exp. Psychol. Learn. Mem.
Cogn., 30(1), 14–27. doi: 10.1037/0278-7393.30.1.14

Danek, A. H. (2018, March). Magic tricks, sudden restruc-
turing, and the aha! experience. In Insight (pp. 51–78).
Routledge. doi: 10.4324/9781315268118-4

Duncker, K., & Lees, L. S. (1945). On problem-solving.
Psychol. Monogr., 58(5), i.

Gilhooly, K. J., & Murphy, P. (2005, August). Differentiating
insight from non-insight problems. Think. Reason., 11(3),
279–302. doi: 10.1080/13546780442000187

Jones, G. (2003, September). Testing two cognitive theo-
ries of insight. J. Exp. Psychol. Learn. Mem. Cogn., 29(5),
1017–1027. doi: 10.1037/0278-7393.29.5.1017

Knoblich, G., Ohlsson, S., & Raney, G. E. (2001, October).
An eye movement study of insight problem solving. Mem.
Cognit., 29(7), 1000–1009. doi: 10.3758/bf03195762

Kounios, J., & Beeman, M. (2014). The cognitive neuro-
science of insight. Annu. Rev. Psychol., 65, 71–93. doi:
10.1146/annurev-psych-010213-115154

Maier, N. R. F. (1930, April). Reasoning in humans. i.
on direction. J. Comp. Psychol., 10(2), 115–143. doi:
10.1037/h0073232

Newell, A., & Simon, H. A. (1972). Human problem solving.
Ohlsson, S. (1992). Information-processing explanations of

insight and related phenomena. Advances in the psychology
of thinking, 1, 1–44.

Ollinger, M., Jones, G., & Knoblich, G. (2008). Investigating
the effect of mental set on insight problem solving. Exp.
Psychol., 55(4), 269–282. doi: 10.1027/1618-3169.55.4
.269
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