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Abstract

A detailed model of the outside world is an essential ingredient
of human cognition, enabling us to navigate, form goals, exe-
cute plans, and avoid danger. Critically, these world models are
flexible—they can arbitrarily expand to introduce previously-
undetected objects when new information suggests their pres-
ence. Although the number of possible undetected objects is
theoretically infinite, people rapidly and accurately infer un-
seen objects in everyday situations. How? Here we investigate
one approach to characterizing this behavior—as nonparamet-
ric clustering over low-level cues—and report preliminary re-
sults comparing a computational model to human physical in-
ferences from real-world video.
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Introduction

Extracting meaning from the noisy data provided by our
senses requires an inferential leap from sensations to under-
standing, classically modeled as a process of Bayesian infer-
ence (Helmholtz & Southall, 1925; Kersten, Mamassian, &
Yuille, 2004; Mansinghka, Kulkarni, Perov, & Tenenbaum,
2013). The goal of this inference is a coherent and generally
accurate model of the world, one that can support planning
(Craik, 1943), physical reasoning (Gentner & Stevens, 2014),
and logical inference (Johnson-Laird, 1980). The challenge
is that building an accurate model of our environment is not
always straightforward. Even in the best case, where all the
relevant objects are in plain view, we must still identify them
across the infinite variations in how they could appear to our
senses (Biederman, 1987). Often, the picture is even bleaker:
whether by shadow, occlusion, or haze, some relevant objects
are not visible at all, and can only be inferred.

Clever experiments like those depicted in Figure 1 have
shown how we can effortlessly determine a great deal about
even hidden or invisible objects. In these examples, the ob-
jects or agents are not sensed directly, and yet we recog-
nize them by the physical effects they have on the world
around them. Such inferences are not limited to the labo-
ratory, but happen regularly in everyday life: when your sil-
verware drawer won’t close, you can infer that a misplaced
spoon is in the way.

These examples highlight two critical properties of our
world models: first, rather than being limited to a fixed set
of known objects, they are expandable, able to accommodate
additional hidden entities when required in order to account

Figure 1: Selection of stimuli from previous studies of object
inference. (a and b) Only a cloth is visible in each panel, yet
it is clear that two other objects are present, and that one is a
chair (Yildirim et al., 2016). (c) An object the same color as
its background can nevertheless be clearly perceived when it
moves in front of other objects, occluding and revealing them
in turn (Palmer et al., 2006). (d and e) After seeing a beanbag
fly over a wall from the right, even infants infer that an agent
was responsible, and expect to see a hand emerge on the right
side rather than the left (Saxe et al., 2005).

for new observations. Second, the information used to sup-
port such inferences can make use of physical intuitions (e.g.,
of the way cloth drapes, or the way objects fall). How do
these properties enable us to discover objects?

Hidden object discovery as latent causal inference

To discover a hidden object is to infer an explanation—a
latent cause of the data we observe (Shams & Beierholm,
2010). “What object could cause the particular draping in
Figure 1B?” we might ask, and propose a chair as the an-
swer. Our physical reasoning abilities let us generate candi-
date causes and predict their likely effects, yielding plausible
explanations for otherwise puzzling observations (Yildirim et
al., 2016; Gerstenberg, Siegel, & Tenenbaum, 2021).

In particular, we generate new explanations when our cur-
rent models can’t explain the data we observe. We know cloth
doesn’t support itself, and that inanimate objects don’t ran-
domly disappear or propel themselves over walls, so when
they seem to do so, we decide that something else must be
behind this behavior and start to seek out a suitable explana-
tion (Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018).

While a great deal of progress has been made in recent
years toward understanding human inference in physical rea-
soning (Kubricht, Holyoak, & Lu, 2017), such efforts have
generally focused on prediction and inference over already-
known objects. Even models that infer latent properties like
mass and friction (Battaglia, Hamrick, & Tenenbaum, 2013;



Figure 2: (a) The experimental setup. On each trial, a video of an actual physical pendulum looped continuously as participants
selected the holes that they thought contained pegs. (b) Proportion of trials where the precisely correct peg(s) were selected,
split into trials with one peg or two. Dashed lines show chance level, error bars are bootstrapped 95% confidence intervals. (c)
Heat map showing distance between each response and the correct answer, which is centered at (0,0).

Ullman et al., 2018) do not generally address the discovery of
new objects (though see Carroll & Kemp, 2015).

On what basis can people infer such latent causes? One
way would be to mentally simulate all the possible causes and
select the one whose simulated consequences best match the
data actually observed (Yildirim, Siegel, Soltani, Ray Chaud-
huri, & Tenenbaum, 2024). Situations with a very large num-
ber of possible causes, though, might be intractable without
more bottom-up processing. Here we propose one possible
strategy: When one solid object interacts with another, the
motion of each object is generally different before, during,
and after the interaction. We suggest that these natural bound-
aries may form distinct “clusters” in time that the mind can
leverage to make inferences about the parameters of the inter-
action.

We assess the viability of this idea in two ways: first we
report a behavioral experiment where participants had to infer
the number and position of hidden objects on the basis of
their interactions with visible objects. Second we propose
a novel computational model that takes as input raw video
of the motion of real-world objects and infer the number and
properties of latent causes in a scene. We compare multiple
variants of the model that rely on distinct low-level cues in
order to better understand this cognitive ability.

Experiment

For our experiment we recorded videos of actual physical
scenes. We then occluded portions of the video and asked par-
ticipants to “fill in” the missing aspects of the scene (related
to a popular task in computer vision known as “inpainting”).
The only basis for filling in these details is to infer something
about how the occluded objects might influence the behavior
of visible ones. Our goal was to elicit inferences of hidden
objects that were easy enough to tap into our everyday physi-
cal reasoning abilities, but not so easy that participants would
be at ceiling. In addition, we wanted the method of respond-
ing to admit to easy quantitative analysis.

Methods

Participants We recruited 450 participants from Prolific,
who were paid $2 each for participating in the experiment
(which took approximately 8 minutes). Participants were ex-
cluded if they did not complete the task and correctly answer

both catch trials (see below), or if they responded implausi-
bly quickly (within four seconds), leaving N=367 after ex-
clusions. We did not exclude for poor performance on the
main task, as establishing baseline human performance was
one aim of the experiment.

Stimuli Participants watched 1080p, 30-frame-per-second
videos of a real physical pendulum swinging in front of a
wooden peg board (see Figure 2a). A peg in the top middle
of the board, out of frame of the camera, served as an an-
chor—one end of a piece of black string was attached to the
anchor peg, and the other end to a steel ball approximately 2
cm in diameter. The length from the anchor peg to the center
of the ball was approximately 50 cm. A central rectangu-
lar region 15 holes wide and 11 holes tall was photographed
and later digitally superimposed on each video to act as an
occluder. Pegs were placed within the occluding region but
never in the holes along its edge (where their shadows would
have been visible). This left 117 distinct peg placement loca-
tions. Each video had either one or two pegs in the occluded
region. There were 117 one-peg videos (one for each peg lo-
cation) and 117 two-peg videos (sampled randomly from the(117

2
)
= 6786 arrangements of two pegs) for a total of 234

videos. In each video, the pendulum was set swinging by
hand such that the string contacted the occluded pegs dur-
ing part of its motion. Finally, the videos were trimmed to
show one complete period of the pendulum (approximately
one second), so that they could seamlessly loop for the dura-
tion of each trial.

Task Participants watched the videos and selected the
hole(s) which they thought contained pegs. A demo of the
task as shown to participants can be accessed here. The task
took approximately 8 minutes and participants were paid $2,
with a potential $1 bonus for performance. After an instruc-
tion phase, participants were shown videos like the one de-
picted in Figure 2a and selected peg locations by clicking
on the corresponding hole (without time pressure). Clicking
would superimpose an image of a placeholder peg, and click-
ing again would remove the placeholder. In this way, partici-
pants could refine their estimates of the peg location(s) before
submitting the trial. Each participant completed 26 trials, in
addition to two catch trials where the occluder was absent (so
the task became trivial—“click on the visible peg”).

https://gureckislab.org/papers/#/ref/little2024objectdiscovery


Figure 3: Mean accuracy across videos, sorted. Green bars represent videos with only one peg, blue bars represent videos with
two pegs. Heat maps and still frames are shown for some example videos. The slightly darker region within each still frame
shows the region that was occluded to participants. The string and ball are visible in these examples but were occluded within
the dark region for subjects. Superimposed on the videos are colored circles, where size of each circle is proportional to the
number of participants who selected that hole. Green circles represent participants who selected only one hole on that video
and blue circles represent participants who selected two holes.

Results

A summary of results for all 367 included participants is
shown in Figure 2. While absolute accuracy was low (see
Figure 2b), success on a trial required selecting the one cor-
rect location out of 165 options—a high bar, and made even
higher when there were two pegs. Further, since participants
did not know the number of pegs present, the the number
of possible answers is—in principle—2165 → 5↑ 1049. Par-
ticipants therefore performed reliably above chance, and as
can be seen in Figure 2c, even their incorrect responses were
tightly clustered around the correct position, with slightly
more variance in the y dimension than the x.

Figure 3 shows the striking variation in difficulty across
videos and the patterns of errors that participants made.
Videos with only one peg naturally had much higher accuracy
overall (selecting one peg instead of two means half as many
opportunities for error), and the two-peg videos with greater
accuracy tended to feature pegs near the bottom or sides of
the occluding region.

Some patterns of performance are less obvious. For exam-
ple, the highest-accuracy video (far left of Figure 3) features
a single peg in the upper left corner of the occluded area,
not that far from the peg position in one of the videos which
no one answered correctly (far right of Figure 3). Across all
the videos, many features contribute to difficulty including
distance from the edge of the occluded region and time the
string spends in contact with the peg. One goal for our com-
putational model is to capture some of what accounts for the
variation in human difficulty across videos.

Computational Model

Participants in our experiment detected unseen objects reli-
ably above chance, despite the large number of possibilities
that the task admitted. At the same time there was substan-
tial variation in performance for different stimuli. How might
the mind make reasonable inferences in so large a hypothe-
sis space and what might explain these variations in perfor-
mance?

We propose that while watching a scene, people estimate
cues, derived in part from their physical understanding of the
world, and track the evolution of those cues over time. Clus-
tering of these cues in time provides evidence for the exis-
tence of latent causes (in this case, objects). To accomplish
this clustering, our approach leverages the power of Bayesian
nonparametric models (Anderson, 1991; Sanborn, Griffiths,
& Navarro, 2006; Kemp, Tenenbaum, Griffiths, Yamada, &
Ueda, 2006; Gershman, Blei, & Niv, 2010; Gershman, Nor-
man, & Niv, 2015). A critical feature of these models is that
they have no fixed capacity. Where a fixed-capacity model
might consider n possible causes for each new observation,
a nonparametric model always reserves some probability that
none of the previously considered causes is the right one, and
that a new cause must be added. In this way, such models can
grow in complexity just as much as the data demand.

In the following section we describe the input to the model,
the model structure, the inference procedure, and then turn to
results (see Figure 4 for an overview).

Preprocessing

The first step in applying the model requires extracting lower-
dimensional representations of the video frames. In particu-
lar, we are interested in structural features like the ball po-
sition and string angle, which are relevant for estimating the
ultimate quantity of interest (peg positions). Building our in-
ferences up from raw video is inherently noisy, but we see
this noise as a virtue of our approach.

As it is grounded in real-world video, the model works
with data that has similar noise characteristics to what hu-
mans face. By contrast, much of the work on human intu-
itive physics employs artificial renderings of objects in sim-
ulation software (Battaglia et al., 2013; Smith, Battaglia, &
Vul, 2013; Ullman et al., 2018). In physics simulators, the
“ground truth” position of each object can usually be read
out directly and passed into an inference model (perhaps with
added perceptual noise). Here, our estimates of the proper-
ties of the scene are limited to what can be extracted from
a video, and the model has to make do with the same im-



Figure 4: (Top) Schematic of processing steps in the model. (1) Raw video frame. (2) Ball and string isolated from the
background. (3) Idealized ball and string fit to isolated region. (4) Cue applied to evaluate likely peg positions (here, the “both
segments” cue). (5) Peg location distribution refined over frames. (6) Discrete response location sampled from the location
distribution. (Bottom) The three cues to peg position evaluated under the model. (a) Extrapolating the both visible segments of
the string. (b) Extrapolating only the lower segment of string. (c) Identifying the center of the circle traced out by the ball.

perfect recordings (featuring glare, lens distortion, etc.) that
the participants saw. Similarly, the physical dynamics of our
videos necessarily include all the nuisance factors (e.g., fric-
tion, slipping, air currents, manufacturing imperfections) that
are often ignored by physics simulators.

Here, we preprocessed the original video files to extract the
positions of the ball and visible string segments in each frame
(see Figure 4 for examples at each stage). We first used the
Segment Anything model (Kirillov et al., 2023) along with
morphological image processing operations to remove rem-
nants of the background image. This left reasonably accurate
masks of the ball and string, which were then fit with a sim-
ple model of a disk and two string segments using the SciPy
implementation of Powell’s method (Powell, 1964; Virtanen
et al., 2020). Finally, we superimposed the best fitting param-
eterizations on the videos and, where any discrepancies were
noticeable, adjusted the parameters to better match the video
(approximately 10% of the videos had at least one frame ad-
justed by hand). An example of a fitted frame is shown in
Fig 4-3.

Low-level cues

After the preprocessing steps (1-3 in Figure 4), the model is
equipped with estimates of the ball and string positions. At
this point an ideal rational analysis for this problem could
make use of a huge number of regularities in a video (cues)
to infer the peg position. For example, because the period of
a pendulum depends on its length, one could use the time it
takes for the pendulum to complete a portion of its swing to
constrain the possible peg positions, even if the ball is hidden
for a portion of that time. Such a cue would be difficult for
a human to compute, however, and so it is unlikely to play
a major role in human performance. Other cues, though, are
easier to compute—perhaps even in real time by low-level
perceptual processes. Here we focus on this latter sort of cue,
which we feel are a more natural substrate for a model of
everyday physical inferences.

Foundational work in visual perception has investigated the
complex ways we extrapolate contours into sensible shapes
(Kellman & Shipley, 1991) and revealed how the visual sys-
tem makes use of detailed kinematic cues, which can even be
sophisticated enough to discover invisible objects, as in Fig-
ure 1C (Palmer et al., 2006). We suggest that a similar cue
might be at work here. For example, people might assume
that a string under tension will be straight unless it comes
into contact with a solid object, such that any misalignments
in the visible segments of string are evidence of an object at
their intersection point (Figure 4-a). A cue like this could
be implemented as a conscious strategy but could also reflect
more basic principles of perceptual processing, like good con-
tinuation.

The fact that a bending string implies contact with a surface
is only one way to use physics to infer the presence of an
object—here we also consider two more cues. We can find
the point of intersection using only the lower string segment
and integrating across multiple frames (Figure 4-b). Lastly,
we can infer that a peg is located at the center of the imaginary
circle traced out by the ball as it swings (Figure 4-c; note that
for a peg with radius greater than zero, the actual path of the
ball is not a perfect circle but an involute of a circle).

Each of these is a physically accurate and computation-
ally plausible method to infer the hidden pegs, but some may
be more reliable under real world noise conditions, such that
reliance on different cues might lead to different patterns of
behavior. One goal of our model is to approximate the entire
inferential process—taking in real world video data and oper-
ating over that input according to distinct cues, to find if any
are more likely than others.

Nonparametric model

Following (Gershman et al., 2010), we treat the problem of
attributing different observed cues to different latent causes
as a clustering problem over an unknown number of clusters,
and apply a Dirichlet process mixture model. Interestingly,



Figure 5: Model inferences: blobs indicate likely peg positions under each cluster, and x’s indicate the cluster assignment of
the observation that happened when the ball was at that position. (a) Cluster likelihood and assigned observation partitions for
different frame numbers as a video unfolds. (b) Final likelihoods (faint) and partitions from the same video for the three cues.

the design of our task very naturally aligns with the structure
of a mixture model. At each point in time, the string is in
contact with one or more pegs, and the peg farthest down the
string acts as a pivot point of a pendulum. As a result, the
entire system evolves as a mixture of pendula with different
lengths. For example, a pendulum might swing around the
top peg for some part of its overall period and then, when
the string hits another peg, it begins to act as a new, shorter
pendulum for a while, before returning to swing around the
top peg. The goal of the model then is to partition the video
frames based on their different latent causes—here, the hid-
den pegs.

Table 1: Model parameters

Parameter Description Free?
! cluster concentration Free
∀ lapse rate Free
#R response error Free
#O observation error Fixed
(µx,µy,µr) peg prior means Fixed
(#x,#y,#r) peg prior sds Fixed

Model inference

We estimate the model using a particle filter. The particle
filter consists of m particles, which each maintain a running
partition ccc of the t video frames presented so far, assigning
them to as many as t different clusters. For example, after six
frames, one particle might have ccc = [1,1,1,2,2,1]—that is, it
has assigned frames 1, 2, 3, and 6 to one cluster, and frames 4
and 5 to a second cluster. See Figure 5 for examples of frames
assigned in this way.

The first frame is always assigned to the first cluster, i.e.,
when t = 1, all m particles are set to ccc = [1]. On each sub-
sequent frame1, the prior probability that frame i will be as-

1Note that the model only updates on frames where the ball or
string segment are visible—on some frames, they pass behind the
occluder entirely. Because the ball is the last part to disappear behind
the occluder, the circle center model is given more observations over
which to find the peg (see the colored x’s in Figure 5).

signed to cluster k is given by

P(ci = k) =

{
Nk

i+! if k is old
!

i+! if k is new,

where Nk is the number of observations already assigned to
cluster k, and concentration parameter ! reflects a prior belief
about the distribution of clusters. When ! = 0, all frames are
assigned to cluster 1, and when !=∃, each frame is assigned
to a different cluster.

The particles are weighted and resampled (with replace-
ment) after each frame, so that the weight wl,t of particle l
at time t is proportional to the likelihood of observation ot
given the particle’s cluster assignments and the previous ob-
servations:

wl,t % P(ot |cccl,t ,ooo1:t↓1),

where cccl,t is the vector of cluster assignments of particle l at
time t.

Before any observations have been assigned to it, each
cluster begins with a Gaussian likelihood over the three di-
mensions x, y, and r, where (x,y) is the position of the peg.
For the “both segments” and “lower segment” cues, r is the
radius of the peg itself, and for the “circle center” cue, r is
the radius of the near-circle traced out by the ball as it makes
contact with that peg. Informally, the likelihood of a given
observation O is how “compatible” it is with each possible
value of (x,y,r), weighted by the value of the likelihood at
that point. For the circle center cue, that is:

P(ot |cccl,t ,ooo1:t↓1) %
∫

x,y,r
P(x,y,r)

1
#O

&
(
||ot ↓ (x,y)||2 ↓ r

#O

)
,

where &(·) is the probability density function of the stan-
dard Gaussian distribution, || · ||2 is the Euclidean norm, and
#O is the observation error, a free parameter of the model
which acts as a sort of Gaussian kernel. See Figure 5 for plot-
ted examples of likelihoods.

The likelihoods for the segment cues are defined simi-
larly, where the distance measure is the distance from the



Figure 6: (a) Comparison of participant-level fits under each of the three cues. Each dot represents a single participant. Asterisks
indicate a difference under Tukey’s honest significance test. (b, c, d) Comparison of lower segment model and human results.
Each dot represents the mean for a single video. Distances (d) only for videos with one peg. Human means are computed across
participants, and model means across 20,000 samples from 10 runs (see text).

line(s) traced by the segments. Observations are assigned
to clusters in proportion to their posterior probabilities, and
once assigned, the values of the peg location likelihoods for
each cluster are re-weighted based on how compatible they
are with the new observation. In practice, we approximate
these likelihoods with another particle filter, sampling (x,y,r)
points from the prior, re-weighting them, and resampling
them (in proportion to P(x,y,r|OOO1:t) with each new observa-
tion.

Modeling guesses about peg location

To sample a response (a guess as to the location of each peg
in the video) from the model, we generate a peg location from
each cluster one at a time. First, we find the likelihood of each
grid position under the first cluster, applying another Gaus-
sian kernel governed by a response error parameter, #R, to
form a probability mass function. Next we sample a peg po-
sition in proportion to these probabilities, and repeat for each
remaining cluster. Another model parameter, lapse rate ∀, de-
termines the (independent) probability that each cluster will
be skipped during this process. To evaluate the likelihood
of a response, we calculate its likelihood under the probabil-
ity mass functions of the clusters, accounting for the lapse
rate. Because the integrals are approximated and the cluster
assignments are probabilistic, the model will provide slightly
different samples for different random seeds. To average out
this variation, we repeat the response sampling procedure for
20 model runs, and take the average likelihood of responses
over the runs.

Preliminary model evaluation

To evaluate how the three different cues (both segments,
lower segment, and circle center) compare under the model,
we fit the model independently using each of them. For all
these evaluations, we chose a random sample of 130 partici-
pants (approximately 1/3 after exclusions), to reduce the com-
putational cost. For this preliminary evaluation the model had
three free individual-level parameters, ! (clustering proba-
bility), ∀ (lapse rate), and #R (response error), holding the
other parameters fixed. Using Optuna (Akiba, Sano, Yanase,
Ohta, & Koyama, 2019), we efficiently sampled parameter

values, ran the model for each of the videos that a single par-
ticipant had seen, and evaluated the likelihood of that par-
ticipant’s responses under the model. The parameter values
with the highest likelihoods (lowest negative log likelihoods)
were kept, and the distributions of negative log likelihoods
were compared (see Figure 6a). In brief, the models using the
“both segments” and “lower segment” cues outperformed the
model using the “circle center” cue (the different cue models
had the same number of parameters, so negative log likeli-
hoods are an appropriate metric for comparison).

As an additional check, we also simulated responses to see
how well the model was able to capture some other aspects of
human behavior. We chose one of the two better-performing
models (the lower segment model) and used the participant-
level maximum-likelihood parameter values to sample 20,000
responses, 20 times per participant, for each of the 130 par-
ticipants separately. Then we measured the model’s accuracy
(did they select the exact correct peg?), peg count, and dis-
tance from the correct peg. A comparison to the relevant hu-
man data shown in Figure 6b-d. While the model accuracy
was lower overall, it tended to perform better on those videos
where participants also had higher accuracy. Comparing the
distance between the guessed and correct peg positions on the
one-peg videos, however, highlights a limitation: while the
model can explain some of the variance between one-peg and
two-peg videos, it does not well explain the variance within
the one-peg videos (Figure 6d).

Discussion

Here we described a flexible method for modeling object dis-
covery, combining nonparametric models with simple per-
ceptual cues to infer latent causes in an intuitive physical rea-
soning task. In this work, both our model and human partic-
ipants made judgments on the basis of raw, real-world video,
with all the associated noise and imperfections that are not
typically present in idealized physical simulations. Future
work will evaluate the model on a wider variety of physi-
cal inference tasks (such as inferring hidden surfaces from
collisions) and directly compare the present model with alter-
natives grounded in mental simulation.
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