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Abstract
We study algorithms for approximating the spectral density (i.e., the eigenvalue distribution) of a symmetric

matrix A ∈ Rn×n that is accessed through matrix-vector product queries. Recent work has analyzed popular
Krylov subspace methods for this problem, showing that they output an ϵ · ∥A∥2 error approximation to the
spectral density in the Wasserstein-1 metric using O(1/ϵ) matrix-vector products. By combining a previously
studied Chebyshev polynomial moment matching method with a deflation step that approximately projects off
the largest magnitude eigendirections of A before estimating the spectral density, we give an improved error
bound of ϵ · σℓ(A) using O(ℓ log n+1/ϵ) matrix-vector products, where σℓ(A) is the ℓth largest singular value
of A. In the common case when A exhibits fast singular value decay and so σℓ(A) ≪ ∥A∥2, our bound can
be much stronger than prior work. We also show that it is nearly tight: any algorithm giving error ϵ · σℓ(A)
must use Ω(ℓ+ 1/ϵ) matrix-vector products.

We further show that the popular Stochastic Lanczos Quadrature (SLQ) method essentially matches the
above bound for any choice of parameter ℓ, even though SLQ itself is parameter-free and performs no explicit
deflation. Our bound helps to explain the strong practical performance and observed ‘spectrum adaptive’
nature of SLQ, and motivates a simple variant of the method that achieves an even tighter error bound.
Technically, our results require a careful analysis of how eigenvalues and eigenvectors are approximated by
(block) Krylov subspace methods, which may be of independent interest. Our error bound for SLQ leverages
an analysis of the method that views it as an implicit polynomial moment matching method, along with recent
results on low-rank approximation with single-vector Krylov methods. We use these results to show that the
method can perform ‘implicit deflation’ as part of moment matching.

1 Introduction
Spectral density estimation (SDE) is a fundamental task in computational linear algebra. Given a symmetric
matrix A ∈ Rn×n with eigenvalues λ1(A), . . . , λn(A), the goal is to approximate A’s eigenvalue distribution (i.e.,
its spectral density) sA, which is the distribution that places probability mass 1/n at each of A’s n eigenvalues.
Formally, letting δ(·) be the Dirac delta function,

sA(x) =
1

n

n∑
i=1

δ(x− λi(A)).(1.1)

Understanding sA can provide important information about the input matrix A. To what degree does it exhibit
low-rank structure (i.e., have a decaying eigenvalues)? How close is the spectrum, or some part of the spectrum,
to that of a random matrix? Does A have many repeated or nearly repeated eigenvalues that may indicate
anomalies or other interesting structure? As such, spectral density estimation is applied throughout the sciences
[Ski89, SR94, STBB17, SRS20], network science [FDBV01, EG17, DBB19], machine learning and deep learning
in particular [RL18, PSG18, MM19, GKX19], numerical linear algebra [DNPS16, LXES19], and beyond.

The spectral density sA can be computed directly by performing a full eigendecomposition of A, in O(nω)
time, for ω ≈ 2.37 being the exponent of fast matrix multiplication [Par98, PC99, DDH07]. However, when A
is very large, or in settings where A can only be accessed through a small number of queries, we often seek an

∗University of Massachusetts Amherst. Email: rbhattacharj@cs.mass.edu.
†Google Research. Email: rkjayaram@google.com
‡University of Massachusetts Amherst. Email: cmusco@cs.mass.edu.
§New York University. Email: cmusco@nyu.edu
¶JPMorgan Chase. Email: archan.ray@jpmchase.com

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2693

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



approximation s̃A, such that s̃A and sA are close in some metric. In this work we will focus on the Wasserstein-1
(i.e., earth mover’s) distance, W1(sA, s̃A), which has been studied in a number of recent works giving formal
approximation guarantees for SDE [CSKSV18, CTU21, BKM22, CTU22, JMSS23, JKM+24]. When s̃A is the
uniform distribution over approximate eigenvalues λ̃1(A), . . . , λ̃n(A), and when we order both sets of eigenvalues
in decreasing order, W1(sA, s̃A) = 1

n

∑n
i=1 |λi(A)− λ̃i(A)|. I.e., it is the average absolute error of our eigenvalue

estimates. More generally, when s̃A is any distribution, W1(sA, s̃A) is the minimum cost of transforming sA into
s̃A, where moving probability δ from x to y incurs cost δ · |x− y|.

1.1 Matrix-Vector Query Algorithms for SDE Given its practical importance, efficient algorithms for SDE
have been widely studied [BRP92, Wan94, WWAF06, LSY16, CTU21, BKM22]. A large fraction of these methods
operate in the matrix-vector query model : they only access the input matrix A ∈ Rn×n through multiplication
on the left or right with a sequence of (possibly adaptively chosen) query vectors x1, . . . ,xm ∈ Rn. The goal is to
minimize the number of queries m, which typically dominate the runtime cost.

Matrix-vector query algorithms encompass both linear sketching methods (when queries are chosen non-
adaptively) and Krylov subspace methods (when queries are of the form x,Ax,A2x, . . ., for some starting
vector x, or set of starting vectors). Beyond spectral density estimation, they are the dominant algorithms in
practice for many linear algebraic problems, including eigenvalue and eigenvector computation [Par98], low-rank
approximation [HMT11, MM15], linear system solving [LSY98, Saa03], and beyond. Such methods typically have
low-memory overhead, since even when A is very large, they only need to store the outputs of the matrix-vector
products. Further, they can often take advantage of highly optimized software and hardware for matrix-vector
multiplication, including parallel hardware like GPUs, and faster matrix-vector multiplication routines when A
is sparse or structured. Moreover, matrix-vector query algorithms are applicable in settings where A cannot be
efficiently materialized, but can be efficiently multiplied by vectors. This is the case e.g., when A is the Hessian
of a neural network [Pea94, GKX19] or a function of some other matrix that can be efficiently applied to vectors
using e.g., an iterative method [UCS17].

Recently, matrix-vector query algorithms have received significant attention in theoretical work on numerical
linear algebra since in many cases, it is possible to prove (nearly) matching query complexity upper and lower
bounds for central problems like trace estimation [MMMW21], low-rank approximation [SEAR18, BCW22, BN23],
linear regression [BHSW20], structured matrix approximation [HT23, DM23, ACH+24], and beyond [SWYZ21,
NSW22, SW23].

Most state-of-the-art matrix-vector query algorithms for spectral density estimation are Krylov subspace
methods that fall into two general classes.

Moment Matching. The first class of methods approximates sA by approximating its polynomial moments.
I.e., EsA [p(x)] =

1
n

∑n
i=1 p(λi(A)) = 1

n tr(p(A)), where p is a low-degree polynomial. We can employ stochastic
trace estimation methods like Hutchinson’s method [Gir87, Hut90] to approximate this trace using just a small
number of matrix-vector products with p(A) and in turn A, since if p has degree k, a single matrix-vector product
with p(A) can be performed using k matrix vector products with A. After approximating the moments for a set
of low-degree polynomials (e.g., the first k monomials, or the first k Chebyshev polynomials), we can let s̃A be a
distribution that matches these moments as closely as possible, and thus should closely match sA.

Moment matching methods include the popular Kernel Polynomial Method (KPM) [SR94, Wan94, WWAF06]
and its variants [CPB10, LSY16, BKM22, Che23]. Several works also use moment matching to give sublinear
time SDE methods for graph adjacency matrices [CSKSV18, BKM22, JMSS23], leveraging structure to estimate
moments faster than with matrix-vector queries.

Lanczos-Based Methods. The second class of methods computes a small number of approximate eigenvalues
of A using the Lanczos method, and lets s̃A be a distribution supported on these eigenvalues, with appropriately
chosen probability mass placed at each. The canonical method of this form is Stochastic Lanczos Quadrature
(SLQ) [CTU21]. Many other variants have also been studied. Some place probability mass not just at
the approximate eigenvalues, but on Gaussian or other simple distributions centered at these eigenvalues
[LG82, BRP92, LSY16, HHK72].

1.2 Existing Bounds While matrix-vector query algorithms for SDE have been studied for decades, theoretical
guarantees on their approximation error in terms of the distance between the true spectral density sA and the
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approximate density s̃A have only recently been formalized. Braverman et al. [BKM22] analyze a Chebyshev
Moment Matching method, which can be thought of as a simple variant of KPM, showing that the method can
compute s̃A satisfying W1(sA, s̃A) ≤ ϵ · ∥A∥2 with probability ≥ 1− δ using just O(b/ϵ) matrix vector products,
where b = max(1, 1

nϵ2 log
2 1

ϵδ log
2 1

ϵ ). Note that b = 1 in the common case when ϵ = Ω̃(1/
√
n). Here ∥A∥2

denotes the spectral norm of A – i.e., its largest eigenvalue magnitude. They prove a similar guarantee for KPM
itself, but with a worse dependence on ϵ. Chen et al. [CTU21, CTU22] prove that the Lanczos-based SLQ
method gives essentially the same approximation bound: error ϵ ·∥A∥2 using O(1/ϵ) matrix-vector products when
ϵ = Ω̃(1/

√
n).1

The above error bounds for KPM, Chebyshev Moment Matching, and SLQ help to justify the effectiveness of
these methods in practice. However, in many cases, they can be loose. A bound of W1(sA, s̃A) ≤ ϵ · ∥A∥2 roughly
corresponds to estimating each eigenvalue to average error ϵ·∥A∥2. Many matrices however exhibit spectral decay:
most of their eigenvalues are much smaller in magnitude than their largest (i.e., than ∥A∥2). Thus, this error
bound does not guarantee that s̃A effectively captures information about A’s smaller magnitude eigenvalues.

1.3 Our Results Our main contribution is to show that both moment matching and Lanczos based methods
for SDE can achieve improved bounds on W1(sA, s̃A) that depend on σl+1(A), the (l+1)st largest singular value
of A (i.e., the (l + 1)st largest eigenvalue magnitude) for some parameter l, instead of ∥A∥2. For matrices that
exhibit spectral decay and thus have σl+1(A) ≪ σ1(A) = ∥A∥2, our bounds can be much stronger than those
given in prior work.

1.3.1 Improved SDE via Moment Matching with Explicit Deflation Our first contribution is a
modification of the moment matching method of [BKM22] that first ‘deflates’ off any eigenvalue of A with
magnitude significantly larger than σl+1(A), before estimating the spectral density. Specifically, the method
uses a block Krylov subspace method [MM15, Tro18] to first compute highly accurate approximations to the p
largest magnitude eigenvalues of A, for some p ≤ l, along with an orthonormal matrix Z ∈ Rn×p with columns
approximating the corresponding eigenvectors. It uses moment matching to estimate the spectral density of A
projected away from these approximate eigendirections (I−ZZT )A(I−ZZT ), achieving error ϵσl+1(A) since this
matrix has spectral norm bounded by O(σp+1(A)) = O(σl+1(A)) if Z is sufficiently accurate. It then modifies this
approximate density to account for the probability mass at the top p eigenvalues. While block Krylov methods
are well understood for the closely related tasks of low-rank approximation and singular value approximation
[MM15, MNS+18, BN23], our work requires a careful analysis of eigenvalue/eigenvector approximation with these
methods that may be of independent interest – see Section 1.4 for details. Overall, the above approach gives the
following result:

Theorem 1.1. (SDE with Explicit Deflation) Let A ∈ Rn×n be symmetric. For any ϵ ∈ (0, 1), l ∈ [n],
and any constants c1, c2 > 0, Algorithm 1 performs O

(
l log n+ b

ϵ

)
matrix-vector products with A where

b = max
(
1, 1

nϵ2 log
2 n

ϵ log
2 1

ϵ

)
and computes a probability density function s̃A such that, with probability at least

1− 1
nc1

,
W1(sA, s̃A) ≤ ϵ · σl+1(A) +

∥A∥2
nc2

.

As compared to the result of [BKM22], Theorem 1.1 uses O(l log n) additional matrix-vector products – these
are used to compute the approximate top eigenvalues and eigenvectors for deflation. However, the method gives
a significantly improved error bound of roughly ϵσl+1(A). The additive error ∥A∥2/nc2 can be thought of as
negligible – comparable e.g., to round-off error when directly computing sA using a full eigendecomposition in
finite precision arithmetic [BGVKS22].

We further show that our algorithm is optimal amongst all matrix-vector query algorithms, up to logarithmic
factors and the negligible additive error term. Formally:

1Work on eigenvalue estimation [AN13, BDD+24, SW23] can also give guarantees for SDE. However they are generally weaker
than those discussed above. E.g., [SW23] shows how to approximate all eigenvalues of symmetric A to additive error ϵ∥A∥F using
O(1/ϵ2) matrix-vector products, which is optimal. Letting s̃A be the uniform distribution over their approximate eigenvalues, we
obtain the somewhat weak bound of W1(sA, s̃A) ≤ ϵ∥A∥F .
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Theorem 1.2. (SDE Lower Bound) Any (possibly randomized) algorithm that given symmetric A ∈ Rn×n

outputs s̃A such that, with probability at least 1/2, W1(sA, s̃A) ≤ ϵσl+1(A) for ϵ ∈ (0, 1) and l ∈ [n] must make
Ω
(
l + 1

ϵ

)
(possibly adaptively chosen) matrix-vector queries to A.

Theorem 1.2 leverages an existing lower bound for distinguishing Wishart matrices of different ranks, previously
used to give matrix-vector query lower bounds for the closely related problem of eigenvalue estimation [SW23].

Application to Schatten-1 (Nuclear) Norm Estimation. Even for matrices that don’t exhibit spectral
decay, by balancing the O(l log n) and O(b/ϵ) terms we can leverage Theorem 1.1 in applications that require
understanding the small magnitude eigenvalues of A, where previous SDE bounds gave weak results. For example,
consider the estimating the Schatten-1 (nuclear) norm ∥A∥1 =

∑n
i=1 |λi(A)| =

∑n
i=1 σi(A). It is not hard

to show that we can estimate ∥A∥1 to relative error ϵ∥A∥1 given an approximate spectral density s̃A with
W1(sA, s̃A) ≤ ϵ∥A∥1

n (see [CSKSV18], Theorem B.1 in [BKM22]). We can find such a density by applying
Theorem 1.1 with l =

√
n
ϵ and ϵ′ = 1√

n
so that ϵ′ · σl+1(A) ≤ ϵ′∥A∥1

l ≤ ϵ∥A∥1

n . Doing so yields the following
corollary:

Corollary 1.1. (Schatten-1 Norm Estimation) Let A ∈ Rn×n be symmetric. For any ϵ ∈ (0, 1) and any
constant c > 0, there exists an algorithm that performs O

(√
n logn
ϵ +

√
n log4 n

)
matrix vector products with A

and computes M such that, with probability at least 1− 1
nc , |M − ∥A∥1| ≤ ϵ∥A∥1.

Prior work on SDE [CTU21, BKM22] could only give error ϵ
√
n∥A∥2 using a comparable number of matrix-vector

products, and thus was not able to achieve a relative error guarantee. We note that the
√
n dependence of Corollary

1.1 matches the best known matrix-vector product algorithms for Schatten-1 norm estimation [MNS+18], while
the ϵ dependence improves on prior work.

1.3.2 Implicit Deflation Bounds for Stochastic Lanczos Quadrature Our second contribution is to
show that the popular Stochastic Lanczos Quadrature (SLQ) method for SDE [LSY16, CTU21] nearly matches
the improved error bound of Theorem 1.1 for any choice of l, even though SLQ is ‘parameter-free’ and performs
no explicit deflation step. This result helps to justify the strong practical performance of SLQ and the observed
‘spectrum adaptive’ nature of this method as compared to standard moment matching-based methods like KPM
[CTU21].

A key idea used to achieve this bound is to view SLQ as an implicit moment matching method as in
[CTU21, CTU22], and to analyze it similarly to KPM and other explicit moment matching methods. We combine
this analysis approach with recent work on low-rank approximation with single-vector (i.e., non-block) Krylov
methods [MMM24] to show that SLQ can perform ‘implicit deflation’ as part of moment matching to achieve the
improved error bound. See Section 1.4 for details. Formally, our error bound for SLQ is as follows:

Theorem 1.3. (SDE with SLQ) Let A ∈ Rn×n be symmetric and consider any l ∈ [n], and ϵ, δ ∈ (0, 1). Let
gmin = mini∈[l]

σi(A)−σi+1(A)
σi(A) and κ = ∥A∥2

σl+1(A) . Algorithm 4 (SLQ) run for m = O(l log 1
gmin

+ 1
ϵ log

n·κ
δ ) iterations

performs m matrix vector products with A and outputs a probability density function s̃A such that, with probability
at least 1− δ, for a fixed constant C,

W1(sA, s̃A) ≤ ϵ · σl+1(A) +
C log(n/ϵ) log(1/ϵ)√

n
· σl+1(A) +

Cl log(1/ϵ)
√
log(l/δ)

n
∥A∥2.

Theorem 1.3 essentially matches our result for moment matching with explicit deflation (Theorem 1.1) up to
some small caveats, discussed below. First, the number of matrix vector products has a logarithmic dependence
on the minimum gap gmin amongst the top l singular values as well as the condition number κ = ∥A∥2

σl+1(A) . The
dependence on the minimum gap is inherent, as non-block Krylov methods like SLQ require a dependence on gmin

in order to perform deflation/low-rank approximation [MMM24]. We note that by adding a random perturbation
to A with spectral norm bounded by ∥A∥2

poly(n) , one can ensure that both gmin ≥ 1
poly(n) and κ ≤ poly(n) with high

probability, and thus replace the O(l log 1
gmin

) term with an O(l log n) and the O( log(nκ)ϵ ) term with an O( logn
ϵ )

term, matching Theorem 1.1. See e.g., [MMM24].
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Second, Theorem 1.3 has an additional error term of size Õ(σl+1(A)/
√
n). This term is lower order whenever

ϵ = Ω̃(1/
√
n). Further, we believe that it can be removed by using a variant on SLQ that is popular in practice,

where the densities output by multiple independent runs of the method are averaged together to produce s̃(A).
See Section 4 for further discussion.

Finally, Theorem 1.3 has an additional error term of size Õ(∥A∥2 · l/n). In the natural case when we run for
m ≪ n iterations and thus l ≪ n, this term will be small. However, it cannot be avoided: even for a matrix with
rank ≤ l with well-separated eigenvalues, while the Lanczos method will converge to near-exact approximations
to these eigenvalues (with error bounded by ∥A∥2

nc ), the probability distribution output by SLQ will not place
mass exactly 1/n at these approximate eigenvalues and thus will not achieve SDE error O(∥A∥2

nc ) – see Section
1.4 for further details.

This limitation motivates us to introduce a simple variant of SLQ, which we call variance reduced SLQ, which
places mass exactly 1/n at any eigenvalue computed by Lanczos that has converged to sufficiently small error.
This variant gives the following stronger error bound:

Theorem 1.4. (SDE with Variance Reduced SLQ) Let A ∈ Rn×n be symmetric and consider any l ∈ [n],
and ϵ, δ ∈ (0, 1). Let gmin = mini∈[l]

σi(A)−σi+1(A)
σi(A) and κ = ∥A∥2

σl+1(A) . Algorithm 5 run for m = O(l log 1
gmin

+
1
ϵ log

n·κ
δ ) iterations performs m matrix vector products with A and outputs a probability density function s̃A such

that, with probability at least 1− δ, for any constant c and a fixed constant C,

W1(sA, s̃(A)) ≤ ϵ · σl+1(A) +

(
C log(n/ϵ) log(1/ϵ)√

n
+

Cl log(1/ϵ)
√
log(l/δ)

n

)
· σl+1(A) +

∥A∥2
nc

.

1.4 Technical Overview We next overview the main techniques used to achieve our improved SDE bounds
for moment matching with deflation (Theorem 1.1) and SLQ (Theorems 1.3 and 1.4).

1.4.1 Eigenvalue Deflation for SDE As discussed in Section 1.3.1, the key idea behind Theorem 1.1 is to
apply eigenvalue deflation. Assume that we are given Z ∈ Rn×l with columns equal to the eigenvectors of A
corresponding to its l largest magnitude eigenvectors. Then we can write A = Al+Al,⊥, where Al = ZZTAZZT

and Al,⊥ = (I− ZZT )A(I − ZZT ). Referring to (1.1), since Al an Al,⊥ have n eigenvalues in total that are set
to 0 due to projecting off Z, we have:

sA = sAl
+ sAl,⊥ − δ(0),(1.2)

where δ(x) denotes the Dirac distribution that places probability mass one at x. If we have Z in hand, we can
exactly compute sAl

, whose only non-zero eigenvalues are exactly the eigenvalues corresponding to the eigenvectors
in Z. Further, we can approximate sAl,⊥ using an existing SDE algorithm – e.g., the Chebyshev moment matching
method of [BKM22], which will give error ϵ · ∥Al,⊥∥2 using O(1/ϵ) matrix vector products when ϵ = Ω̃(1/

√
n).2

We have ∥Al,⊥∥2 = |λl+1(A)| = σl+1(A), where λl+1(A) is the (l+1)st largest magnitude eigenvalue of A. Thus,
combining this approximation with (1.2), we can approximate sA to error ϵ · σl+1(A) as desired.

We note that eigenvalue deflation is widely applied throughout numerical linear algebra to problems like
linear system solving [BEPW98, FV01, GOSS16, FTU23], trace estimation [GSO17, Lin17, MMMW21], norm
estimation [MNS+18], and beyond [CS97] – the approach is useful whenever the complexity or approximation
error of solving a problem depends on some feature of its eigenspectrum (e.g. the spectral norm, Frobenius norm,
or condition number) that can be improved by removing the largest magnitude eigenvalues from the matrix.

1.4.2 Error Analysis of Deflation Of course, when implementing deflation for SDE, we cannot exactly
compute Z ∈ Rn×l spanning the top l eigenvectors of A. Instead we will approximate Z, in our case, using a
standard block Krylov subspace method (Algorithm 2). It is well known that when Z is approximated in this
way, using O(log n) iterations of the block Krylov method, and thus O(l log n) matrix-vector products in total,
we can still ensure that ∥(I−ZZT )A(I−ZZT )∥2 = O(σl+1(A)) [MM15]. This suffices to obtain the error bound
of ϵ · σl+1(A) in approximating the spectral density of (I− ZZT )A(I− ZZT ).

2We will focus on the case ϵ = Ω̃(1/
√
n) and so b = 1 in Thm. 1.1 throughout the technical overview for simplicity.
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The key challenge however is that when Z does not exactly span a set of eigenvectors, (1.2) no longer holds.
Further, the spectral density of ZZTAZZT will no longer exactly match the spectral density of Al – it will place
mass at the eigenvalues of ZZTAZZT , equal to the eigenvalues of ZTAZ, which approximate, but don’t exactly
match, the top eigenvalues of A.

Thus, our proof requires showing that Z is very close to spanning a subspace of eigenvectors, up to the small
∥A∥2

nc additive error of Theorem 1.1. To do so, in our block Krylov algorithm (Algorithm 2 line 7) we let Z contain
only the approximate eigenvectors that have converged to very small residual error – i.e., for which Az̃j ≈ λj z̃j .
Via standard backward error analysis bounds for eigenvector approximation (see Theorem 3.5), this is enough to
handle the above two issues. However, we can now no longer be sure that ∥(I − ZZT )A(I − ZZT )∥2 is small –
what if, e.g., no eigenvectors have converged and thus Z is empty? Or e.g., if just the top eigenvector has failed
to converge.

Our main technical contribution is to argue that that for some p ≤ l with σp+1(A) = O(σl+1(A)), the set
of converged eigenvectors (i.e., the columns of Z) will contain approximations to at least the top p magnitude
eigenvectors of A, ensuring that ∥(I − ZZT )A(I − ZZT )∥2 = O(σp+1(A)) = O(σl+1(A)) as needed. Theorems
3.1 and 3.3 give our convergence bounds for the top p eigenvectors, and Theorem 3.4 states the ultimate resulting
bound on ∥(I− ZZT )A(I− ZZT )∥2.

Our work fits into a line of work that focuses on more refined eigenvalue/singular value approximation bounds
for block Krylov subspace methods – see e.g. [MM15, MNS+18, DIKMI18, Tro22]. We believe that Theorems 3.1
and 3.3 may be of independent interest, outside our application to SDE.

1.4.3 SLQ and its Existing Analysis We next turn our attention to the Stochastic Lanczos Quadrature
(SLQ) method, which is detailed in Algorithm 4. This is a popular and extremely simple, parameter-free algorithm
for SDE based on the classic Lanczos method (Algorithm 3). SLQ uses Lanczos to compute an orthonormal basis
Q for the Krylov subspace {g,Ag,A2g, . . . ,Amg} for random starting vector g ∈ Rn – typically, g is Gaussian.
The algorithm then computes the eigenvalues of T = QTAQ and lets sÃ =

∑m
i=1 wj · δ(x− λj(T)) where wj are

appropriately chosen weights: wj = (gTQvj)
2 where vj is the jth eigenvector of T. I.e., the spectral density of

A is approximated with a reweighted spectral density of T. Lanczos constructs Q such that T is tridiagonal –
this makes computing its eigenvalues very efficient, but is otherwise not critical in the analysis.

The key idea behind SLQ (and Lanczos-based algorithms in general) is that, for any polynomial with degree
< m, one can show that p(A)g = Qp(T)QTg. Using this fact, if we consider any low-degree polynomial moment
for the SLQ approximate spectral density, we have:

Es̃A [p(x)] =
m∑
j=1

wj · p(λj(T)) =
m∑
j=1

gTQvjv
T
j Q

Tg · p(λj(T))

= gTQ

 m∑
j=1

vjv
T
j p(λj(T))

QTg

= gTQp(T)QTg = gT p(A)g.(1.3)

We can observe that when g has i.i.d. Gaussian entries with variance 1
n , Eg[g

T p(A)g] = 1
n tr(p(A)) =

1
n

∑n
i=1 p(λi) = EsA [p(x)]. That is, the approximate spectral density output by SLQ matches all low-degree

polynomial moments of the true spectral density in expectation.
To formally argue that s̃A is close to sA in Wasserstein distance, Chen, Trogden, and Ubaru [CTU21] argue

that any two distributions supported on [−∥A∥2, ∥A∥2] that exactly match on any polynomial moment of degree
O(1/ϵ) have Wasserstein distance at most ϵ · ∥A∥2. This allows them to argue that W1(s̄A, s̃A) ≤ ϵ · ∥A∥2 where
s̄A =

∑n
i=1 ηi · λi(A) with ηi = (gTui)

2, for ui being the ith eigenvector of A. Note that s̄A is constructed so
that for any p, Es̄A [p(x)] = gT p(A)g and thus the low-degree moments of s̃A and s̄A match by (1.3). [CTU21]
next uses a concentration bound to argue that the CDFs of s̄A and sA are close, and therefore that these two
distributions are close in Wasserstein distance. They conclude via triangle inequality that s̃A is close to sA.

1.4.4 Moment Matching-Based Analysis of SLQ Our analysis follows a similar approach to [CTU21], also
viewing SLQ as a moment matching method, but analyzing it in essentially an identical manner to the Chebyshev
moment matching method of [BKM22]. We consider the first m = O(1/ϵ) Chebyshev polynomials of the first

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2698

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



kind : T0, T1, . . . , Tm. These polynomials are sine-like functions that are bounded in magnitude by 1 on [−1, 1] (in
the SDE setting, we rescale them to be bounded on [−∥A∥2, ∥A∥2]). [BKM22] show that any two distributions
that are close in their Chebyshev moments are also close in Wasserstein distance. They then approximate the
moments of sA and find a distribution s̃A matching these moments (and thus satisfying W1(sA, s̃A) ≤ ϵ∥A∥2) by
solving a constrained optimization problem.

Like many moment maching methods, [BKM22] use Hutchinson’s trace estimator [Gir87, Hut90] to
approximate the Chebyshev moments – i.e., they approximate 1

n tr(Ti(A)) ≈ 1
b

∑b
j=1 g

T
j Ti(A)gj where each

gj has i.i.d. Gaussian entries with variance 1
n . They argue that since Ti is bounded, Hutchinson’s method is

highly accurate, and thus for ϵ = Ω̃(1/
√
n), they can in fact just set b = 1. So their approximate moments are

just of the form gTTi(A)g for a single random g.
Recall that by (1.3) these are exactly the moments of s̃A output by SLQ! So, SLQ ‘automatically’ finds a

distribution matching the approximate Chebyshev moments of [BKM22], and thus satisfies W1(s̃A, sA) ≤ ϵ·∥A∥2.3
We prove this bound in Section 4.1, Theorem 4.1.

1.4.5 Implicit Deflation with SLQ Armed with the above moment matching-based analysis of SLQ, we next
show that the method performs implicit deflation and thus nearly matches the bound of Theorem 1.1. The key idea
is as follows: the Chebyshev moments used in the analysis above are the polynomials T1(x/∥A∥2), T2(x/∥A∥2), . . .
– i.e., the Chebyshev polynomials scaled to be bounded on the range [−∥A∥2, ∥A∥2], which contains the eigenvalues
of both A and T. This scaling is what leads to the error term scaling with ∥A∥2.

In our explicit deflation approach, after deflating off the largest magnitude eigenvalues we apply moment
matching to (I − ZZT )A(I − ZZT ). We thus approximate the Chebyshev moments of this matrix where the
polynomials are scaled to the (possibly much smaller range) [−∥(I−ZZT )A(I−ZZT )∥2, ∥(I−ZZT )A(I−ZZT )∥2]
of width O(σl+1(A)). This leads to error scaling with σl+1(A). We cannot use these moments to approximate
sA directly: these scaled Chebyshev polynomials blow up outside the range on which they are bounded and the
moments would be dominated by eigenvalues with magnitudes ≥ σl+1(A) and so not informative for approximating
sA.

Deflated Polynomial Moments. To handle this issue, we use that the density output by SLQ approximates
sA on any low-degree polynomial moment. Instead of the scaled Chebyshev polynomials, we use a set of “deflated
polynomials”, denoted t1, . . . , tm which are approximately equal to the scaled Chebyshev polynomials on the range
[−O(σl+1(A)), O(σl+1(A))] and have roots placed outside this range so they are equal to zero for any eigenvalue
with magnitude significantly larger than σl+1(A). Constructing such polynomials is somewhat delicate – naively
placing the roots at large eigenvalues would distort the Chebyshev polynomials on the range of interest. This
distortion needs to be canceled using a separate Chebyshev damping polynomial. Our analysis follows ideas from
work studying the convergence of single-vector Krylov subspace methods like Lanczos for eigenvector/singular
vector approximation [Saa80], and in particular, recent work proving low-rank approximation guarantees for these
methods [MMM24].

Once we show that t1, . . . , tm can be constructed as described, we know that SLQ matches the moments of sA
with respect to these polynomials. This is enough to argue that the output s̃A must closely match the mass of sA
on the eigenvalues with magnitude ≤ σl+1(A). But it says nothing about the large eigenvalues, which contribute
nothing to these moments. We need to separately argue about this part of the density.

Top Eigenvalue Approximation. To do so, we directly look at the form of s̃A. Following a similar strategy to
our proof for explicit deflation and again building on recent work studying the convergence of single-vector Krylov
methods like Lanczos [MMM24], we argue that any eigenvalue λj(T) with magnitude significantly larger than
σl+1(A) is extremely close to λj(A). This finding is not surprising: the Lanczos method is a popular choice for
approximating outlying eigenvalues [Par98]. Thus, on the large magnitude eigenvalues, the error that s̃A incurs
vs. sA is roughly:

wjλj(T)− 1

n
λj(A) ≈

(
wj −

1

n

)
λj(A) ≤

(
wj −

1

n

)
∥A∥2.

3Even when ϵ = õ(1/
√
n) and so we need b > 1 repetitions of Hutchinson’s to estimate the Chebyshev moments in [BKM22], a

similar analysis follows from averaging together the densities output by b independent runs of SLQ.
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Recall that wj = (gTQvj)
2. Further, since our approximations to the top eigenvectors have converged, Qvj ≈ uj ,

where uj is the eigenvector of A corresponding to λj(A). Since uj is a fixed unit vector and g has random Gaussian
entries with variance 1

n , wj is simply the square of a Gaussian with variance 1
n . I.e., E[wj ] = 1/n and we can use

a Chi-Squared concentration bound to argue that |wj − 1
n | = Õ( 1n ) with high probability. Accounting for the l

top eigenvalues, this leads to the Õ(l/n · ∥A∥2) error term in Theorem 1.3 and completes our analysis.

1.4.6 Variance Reduced SLQ The above argument immediately suggests a simple improvement to SLQ that
can avoid the Õ(l/n · ∥A∥2) error term due to the large magnitude eigenvalues. If an eigenvector has converged
and thus we know that |λj(T) − λj(A)| is small, then in the weighted spectral density s̃A output by Lanczos,
we know that we should set wj = 1

n rather than setting wj to be the square of a Gaussian with variance 1
n . We

formalize this approach in Algorithm 5 and show that it obtains the stronger error bound of Theorem 1.4, with
only a negligible additive term depending on ∥A∥2.

A Remark on Numerical Stability. We note that there exist results proving that the Conjugate Gradient
(CG) algorithm for solving linear systems, which is closely related to Lanczos, can perform implicit eigenvalue
deflation to achieve faster convergence rates, analogous to our analysis for SDE [SW09, AL86]. These bounds are
known to suffer from numerical stability issues – when CG is implemented in finite precision arithmetic, it may
not be able to apply the necessary polynomials to achieve these convergence rates. It is likely that our bounds
also suffer from stability issues. However 1) in finite precision, the method likely works well as long as the number
of deflated eigenvalues l is relatively small and 2) our analysis directly applies to SLQ implemented using a stable
algorithm to compute a basis for the Krylov subspace – e.g., one that performs full reorthogonalization at each
step. Using such an algorithm will not affect the matrix-vector query complexity of the algorithm, and only gives
a small runtime overhead when the number of iterations is relatively small.

1.5 Roadmap The remainder of the paper is organized as follows: In Section 2 we define basic notation and
preliminary results used throughout our proofs. In Section 3 we analyze our explicit moment matching method
with deflation, culminating in the proof of Theorem 1.1. In Section 4 we give our analysis of SLQ and prove
Theorems 1.3 and 1.4. In Section 5 we prove our matching lower bound, Theorem 1.2, which shows that our SDE
bounds are near-optimal. Finally, in Section 6, we report the results of some numerical experiments comparing
various moment matching and Lanczos-based algorithms for SDE.

2 Notation and Preliminaries
We first introduce notation and foundational results that we will use throughout.

2.1 Basic Notation For any integer n, let [n] denote the set {1, 2, . . . , n}. We write matrices and vectors in
bold literals – e.g., A or x. For a vector x, we let ∥x∥2 denote its Euclidean norm. The Frobenius norm and
spectral (i.e., operator) norm of a matrix A are denoted by ∥A∥F and ∥A∥2 respectively. We often use that for any
two matrices A,B of appropriate dimensions, the spectral norm is sub-multiplicative, i.e., ∥AB∥2 ≤ ∥A∥2∥B∥2.
The column span of a matrix A is denoted by range(A). .

2.2 Linear Algebra Preliminaries SVD and Eigendecomposition. The singular values of A ∈ Rn×n are
denoted by σi(A) for i ∈ [n] with σ1(A) ≥ . . . ≥ σn(A). We denote the singular value decomposition (SVD) of
A ∈ Rn×n by UΣVT where Σ ∈ Rn×n is a diagonal matrix with Σii = σi(A) and U ∈ Rn×n and V ∈ Rn×n are
orthonormal matrices with columns containing A’s left and right singular vectors respectively.

Our main theorems are concerned with the eigenspectrum of symmetric matrices. We denote the eigenvalues
of a symmetric matrix A ∈ Rn×n by λi(A) for i ∈ [n] such that |λ1(A)| ≥ . . . ≥ |λn(A)|. Observe that we have
|λi(A)| = σi(A) for i ∈ [n]. We denote the eigendecomposition of a symmetric A ∈ Rn×n by UΛUT where
Λ ∈ Rn×n is a diagonal matrix such that Λii = λi(A) and U ∈ Rn×n has orthonormal columns equal to the
corresponding eigenvectors of A.

For p ∈ [n], let Up ∈ Rn×p (or Vp ∈ Rn×p) denote the matrix containing the first p columns of U (or V)
– i.e., the singular vectors or the eigenvectors corresponding to the largest p singular values or eigenvalues of A
by magnitude. Similarly, let Up,⊥ ∈ Rn×(n−p) (or Vp,⊥ ∈ Rn×(n−p)) denote the matrix which containing the last
n − p columns of U (or V) – i.e., the singular vectors or the eigenvectors corresponding to the smallest n − p
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singular values or eigenvalues of A by magnitude. Let Σp ∈ Rp×p (and Σp,⊥ ∈ R(n−p)×(n−p)) denote the matrix
containing the top p (or the bottom n − p) singular values of A along its diagonal. For symmetric A ∈ Rn×n

with eigendecomposition UΛUT , define Λp ∈ Rp×p and Λp,⊥ ∈ R(n−p)×(n−p) analogously.
The best p-rank approximation to A in the spectral or Frobenius norms is denoted by Ap and is given by

Ap = UpΣpV
T
p . The pseudoinverse of A is denoted by A† and given by A† = VΣ†U, where Σ†

ii = 1/σi(A) if
σi(A) > 0 and Σ†

ii = 0 otherwise.
We will frequently use Weyls’s inequality which states that a small perturbation of a symmetric matrix will

not significantly change its eigenvalues.

Fact 2.1. (Weyls’ inequality [Wey12]) For any two symmetric matrices A ∈ Rn×n and Bn×n,

max
i∈[n]

|λi(A)− λi(B)| ≤ ∥A−B∥2.

Matrix functions. Given a function ϕ : R → R, we define its application to a matrix A with SVD A = UΣVT

as ϕ(A) = Uϕ(Σ)VT , where ϕ(Σ) is formed by applying ϕ element-wise to the diagonal entries of Σ (i.e., to the
singular values of A). We overload notation and, for symmetric A with eigendecomposition A = UΛUT , also
let ϕ(A) = Uϕ(Λ)UT , where ϕ(Λ) is formed by applying ϕ element-wise to the diagonal entries of Λ (i.e., to the
eigenvalues of A). We will specify which specific form we are using when needed.

Krylov Subspaces. All algorithms analyzed in this work are Krylov subspace methods – we introduce basic
notation for Krylov subspaces below.

Definition 2.1. (Block Krylov Subspace) The Krylov subspace of a matrix A ∈ Rn×n with respect to a
starting block X ∈ Rn×l is given by:

Kq(A,X) =
[
AX, (AAT )AX, . . . , (AAT )qAX

]
.

Here, l is called the block size and q is the depth or the number of iterations.

Notice that we require O(ql) matrix-vector products with A to generate a Krylov subspace Kq(A,X) with depth
q and block size l. We will typically denote an orthonormal basis of the Krylov subspace by Q ∈ Rn×r where r
is the dimension to the column span of Kq(A,X).

2.3 Moment Matching and Wasserstein Distance Preliminaries Inner Product between Functions.
For any two functions f : [−L,L] → R and g : [−L,L] → R, the inner product between f and g is defined as
⟨f, g⟩ =

∫ L

−L
f(x)g(x)dx.

Chebyshev polynomials. Both our explicit moment matching method and our error analysis for SLQ are based
on analyzing approximations to the Chebyshev polynomial moments of the spectral density sA. We now describe
some basic properties of Chebyshev polynomials. We will denote the kth Chebyshev polynomial of the first kind
by Tk. These polynomials are defined by the recurrence:

T0(x) = 1 , T1(x) = x , Tk(x) = 2x · Tk−1(x)− Tk−2(x) for k ≥ 2.

We use the well known fact that the Chebyshev polynomials are bounded between [−1, 1] i.e., maxx∈[−1,1] |Tk(x)| ≤
1. These polynomials also have an explicit expression of the form:

(2.4) Tq(x) =
1

2
[(x+

√
x2 − 1)q + (x−

√
x2 − 1)q].

Let w(x) := 1√
1−x2

. It is well known that ⟨Tk, w · Tk⟩ =
∫ 1

−1
1√

1−x2
T 2
k (x)dx = π

2 for k > 0, ⟨T0, w · T0⟩ = π and

⟨Ti, w ·Tj⟩ = 0 for i ̸= j. We define the kth normalized Chebyshev polynomial to be T̄k := Tk/
√
⟨Tk, w · Tk⟩. Note

that we have |T̄k(x)| ≤
√

2
π for x ∈ [−1, 1]. Also note that Tk(−x) = Tk(x) when k is even and Tk(−x) = −Tk(x)

when k is odd.
We now describe the Chebyshev Series expansion of a function:
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Definition 2.2. (Chebyshev Series Expansion) The Chebyshev series expansion for a function f : [−1, 1] →
R is given by:

∞∑
k=0

⟨f, w · T̄k⟩ · T̄k.

If f is Lipschitz continuous then this expansion converges absolutely and uniformly to f [Tre19].

Wasserstein Distance. The Wasserstein-1 distance, also known as the earth mover’s distance, is a way
to measure distance between two distributions. We will use the dual formulation of this distance given by
Kantorovich-Rubinstein theorem [KR57]. In particular, for any two probability densities s and q supported on
[−L,L] for some L ∈ R+ the Wasserstein-1 distance is given by:

W1(s, q) = sup
h∈1-Lip

∫ L

−L

h(x)(s(x)− q(x))dx,

where h ∈ 1-Lip means we are optimizing the integral over all 1-Lipschitz functions.

3 SDE via Moment Matching with Explicit Deflation
In this section, we introduce our deflation-based approach to SDE (Algorithm 1) which combines a block Krylov
method for deflation (Algorithm 2) with Chebyshev moment matching (Algorithm 2 of [BKM22]) for SDE.
Pseudocode for this algorithm is given below.

Algorithm 1 Spectral Density Estimation with Deflation

Input: Symmetric A ∈ Rn×n, error ϵ ∈ (0, 1), confidence δ ∈ (0, 1), block size l.
1: Let Z ∈ Rn×s, Λ̃ ∈ Rs×s be the outputs of Algorithm 2 (Block Krylov iteration) with inputs A, block size l,

and constant β.
2: Let q1 be the spectral density corresponding to Λ̃: i.e., q1(x) = 1

s

∑s
i=1 δ(x− (Λ̃)ii).

3: Let P = I− ZZT and let L be an upper bound on ∥PAP∥2 such that ∥PAP∥2 ≤ L ≤ 2∥PAP∥2.
4: Run Algorithm 2 of [BKM22] (Hutchinson-based Chebyshev moment estimation) with input matrix 1

LPAP,
number of moments N = c1

ϵ , and number of repetitions of Hutchinson’s method b = max
(
1, c2

nϵ2 log
2 1

ϵδ log
2 1

ϵ

)
,

where c1, c2 > 0 are sufficiently large constants. Let the approximate moments τ̃1, . . . , τ̃N denote the output
of this algorithm.

5: Set τ̂i → 1
n−s (n · τ̃i − s · T̄i(0)) for i ∈ [N ] where T̄i(x) is the i’th normalized Chebyshev polynomial.

6: Run Algorithm 1 of [BKM22] (Chebyshev moment matching) with the modified approximate moments
τ̂1, . . . , τ̂N as inputs. Let q′2 be the output of this algorithm.

7: Define q2 as q2(x) = q′2(x/L) if x ∈ [−L,L].
8: return the spectral density q = s·q1+(n−s)·q2

n .

Description of Algorithm 1. As discussed in Section 1.4.2, Algorithm 1 first uses a randomized block Krylov
method (Algorithm 2) to compute a set of approximate eigenvectors and eigenvalues for A, denoted by Z and Λ̃
respectively. Importantly for our error analysis, Algorithm 2 only returns approximate eigenvectors that satisfy
a convergence condition (line 7 of Algorithm 2), which ensures that Azi ≈ λ̃izi.

Algorithm 1 computes the spectral density q1 of these converged approximate eigenvalues. It then deflates A
using the corresponding converged eigenvectors in line 4 by computing PAP where P = I−ZZT . The algorithm
then approximates the spectral density of PAP corresponding to the non-deflated eigenvalues of A using a
moment matching method. To do so, Algorithm 1 first computes estimates τ̃1, . . . , τ̃N of the normalized Chebyshev
moments of PAP (after normalizing PAP so that its spectral norm is bounded by 1), using Hutchinson’s method
(Algorithm 2 of [BKM22]). Since PAP contains s zero eigenvalues corresponding to the deflated eigenvectors
Z ∈ Rn×s, the moments need to adjusted in line 5 so that they do not take into account this mass of zero
eigenvalues. These adjusted moments, τ̂1, . . . , τ̂N , are then passed as an input to Algorithm 2 of [BKM22] in
line 6. This algorithm computes a spectral density q2 whose moments are equal to the approximate moments τ̂i
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in line 5. The final output of Algorithm 1 is obtained by combining q1 and q2 after appropriately reweighting
them.

Outline of Error Analysis. The remainder of this section is dedicating to analyzing Algorithm 1, ultimately
culminating in the proof of Theorem 1.1, which bounds the Wasserstein error of the output spectral density
estimate by ϵ · σl+1(A) + ∥A∥2

nc for any constant c. Our analysis breaks down into the following steps:

• In Section 3.1 we analyze the error of the block Krylov based deflation step (Algorithm 2). The main technical
results of this section are Theorems 3.1 and 3.3, which argue that, for some k ≤ l with σk+1(A) = O(σl+1),
the method finds highly accurate approximations to at least the top k eigenvectors and eigenvalues of A.
In particular, these approximate eigenpairs meet the convergence condition of the algorithm and thus are
returned as columns of Z. With this fact established, we can prove the main export of the section, Theorem
3.4, which shows that ∥PAP∥2 = O(σl+1(A)). That is, when we deflate off the converged approximate
eigenvectors, we reduce the spectral norm of the matrix to O(σl+1(A)), allowing us to obtain ϵ · σl+1(A)
error when approximating the spectral density of PAP with Chebyshev moment matching.

• In Section 3.2 we give the error analysis of Algorithm 1 itself. This analysis is fairly straightforward – using
existing backward stability analysis for eigenpair approximation, we can argue that, since P only deflates off
highly accurate approximations to A’s eigenvectors, our combined spectral density q has Wasserstein error
roughly equal to (up to an additive ∥A∥2

nc term) the Wasserstein error of approximating the spectral density
of PAP with moment matching. As discussed above, this error is bounded by O(ϵ · ∥PAP∥2) = ϵ ·σl+1(A),
allowing us to achieve our final error bound of ϵ · σl+1(A) + ∥A∥2

nc .

Algorithm 2 Block Krylov Iteration for Deflation

Input: Symmetric A ∈ Rn×n, block size l ∈ [n], iterations q = O(log n), constant β > 0
1: Let X ∈ Rn×l be a starting block with independent N (0, 1) Gaussian entries.
2: Compute Kq =

[
AX, (AAT )AX, . . . , (AAT )qAX

]
.

3: Orthonormalize the columns of Kq to get Q ∈ Rn×r where r is the rank of Kq .
4: Compute T = QTAQ and let the eigenvectors of T be v1, . . . ,vr corresponding to eigenvalues |λ1(T)| ≥

. . . ≥ |λr(T)|.
5: Set S = {}.
6: for j = 1, . . . , r do
7: if ∥AQvj − λj(T)Qvj∥2 ≤ ∥A∥2

nβ
4 then

8: S = S ∪ {j}
9: end if

10: end for
11: return ZS = QVS and Λ̃S where VS ∈ Rr×|S| contains all eigenvectors with indices in S and Λ̃S ∈ R|S|×|S|

is a diagonal matrix containing the corresponding eigenvalues of T.

3.1 Error bounds for Deflation via Block Krylov In this section, we analyze Algorithm 2 and prove that
it outputs highly accurate approximations to the top eigenvalues and eigenvectors of A.

Recall that we let A = UΣVT denote the SVD of A – see Section 2.2. We start by proving Lemma 3.1,
a generalization of Theorem 2.1 of [DIKMI18], which bounds the error ∥(I − QQT )Up∥2F of projecting the top
p left singular vectors of A onto the span of the block Krylov subspace, for any p ≤ l5. Notice that, for any q
and for any polynomial ϕ(x) of degree ≤ 2q + 1 containing only terms with odd powers, ϕ(A)X lies exactly in
the span of the Krylov subspace Kq. Lemma 3.1 bounds ∥(I −QQT )Up∥2F in terms of the norms of the ϕ(Σp),
ϕ(Σl,⊥) and VT

l,⊥X(VT
l X)−1 for any such polynomial ϕ(x) which is not zero at any of the top p singular values

of A. Later, by choosing such a polynomial ϕ(x) of degree at most 2q + 1 with odd powers so that it is large at
the top singular values of A and small at the rest, we can bound the projection error.

4Any upper bound on ∥A∥2 off by at most constant multiplicative factors suffices here. We can compute such an upper bound
eusing O(logn) matrix-vector products via e.g., the power method or a single-vector Krlyov method.

5In the numerical linear algebra literature, this quantity is often denoted as ∥(I−QQT )Up∥2F = sin(Q,Up)
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Lemma 3.1. (Angle between subspaces, generalization of Theorem 2.1 of [DIKMI18]) Let A ∈
Rn×n have rank(A) > l and SVD given by A = UΣVT . Let X ∈ Rn×l be such that rank(VT

l X) = l and
let Q be an orthonormal basis of the depth q Krylov subspace Kq(A,X) (see Def. 2.1). For any p ≤ l and any
polynomial ϕ(x) of degree 2q + 1 with odd powers only, such that ϕ(Σp) is non-singular,

∥(I−QQT )Up∥2F ≤ ∥ϕ(Σl,⊥)∥22 · ∥ϕ(Σp)
−1∥22 · ∥VT

l,⊥X(VT
l X)−1∥22.

Proof. Let Φ = ϕ(A)X = Uϕ(Σ)VTX. As explained above, since ϕ(x) consists of only odd powers and
has degree at most 2q + 1, the columns of Φ lie in the span of the Krylov susbspace Kq(A,X) and thus
range(Φ) ⊆ range(Kq(A,X)) = range(Q). ΦΦ† and QQT are the orthogonal projectors onto range(Φ) and
range(Kq(A,X)) respectively. Since range(Φ) ⊆ range(Q) we have:

∥(I−QQT )Up∥2F ≤ ∥(I−ΦΦ†)Up∥2F .(3.5)

Thus, to prove the lemma it suffices to upper bound the righthand side of (3.5). We write Φ = Φl + Φl,⊥
where Φl = ϕ(Al)X and Φl,⊥ = ϕ(Al,⊥)X. Since p ≤ l and ϕ is non-zero on the top p singular values, we have
ΦlΦ

†
lUp = Up. We upper bound the righthand side of (3.5) by:

∥(I−ΦΦ†)Up∥2F = ∥Up −Φ(Φ†Up)∥2F = min
Ψ∈Rℓ×p

∥Up −ΦΨ∥2F ≤ ∥Up −Φ(Φ†
lUp)∥2F .

Then, replacing Φ by Φl +Φl,⊥ and using that ΦlΦ
†
lUp = Up we get:

∥(I−ΦΦ†)Up∥2F ≤ ∥Up −Φ(Φ†
lUp)∥2F

= ∥(I−ΦlΦ
†
l )Up −Φl,⊥Φ

†
lUp∥2F

= ∥Φl,⊥Φ
†
lUp∥2F

= ∥Ul,⊥ϕ(Σl,⊥)V
T
l,⊥X(VT

l X)−1ϕ(Σl)
−1UT

l Up∥2F
= ∥Ul,⊥ϕ(Σl,⊥)V

T
l,⊥X(VT

l X)−1ϕ(Σ−1
p )∥2F

= ∥ϕ(Σl,⊥)V
T
l,⊥X(VT

l X)−1ϕ(Σ−1
p )∥2F

≤ ∥ϕ(Σl,⊥)∥2F · ∥ϕ(Σ−1
p )∥2F · ∥VT

l,⊥X(VT
l X)−1∥2F .

In line 4 we used that VT
l X ∈ Rl×l has rank l by assumption, and is thus invertible. Combined with (3.5) the

above bound completes the proof.

Using Lemma 3.1 we can show that for any p with σp(A) larger than σl+1(A) by a constant multiplicative
factor, the Krylov subspace Kq(A,X) generated with random width-l starting block X ∈ Rn×l and with depth
q = O(log n) approximately spans the top p singular vectors of A.

Lemma 3.2. (Convergence of block Krylov subspace to top singular vectors) Let A ∈ Rn×n have
rank(A) > l and SVD given by A = UΣVT . Let X ∈ Rn×l be a matrix with independent N (0, 1) Gaussian
entries and let Q be an orthonormal basis for the depth q = O(log n) Krylov subspace Kq(A,X) generated by X
(see Def. 2.1). Then, for any p ≤ l, such that σp(A) ≥ 3

2σl+1(A), for any constants c, c′ > 0, with probability at
least 1− 1

nc′ ,

∥Up −QQTUp∥2F ≤ 1

nc
.

Proof. Since X ∈ Rn×l is a random Gaussian matrix, with probability one, rank(VT
l X) = l. Thus, we can apply

Lemma 3.1 to give, for any degree 2q+1 polynomial ϕ consisting of only odd powers where ϕ(Σp) is non-singular,

∥Up −QQTUp∥2F ≤ ∥ϕ(Σl,⊥)∥22 · ∥ϕ(Σp)
−1∥22 · ∥VT

l,⊥X(VT
l X)†∥2F .(3.6)

We will now bound each term on the righthand side of (3.6). First, we bound ∥ϕ(Σl,⊥)∥2 and ∥ϕ(Σp)
−1∥2

similarly to Lemma 2.4 of [DIKMI18]. We consider a gap amplifying polynomial ϕ(x) of degree 2q + 1 consisting
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only of odd powers as defined in Lemma 4.5 of [DIKMI18] with parameters α = σl+1(A) and gap γ =
σp(A)

σl+1(A) −1.
Observe that we have,

∥ϕ(Σp)
−1∥2 = max

1≤i≤p
ϕ(σi(A))−1 ≤ max

1≤i≤p
σ−1
i (A) = σ−1

p (A),(3.7)

where we used the fact that σi(A) > 0 for i ≤ p ≤ l as rank(A) > l and the fact that for any i ≤ p,
ϕ(σi(A)) ≥ σi(A) as σi(A) ≥ σp(A) ≥ (1 + γ)σl+1(A) = (1 + γ)α which follows from Lemma 4.5 of [DIKMI18].
Also, as σi(A) ≤ σl+1(A) for any i ≥ l + 1, from Lemma 4.5 of [DIKMI18] we have:

∥ϕ(Σl,⊥)∥2 = max
i≥l+1

|ϕ(σi(A))| ≤ 4σl+1(A)

2(2q+1)min(
√
γ,1)

.(3.8)

Finally, we bound the middle term of (3.6), ∥VT
l,⊥X(VT

l X)−1∥2F ≤ ∥VT
l,⊥X∥2F · ∥(VT

l X)−1∥22. By rotational
invariance of the Gaussian distribution, VT

l X and VT
l,⊥X are l × l and n − l × l random Gaussian matrices

respectively. Thus, by Corollary 5.35 of [Ver18], with probability 1 − 1
nc3

we have ∥VT
l,⊥X∥22 ≤ c1n and

σ2
l (V

T
l X) ≥ c2n for constants c1, c2 and c3. So, we have ∥VT

l,⊥X∥2F ≤ c1n
2 and ∥(VT

l X)−1∥22 ≤ σ−2
l (VT

l X) ≤ 1
c2n

which overall gives us that

∥VT
l,⊥X(VT

l X)−1∥2F ≤ c′′n(3.9)

for some constant c′′. Plugging (3.9), (3.8) and (3.7) back into (3.6) , we get:

∥Up −QQTUp∥2F ≤
c′′σ2

l+1(A)

σ2
p(A)

n

2(4q+2)min(
√
γ,1)

,

for some constant c′′. Since σp(A) ≥ 3
2σl+1(A), the gap is given by γ =

σp(A)
σl+1(A) − 1 ≥ 1

2 . This gives us
min(

√
γ, 1) ≥ 1√

2
. Finally, choosing q = C log n where C is a large enough constant we obtain the final bound.

Lemma 3.2 establishes that the Krylov subspace generated by a random starting block X ∈ Rn×l will
approximately span any singular vector corresponding to a singular value significantly larger than σl+1(A).
Intuitively, projection onto this subspace should thus preserve the largest singular values (and the largest
magnitude eigenvalues) of A. Below we prove several Lemmas that allow us to argue this formally. We consider
the matrix QQTAQQT – the projection of A onto the Krylov subspace on both the left and right.

3.1.1 Eigenvector Alignment In this section, we first prove that the eigenvectors corresponding to the large
magnitude eigenvalues of QQTAQQT are also approximate eigenvectors of A. We first prove that if there exists
some k ∈ [l] such that σk(A) is larger than σl+1(A) by at least a constant multiplicative factor, then there exists
some k ≤ p ≤ l such that the top p singular vectors of A approximately span the top p singular vectors of
QQTAQQT (i.e. the matrix A projected on both sides to the Krylov subspace). Note that if no such k exists,
then ∥A∥2 = O(σl+1(A)) and thus there is nothing to gain from deflation.

Lemma 3.3. (Projection of Zp on Up) Consider the setting of Lemma 3.2 where A ∈ Rn×n is symmetric.
Let α = max

(
∥A|2
nc/2 , σl+1(A)

)
where c > 0 is the constant in Lemma 3.2. Let k ∈ [l] be such that σk(A) ≥ 2α

and σk+1(A) < 2α. Let z1, . . . , zn be the eigenvectors of QQTAQQT corresponding to its eigenvalues
|λ1(QQTAQQT )| ≥ . . . ≥ |λn(QQTAQQT )|. Let c1, c

′ > 0 be some large constants. Then, there exists some
k ≤ p ≤ l such that σp(A) ≥ 3

2α, σp(A) − σp+1(A) ≥ ∥A∥2

2nc/2+1 , and, letting Zp ∈ Rn×p have z1, . . . , zp as its
columns,

∥UpU
T
p Zp − Zp∥2 ≤ 1

nc1
,

with probability at least 1− 1
nc′ .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2705

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Proof. Let l1 be the largest index with k ≤ l1 ≤ l and σl1(A) ≥ 3
2α, i.e., we must have σl1+1(A) < 3

2α. Note
that since σk(A) ≥ 2α, such an l1 must exist. Then, σk(A)− σl1+1(A) ≥ α/2 ≥ ∥A∥2

2nc/2 where we use the fact that
α ≥ ∥A∥2

nc/2 . Since there are at most l1 indices in the range [k, l1], there must be some p ∈ [k, l1] such that:

σp(A)− σp+1(A) ≥ σk(A)− σl1+1(A)

l1
≥ ∥A∥2

2nc/2+1
,(3.10)

where we loosely bound l1 ≤ n. This establishes the first claim of the Lemma. We now prove the second claim.
Since σp(A) ≥ 3

2α ≥ 3
2σl+1(A), from Lemma 3.2, we get that QQTUp = Up + E where ∥E∥2 ≤ 1

nc with
rpobability at least 1 − 1

nc′ for some constant c′ > 0. Let Z ∈ Rn×n be an orthonormal matrix containing all
eigenvectors z1, . . . , zn of QQTAQQT as its columns. Since the columns of Z form an orthonormal basis of Rn,
there exists a matrix C ∈ Rn×p such that Up = ZC and CTC = Ip where Ip is the p× p identity matrix. Then,
we have:

Up = ZC = ZpC1 + Zp,⊥C2,(3.11)

where C = [C1;C2] for C1 ∈ Rp×p and C2 ∈ Rn−p×p. We will now prove that ∥C2∥2 is very small and C1 is
very close to the identity matrix. This implies that Up approximately spans Zp which proves our second claim.

First observe that we can write QQTAQQTUp as:

QQTAQQTUp = QQTA(Up +E)

= QQTUpΛp +QQTAE

= (Up +E)Λp +QQTAE

= UpΛp +EΛp +QQTAE.(3.12)

Thus, we get:

QQTAQQTUp = ZCΛp +EΛp +QQTAE.(3.13)

Next, observe that, since Z has columns equal to the eigenvalues of QQTAQQT , we can also write QQTAQQTUp

as:

QQTAQQTUp = QQTAQQTZC = ZΛ̃C,(3.14)

where Λ̃ ∈ Rn×n denotes the diagonal matrix containing the eigenvalues of QQTAQQT on its diagonal. Thus,
combining (3.13) and (3.14) we get that ZΛ̃C = ZCΛp +EΛp +QQTAE or

ZΛ̃C− ZCΛp = EΛp +QQTAE.

Let E′ = EΛp + QQTAE. Using triangle inequality, we get that ∥E′∥2 ≤ ∥EΛp∥2 + ∥QQTAE∥2. Now, since
∥E∥2 ≤ 1

nc and ∥Λp∥2 = ∥A∥2, we have ∥EΛp∥2 ≤ ∥E∥2∥Λp∥2 ≤ ∥A∥2

nc . Similarly, since Q is orthonormal,
∥QQTAE∥2 ≤ ∥A∥2

nc . So, we get ∥E′∥2 ≤ 2∥A∥2

nc which implies that ∥ZCΛp − ZΛ̃C∥2 ≤ 2∥A∥2

nc or, equivalently,
since Z has orthonormal columns,

∥CΛp − Λ̃C∥2 ≤ 2∥A∥2
nc

.

For any i ∈ [p], the ith column of the n× p matrix CΛp − Λ̃C is given by λi(A)C:,i − Λ̃C:,i where C:,i is the
ith column of C. So, we have ∥λi(A)C:,i − Λ̃C:,i∥2 ≤ 2∥A∥2

nc for all i ∈ [p]. Using the definition of the l2 norm of

the vector, we have
√∑n

j=1(λi(A)− λj(QQTAQQT ))2C2
ji ≤

2∥A∥2

nc . This implies that for all i ∈ [p] and j ∈ [n],

|λi(A)− λj(QQTAQQT )||Cji| ≤
2∥A∥2
nc

.(3.15)
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Now, by the minimax principle of singular values, |λj(QQTAQQT )| ≤ |λp+1(A)| for all j ≥ p+1. Thus, for any
i ∈ [p] and j ∈ {p+1, . . . , n}, by the triangle inequality, |λi(A)−λj(QQTAQQT )| ≥ |λi(A)|−|λj(QQTAQQT )| ≥
|λp(A)| − |λp+1(A)| ≥ ∥A∥2

2nc/2+1 where the last step follows from the first claim (3.10). Thus, from (3.15), we get
that for any i ∈ [p] and j ∈ {p+ 1, . . . , n},

|Cji| ≤
4

nc/2−1
.

Note that from (3.11), we have that C2 contains all Cji such that j ∈ {p + 1, . . . , n} and i ∈ [p]. So, we can
bound:

∥C2∥2 ≤ ∥C2∥F ≤

√√√√ p∑
i=1

n∑
j=p+1

C2
ji ≤

4

nc/2−2
.(3.16)

Next, since CTC = Ip = CT
1 C1 +CT

2 C2, we have ∥CT
1 C1 − Ip∥2 = ∥CT

2 C2∥2 = ∥C2∥22 ≤ 16
n2(c/2−2) . Thus, we can

write CT
1 C1 = I + E1 where ∥E1∥2 ≤ 16

n2(c/2−2) . Observe that C1C
T
1 and CT

1 C1 have the same eigenvalues, and
thus we also have

C1C
T
1 = I+E′′,(3.17)

where ∥E′′∥2 ≤ 16
n2(c/2−2) . Since we have ∥C1∥2 =

√
∥C1CT

1 ∥2 =
√

∥I+E1∥2 ≤
√
1 + ∥E∥1 ≤ 1 + 4

nc/2−2 (where
the second to last step follows using triangle inequality), we also have that:

C1 = I+E2,(3.18)

where ∥E2∥2 ≤ 4
nc/2−2 . Then, we have:

UpU
T
p Zp − Zp = Up(C

T
1 Z

T
p +CT

2 Z
T
p,⊥)Zp − Zp

= UpC
T
1 − Zp

= ZpC1C
T
1 + Zp,⊥C2C

T
1 − Zp

= Zp(I+E′′) + Zp,⊥C2C
T
1 − Zp

= ZpE
′′ + Zp,⊥C2C

T
1

= ZpE
′′ + Zp,⊥C2(I+ET

2 )

= ZpE
′′ + Zp,⊥C2 + Zp,⊥C2E

T
2 .

The first and third equality above follows from (3.11), the fourth equality follows from (3.17) and the sixth equality
follows from (3.16). Thus, using triangle inequality and spectral submultiplicativity, we get ∥UpU

T
p Zp − Zp∥2 ≤

∥ZpE
′′∥2 + ∥Zp,⊥C2∥2 + ∥Zp,⊥C2C

T
1 ∥2 ≤ ∥E′′∥2 + ∥C2∥2 + ∥C1∥1∥C2∥2 ≤ 16

nc−4 + 4
nc/2−2 + 16

nc−4 ≤ 36
nc/2−2 where

the second inequality follows from the fact that Zp and Zp,⊥ are orthonormal matrices and the third inequality
follows from the error bounds in (3.16), (3.17) and (3.18). Choosing the constant c1 to be suitably large enough
so that ∥UpU

T
p Zp − Zp∥2 is bounded by 1

nc1
completes the proof.

The next theorem proves the main result of this subsection, i.e., the top eigenvectors of QQTAQQT are also
approximately the eigenvectors of A, provided there is some σk(A) that is constant factor larger than σl+1(A),
as assumed in Lemma 3.3.

Theorem 3.1. (Convergence error of top p eigenvectors) Consider the setting of Lemma 3.3. Let
c1, c

′ > 0 be some large constants. Let Λ̃p ∈ Rp×p be a diagonal matrix containing the corresponding eigenvalues
λ1(QQTAQQT ), . . . , λp(QQTAQQT ) on its diagonal. Then, we have

∥AZp − ZpΛ̃p∥2 ≤ ∥A∥2
nc1

.

with probability at least 1− 1
nc′ .
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Proof. From Lemma 3.3, Zp = UpU
T
p Zp + E1 where ∥E1∥2 ≤ 1

nc2
with probability at least 1 − 1

nc′′ for some
constant c2, c′′. Also, from Lemma 3.2, we have Up = QQTUp +E2 where ∥E2∥2 ≤ 1

nc3
with probability at least

1− 1
nc′′ for some constant c3. Observe that:

AZp
a
= A(UpU

T
p Zp +E1)

= AUpU
T
p Zp +AE1

b
= UpU

T
p AUpU

T
p Zp +AE1

c
= (QQTUp +E2)U

T
p AUpU

T
p Zp +AE1

= QQTUpU
T
p AUpU

T
p Zp +E2U

T
p AUpU

T
p Zp +AE1

d
= QQTAUpU

T
p Zp +E2U

T
p AUpU

T
p Zp +AE1

e
= QQTA(QQTUp +E2)U

T
p Zp +E2U

T
p AUpU

T
p Zp +AE1

= QQTAQQTUpU
T
p Zp +QQTAE2U

T
p Zp +E2U

T
p AUpU

T
p Zp +AE1.

f
= QQTAQQTZp −QQTAQQTE1 +QQTAE2U

T
p Zp +E2U

T
p AUpU

T
p Zp +AE1.

In the above set of equations, (a) follows by replacing Zp with UpU
T
p Zp + E1, (b) and (d) follows from the fact

that AUpU
T
p = UpU

T
p AUpU

T
p as Up contains the eigenvectors of A, (c) and (e) follows from replacing Up in

the first term by QQTUp + E2, (f) follows from replacing the UpU
T
p Zp in the first term by Zp − E1. Now,

QQTAQQTZp = ZpΛ̃p. Also, using spectral submultiplicativity, ∥QQTAQQTE1∥2 ≤ ∥A∥2∥E1∥2 ≤ ∥A∥2

nc2
.

Similarly, each of the last three terms in the final step above can be bounded by max
(∥A∥2

nc2
, ∥A∥2

nc3

)
. Thus, using

triangle inequality, and after adjusting the constants c1 and c′ appropriately, we have:

∥AZp − ZpΛ̃p∥2 ≤ ∥A∥2
nc1

,

with probability at least 1− 1
nc′

3.1.2 Eigenvalue Alignment In this section, we show that as a consequence of Lemma 3.2, the large
magnitude eigenvalues of A are approximated by those of QQTAQQT . We first state a result from [Par98]
(Theorem 11.5.1) which states that for a symmetric matrix D ∈ Rn×n and any orthonormal matrix C ∈ Rn×m

the eigenvalues of D can be put into one-to-one correspondence with those of CTDC such that the error is
bounded by the spectral norm of DC−CCTDC.

Theorem 3.2. (Theorem 11.5.1 of [Par98]) Let D ∈ Rn×n be a symmetric matrix and C ∈ Rn×m be a
matrix with orthonormal columns. Then, there exists m eigenvalues of D, {αi | i = 1, . . . ,m} such that for
i ∈ [m]:

|αi − λi(C
TDC)| ≤ ∥DC−CCTDC∥2.

We now prove a couple of Lemmas which we will use along with Theorem 3.2 for our main theorem.

Lemma 3.4. Consider the setting of Lemma 3.2 where A ∈ Rn×n is symmetric. Let the error bound for
Lemma 3.2 hold for a constant c > 0. For some constant c′ > 0, with probability at least 1− 1

nc′ ,

∥QQTAQQTUp −UpU
T
p QQTAQQTUp∥2 ≤ ∥A∥2

nc−1
.

Proof. Recall that we denote the eigendecomposition of a symmetric matrix A by A = UΛUT . A’s eigenvectors
(i.e., the columns of U) are equal to its singular vectors, and recall that Up ∈ Rn×p has columns equal to the p
eigenvectors corresponding to the p largest magnitude eigenvalues (i.e., the p singular vectors corresponding to
the p largest singular values). From Lemma 3.2, we have QQTUp = Up + E where E ∈ Rn×p has ∥E∥2 ≤ 1

nc

with probability at least 1− 1
nc′′ . Thus, from (3.12), we get

QQTAQQTUp = UpΛp +EΛp +QQTAE.(3.19)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2708

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Also, we have:

UpU
T
p QQTAQQTUp = Up(U

T
p +ET )A(Up +E)

= UpU
T
p AUp +UpU

T
p AE+UpE

TAUp +UpE
TAE

= UpΛp +UpU
T
p AE+UpE

TAUp +UpE
TAE.

Then, using triangle inequality and spectral submultiplicativity, we have that

∥QQTAQQTUp −UpU
T
p QQTAQQTUp∥2 ≤ ∥Λp∥2∥E∥2 + 3∥A∥2∥E∥2 + ∥A∥∥E∥22 ≤ 5∥A∥2

nc
.

This completes the proof.

Next we prove that the eigenvalues of A are well approximated by those of UT
p QQTAQQTUp.

Lemma 3.5. Consider the setting of Lemma 3.2 where A ∈ Rn×n is symmetric. Let the error bound for
Lemma 3.2 hold for a constant c > 0. For some constant c′ > 0, with probability at least 1 − 1

nc′ , we have
for all i ∈ [p],

|λi(U
T
p QQTAQQTUp)− λi(A)| ≤ ∥A∥2

nc−1
.

Proof. To prove the theorem we will show that UT
p QQTAQQTUp is close to UT

p AUp = Λp in the spectral norm,
and thus has nearby eigenvalues. Observe that

UT
p AUp −UT

p QQTAQQTUp = UT
p (I−QQT )AQQTUp +UT

p QQTA(I−QQT )Up

+UT
p (I−QQT )A(I−QQT )Up.(3.20)

Since all the terms on the righthand side above contain the term (I−QQT )Up, we can use Lemma 3.2 to show
that they are small. For the first term, we have:

∥UT
p (I−QQT )AQQTUp∥2 ≤ ∥UT

p (I−QQT )∥2 · ∥A∥2 · ∥QQTUp∥2 ≤ ∥A∥2
nc

,

where we also use the fact Q and Up are orthonormal matrices and that ∥UT
p (I−QQT )∥2 ≤ ∥UT

p (I−QQT )∥F ≤ 1
nc

by Lemma 3.2. Similarly we can bound the other two terms in (3.20) by ∥A∥2

nc . Applying triangle inequality, we
obtain:

∥UT
p AUp −UT

p QQTAQQTUp∥2 ≤ 3∥A∥2
nc

.

Observe that UT
p AUp = Λp has eigenvalues λ1(A) . . . , λp(A). So, by Weyl’s inequality (Fact 2.1), we have that

|λi(A) − λi(U
T
p QQTAQQTUp)| ≤ ∥UT

p AUp − UT
p QQTAQQTUp∥2 ≤ 3∥A∥2

nc for i ∈ [p]. This completes the
proof.

The next theorem is the main result of this section which states that the top p eigenvalues of A are
approximated by the top p eigenvalues of QQTAQQT up to some permutation for some k ≤ p ≤ l as long as the
conditions in Lemma 3.3 are satisfied. i.e., there exists some k ∈ [l] with at least some constant multiplicative
gap between σk(A) and σl+1(A).

Theorem 3.3. (Eigenvalue alignment) Consider the setting of Theorem 3.1 and Lemma 3.3. Let c1, c′ > 0
be some constants. Then, there exists a permutation S : [p] → [p] such that for every i ∈ [p], we have

|λi(A)− λS(i)(QQTAQQT )| ≤ ∥A∥2
nc1

,

with probability at least 1− 1
nc′ .
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Proof. We apply Theorem 3.2 to first prove that each of the top p eigenvalues of A has an eigenvalue of
QQTAQQT close to it. Let C = Up and D = QQTAQQT . Let c > 0 be the constant in the statements
of Lemmas 3.2, 3.4 and 3.5. Then, CTDC = UT

p QQTAQQTUp and by Theorem 3.2, there exist p eigenvalues
α1, . . . , αp of QQTAQQT such that for i ∈ [p]:

|αi − λi(U
T
p QQTAQQTUp)| ≤ ∥DC−CCTDC∥2

= ∥QQTAQQTUp −UpU
T
p QQTAQQTUp∥2

≤ ∥A∥2
nc−1

.(3.21)

The last inequality hold with probability at least 1 − 1
nc′ for some constant c′ > 0 due to Lemma 3.4. From

Lemma 3.5, with probability at least 1− 1
nc′ , we get that for all i ∈ [p], we have:

(3.22) |λi(U
T
p QQTAQQTUp)− λi(A)| ≤ ∥A∥2

nc−1
.

Combining (3.21) and (3.22), and using triangle inequality we have for every i ∈ [p] (for some constant c4 > 0),

|αi − λi(A)| ≤ 2∥A∥2
nc−1

.(3.23)

We now prove that the αi’s (for all i ∈ [p]) are a permutation over λ1(QQTAQQT ), . . . , λp(QQTAQQT ).
Suppose that this is not true, i.e., there exists some j ∈ [p] such that αj = λp+r(QQTAQQT ) for some r ≥ 1.
So we have |λp+r(QQTAQQT )− λj(A)| ≤ 2∥A∥2

nc−1 . Now, by the minimax principle we have

|λp+r(QQTAQQT )| ≤ |λp+1(QQTAQQT )| ≤ |λp+1(A)|.

Using triangle inequality, we have:

|λp(A)| − |λp+1(A)| ≤ |λj(A)| − |λp+r(QQTAQQT )| ≤ |λj(A)− λp+r(QQTAQQT )| ≤ 2∥A∥2
nc−1

.

From Lemma 3.3, we have σp(A) − σp+1(A) ≥ ∥A∥2

2nc/2+1 for some constant c. For a large enough c, we have
2∥A∥2

nc−1 < ∥A∥2

2nc/2+1 and thus, we have a contradiction. So we must have γj = λi(QQTAQQT ) for some i ∈ [p].
Choosing the constant c1 to be suitably gives us the bound.

3.1.3 Bounding the spectral norm after deflation In this section, we bound the spectral norm of the
matrix A after deflating its top subspace using the converged eigenvectors from the randomized block Krylov
algorithm (Algorithm 2). More formally, let ZS = QVS be the output of Algorithm 2. Let P = I − ZSZ

T
S ,

i.e., the projection matrix onto the subspace orthogonal to ZS . Then, we bound ∥PAP∥2 based on the fact that
ZS must contain the top p eigenvectors of A for some p ≤ l as proven in Theorems 3.1 and 3.3, provided the
assumptions in those theorems hold for A. We first bound the spectral norm after deflating exactly the top p
subspace of A.

Lemma 3.6. (Spectral norm bound after deflation) Consider the setting of Theorems 3.1 and 3.3. Let
c1, c

′ > 0 be some constants. Let Zp ∈ Rn×p be as defined in Theorem 3.1. Then,

∥(I− ZpZ
T
p )A(I− ZpZ

T
p )∥2 ≤ σp+1(A) +

∥A∥2
nc1

,

with probability at least 1− 1
nc′ .

Proof. Let the bounds from Theorem 3.1 and 3.3 hold with some constant c2 > 0. Assume for contradiction, that
∥(I−ZpZ

T
p )A(I−ZpZ

T
p )∥2 > σp+1(A)+ ∥A∥2

nc2/2−1 . Then, there exists some eigenvector x of (I−ZpZ
T
p )A(I−ZpZ

T
p )

with corresponding eigenvalue λ such that |λ| > σp+1(A) + ∥A∥2

nc2/2−1 . Since any eigenvector corresponding to a
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nonzero eigenvalue of (I−ZpZ
T
p )A(I−ZpZ

T
p ) must lie in the column space of I−ZpZ

T
p , they will be orthogonal to

Zp and thus, we will have ZT
p x = 0. Since we have (I−ZpZ

T
p )A(I−ZpZ

T
p )x = λx, we get that (I−ZpZ

T
p )Ax = λx.

Then, we have

∥Ax∥22 ≥ λ2 ≥ σ2
p+1(A) +

2σp+1(A)∥A∥2
nc2/2−1

+
∥A∥22
nc2−2

.(3.24)

Let Z′ ∈ Rn×p+1 such that the first p columns of Z′ are the columns of Zp and (p + 1)th column is x. From
Theorem 3.1, we have that AZp = ZpΛ̃p +E where ∥E∥2 ≤ ∥A∥2

nc2
. Then, we have ∥E∥F ≤

√
n∥A∥2

nc2
≤ ∥A∥2

nc2−0.5 and
thus, we get:

∥AZp∥2F ≥ (∥ZpΛ̃p∥F − ∥E∥F )2

≥ (∥ZpΛ̃p∥F − ∥A∥2
nc2−0.5

)2(3.25)

≥ ∥ZpΛ̃p∥2F +
∥A∥22
n2c2−1

− 2∥ZpΛ̃p∥F
∥A∥2
nc2−0.5

≥ ∥ZpΛ̃p∥2F +
∥A∥22
n2c2−1

− 2∥A∥22
nc2−1

=

p∑
i=1

σ2
i (QQTAQQT ) +

∥A∥22
n2c2−1

− 2∥A∥22
nc2−1

,(3.26)

for some constant C > 0. The first inequality above follows from the triangle inequality, the second from the
bound ∥E∥F ≤ ∥A∥2

nc2−0.5 and the third from expanding the quadratic expression. The fourth bound follows from
∥ZpΛ̃p∥F = ∥Λ̃p∥F ≤

√
n∥Λ̃p∥2 ≤

√
n∥A∥2 (where we use the fact that ∥QQTAQQT ∥2 ≤ ∥A∥2 and Zp is an

orthonormal matrix) which gives us ∥ZpΛ̃p∥F ∥E∥F ≤ ∥A∥2
2

nc2−1 . The final step follows from the fact that Zp and Λ̃p

contain the top p eigenvectors and eigenvalues of QQTAQQT . By the Pythagorean theorem, we have

∥AZ′∥2F = ∥AZp∥2F + ∥Ax∥22 >

p∑
i=1

σ2
i (QQTAQQT ) +

∥A∥22
n2c2−1

− 2∥A∥22
nc2−1

+ σ2
p+1(A) +

2σp+1(A)∥A∥2
nc2/2−1

+
∥A∥22
nc2−2

,(3.27)

where the last inequality follows from the lower bounds in (3.24) and (3.25). From Theorem 3.3, there exists a
permutation S : [p] → [p] such that for every i ∈ [p] (and for some constant C ′ > 0), |λi(A)−λS(i)(QQTAQQT )| ≤
∥A∥2

nc2
or

|λ2
i (A)− λ2

S(i)(QQTAQQT )| ≤
|λi(A) + λS(i)(QQTAQQT )|∥A∥2

nc2
≤ 2∥A∥22

nc2
,

where we upper bounded λi(A) and λS(i)(QQTAQQT ) by ∥A∥2. Thus, we have λ2
i (A) ≤ λ2

S(i)(QQTAQQT ) +
2∥A∥2

2

nc2
or σ2(A) ≤ σ2

S(i)(QQTAQQT ) +
2∥A∥2

2

nc2
for every i ∈ [p]. Adding up both sides over i ∈ [p] we get that∑p

i=1 σ
2
i (A) ≤

∑p
i=1 σ

2
i (QQTAQQT ) +

2p∥A∥2
2

nc2
≤
∑p

i=1 σ
2
i (QQTAQQT ) +

2∥A∥2
2

nc2−1 . So, we get:

p∑
i=1

σ2
i (A) + σ2

p+1(A) ≤
p∑

i=1

σ2
i (QQTAQQT ) +

2∥A∥22
nc2−1

+ σ2
p+1(A)

=

p∑
i=1

σ2
i (QQTAQQT ) +

∥A∥22
n2c2−1

− 2∥A∥22
nc2−1

+ σ2
p+1(A) +

∥A∥22
nc2−2

+
2σp+1(A)∥A∥2

nc2/2−1
− (

∥A∥22
nc2−2

+
∥A∥22
n2c2−1

− 4∥A∥22
nc2−1

+
2σp+1(A)∥A∥2

nc2/2−1
).(3.28)
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For large enough n and c2, we have ∥A∥2
2

nc2−2 +
∥A∥2

2

n2c2−1 − 4∥A∥2
2

nc2−1 +
2σp+1(A)∥A∥2

nc2/2−1 > 0. Thus from the lower bound (3.27)
on ∥AZ′∥2F and from (3.28), we get

∑p+1
i=1 σ2

i (A) < ∥AZ′∥2F . But, by the minmax principle for singular values,
we have maxV∈Rn×(p+1),VTV=I ∥AV∥2F =

∑p+1
i=1 σ2

i (A), which results in a contradiction as Z′ is an n × (p + 1)

orthonormal matrix. Thus, we must have ∥(I− ZpZ
T
p )A(I− ZpZ

T
p )∥2 ≤ σp+1(A) + ∥A∥2

nc2/2−1 .

We now prove our main result which bounds the spectral norm of the deflated matrix PAP.

Theorem 3.4. Consider the setting of Theorem 3.1 and let the error bound of Theorem 3.1 hold for some constant
c3 > 0. Let Algorithm 2 be run with the inputs A ∈ Rn×n, block size l ∈ [n] and β = c3/2. Let S be the set
of indices as defined in Algorithm 2 such that for any i ∈ S, the eigenvector vi and corresponding eigenvalue
λi(Q

TAQ) of QTAQ satisfies ∥AQvi − λi(Q
TAQ)Qvi∥2 ≤ ∥A∥2

nc1
for some constant c1 > 0. Let P = I− ZSZ

T
S

where ZS = QVS is the output of Algorithm 2. Then, for come constants c2, c
′ > 0, we have:

∥PAP∥2 ≤ 2σl+1(A) +
∥A∥2
nc2

,

with probability at least 1− 1
nc′ .

Proof. Observe that if v is an eigenvector of QTAQ (where Q is an orthonormal basis of the Krylov subspace
Kq in line 3 of Algorithm 2) with corresponding eigenvalue λ, then z = Qv is an eigenvector of QQTAQQT

with eigenvalue λ as Q is an orthonormal matrix. Similarly, for any eigenvector z of QQTAQQT , there is a
corresponding eigenvector QT z of QTAQ with the same eigenvalue. Thus, we can interchangeably refer to the
eigenvalues and eigenvectors of QQTAQQT instead of QTAQ in our proof. Let α = max

(
σl+1(A), ∥A∥2

nc/2

)
for

some constant c as defined in Lemma 3.3. We will now prove the Lemma by considering the two cases below:

Case 1: Let there be some k ∈ [l] such that σk(A) ≥ 2α and σk+1(A) < 2α. Let p ∈ [k, l] such that σp(A) ≥ 3
2α,

σp(A) − σp+1(A) ≥ ∥A∥2

2nc/2+1 as defined in Lemma 3.3. Then, from Theorem 3.1, for any i ∈ [p], we have
∥Azi−λi(QQTAQQT )zi∥2 ≤ ∥AZp−ZpΛ̃p∥F ≤ ∥A∥2

nc3
. Thus, as β = c3/2 in Algorithm 2 we have ∥A∥2

nc3
< ∥A∥2

nβ

and the convergence condition in line 7 of Algorithm 2 is always satisfied for the top p eigenvectors of QQTAQQT .
So, we must have [p] ⊆ S, and ZS must contain at least the top p eigenvectors of QTAQ. Thus, observe that
using Lemma 3.6, for some constant c4, we have ∥PAP∥2 ≤ ∥(I − ZpZ

T
p )A(I − ZpZ

T
p )∥2 ≤ σp+1(A) + ∥A∥2

nc4
≤

σk+1(A) + ∥A∥2

nc4
≤ 2α + ∥A∥2

nc4
≤ 2(σl+1(A) + ∥A∥2

nc/2 ) +
∥A∥2

nc4
≤ 2σl+1(A) + 2∥A∥2

nc/2 + ∥A∥2

nc4
. So, for some constant

c5 > 0 we get:

∥PAP∥2 ≤ 2σl+1(A) +
∥A∥2
nc5

.

Case 2: If no such k ∈ [l] exists, we will have σi(A) ≤ 2α for all i ∈ [n]. So, as P is a projection matrix, we have
∥PAP∥2 ≤ ∥A∥2 ≤ 2α ≤ 2σl+1(A)+ 2∥A∥2

nc/2 . This completes the proof after choosingthe constant carefully.

3.2 Error Bounds for moment matching with deflation In this section, we prove the final error bounds
for Algorithm 1. We first prove the existence of a matrix B that is close in spectral norm to A such that the
converged eigenvectors and eigenvalues of QQTAQQT as defined in line 7 of Algorithm 2 are a subset of B’s true
eigenvectors and eigenvalues. First, we state a simplified version of a backward perturbation bound from [Sun95].

Theorem 3.5. (Theorem 3.1 of [Sun95]) Let A ∈ Rn×n be a symmetric matrix. Let X̃ ∈ Rn×l and Λ̃ ∈ Rn×l

(where Λ̃ is diagonal) be such that ∥AX̃ − X̃Λ̃∥2 ≤ ∆ for some ∆ > 0. Let R̂ = AX̃ − X̃Λ̃. Let X̃ = PH be
the polar decomposition of X̃. Then, there exits a symmetric matrix H ∈ Rn×n such that (A +H)P = PΛ̃ and

∥H∥F ≤
√

∥R̂∥2
F+∥P⊥R̂∥2

F

σmin(X̃)
where P⊥ = I−PPT .

Using Theorem 3.5, we state a backward error bound for the deflation algorithm which we will use in the
final error analysis.
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Lemma 3.7. (Wasserstein Error using Backward Error Bound) Let A ∈ Rn×n be a symmetric matrix.
Let ZS and Λ̃S be the outputs of Algorithm 2 with A as input. Then there exists a symmetric matrix B ∈ Rn×n

such that

BZS = ZSΛ̃S and ∥A−B∥2 ≤ ∥A∥2
nβ−1

,

where β > 0 is the constant defined in Algorithm 2.

Proof. We will apply the backward perturbation error bound of Theorem 3.5 to prove the existence of B.
Following Theorem 3.5, we have X̃1 = ZS and hence, P1 = ZS since ZS is an orthonormal matrix and its
polar decomposition is equal to itself. . Next, observe that σmin(ZS) = 1 and ∥R̂∥2F = ∥AZS − ZSΛ̃S∥2F =∑

i∈S ∥Azi − λi(Q
TAQ)zi∥22 ≤ ∥A∥2

2

n2β−1 where the last bound follows from the fact that ∥Azi − λi(Q
TAQ)zi∥2 ≤

∥A∥2

nβ as stated in line 7 of Algorithm 2. We also have ∥(ZS)⊥(ZS)
T
⊥R̂∥2F = ∥(I − ZSZ

T
S )(AZS − ZSΛ̃S)∥2F ≤

∥AZS − ZSΛ̃S∥2F ≤ ∥A∥2
2

n2β−1 where the last step follows as I− ZSZ
T
S is a projection matrix. Thus, there exists a

symmetric matrix H such that (A+H)ZS = ZSΛ̃S and ∥H∥F ≤
√

∥R̂∥2
F+∥(ZS)⊥R̂∥2

F

σmin(Z) ≤ ∥A∥2

nβ−1 . Setting B = A+H

gives us the required matrix.

We now prove that the output of Algorithm 1 of [BKM22] using the modified moments τ̂i as inputs for i ∈ N
(as defined in lines 4-6 of Algorithm 1) must be close in the Wasserstein distance to the spectral density defined
by the non-zero eigenvalues of the deflated matrix PAP.

Lemma 3.8. (Modified SDE bound for deflated matrix) Let A ∈ Rn×n be a rank n−r symmetric matrix
for some r ∈ [n] with spectral density sA(x) such that |λ1(A)| ≤ 1. Let ϵ ∈ (0, 1), N = O

(
1
ϵ

)
and τ̃1, . . . , τ̃N

be the estimates of the top N normalized Chebyshev moments of A estimated using Algorithm 2 of [BKM22].
Define τ̂i = 1

n−r (nτ̃i − rT̄i(0)) for i ∈ [N ] where T̄i(0) is the ith normalized Chebyshev polynomial. Let the
density function q(x) be the output of Algorithm 1 of [BKM22] with τ̂1, . . . , τ̂N as the inputs for the moment
estimates. Let s′A(x) = 1

n−r

∑n−r
j=1 δ(x− λj(A)) be the probability density defined by the top n− r eigenvalues of

A, λ1(A), . . . , λn−r(A). Then, with probability at least 1− δ, we have:

W1(s
′
A, q) ≤ nϵ

n− r
.

Also, estimating the density function q using Algorithm 1 of [BKM22] and also using Algorithm 2 of [BKM22] as
a subroutine to estimate the moments, requires O

(
b
ϵ

)
matrix-vector products where b = max(1, C′

nϵ2 log
2 1

ϵδ log
2 1

ϵ ).

Proof. 1
n tr (T̄i(A)) = 1

n

∑n
j=1 T̄i(λj(A)) = 1

n

∑n−r
j=1 T̄i(λj(A)) + r

n T̄i(0) for i ∈ [N ] are the top N normalized
Chebyshev moments of sA(x) = 1

n

∑n
i=1 δ(x − λi(A)). Then, the ith normalized Chebyshev moment of s′A(x) is

given by τ ′i =
1

n−r

∑n−r
j=1 T̄i(λj(A)) = n

n−r · 1
n

∑n
j=1 T̄i(λj(A))− 1

n−r

∑n
j=n−r+1 T̄i(λj(A)) = n

n−r · 1
n tr(T̄i(A))−

r
n−r T̄i(0).

By setting ∆ = 1
N ln(eN) (where N is the number of Chebyshev moments estimated), using Lemma 4.2

of [BKM22], we get that with A as the input, the normalized Chebyshev moment estimates τ̂i returned by
Algorithm 2 of [BKM22] must satisfy

∣∣τ̃i − 1
n tr (T̄i(A))

∣∣ ≤ 1
N ln(eN) for all i ∈ [N ]. So, we have:

|τ̂i − τ ′i | =

∣∣∣∣∣∣ n

n− r
τ̃i −

r

n− r
T̄i(0)−

1

n− r

n−r∑
j=1

T̄i(λj(A))

∣∣∣∣∣∣
=

n

n− r

∣∣∣∣τ̃i − 1

n
tr(T̄i(A))

∣∣∣∣
≤ n

(n− r)N ln(eN)
,(3.29)

where the second step follows from the fact that λn−r+1(A) = . . . = λn(A) = 0 by assumption. The density q
returned by Algorithm 1 of [BKM22] is defined on a (d+1)−length evenly spaced grid Xd = [−1,−1+ 2

d , . . . , 1−
2
d , 1]
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for d = ⌈N3/2⌉. Let zs′ = [τ ′1/1, τ
′
2/2, . . . , τ

′
N/N ] and zq = T d+1

N q where (T d+1
N ) ∈ RN×(d+1) such that

(T d+1
N )ij = T̄i(−1 + 2j

d )/i for i ∈ [N ], j ∈ {0, 1, . . . , d}. Also, let z = [τ̂1, τ̂1/2, . . . , τ̂N/1]. Then, using triangle
inequality, we have

∥zq − zs′∥1 = ∥zq − z∥1 + ∥z − zs′∥1.

Now, ∥z − zs′∥1 ≤
∑N

i=1(τ̂i − τ ′i)/i ≤ n
(n−r)N ln(eN) · Hn ≤ n

N(n−r) where we use (3.29) to bound τ̂i − τ ′i and
Hn is the nth harmonic number. Next, consider the following distribution q∗ on Xd as defined in Lemma 3.4
of [BKM22]:

q∗(x) =
1

n− r

n−r∑
j=1

δ(x− argmin
p∈Xd

|p− λj(A)|).

q∗ is the distribution corresponding to moving the mass from each λj(A) to its nearest point on the grid Xd.
We have W1(s

′
A, q∗) ≤ 1

d due to the earth mover’s distance interpretation of the Wasserstein-1 distance. Let
zq∗ = [⟨q∗, T̄1⟩, . . . , ⟨q∗, T̄N ⟩/N ]. Now, from Line 3 of Algorithm 1 of [BKM22], q is defined as the density which
minimizes ∥T d+1

N q − z∥1. Thus, we have ∥T d+1
N q − z∥1 ≤ ∥zq∗ − z∥1. Then, following the proof of Lemma 3.4

of [BKM22] exactly, we can upper bound ∥zq∗ − z∥1 by 2
N using the properties of Chebyshev polynomials which

gives us ∥T d+1
N q − z∥1 ≤ 2

N . . Thus, we get ∥zq − zs′∥1 ≤ 3n
(n−r)N . Finally, following the proof of Lemma 3.4

of [BKM22], Lemma 3.1 of [BKM22] gives us the final bound on W1(s
′
A, q).

Note that the number of matrix-vector products is obtained by setting ∆ = 1
N ln(eN) in Lemma 4.2 of [BKM22].

We now prove the final error bound for Algorithm 1. We will first show using Lemma 3.7 that there exists
a matrix B such that its spectral density is very close to that of A and ZS and Λ̃S (the output of Algorithm 2)
are a subset of the eigenvectors and eigenvalues of B. Then, it is enough to estimate the spectral density of B.
We already know the eigenvalues Λ̃S of B. So we just need to estimate the spectral density of its remaining
eigenvalues (which is equal to the part of the spectral density of the deflated matrix PBP corresponding to the
eigenvalues with eigenvectors which lie in the subspace orthogonal to ZS). To do this, we first observe that the
spectral density of PBP is again close to that of PAP. So, it is enough to estimate the spectral density of
the eigenvalues of PAP corresponding to its non-deflated eigenvectors. We show this is exactly estimated by
Algorithm 1 of [BKM22] by appropriately modifying the Chebyshev moments of PAP to account for the zero
eigenvalues corresponding to the deflated eigenvectors.

Theorem 1.1. (SDE with Explicit Deflation) Let A ∈ Rn×n be a symmetric matrix. For any ϵ, δ ∈ (0, 1),
l ∈ [n], and constants c, c1 > 0, Algorithm 1 performs O

(
l log n+ b

ϵ

)
matrix-vector products with A where

b = max
(
1, 1

nϵ2 log
2 n

ϵ log
2 1

ϵ

)
and computes a probability density function q such that

W1(sA, q) ≤ ϵσl+1(A) +
∥A∥2
nc

,

with probability at least 1− 1
nc1

.

Proof. Let ZS ∈ Rn×|S| and Λ̃S ∈ R|S|×|S| be the output of Algorithm 2, in line 2 of Algorithm 1. Recall
that ZS = QVS where Q is an orthonormal basis of the Krylov subspace of A (Definition 2.1) with a starting
block X ∈ Rn×l containing random N (0, 1) Gaussian entries and the columns of VS are all the eigenvectors
of QTAQ with the corresponding eigenvalues along the diagonal of Λ̃S ∈ R|S|×|S| such that for any i ∈ S,
∥AQvi − (Λ̃S)iiQvi∥2 ≤ ∥A∥2

nβ for some constant β as defined in line 7 of Algorithm 2 (here vi is an eigenvector
of QTAQ corresponding to eigenvalue λi(Q

TAQ)). Equivalently, for every i ∈ S, zi = Qvi is an eigenvector
of QQTAQQT corresponding to an eigenvalue λi(QQTAQQT ). Now, using Lemma 3.7, there exists a
symmetric matrix B ∈ Rn×n such that BZS = ZSΛ̃S and ∥A−B∥2 ≤ ∥A∥2

nβ−1 . Using Weyls’ inequality (Fact 2.1),
for all i ∈ [n] we have

(3.30) |λi(A)− λi(B)| ≤ ∥A∥2
nβ−1

.
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Then, 1
n

∑n
i=1 |λi(A)− λi(B)| ≤ ∥A∥2

nβ−1 . Using the earth mover’s interpretation, this implies that:

(3.31) W1(sA, sB) ≤
∥A∥2
nβ−1

,

where sB is the spectral density of B. Since β = c as defined in line 2 of Algorithm 1, it is enough to bound
W1(sB, q).

Since BZS = ZSΛ̃S , the eigenvalues λi(Q
TAQ) such that i ∈ S are also eigenvalues of B. Let S1 ⊆ [n]

be the set of indices of the eigenvalues of B such that |S1| = |S| and for each i ∈ S1, there exists some
j ∈ S such that λi(B) = λj(Q

TAQ) . Let [−L1, L1] contain the support of both sB and q (the output of
Algorithm 1). Let P = I − ZSZ

T
S . Note that, from Algorithm 1, we also have q(x) = |S|q1(x)+(n−|S|)q2(x))

n

where q1(x) = 1
|S|
∑|S|

i=1 δ(x − (Λ̃S)ii) = 1
|S|
∑

i∈S δ(x − λi(Q
TAQ)) (as defined in Line 2 of Algorithm 1) and

q2(x) = q′2(x/L) for x ∈ [−L,L] where q′2 is a density supported on [−1, 1] which is the output of Algorithm
1 of [BKM22] with the modified approximate moments of 1

LPAP as defined in lines 4-6 of Algorithm 1 (where
∥PAP∥2 ≤ L ≤ 2∥PAP∥2). W1(sB, q) can be written as:

W1(sB, q) = sup
h∈1-Lip

∫ L1

−L1

h(x)(sB(x)− q(x))dx.

Let h∗(x) be the 1-Lipschitz function which maximizes the integral above. Then, using the definitons of sB and
q we have:

W1(sB, q) =

∫ L1

−L1

h∗(x)

 1

n

n∑
i=1

δ(x− λi(B))− 1

n

∑
j∈S

δ(x− λj(Q
TAQ))− n− |S|

n
q2(x)

 dx

=
|S|
n

∫ L1

−L1

h∗(x)

 1

|S|
∑
i∈S1

δ(x− λi(B))− 1

|S|
∑
j∈S

δ(x− λj(Q
TAQ))

 dx

︸ ︷︷ ︸
I1

+
n− |S|

n

∫ L1

−L1

h∗(x)

 1

n− |S|
∑
i/∈S1

δ(x− λi(B))− q2(x)

 dx

︸ ︷︷ ︸
I2

.(3.32)

We have I1 = 0 by definition of the sets S1 and S. Thus, we have W1(sB, q) =
n−|S|

n I2. We now bound I2.
Observe that any eigenvalue λi(B) such that i /∈ S1, is also an eigenvalue value of PBP. To see this, let xi

be the corresponding eigenvector of B. Then, observe that PBPx = PBx = λi(B)x as ZT
Sx = 0. Also both

PBP and PAP have |S| (where |S| = |S1|) eigenvalues equal to 0 (with the corresponding eigenvectors being the
columns of Z). Let S2 ⊆ [n] be the set of indices such that |S2| = n− |S1| = n− |S| and for every j ∈ S2, there
exists some i ∈ [n] \ S1 such that λj(PBP) = λi(B). So, we can write I2 as:

I2 =

∫ L1

−L1

h∗(x)

 1

n− |S|
∑
i/∈S1

δ(x− λi(B))− q2(x)

 dx

=

∫ L1

−L1

h∗(x)

(
1

n− |S|
∑
i∈S2

δ(x− λi(PBP))− q2(x)

)
dx

=

∫ L1

−L1

h∗(x)

(
1

n− |S|
∑
i∈S2

δ(x− λi(PBP))− 1

n− |S|
∑
i∈S2

δ(x− λi(PAP))

)
dx︸ ︷︷ ︸

t1

+

∫ L1

−L1

h∗(x)

(
1

n− |S|
∑
i∈S2

δ(x− λi(PAP))− q2(x)

)
dx︸ ︷︷ ︸

t2

.(3.33)
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Using the fact that P is a projection matrix and Lemma 3.6, we again have that ∥PAP − PBP∥2 ≤ ∥P(A −
B)P∥2 ≤ ∥A−B∥2 ≤ ∥A∥2

nβ−1 . Thus, using Weyls’ inequality (Fact 2.1) we have |λi(PBP)− λi(PAP)| ≤ ∥A∥2

nβ−1 for
i ∈ [n]. We can bound t1 using the earth movers’ interpretation of the Wasserstein-1 distance as

t1 ≤ 1

n− |S|
∑
i∈S2

|λi(PBP)− λi(PAP)| ≤ ∥A∥2
nβ−1

.(3.34)

We bound t2 next. Since all eigenvalues of 1
LPAP are in [−1, 1] and PAP has at least n− |S| eigenvalues equal

to 0 as described previously (corresponding to λi(PAP) where i /∈ S2), according to Lemma 3.8, the density q′
2

returned by Algorithm 1 of [BKM22] in line 6 of Algorithm 1 satisfies the guarantee

W1

(
s′PAP, q

′
2

)
≤ nϵ

(n− |S|)
,(3.35)

with probability at least 1 − δ where s′PAP(x) =
∑

i∈S2

δ(x− 1
Lλi(PAP))

n−|S| . Since q′2 is supported on [−1, 1], we set
q2(x) = q′2(x/L) in line 7 of Algorithm 1 when x ∈ [−L,L] and q2(x) = 0 otherwise so that q2 is now supported
on [−L,L]. So we get that

t2 =

∫ L

−L

h∗(x)

(
1

n− |S|
∑
i∈S2

δ(x− λi(PAP))− q2(x)

)
dx

=

∫ 1

−1

h∗(Lx)

(
1

n− |S|
∑
i∈S2

δ(Lx− λi(PAP))− q2(Lx)

)
dx

=

∫ 1

−1

h∗(Lx)

(
1

n− |S|
∑
i∈S2

δ

(
x− λi(PAP)

L

)
− q′2(x)

)
dx

≤ sup
h1∈1-Lip

L

∫ 1

−1

h1(x)

(
1

n− |S|
∑
i∈S2

δ

(
x− λi(PAP)

L

)
− q′2(x)

)
dx

= LW1

(
s′PAP, q

′
2

)
≤ nϵ

(n− |S|)
L.

In the first step above, we use the fact that the densities are supported on [−L,L] instaed of [−L1, L1]. In the
second step, we rescale the integrals from [−L,L] to [−1, 1]. In the third step, we use the fact that q2(Lx) = q′2(x)

and 1
n−|S|

∑
i∈S2

δ(Lx − λi(PAP)) = 1
n−|S|

∑
i∈S2

δ
(
x− λi(PAP)

L

)
when x ∈ [−1, 1]. The fourth step follows

from the fact that h∗(Lx) is an L−Lipschitz function and the final two steps follows from the definition of the
Wasserstein-1 distance and (3.35).

Since ∥PAP∥2 ≤ L ≤ 2∥PAP∥2 from Theorem 3.4, for some constant c2 > 0, we have L ≤ 2∥PAP∥2 ≤
2σl+1(A) + 2∥A∥2

nc2
. Thus, we get:

t2 ≤ ϵn

2(n− |S|)
·
(
2σl+1(A) +

2∥A∥2
nc2

)
.(3.36)

From (3.33), using the bounds on t1 and t2 from (3.34) and (3.36), we get I2 ≤ ∥A∥2

nβ−1 + ϵn
2(n−|S|) ·(

2σl+1(A) + 2∥A∥2

nc2

)
. Using the bound on I2 and the fact that I1 = 0 in (3.32), we get:

W1(sB, q) ≤
|S|
n

I1 +
n− |S|

n
I2 ≤ ϵσl+1(A) +

ϵ∥A∥2
nc2

+
∥A∥2
nβ−1

.
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Finally, using triangle inequality and (3.31), we get that, for some suitable chosen constant c1 > 0:

W1(s, q) ≤ W1(sA, sB) + W1(sB, q) ≤ ϵσl+1(A) +
ϵ∥A∥2
nc2

+
2∥A∥2
nβ−1

≤ ϵσl+1(A) +
∥A∥2
nc1

.

This completes the proof.

Matrix vector products. Line 1 of Algorithm 1 calls Algorithm 2 with A as input which uses O(l log n)
matrix vector products with A to form the Krylov subspace in Line 2 of Algorithm 2 (since the Krylov subspace
has depth O(log n) and block size l). By setting the error parameter ϵ in Algorithm 2 of [MM15] to 0.5, we get
an output L′ in O(log n) iterations such that 0.5∥PAP∥2 ≤ L′ ≤ ∥PAP∥2. Then, we can set L = 2L′ such that
∥PAP∥2 ≤ L ≤ 2∥PAP∥2 as defined in Line 3 of Algorithm 1. Also, Algorithm 2 of [BKM22] is called with the
deflated and scaled matrix 1

LPAP as input in line 4 of Algorithm 1. According to Lemma 3.8, this uses O
(
b
ϵ

)
matrix vector products with PAP where b = max

(
1, 1

nϵ2 log
2 n

ϵ log
2 1

ϵ

)
i.e. O

(
b
ϵ

)
matrix vector products with A

, since δ ≥ 1
nc′ (for some c′ ≥ 0). Finally, Line 6 of Algorithm 1 calls Algorithm 2 of [BKM22] which uses at most

O(log n) extra matrix vector products. Thus, the total number of matrix vector products is O(l log n+ b
ϵ ) where

b = max(1, C′

nϵ2 log
2 n

ϵ log
2 1

ϵ ).

We now state a simple corollary which shows that we can get Wasserstein-1 error depending on the Schatten
1-norm of A by appropriatley balancing the errors from deflation and moment matching in Algorithm 1.

Corollary 1.1. Let A ∈ Rn×n be symmetric. For any ϵ ∈ (0, 1) and some constant c > 0, there exists an
algorithm that performs O

(√
n logn
ϵ +

√
n log4 n

)
matrix vector products with A and computes M such that, with

probability at least 1− 1
nc , |M − ∥A∥1| ≤ ϵ∥A∥1.

Proof. Set the block size as l =
√
n
ϵ and the error parameter ϵ′ to O( 1√

n
) of Algorithm 1. Let q be the output

of Algorithm 1 using O
(
l log n+ b

ϵ′

)
= O

(√
n
ϵ log n+

√
n log4 n

)
matrix vector products with A. Then, from

Theorem 1.1, we have W1(sA, q) ≤ σl′+1(A)√
n

+ ∥A∥2

nc/4 ≤ ∥A∥1

l
√
n

+ ∥A∥2

nc/4 = ϵ∥A∥1

n + ∥A∥2

nc/4 ≤ 2ϵ∥A∥1

n . Then, using q, we

can construct a list of n values [λ̃1, . . . , λ̃n] in time linear in n and 1
ϵ such that

∑n
i=1 |λi− λ̃i| ≤ 2ϵ∥A∥1·n

n ≤ 2ϵ∥A∥1
(see [CSKSV18], theorem B.1 in [BKM22]). Adjusting ϵ by constant factors gives us the final bound.

4 Analysis of Stochastic Lanczos Quadrature
In this section, we give our error analysis of Stochastic Lanczos Quadrature (SLQ) (Algorithm 4) by showing
that it implicitly performs a deflation of the input matrix. Our analysis shows that for a symmetric A ∈ Rn×n,
SLQ achieves an error bound of ϵσl+1(A) + Õ( l∥A∥2

n ) using O(l log 1
gmin

+ 1
ϵ log

n·κ
δ ) matrix vector products with

A for any l ∈ [n], ϵ = Ω̃(1/
√
n), failure probability δ ∈ (0, 1) and where gmin (minimum singular value gap)

and κ (condition number) are as stated in Theorem 1.3. Hence, it almost matches the error bounds of the
explicit deflation and moment matching algorithm (Algorithm 1) we described in the previous section (up to the
additive l∥A∥2

n factor). Roughly, we show that the large magnitude eigenvalues of A are estimated almost exactly
in O(l log 1

gmin
+ 1

ϵ log
n·κ
δ ) iterations of Lanczos (Algorithm 3). Estimating the spectral density of the small

magnitude eigenvalues requires a further Õ(1/ϵ) iterations. Then, we give a simple variant of SLQ, which we call
the Variance Reduced SLQ (VRSLQ) which sets the weights of the converged eigenvalues in the final distribution
correctly so that we end up getting an error bound of ϵσl+1(A) + Õ( lσl+1(A)

n ). We note that the SLQ algorithm
described in this paper (Algorithm 4) uses only one random starting vector for simplicity, though in practice, we
can get better concentration when the resulting distribution is averaged over multiple random starting vectors.

This section is organized as follows. In Section 4.1, we first derive a loose error bound of ϵ∥A∥2 for SLQ
using a simple moment matching based analysis. In Section 4.2, we derive error bounds for approximating the
top eigenvalue and eigenvector of a matrix using the Lanczos algorithm. In Section 4.3, we give a tighter error
bound of ϵσl+1(A)+ Õ( l∥A∥2

n ) for SLQ by showing that it implicitly performs deflation and approximates the top
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eigenvalues (by using the error bounds developed in Section 4.2) followed by moment matching. In Section 4.4
we describe the variance reduced version of SLQ and then give the error bounds.

Notations: Throughout this section, U(Sn−1) denotes a uniform distribution on the unit sphere of dimension
n. Also, for two random variables X and Y , X :

d
= Y implies they have the same distribution.

4.1 SLQ bounds via Moment Matching In this section, we derive an error bound for SLQ (Algorithm 4)
using a simple moment matching based argument. We begin by describing the Lanczos algorithm (Algorithm 3)
on which SLQ is based. The Lanczos algorithm iteratively constructs an orthonormal basis of the Krylov subspace
[g,Ag, . . . ,Am−1g] generated by an input matrix A and a random starting vector g of appropriate dimensions
such that T = QTAQ where T is tridiagonal and where Q is an orthonormal basis of the Krylov subspace that
is computed by the Lanczos algrorithm.

Algorithm 3 Lanczos algorithm ([Lan52, GM09, CTU21])

Input: Symmetric A ∈ Rn×n, starting vector g ∈ Rn, number of iterations m.
1: Set q1 = g/∥g∥2, α1 = qT

1 Aq1, q̃2 = Aq1 − α1q1 and initialize T ∈ 0m×m with T11 = α1.
2: for i = 2, . . . ,m do
3: Let ηi−1 = ∥q̃i∥2.
4: Compute qi = q̃i/ηi−1 (i.e., normalize q̃i to obtain Lanczos vectors qi).
5: Compute αi = qT

i Aqi.
6: Set q̃i+1 = Aqi − αiqi − ηi−1qi−1.
7: Set Tii = αi, and Ti,i−1 = Ti−1,i = ηi−1.
8: end for
9: return T, Q where Q ∈ Rn×m is a matrix whose ith column is qi.

We have the following well known identity for the Lanczos algorithm (for eg. see [GM09]), which we prove
here for completeness.

Lemma 4.1. ([GM09]) Consider Algorithm 3 run with input A ∈ Rn×n, starting vector g ∈ Rn, and number of
iterations m. Let T ∈ Rm×m,Q ∈ Rn×m be the outputs of the algorithm. Then, for any k ∈ [m − 1], we have
Akg = QTkQTg.

Proof. The Krylov subspace generated by Algorithm 3 is Km = [g,Ag,A2g, . . . ,Am−1g] after m iterations. Since
Q is an orthonormal basis of Km, the columns of Km are spanned by the columns of Q. Let x = ∥g∥2e1 (recall
e1 is the first standard basis vector with a 1 in the first position) So, we have g = Qx.

We show that for any p ∈ [m], Apg = QTpQTg, via induction. Observe that for p = 1, QTQTg =
QTQTQx = QQTAQx = QQTAg = Ag, where in the last equality we use the fact that Ag is a column
of Km, and so it is spanned by the columns of Q. This shows that the base case for our induction is
true. As the inductive hypothesis, assume Akg = QTkQTg for some k ∈ [m − 2]. Then observe that
QTk+1QTg = QTQTQTkQTg = QTkQTAkg = QQTAQQTAkg, where in the third equality we use our
inductive hypothesis. Since Akg is a column of Km, Akg must be spanned by the columns of Q. So we have,
QQTAQQTAkg = QQTAAkg = QQTAk+1g = Ak+1g, where in the last step we used the fact that Ak+1g is
also spanned by the columns of Q. This completes our proof.

We now state the SLQ algorithm for spectral density estimation.
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Algorithm 4 Stochastic Lanczos Quadrature (adapted from [CTU21])

Input: Symmetric A ∈ Rn×n, number of iterations m(≤ n).
1: Sample g ∼ U(Sn−1).
2: Run Lanczos (Algorithm 3) with inputs A,g and m to compute symmetric tridiagonal matrix T ∈ Rm×m,

orthonormal basis Q ∈ Rn×m. Let the eigenvectors of T be v1, . . . ,vm.
3: Set f(x) =

∑m
j=1 w

2
j δ(x− λj(T)) where wj = vT

j e1 where e1 ∈ Rm is the first standard basis unit vector (i.e.
a 1 in the first position and a 0 everywhere else)

4: return f(x)

We give an error bound for SLQ by showing that the normalized Chebyshev moments of the output density
are approximately equal to the normalized Chebyshev moments of the spectral density of the input matrix A.
We start by proving a lemma showing that the jth Chebyshev moment of the output of SLQ f for any j ≤ m− 1
is exactly given by gT T̄j(A)g where g is the random starting vector.

Lemma 4.2. Consider Algorithm 4 run with input A ∈ Rn×n, number of iterations m, and sampled vector
g ∼ U(Sn−1) in line 1. Let f(x) =

∑m
i=1 w

2
i δ(x − λi(T)) be the output of the algorithm. Then, for any

j ∈ {0, 1, 2, . . . ,m− 1}, ⟨T̄j , f⟩ = gT T̄j(A)g.

Proof. Let L = ∥T∥2. The jth normalized Chebyshev moment of f is given by ⟨T̄j , f⟩ =∫ L

−L
T̄j(x)f(x)dx =

∫ L

−L
T̄j(x)

∑m
i=1 w

2
i δ(x − λi(T))dx =

∑m
i=1 w

2
i T̄j(λi(T)) =

∑m
i=1 T̄j(λi(T))eT1 viv

T
i e1 =

eT1
(∑m

i=1 T̄j(λi(T))viv
T
i

)
e1 = eT1 T̄j(T)e1.

Let Q be the orthonormal basis computed by the Lanczos algorithm (Algorithm 3) in line 2 of Algorithm 4.
From Lemma 4.1 we know that Apg = QTpQTg for any p ∈ [m − 1]. Thus, T̄j(A)g = QT̄j(T)QTg for any
j ≤ m− 1. Note that Qe1 = g since g is set as the first column of Q in Algorithm 3 (g is a random unit vector).
Thus, we get eT1 T̄j(T)e1 = gTQT̄j(T)QTg = gT T̄j(A)g.

We next prove that the ith normalized Chebyshev moment of the output of SLQ f is almost equal to the
ith normalized Chebyshev moment of the SDE of A via the error bounds for a modified hutchinson’s trace
estimator [MMMW21] that uses a random vector on the unit sphere as opposed to a gaussian or a random sign
vector. We note that the analysis of hutchinson’s using a random vector on the unit sphere is different from the
usual analysis which assumes the elements of the random vector are independent and identically distributed with
zero mean. We also note that we require that SLQ use a random vector on the unit sphere as opposed to a say,
a gaussian vector or a random sign vector is because such a vector has the same distribution as a normalized
gaussian vector. As we will see, this helps us leverage the rotational invariance of the gaussian distribution to
derive error bounds for the convergence of eigenvectors and eigenvalues while still ensuring that the random
starting vector for Lanczos is a unit vector. Hence, we first prove error bounds for hutchinson’s trace estimator
using a single random vector on the unit sphere in Lemma 4.3.

Lemma 4.3. (Hutchinson’s with uniform at random vectors) Let A ∈ Rn×n, δ ∈ (0, 1/2] and g ∼
U(Sn−1). Then, assuming n ≥ Ω(log(1/δ)) and for some fixed constant C > 0, with probability at least 1− δ, we
have that: ∣∣∣∣ 1n tr (A)− gTAg

∣∣∣∣ ≤ C log(1/δ)

n
∥A∥F .

Proof. We have gj :
d
=

yj√∑l
j=1 y2

j

where y ∈ Rn is such that yj ∼ N (0, 1) for j ∈ [n] [CTU21]. Now, using

triangle inequality, we have that :∣∣∣∣ 1n tr (A)− gTAg

∣∣∣∣ ≤ ∣∣∣∣ 1n tr (A)− 1

n
yTAy

∣∣∣∣+ ∣∣∣∣gTAg − 1

n
yTAy

∣∣∣∣.(4.37)

We will bound the terms individually. The first term is just the error bound for the hutchinson’s estimator
using a random gaussian vector. The second term can be bounded as the norm of y, which is just a Chi-suared
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distribution, can be shown to concentrate around n using standard concentartion bounds. First observe that,
from Lemma 2 of [MMMW21], we have∣∣∣∣ 1n tr (A)− 1

n
yTAy

∣∣∣∣ ≤ 1

n

∣∣∣∣ tr (A)− yTAy

∣∣∣∣ ≤ log(1/δ)

n
∥A∥F ,(4.38)

with probability at least 1−δ. This bounds the first term in (4.37). Now, we bound the second term. From (4.38),
we have:

|yTAy| ≤ log(1/δ)∥A∥F + tr (A) ≤ log(1/δ)∥A∥F +
√
n∥A∥F .(4.39)

with probability at least 1 − δ. Here, the second inequality follows from the fact that tr (A) ≤
√
n∥A∥F .

Observe that by the concentration properties of the Chi-squared distribution, we have
∣∣ 1
n∥y∥

2
2 − 1

∣∣ ≤ √ log(l/δ)
n ,

with probability at least 1− δ, assuming n ≥ Ω(log(l/δ)) [Wai19a]. Rearranging, we get∣∣∣∣ n

∥y∥22
− 1

∣∣∣∣ ≤ 2

√
log(l/δ)

n
.(4.40)

Thus, we have: ∣∣∣∣gTAg − 1

n
yTAy

∣∣∣∣ = ∣∣∣∣yTAy

∥y∥22
− 1

n
yTAy

∣∣∣∣
≤ 1

n
|yTAy|

∣∣∣∣ n

∥y∥22
− 1

∣∣∣∣
≤ 1

n
(log(1/δ)∥A∥F +

√
n∥A∥F ) · 2

√
log(1/δ)

n

≤
(
2 log3/2(1/δ)

n
√
n

+
2
√

log(1/δ)

n

)
∥A∥F

≤ 3 log(1/δ)

n
∥A∥F .

where in the second step, we used the triangle inequality and in the third step, we used the upper bounds
from (4.39) and (4.40). In the final step, we used the fact that n ≥ Ω(log(1/δ)). Thus, using the upper bounds

from above and from (4.38) in (4.37), we finally get
∣∣∣∣ 1n tr (A)− gTAg

∣∣∣∣ ≤ C log(1/δ)∥A∥F

n for some constant C > 0.

Lemma 4.4. Consider the setting of Lemma 4.2. For n ≥ Ω(log(1/δ)), with probability at least 1 − δ,∣∣⟨T̄i, f⟩ − ⟨T̄i, sA⟩
∣∣ ≤ C log(m/δ)√

n
for all i ∈ {0, 1, 2, . . . ,m− 1} where C > 0 is a large constant.

Proof. Observe that ⟨T̄i, sA⟩ = 1
n tr(T̄j(A)). From Lemma 4.2 we have ⟨T̄i, f⟩ = gT T̄i(A)g for i ∈ {0, 1, 2, . . . ,m−

1}. From Lemma (4.3), since n ≥ Ω(log2(1/δ)), for every i ∈ {0, 1, . . . ,m − 1}, with probability at least 1 − δ
m

for a constant C, we have:∣∣∣∣ 1n tr(T̄i(A))− gT T̄i(A)g

∣∣∣∣ ≤ C log(m/δ)

n
∥Ti(A)∥F ≤ C log(m/δ)√

n
,

where in the second inequality, we used the fact that ∥Ti(A)∥2 ≤ 1 since ∥A∥2 ≤ 1. Applying a union bound for
all i ∈ {0, 1, . . . ,m− 1} gives the bound.

We now state the final result of this section which gives the error bound for SLQ.

Theorem 4.1. Let A ∈ Rn×n be a symmetric matrix. Let f(x) be the output of Algorithm 4 with input A and
m = O

(
1
ϵ

)
. Then, for some constant C and for ϵ, δ ∈ (0, 1), we have

W1(sA, f) ≤ ϵ∥A∥2 +
C log(1/ϵδ) log(1/ϵ)√

n
∥A∥2,

with probability at least 1− δ. Also, Algorithm 4 performs m = O
(
1
ϵ

)
matrix vector products with A.
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Proof. Assume that we run Algorithm 4 with B = 1
∥A∥2

A as input. Then, let sB be the spectral density of B
and let fB be the output of Algorithm 4 after m iterations. Then, observe that

W1(sA, f) = ∥A∥2 ·W1(sB, fB).

Since ∥B∥2 ≤ 1, as stated in Lemma 4.2, the symmetric tridiagonal matrix T, which is the output of Lanczos
with input matrix B and starting vector g in Line 2 of Algorithm 4, can be written as T = QTBQ where Q is
an orthonormal matrix. Thus, ∥T∥2 = ∥QTBQ∥2 ≤ ∥B∥2 ≤ 1. So, the support of density function fB output by
Algorithm 4 is in [−1, 1]. Using Lemma 3.1 of [BKM22] for any two distributions sB, fB with support in [−1, 1],
we have

W1(sB, fB) ≤
36

m− 1
+ 2

m−1∑
i=1

|⟨T̄i, sA⟩ − ⟨T̄i, f⟩|
i

.

From Lemma 4.4, |⟨T̄i, sB⟩ − ⟨T̄i, fB⟩| ≤ C log(m/δ)√
n

with probability 1 − δ for i ∈ {0, 1, 2, . . . ,m − 1} as
long as δ ∈

(
1
en , 1

)
(due to the assumption n ≥ Ω(log(l/n))). By setting m = O(1/ϵ), this gives us,

for constants C1 and C2, W1(sB, fB) ≤ C1ϵ +
C2 log(1/ϵδ) log(1/ϵ)√

n
from the equation above. Finally, we get

W1(sA, f) ≤ ∥A∥2W1(sB, fB) ≤ C1ϵ∥A∥2 + C2 log(1/ϵδ) log(1/ϵ)√
n

∥A∥2
Since the Lanczos algorithm is run for m = O

(
1
ϵ

)
iterations, the number of matrix vector products with A

is O
(
1
ϵ

)
.

We also note that the second term log(1/ϵδ) log(1/ϵ)√
n

in the error bound ϵ∥A∥2 + log(1/ϵδ) log(1/ϵ)√
n

∥A∥2 can
be made smaller (< ϵ∥A∥2) by averaging the resulting distributions over multiple random starting vectors in
Algorithm 4 instead of a single random starting vector. However, this would complicate the analysis for the
improved deflation based bounds for SLQ that we derive in the subsequent section as it would require carefully
analyzing the convergence of the ‘average’ distribution for different starting vectors for SLQ. Hence, we do the
analysis with a single random starting vector.

4.2 Error Bounds for Lanczos Since SLQ uses the Lanczos algorithm (Algorithm 3) as a subroutine, we now
derive eigenvalue and eigenvector approximation error bounds for the Lanczos algorith, which is a Krylov method
with a single random starting vector. We will use some results and proof techniques developed in [MMM24]
to derive our bounds. We start by describing the critical observation in [MMM24] that the span of the Krylov
subspace generated with a single vector as the starting block is the same as the span of the Krylov subspace with
a large starting block with fewer iterations. Let Krylov subspace generated by Lanczos after q iterations with
starting vector g be

Kq(A,g) = [g, . . . ,Aq−1g].

Note that here we overload the notation as in Section 3, we had defined Kq(A,g) in terms of AAT and Ag while
here we define it in terms of A and g. The Lanczos algorithm finds an orthonormal basis Q of Kq(A,g) such that
T = QTAQ where T is a tridiagonal matrix. We are interested in the bounding the error between the eigenvalues
of T and the true eigenvalues of A. Since the eigenvalues of T are the same up to a rotation of the orthonormal
basis Q of the Krylov subspace, the eigenvalues estimated by the Lanczos algorithm depends only on the span of
the Krylov subspace K generated after q iterations and not on the specific Q found by Algorithm 3. Let Sl be
such that:

Sl =
[
g,Ag,A2g, . . . ,Al−1g

]
.(4.41)

Then observe that:

span(Kq(A,g)) = span
([
Sl,ASl,A

2Sl, . . . ,A
q−lSl

])
.(4.42)

So, the span of the Krylov subspace generated by Lanczos with g as the starting vector after q iterations matches
the span of the Krylov subspace generated after q− l+1 iterations with Sl as the starting block. So, it is enough
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to analyze the orthonormal basis of Kq−l+1(A,Sl). Let Q be the orthonormal basis for Kq−l+1(A,Sl) found by
the Lanczos algorithm (Algorithm 3). Similar to Lemma 3.2, we first want to show that Q approximately spans
the top subspace of A. However, note that the proof of Lemma 3.2 relies on Lemma 3.1 which assumes that
for the starting block X ∈ Rn×l, we have rank(VT

l X) = l. While this is true for a random Gaussian starting
block X ∈ Rn×l, the starting block Sl in (4.41) is far from being completely random as its columns are highly
correlated. We will first prove that rank(ST

l Ul) = l (where Ul ∈ Rn×l contains the first l columns of U) by
following the approach presented in the proof of Theorem 3 in [MMM24]. Then, we will apply Lemma 3.1 to
bound the projection error of the top subspace of A onto QQT .

Gap Dependence. We note that the number of iterations of Lanczos will depend logarithmically on the inverse
of the minimum relative singular value gap gmin = mini∈[l]

σi(A)−σi+1(A)
σi(A) among the top l singular values of A,

similar to the bounds in [MMM24]. We need gmin > 0 to prove rank(UT
l Sl) = l by using the fact that a degree

l−1 polynomial cannot be exactly 0 of l distinct points. Note that if gmin = 0, then Q will not converge to the the
top subspace. For example, when A is an identity matrix, Q only spans the starting vector (which is always an
eigenvector of the identity matrix) and Lanczos never finds the other eigenvectors. In general, it is reasonable
to expect that for most matrices, gmin should be at least a small constant. We also note that the bounds can be
made gap independent by a random perturbation analysis as in [MMM24].

Lemma 4.5. For a symmetric matrix A ∈ Rn×n such that rank(A) > l, let Q be an orthonormal basis of
the Krylov subspace Kq−l+1(A,Sl) where Sl =

[
g,Ag,A2g, . . . ,Al−1g

]
and g ∼ U(Sn−1). Let gmin =

mini∈[l]
σi(A)−σi+1(A)

σi(A) . Let α = max

(
σl+1(A),

∥A∥2g
c/4
min

nc/4

)
for some large constant c > 0 and let k ∈ [l] such that

σk(A) ≥ 2α and σk+1(A) ≤ 2α. Then, for any ϵ ∈ (0, 1], δ ∈ (0, 1) κ = ∥A∥2

2α and q = O(l log( 1
gmin

) + 1
ϵ log(

n·κ
δ )),

we have

∥Uk −QQTUk∥2F ≤ gclmin

(n · κ)c/ϵ
,

with probability 1− δ.

Proof. Our proof will utilize the results and proof the techniques from Lemma 3.1, Lemma 3.2 and Theorem 3
of [MMM24]. We will first prove that rank(ST

l Ul) = l (where Ul ∈ Rn×l contains the first l columns of U)
by following the approach presented in the proof of Theorem 3 in [MMM24]. Noet that we can’t directly use
Theorem 3 from [MMM24] as it is stated for a gaussian starting vector while our starting vector is random
on the unit sphere. Observe that for any x ∈ Rl, Slx = p̂(A)g for some degree l − 1 polynomial p̂ with
coefficients determined by the entries in x. Also, by the rotational invariance of the gaussian distribution, we
have (UT

l g)i :
d
= yi√∑l

j=1 y2
j

where yi ∼ N (0, 1) for i ∈ [l]. Then,

UT
l Slx = UT

l p̂(A)g = UT
l Up̂(Λ)UTg := p̂(Λl)

y

∥y∥2
,

where Λl contains the top l eigenvalues of A on its diagonal. By Lemma 4 of [MMM24], we have mini∈[l] y
2
i ≥ 2δ2

πl2

with probability at least 1− δ. Then, we can bound the numerator above as:

(4.43) ∥p̂(Λl)y∥22 =
l∑

i=1

(p̂(λi(A)))2y2i ≥ 2δ2

πl2

l∑
i=1

(p̂(λi(A)))2.

Since p̂ has degree l − 1, and none of the eigenvalues are repeated (as gmin > 0), ∥p̂(Λl)y∥22 > 0. We also have
∥y∥2 > 0 with probability 1. Thus, we get that ∥UT

l Slx∥22 > 0 for any x. So, σmin(U
T
l Sl) > 0 and hence, UT

l Sl

is invertible which means rank(ST
l Ul) = l. Note that we also have σk(A) ≥ 2α ≥ 2σl+1(A) and so k ∈ [l]. So, we

can apply Lemma 3.1 to bound ∥ sinΘ(Q,Uk)∥2F . Without loss of generality, assume that q is odd. Let ϕ(x) be
a gap amplifying polynomial of degree q+1 consisting of only even powers as defined in Lemma 4.5 of [DIKMI18]
with parameters α = σl+1(A) and gap γ = σk(A)

σl+1(A) − 1 ≥ 1. Note that for even q, we can similarly define an
amplifying polynomial of degree q consisting of only even powers. For any i ∈ [k], ϕ(σi(A)) ≥ σi(A) > 0 as
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σi(A) ≥ σk(A) ≥ (1 + γ)σl+1(A) = (1 + γ)α by our choice of parameters for the gap-amplifying polynomial.
Thus, ϕ(Λp) is non-singular for any p ∈ [l]. Let Φ = Uϕ(Λ)UTSl. The columns of Φ lie in span(Kq−1) (4.42) and
thus range(Φ) ⊆ range(Kq−1) = range(Q). Also, ΦΦ† and QQT are the orthogonal projectors onto range(Φ)
and range(Kq−1) respectively. So, following the proof of Lemma 3.1 we get:

∥Uk −QQTUk∥2F ≤ ∥ϕ(Λl,⊥)∥22∥ϕ(Λk)
−1∥22∥UT

l,⊥Sl(U
T
l Sl)

−1∥22.(4.44)

Since q is odd, q + 1 is even, giving ϕ(λi(A)) = ϕ(−λi(A)) = ϕ(σi(A)) for i ∈ [n]. So, ϕ(Λl,⊥) = ϕ(Σl,⊥) and
ϕ(Λk) = ϕ(Σk). Following the proof of Lemma 3.2 (which in turn uses Lemma 4.5 of [DIKMI18] based on the
properties of ϕ), we get the bounds

∥ϕ(Λl,⊥)∥2 = ∥ϕ(Σl,⊥)∥2 ≤ 4σl+1(A)

2(q+1)min(
√
γ,1)

.(4.45)

and

∥ϕ(Λk)
−1∥2 = ∥ϕ(Σk)

−1∥2 ≤ σk(A).(4.46)

So, the final step is to bound ∥UT
l,⊥Sl(U

T
l Sl)

−1∥22. We will bound this by following the proof technique presented
in Theorem 3 of [MMM24] to bound the same quantity. We just give an outline of the proof and skip the details
since the quantity is the same. Observe that we have:

∥UT
l,⊥Sl(U

T
l Sl)

−1∥22 = max
x

∥UT
l,⊥Sl(U

T
l Sl)

−1x∥2
∥x∥2

≤ max
x

∥UT
l,⊥Slx∥2

∥UT
l Slx∥2

= max
deg(p̂)≤l−1

∥UT
l,⊥p̂(A)y∥22

∥UT
l p̂(A)∥22

= max
deg(p̂)≤l−1

∥p̂(Λl,⊥)y∥22
∥p̂(Λl)y∥22

.(4.47)

The denominator is already bounded from below in (4.43). We now bound the numerator following the proof
in [MMM24]. Note that y2i ≤ 1+4 log(1/δ) for all i ∈ [l] with probability at least 1− δ by standard concentration
bounds for chi-squared random variables [Wai19b]. Then, by a union bound, maxi yi ≤ 5 log(n/δ) for n > 2.
We thus have:

∥p̂(Λl,⊥)y∥22 ≤ 5 log(n/δ)
n∑

i=1

(p̂(λi(A)))2 ≤ 5n log(n/δ)max
i∈[n]

(p̂(λi(A)))2(4.48)

Then, combining (4.48) and (4.43), we get:

∥UT
l,⊥Sl(U

T
l Sl)

−1∥22 ≤ 5πnl2 log(n/δ)

2δ2
maxi∈[n](p̂(λi(A)))2∑l

i=1(p̂(λi(A)))2

We can then bound maxi∈[n](p̂(λi(A)))2∑l
i=1(p̂(λi(A)))2

≤ l
g4l
min

by expanding p̂ as a Lagrange interpolating polynomial over

σ2
1(A), . . . , σ2

l (A) in exactly the same way as in the proof of Theorem 3 in [MMM24]. We finally get

∥UT
l,⊥Sl(U

T
l Sl)

−1∥22 ≤ 5πnl3

2g4lminδ
2
log(

n

δ
).(4.49)

Then, using the bounds (4.49), (4.46) and (4.45) on the right hand side of (4.44) and using the fact that
γ = σk(A)

σl+1(A) − 1 ≥ 1 (by assumption) we get that for q = O(l log( 1
gmin

)+ 1
ϵ log(

n·κ
δ )) (as long as the constant c > 0

is large enough):

∥Uk −QQTUk∥2F ≤ O

(
σ2
l+1(A)

σ2
k(A)

· nl3 log(n/δ)

2(2q+1)min(
√
γ,1)g4lminδ

2

)
≤ gclmin

(n · κ)c/ϵ
.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2723

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Based on the results from Lemma 4.5, we can now generalize the error bounds for the randomized block krylov
method in Section 3.1 to the single vector Lanczos Algorithm 3. We will utilize the gap between the eigenvalues
(gmin > 0) to give stronger convergence guarantees for the top k eigenvalues and eigenvectors of QQTAQQT .
We first state a stronger version of Theorem 3.3 which gives shows that the large magnitude eigenvalues of
QQTAQQT converge to those of A as long as there exists some k such that σk(A) is larger than σl+1(A) by at
least a constant factor. Roughly, we are able to prove the stronger statement as the gaps between the singular
values ensure the estimated singular values are also well separated.

Lemma 4.6. Consider the setting of Lemma 4.5. Let c > 0 be the constant in the error boound of Lemma 4.5.
Then, for every i ∈ [k], with probability at least 1− δ, we have:

|λi(A)− λi(QQTAQQT )| ≤ ∥A∥2gcl/2min

(n · κ)c/2ϵ
.

Proof. First, we can follow the proofs of Lemmas 3.4 and 3.5 along with the stronger bound on ∥Uk −QQTUk∥2
from Lemma 4.5 to prove that the following guarantees hold with probability at least 1− δ:

1. ∥QQTAQQTUk −UkU
T
kQQTAQQTUk∥2 ≤ ∥A∥2g

cl
min

nc/ϵ−1(κ)c/ϵ
,

2. |λi(U
T
kQQTAQQTUk)− λi(A)| ≤ ∥A∥2g

cl
min

nc/ϵ−1(κ)c/ϵ
.

Next, we can follow the proof of Theorem 3.3, along with the stronger error bounds above and in Lemma 4.5,
with the stronger bound of ∥A∥2g

cl
min

nc/ϵ−1(κ)c/ϵ
, which (similar to (3.23)) gives us that for every i ∈ [k], there exists some

λj(QQTAQQT ) such that:

|λj(QQTAQQT )− λi(A)| ≤ ∥A∥2gclmin

nc/ϵ−1(κ)c/ϵ
,(4.50)

Using the min-max principle of singular values, σi(QQTAQQT ) ≤ σi(A) for all i ∈ [n]. We will now prove that
j = i for all i ∈ [k]. Assume, for contradiction, there exists some i ∈ [k] such that (4.50) is only satisfied by some
λj(QQTAQQT ) such that j > i. Then, we get:

|λj(QQTAQQT )− λi(A)| ≥ σi(A)− σj(QQTAQQT )

≥ σi(A)− σj(A)

≥ σi(A)− σi+1(A)

≥ gminσi(A)

≥ gminσk(A) ≥ 2gminα ≥ 2∥A∥2g(c/4+1)
min

nc/4
≥ ∥A∥2gclmin

nc/ϵ−1(κ)c/ϵ
.

for a large enough c > 0. This contradicts (4.50) and thus, we must have j ≤ i. We can similarly rule out the
case j < i. Thus, we must have j = i for every i ∈ [k].

We next prove a stronger version of Theorem 3.1 below which shows that every eigenvector of QQTAQQT ,
corresponding to a large magnitude eigenvalue, converges to the corresponding eigenvector of A as long as there
exists some k such that σk(A) is larger than σl+1(A) by at least a constant factor.

Lemma 4.7. Consider the setting of Lemma 4.5. Let the eigenvectors of QQTAQQT be z1, . . . , zn. Then, for
any i ∈ [k], with probability at least 1− δ, for some constant c1, we have

∥zi − ui∥2 ≤ g
(c1l)
min

(n · κ)
c1
ϵ

or ∥zi + ui∥2 ≤ g
(c1l)
min

(n · κ)
c1
ϵ

.
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Proof. From Lemma 4.5, we have that for any eigenvector ui of A for i ∈ [k], QQTui = ui + ei where ∥ei∥2 ≤
∥A∥2g

cl
min

(n·κ)c/ϵ for some constant c > 0. So, we have QQTAQQTui = QQTA(ui + ei) = λi(A)QQTui +QQTAei =

λi(A)(ui + ei) +QQTAei = λi(A)ui + λi(A)ei +QQTAei. Thus, we get that

(4.51) QQTAQQTui = λi(A)ui + ri,

where ∥ri∥2 ≤ 2∥A∥2g
cl
min

(n.κ)c/ϵ
.

Since the eigenvectors z1, . . . , zn form an orthonormal basis for Rn, we can write ui =
∑n

j=1 ajzj where aj
are constants such that

∑n
j=1 a

2
j = 1. Thus,

QQTAQQTui =
n∑

j=1

ajλj(QQTAQQT )zj .(4.52)

From (4.51), we get QQTAQQTui =
∑n

j=1 λi(A)ajzj + ri. Hence, from (4.52) we have:
∑n

j=1 λi(A)ajzj + ri =∑n
j=1 ajλj(QQTAQQT )zj . Rearranging, we get:

∑n
j=1(λj(QQTAQQT )− λi(A))ajzj = ri. Taking 2-norm on

both sides, we get:

∥
n∑

j=1

(λj(QQTAQQT )− λi(A))ajzj∥2 ≤ 2gclmin∥A∥2
(n · κ)c/ϵ

,

using the fact that ∥ri∥2 ≤ 2gcl
min∥A∥2

(n·κ)c/ϵ . Now, ∥
∑n

j=1(λj(QQTAQQT ) − λi(A))ajzj∥2 =√∑n
j=1(λj(QQTAQQT )− λi(A))2a2j . Thus, for all j ∈ [n] we have

(4.53) |λj(QQTAQQT )− λi(A)| · |aj | ≤
2∥A∥2gclmin

(n · κ)c/ϵ
.

Now, we have |λi(A)−λi(QQTAQQT )| ≤ ∥A∥2g
cl/2
min

(n·κ)c/2ϵ for i ∈ [k], from Lemma 4.6. Also, from our assumptions on
the singular value gaps, for any i ∈ [k] and j ∈ [n] such that i ̸= j,

|λi(A)− λj(A)| ≥ |σi(A)− σj(A)| ≥ gmin max(σi(A), σj(A))

≥ gminσi(A) ≥ gminσk(A)

≥ 2gminα

≥ ∥A∥2g3cl/4min

(n · κ)3c/4ϵ
,

Using the min-max principle of singular values, σi(QQTAQQT ) ≤ σi(A) for all i ∈ [n]. So, for j ̸= i and i ∈ [k],
using triangle inequality we have that |λi(A)−λj(QQTAQQT )| ≥ |λi(A)−λj(A)|−|λj(A)−λj(QQTAQQT )| ≥
∥A∥2g

cl/2
min

(n·κ)c/2ϵ − ∥A∥2g
3cl/4
min

(n·κ)3c/4ϵ . Thus, from (4.53), we get that:

|aj | ≤
2∥A∥2g

cl
min

(n·κ)c/ϵ

∥A∥2g
cl/2
min

(n·κ)c/2ϵ − ∥A∥2g
3cl/4
min

(n·κ)3c/4ϵ

≤
2gcl

min

(n·κ)c/ϵ

g
cl/2
min

(n·κ)c/2ϵ − g
3cl/4
min

(n·κ)3c/4ϵ

≤ g
(c4l)
min

(n · κ)(c4/ϵ)
,

for some constant c4 > 0. Since
∑n

j=1 a
2
j = 1, we get that |ai| ≥ 1− g

(c4l)

min

(n·κ)c4/ϵ−1 . Let ai > 0. Then, using triangle
inequality, we have ∥ui−zi∥2 = ∥ui−aizi+zi(ai−1)∥2 ≤ ∥ui−aizi∥2+∥zi(ai−1)∥2 ≤ ∥

∑
j ̸=i ajzj∥2+ |ai−1| ≤

C′g
(c4l)

min

(n·κ)c4/2ϵ−1 where C ′ is some constant. Similarly, we can show when ai < 0, ∥ui+zi∥2 ≤ C′g
(c4l)

min

(n·κ)c4/2ϵ−1 . We complete
the proof by choosing the constant c1 > 0 suitably.
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4.3 Improved Error bounds for SLQ via implicit deflation based analysis In this section, we prove the
main error bounds for SLQ (Algorithm 4) by showing that it implicitly performs a deflation followed by moment
matching. We first show that there exists a polynomial r(x) of degree O(l log( 1

gmin
) + 1

ϵ log(
n·κ
δ )) which is almost

zero on the large magnitude eigenvalues of A and QTAQ which have magnitude greater than σk(A) and close
to one on the small magnitude eigenvalues of A and QTAQ where k ∈ [l] is an index as defined in Lemmas 4.6
and 4.7 such that σk(A) is larger than σl+1(A) by at least a constant multiplicative gap. Then, a polynomial
of the form ti(x) = r(x)T̄i(x) where T̄i(x) is the ith Chebyshev polynomial for i ∈ O(1/ϵ) will have degree at
most O(l log( 1

gmin
) + 1

ϵ log(
n·κ
δ )) and can be represented in the span of the Krylov subspace (4.42) generated by

the Lanczos algorithm (Algorithm 3) as long as we run Lanczos for at least this many number of iterations.
Intuitively, this implies that the polynomial ti(x) behaves like a Chebyshev polynomial for the small magnitude
eigenvalues (with magnitude smaller than σk(A) and σk(Q

TAQ)) of A and QTAQ while it is almost zero on the
large magnitude eigenvalues of A and QTAQ. We then show that the moments of the spectral density of the small
magnitude eigenvalues A and the part of the density output by SLQ which only depends on the small magnitude
eigenvalues of QTAQ with respect to the polynomial ti(x) are very close to each other for i ∈ O(1/ϵ). Since
ti(x) behaves like a Chebyshev polynomial on these small magnitude eigenvalues, via an argument similar to the
Chebyshev moment matching argument in Section 4.1, we say that the spectral densities of the small magnitude
eigenvalues of A and QTAQ are close to each other. On the other hand, via the results in Section 4.2, we know
that the large magnitude eigenvalues of A are approximated by the corresponding large magnitude eigenvalues
of QTAQ. Combining the arguments for the large and small magnitude eigenvalues, we claim the the spectral
densities of A and that defined by SLQ algorithm (Algorithm 4) are close to each other.

The polynomial r(x) is defined as 1−g(x)L(x) where the polynomial g(x) is a Chebyshev mimizing polynomial
(Lemma 4.9) and L(x) can be interpreted as a variant of the Lagrange interpolating polynomial through the points
(λi(A), 1

g(λi(A)) ) for i ∈ [k]. We describe this in more detail now. Suppose we have a set of k ‘basis’ polynomials
such that the i’th polynomial in the set is almost 1 at λi(A) and λi(Q

TAQ) and almost zero at all other λj(A)
and λj(Q

TAQ). Then, r(x) can be defined as 1 minus the sum of these polynomials i.e. we will have r(λi(A))
and r(λi(Q

TAQ)) almost to 1 for every i ∈ [k] and almost 0 at all other eigenvalues. As a first step, in Lemma 4.8
for each i ∈ [k] we first define a polynomial pi(x) which is almost 1 at λi(A) and λi(Q

TAQ) (referred to as λ̃i(A)
in the lemmas below) and zero at all other λj(A) and λj(Q

TAQ) for j ̸= i and j ∈ [l]. However, outside the top
l eigenvalues, i.e. on the small magnitude eigenvalues of A and QTAQ, pi(x) can be potentially be very large (up
to (2/gmin)

O(l)). To ensure the polynomials pi(x) do not blow up on the small magnitude eigenvalues of A and
QTAQ, we will multiply each pi(x) with a corresponding minimizing polynomial (defined in Lemma 4.9) which
squishes its values down to almost 0 on the small magnitude eigenvalues (while keeping its values almost same
on the large magnitude eigenvalues). The final set of polynomials is each pi(x) multiplied by its corresponding
minimizing polynomials. We can then define r(x) as 1 minus this polynomial.

We first define the polynomials pi(x) for i ∈ [k] in the lemma below. In the lemmas below, λ̃i(A) = λi(Q
TAQ)

for ease of notation.

Lemma 4.8. Consider the setting of Lemma 4.5. Let λ̃i(A) = λi(QQTAQQT ) for i ∈ [n]. Then, for i ∈ [k],

pi(x) =
∏

j∈[l],j ̸=i

(
x− λj(A)

λi(A)− λj(A)

) ∏
j∈[l],j ̸=i

(
x− λ̃j(A)

λi(A)− λ̃j(A)

)
.

Then, for some constant c > 0, with probability at least 1− δ:

1. For any i ∈ [k] pi(λi(A)) = 1 and pj(λi(A)) = 0 for j ̸= i.

2. For any i ∈ {k + 1, . . . , l} and j ∈ [k], pj(λi(A)) = 0 and pj(λ̃i(A)) = 0.

3. |pi(x)| ≤ 23l

g2l
min

when |x| ≤ |λk(A)| for i ∈ [k].

4. For any i ∈ [k], |pi(λ̃i(A))− 1| ≤ g
cl/2
min

(n·κ)c/2ϵ−4 and pj(λ̃i(A)) = 0 for j ̸= i.

Proof. First observe that, from Lemma 4.6, |λi(A)− λ̃i(A)| ≤ ∥A∥2g
cl
min

(n·κ)c/ϵ for i ∈ [k] with probability at least 1− δ

for some constant c > 0. The first two claims are straightforward from the definition of pi(x). So we proceed to
prove the third claim.
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Claim 3: We now bound |pi(x)| when |x| ≤ σk(A) to prove the third claim. We have

|pi(x)| =
∏

j∈[l],j ̸=i

∣∣∣∣ x− λj(A)

λi(A)− λj(A)

∣∣∣∣ ∏
j∈[l],j ̸=i

∣∣∣∣∣ x− λ̃j(A)

λi(A)− λ̃j(A)

∣∣∣∣∣ .
We bound each term separately.∣∣∣ x−λj(A)

λi(A)−λj(A)

∣∣∣: For any i ∈ [k],
∣∣∣ x−λj(A)
λi(A)−λj(A)

∣∣∣ ≤ 2max(|x|,σj(A))
|λi(A)−λj(A)| ≤ 2max(σi(A),σj(A))

|λi(A)−λj(A)| ≤ 2
gmin

where the second
inequality follows from the fact that |x− λj(A)| ≤ 2max(|x|, σj(A)), the third inequality from the fact that
|x| ≤ σk(A) ≤ σi(A) for i ∈ [k] and the final inequality follows from the definition of gmin.∣∣∣ x−λ̃j(A)

λi(A)−λ̃j(A)

∣∣∣: We consider the cases j ∈ [k] and k ≤ j ≤ l separately.

Case 1. (j ∈ [k]): We have
∣∣∣ x−λ̃j(A)

λi(A)−λ̃j(A)

∣∣∣ ≤ 2max(|x|,|λ̃j(A)|)

|λi(A)−λj(A)|−
∥A∥2gcl

min

(n·κ)c/ϵ

≤ 2max(|x|,|λj(A)|)

|λi(A)−λj(A)|−
∥A∥2gcl

min

(n·κ)c/ϵ

. Here, for

the numerator we used the fact that |λ̃j(A)| ≤ |λj(A)| by the minimax principle and for the denominator
we used triangle inequality to get |λi(A) − λ̃j(A)| ≥ |λi(A) − λj(A)| − |λj(A) − λ̃j(A)| and the fact that
|λj(A)− λ̃j(A)| ≤ ∥A∥2g

cl
min

(n·κ)c/ϵ for j ∈ [k]. Since |x| ≤ |λi(A)| for i ∈ [k] we have:

2max(|x|, |λj(A)|)
|λi(A)− λj(A)| − ∥A∥2gcl

min

(n·κ)c/ϵ

≤ 2max(|λi(A)|, |λj(A)|)
|λi(A)− λj(A)| − ∥A∥2gcl

min

(n·κ)c/ϵ

≤ 2
|λi(A)−λj(A)|

max(|λi(A)|,|λj(A)|) −
∥A∥2gcl

min

max(|λi(A)|,|λj(A)|)(n·κ)c/ϵ

≤ 2

gmin − ∥A∥2gcl
min

max(|λi(A)|,|λj(A)|)(n·κ)c/ϵ

≤ 4

gmin
.

Here, the second to last step follows from the definition of gmin and the last step follows from the assumptions

that max(|λi(A)|, |λj(A)|) ≥ σk(A) ≥ 2α ≥ 2∥A∥2g
(cl)/4
min

(n·κ)c/4 (the first step follows from the fact that i, j ∈ [k]), which

gives us ∥A∥2g
cl
min

max(|λi(A)|,|λj(A)|)(n·κ)c/ϵ ≤ ∥A∥2g
3cl/4
min (n·κ)c/4

2(n·κ)c/ϵ ≤ gmin

2 . Thus, we get
∣∣∣ x−λ̃j(A)

λi(A)−λ̃j(A)

∣∣∣ ≤ 4
gmin

for j ∈ [k] and
|x| ≤ σk(A).

Case 2. (j ∈ {k + 1, . . . , l}): For k + 1 ≤ j ≤ p and i ∈ [k], we have |λ̃j(A)| ≤ |λj(A)| ≤ |λi(A)| where the
first inequality follows from our assumption and the second from the fact that j ≥ i. So, |λi(A) − λ̃j(A)| ≥
|λi(A)| − |λ̃j(A)| ≥ |λi(A)| − |λj(A)| = σi(A)− σj(A). So, we get∣∣∣∣∣ x− λ̃j(A)

λi(A)− λ̃j(A)

∣∣∣∣∣ ≤ 2max(|x|, |λ̃j(A)|)
σi(A)− σj(A)

≤ 2max(|λi(A)|, |λj(A)|)
σi(A)− σj(A)

≤ 2

gmin
,

where in the second inequality we used the fact that |x| ≤ |λi(A)| and |λ̃j(A)| ≤ |λj(A)| by the minimax principle
and the last step follows from the definition of gmin. So, we finally have

∣∣∣ x−λ̃j(A)

λi(A)−λ̃j(A)

∣∣∣ ≤ 2
gmin

for j ∈ {k+1, . . . , l}.

Combining the two cases above, we get
∣∣∣ x−λ̃j(A)

λi(A)−λ̃j(A)

∣∣∣ ≤ 4
gmin

when |x| ≤ σk(A). Thus, plugging in the upper

bound on each term of |pi(x)| , we get |pi(x)| < 23l

g2l
min

when |x| ≤ σk(A) for i ∈ [k].

Claim 4: We now prove the fourth claim of our theorem. For any i, j ∈ [k], pj(λ̃i(A)) = 0 for j ̸= i from the
definition of pj(x). This gives the second part of the claim. We now prove the first part of the claim. Observe
that, ∣∣∣pi(λ̃i(A))

∣∣∣ = ∏
j∈[l],j ̸=i

∣∣∣∣∣ λ̃i(A)− λj(A)

λi(A)− λj(A)

∣∣∣∣∣ ∏
j∈[l],j ̸=i

∣∣∣∣∣ λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)

∣∣∣∣∣ .(4.54)
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We will bound each term in the product individually. First, observe that

∣∣∣∣∣ λ̃i(A)− λi(A)

λi(A)− λj(A)

∣∣∣∣∣ ≤ ∥A∥2gclmin

(n · κ)c/ϵ|λi(A)− λj(A)|
≤ ∥A∥2gcl/2min

(n · κ)c/2ϵ
,

where the second step follows from bounding the numerator using fact that |λ̃i(A)−λi(A)| ≤ ∥A∥2g
cl
min

(n·κ)c/ϵ for i ∈ [k]

and last step follows from the fact that for i, j ∈ [k + 1] and i ̸= j (and a large enough c):

|λi(A)− λj(A)| ≥ |σi(A)− σj(A)| ≥ gmin max(σi(A), σj(A))

≥ gminσk(A)

≥ 2∥A∥2g(c/4)+1
min

(n · κ)c/4

≥ ∥A∥2gcl/2min

(n · κ)c/2ϵ
.(4.55)

Thus, we get

∣∣∣∣∣ λ̃i(A)− λj(A)

λi(A)− λj(A)
− 1

∣∣∣∣∣ =
∣∣∣∣∣ λ̃i(A)− λi(A)

λi(A)− λj(A)

∣∣∣∣∣
≤ ∥A∥2gclmin

(n · κ)c/ϵ|λi(A)− λj(A)|

≤ g
cl/2
min

(n · κ)c/2ϵ
.(4.56)

Next, we have

∣∣∣∣∣ λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)
− 1

∣∣∣∣∣ =
∣∣∣∣∣ λ̃i(A)− λi(A)

λi(A)− λ̃j(A)

∣∣∣∣∣
≤ ∥A∥2gclmin

(n · κ)c/ϵ|λi(A)− λ̃j(A)|

≤ ∥A∥2gclmin

(n · κ)c/ϵ(|λi(A)− λj(A)| − ∥A∥2gcl
min

(n·κ)c/ϵ )

≤ 1

nc/ϵ g
cl/2
min

gcl
min(n·κ)c/2ϵ

− 1
≤ 2

g
cl/2
min

(n · κ)c/2ϵ
.(4.57)

In the second step above, we used the fact that |λi(A) − λ̃i(A)| ≤ ∥A∥2g
cl
min

(n·κ)c/ϵ for bounding the numerator, in the
third step we used triangle inequality for bounding the denominator and the fourth step follows from the fact
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that |λi(A)− λj(A)| ≥ ∥A∥2g
cl/2
min

(n·κ)c/2ϵ as described in (4.55). Thus, from the bounds in (4.56) and (4.57) we have

(
λ̃i(A)− λj(A)

λi(A)− λj(A)

)(
λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)

)
≤ (1 +

(
g
cl/2
min

(n · κ)c/2ϵ

)
)

· (1 + 2

(
g
cl/2
min

(n · κ)c/2ϵ

)
)

≤ 1 + 3

(
g
cl/2
min

(n · κ)c/2ϵ

)

+ 2

(
gclmin

(n · κ)c/ϵ

)
≤ 1 + 5

(
g
cl/2
min

(n · κ)c/2ϵ

)
,(4.58)

for a large enough c and also,

(
λ̃i(A)− λj(A)

λi(A)− λj(A)

)(
λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)

)
≥

(
1−

(
g
cl/2
min

(n · κ)c/2ϵ

))

·

(
1− 2

(
g
cl/2
min

(n · κ)c/2ϵ

))

≥

(
1− 3

(
g
cl/2
min

(n · κ)c/2ϵ

))
.(4.59)

Multiplying the upper bounds in (4.58) for each j ∈ [l] together, we get

∏
j∈[l],j ̸=i

(
λ̃i(A)− λj(A)

λi(A)− λj(A)

)(
λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)

)
≤

(
1 + 5

(
g
cl/2
min

(n · κ)c/2ϵ

))l

≤ 1 +
l∑

r=1

(
l

r

)(
5

(
g
cl/2
min

(n · κ)c/2ϵ

))r

≤ 1 + 5l

(
g
cl/2
min

(n · κ)c/2ϵ−2

)

≤ 1 +
5g

cl/2
min

(n · κ)(c/2ϵ)−3
,(4.60)

for a large enough c. In the last step above, we bounded l by n. In the third step above, we bounded each term(
l
r

)
(5(1/(n · κ))c/2ϵ)r (for r ∈ [l]) in the binomial expansion of (1 + 5

(
1

n·κ
)c/2ϵ

)l as (a = (n · κ) below)

(
el

r

)r
(
5

(
1

a

)c/2ϵ
)r

≤

(
5l2
(
1

a

)c/2ϵ
)r

≤
(

5

ac/2ϵ−2

)r

≤ 5

ac/2ϵ−2
,

where in the first step we used the well-known upper bound on the binomial coefficient
(
l
r

)
≤ ( elr )

r and in the
final step, we used the fact that 5

(n·κ)c/2ϵ−2 ≤ 1 for large c > 0. Similarly, multiplying the lower bounds in (4.59)
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for each j ∈ [l] together, we get

∏
j∈[l],j ̸=i

(
λ̃i(A)− λj(A)

λi(A)− λj(A)

)(
λ̃i(A)− λ̃j(A)

λi(A)− λ̃j(A)

)
≥

(
1− 3g

cl/2
min

(n · κ)c/2ϵ

)l

≥ 1 +
l∑

r=1

(
l

r

)
(−1)r

(
3

(
g
cl/2
min

(n · κ)c/2ϵ

))r

≥ 1− 3lg
cl/2
min

(n · κ)c/2ϵ−2

≥ 1− 3g
cl/2
min

(n · κ)(c/2ϵ)−3
,(4.61)

for large enough c. Thus, using the bounds in (4.60), (4.61) and (4.54), we get |pi(λ̃i(A)) − 1| ≤ 5g
cl/2
min

(n·κ)(c/2ϵ)−3 ≤
g
cl/2
min

(n·κ)(c/2ϵ)−4 . This proves the first property in claim 4.

We now define a Chebyshev Minimizing polynomial similar to the polynomial defined in Lemma 5 of [MM15].

Lemma 4.9. (Chebyshev Minimizing Polynomial) For values ξ > 0, gap γ > 0, and some even integer q ≥ 1,
there exists a polynomial g(x) of degree q such that:

1. g(x) = (1 + γ)ξ for |x| = (1 + γ)ξ.

2. g(x) ≥ |x| for all |x| ≥ (1 + γ)ξ.

3. g(x) ≤ ξ
2q log(1+γ)−1 for x ∈ [−ξ, ξ].

Proof. We define the polynomial g(x) following the proof of Lemma 5 in [MM15]. Let

(4.62) g(x) = (1 + γ)ξ
Tq(x/ξ)

Tq(1 + γ)
,

where Tq(x) is a Chebyshev polynomial of degree q where q is even. Since the degree q is even, we have
Tq(x) = Tq(−x) and thus, g(x) = g(−x). The proofs of the first two properties follow the proof of the first
two properties of Lemma 5 of [MM15] exactly. To prove the third property, first observe that using the property
of Chebyshev polynomials that Tq(x) ≤ 1 for x ∈ [−1, 1], we have Tq(x/ξ) ≤ 1. So, it suffices to show that
Tq(1 + γ) ≥ 2q log(1+γ)−1. Using equation 15 of [MM15] which gives the expression for Tq(x) for |x| > 1, we have
Tq(x) ≥ 1

2 (1 + γ)q = 2q log(1+γ)

2 = 2q log(1+γ)−1. This completes the proof of the third property.

We now define the polynomial r(x) in the lemma below.

Lemma 4.10. Consider the setting of Lemmas 4.8. Let c1, c2 > 0 be some constants. Let g(x) be a degree
q = O(l log( 1

gmin
) + 1

ϵ log(
nκ
δ )) Chebyshev Minimizing polynomial as defined in Lemma 4.9 for some q, with

parameters ξ = α and γ = σk(A)
σl+1(A) − 1. Let

r(x) = 1− g(x)
k∑

i=1

pi(x)

g(λi(A))
.

Then, with probability at least 1− δ, we have:

1. r(x) = 0 for any x ∈ {λ1(A), . . . , λk(A)}.

2. r(x) = 1 for any x ∈ {λk+1(A), . . . , λl(A)} and any x ∈ {λ̃k+1(A), . . . , λ̃l(A)}.
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3. |r(x)| ≤ g
c1l

min

(n·κ)c1/ϵ for any x ∈ {λ̃1(A), . . . , λ̃k(A)}.

4. |r(x)− 1| ≤ g
c2l

min

(n·κ)c2/ϵ for |x| ≤ σl+1(A).

Proof. First observe that, from Lemma 4.6, |λi(A)− λ̃i(A)| ≤ ∥A∥2g
cl
min

(n·κ)c/ϵ for i ∈ [k] with probability at least 1− δ.
Also note that γ ≥ 1 by the assumption that σk(A) ≥ 2α. We now prove the main claims.

The first property follows directly from property 1 of Lemma 4.8. The second property follows directly from
property 2 of Lemma 4.8. We prove the third property below.

Claim 3: For the third property, observe that for any i, j ∈ [k] and j ̸= i, we have pj(λ̃i(A)) = 0 from property
4 of Lemma 4.8, so we have

r(λ̃i(A)) = 1− g(λ̃i(A))
k∑

j=1

pj(λ̃i(A))

g(λi(A))
= 1− pi(λ̃i(A))

g(λ̃i(A))

g(λi(A))
.(4.63)

From property 4 of Lemma 4.8, we get that for any i ∈ [k]:

|pi(λ̃i(A))− 1| ≤ g
cl/2
min

(n · κ)c/2ϵ−4
.(4.64)

First observe that from definition of g(x) in (4.62) in Lemma 4.9, we have g(x)
g(y) =

Tq(x/ξ)
Tq(y/ξ)

where Tq(x) is the

qth Chebyshev polynomial for some even q. Now, for any i ∈ [k], |λi(A)| ≥ |λk(A)| ≥ 2α and so |λi(A)|
α ≥ 2.

From Lemma 4.6, we have that for any i ∈ [k],

|λ̃i(A)| ≥ |λi(A)| − ∥A∥2gclmin

(n · κ)c/ϵ

≥ |λk(A)| − ∥A∥2gclmin

(n · κ)c/ϵ

≥ 2α− ∥A∥2gclmin

(n · κ)c/ϵ
.(4.65)

Now, α ≥ ∥A∥2g
c/4
min

(n·κ)c/4 ≥ ∥A∥2g
cl
min

(n·κ)c/ϵ . Thus, from (4.65), we get |λ̃i(A)| ≥ α. Thus, we also have |λ̃i|
α ≥ 1. Also, since q

is even we have Tq(x) = Tq(|x|). Thus, from (2.4) we have:

g(λ̃i(A))

g(λi(A))
=

Tq(λ̃i(A)/α)

Tq(λi(A)/α)
=

(
σ̃i(A)

α +
√
( σ̃i(A)

α )2 − 1

)q

+

(
σ̃i(A)

α −
√
( σ̃i(A)

α )2 − 1

)q

(
σi(A)

α +
√
(σi(A)

α )2 − 1

)q

+

(
σi(A)

α −
√
(σi(A)

α )2 − 1

)q .(4.66)

where σ̃i(A) = |λ̃i(A)|. We will first upper bound this ratio. Since σ̃i(A)
α −

√
( σ̃i(A)

α )2 − 1 ≤ 1, the numerator

in (4.66) can be upper bounded as
(

σ̃i(A)
α +

√
( σ̃i(A)

α )2 − 1

)q

+ 1. Now, by the minimax principle, we

have σ̃i(A) ≤ σi(A). Thus, the denominator in (4.66) is lower bounded by
(

σi(A)
α +

√
(σi(A)

α )2 − 1

)q

≥(
σ̃i(A)

α +
√

( σ̃i(A)
α )2 − 1

)q

. Using the upper bound on the numerator and the lower bound on the denominator
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in (4.66), we get:

g(λ̃i(A))

g(λi(A))
≤

(
σ̃i(A)

α +
√
( σ̃i(A)

α )2 − 1

)q

+ 1(
σ̃i(A)

α +
√
( σ̃i(A)

α )2 − 1

)q ≤ 1 +
1(

σ̃i(A)
α +

√
( σ̃i(A)

α )2 − 1

)q

≤ 1 +
1( σ̃i(A)
α

)q .(4.67)

Observe that since α ≥ ∥A∥2g
c/4
min

nc/4 , we have

∥A∥2gclmin

α(n · κ)c/ϵ
≤ gclmin(n · κ)c/4

g
c/4
min(n · κ)c/ϵ

≤ g
cl/2
min

(n · κ)c/2ϵ
.(4.68)

Dividing both sides of (4.65) by α and using the fact g
cl/2
min

(n·κ)c/2ϵ ≤ 1
2 , we get:

σ̃i(A)

α
≥ 2− gclmin

α(n · κ)c/ϵ
≥ 2− 1

2
≥ 3

2
.

Thus, using the bound above in (4.67), we get that:

g(λ̃i(A))

g(λi(A))
≤ 1 +

1( σ̃i(A)
α

)q ≤ 1 +
1

(3/2)q
≤ 1 +

gc3lmin

(n · κ)c3/ϵ
,(4.69)

for some large constant c3 > 0. Here, in the lasts step, we used the fact that q = O(l log( 1
gmin

) + 1
ϵ log(

n
δ )). We

now lower bound g(σ̃i(A))
g(σi(A)) .

First observe that the function x −
√
x2 − 1 is a decreasing function with respect to x. Thus, we have(

σ̃i(A)
α −

√
( σ̃i(A)

α )2 − 1

)
≥
(

σi(A)
α −

√
(σi(A)

α )2 − 1

)
as σi(A)

α ≥ σ̃i(A)
α . This implies that we have

(
σ̃i(A)

α
−
√
(
σ̃i(A)

α
)2 − 1

)(
σi(A)

α
+

√
(
σi(A)

α
)2 − 1

)
≥
(
σi(A)

α
−
√
(
σi(A)

α
)2 − 1

)(
σ̃i(A)

α
+

√
(
σ̃i(A)

α
)2 − 1

)
.

So, from (4.66), we have:

g(λ̃i(A))

g(λi(A))
≥

(
σ̃i(A)

α +
√

( σ̃i(A)
α )2 − 1

)q

(
σi(A)

α +
√

(σi(A)
α )2 − 1

)q .(4.70)

Now, from Lemma 4.6 and using triangle inequality, we have σ̃i(A) ≥ σi(A)− gcl
min∥A∥2

(n·κ)c/ϵ for i ∈ [k]. Dividing both

sides by α, we get σ̃i(A)
α ≥ σi(A)

α − gcl
min∥A∥2

α(n·κ)c/ϵ ≥ σi(A)
α − g

cl/2
min

(n·κ)c/2ϵ where in the last step we used (4.68) to upper

bound gcl
min∥A∥2

α(n·κ)c/ϵ . So, using the lower bound on σ̃i(A)
α in (4.70), we get:

g(λ̃i(A))

g(λi(A))
≥

(
σi(A)

α − g
cl/2
min

(n·κ)c/2ϵ +

√
(σi(A)

α − g
cl/2
min

(n·κ)c/2ϵ )
2 − 1

)q

(
σi(A)

α +
√

(σi(A)
α )2 − 1

)q .(4.71)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2732

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Observe that we have √
(
σi(A)

α
− g

cl/2
min

(n · κ)c/2ϵ
)2 − 1

=

√(
(
σi(A)

α
)2 − 1

)
−
(2gcl/2min σi(A)

(n · κ)c/2ϵα
− gclmin

(n · κ)c/ϵ
)

≥
√

(
σi(A)

α
)2 − 1−

√
2g

cl/2
min σi(A)

(n · κ)c/2ϵα
− gclmin

(n · κ)c/ϵ
,

from the fact that
√
a− b ≥

√
a−

√
b. Thus, using the lower bound on the numerator in (4.71) we get:

g(λ̃i(A))

g(λi(A))
≥

1−

(
g
cl/2
min

(n·κ)c/2ϵ +

√
2g

cl/2
min σi(A)

(n·κ)c/2ϵα − gcl
min

(n·κ)c/ϵ

)
(

σi(A)
α +

√
(σi(A)

α )2 − 1

)


q

≥

1−
2

√
2g

cl/2
min σi(A)

(n·κ)c/2ϵα

σi(A)
α


q

=

1− 2

√
2g

cl/2
minα

(n · κ)c/2ϵσi(A)

q

≥

(
1− 2g

cl/4
min

(n · κ)c/4ϵ

)q

.(4.72)

The second step above follow from upper bounding the numerator of

(
1

(n·κ)c/2ϵ
+

√
2σi(A)

(n·κ)c/ϵα
− 1

(n·κ)c/ϵ

)
(

σi(A)

α +

√
(
σi(A)

α )2−1

) by 2
√

2σi(A)
(n·κ)c/ϵα

and its denominator by σi(A)
α . The final step follows from the fact that σi(A) ≥ 2α for any i ∈ [k]. Now, observe

that we have: (
1− 2g

cl/4
min

(n · κ)c/4ϵ

)q

= 1 +

q∑
t=1

(
q

t

)
(−1)t(2g

cl/4
min /(n · κ)c/4ϵ)t

≥ 1−
q∑

t=1

(eq/t)t(2g
cl/4
min /(n · κ)c/4ϵ)t

≥ 1−
q∑

t=1

(
2eqg

cl/4
min

(n · κ)c/4ϵ

)t

≥ 1−
q∑

t=1

g
cl/4
min

(n · κ)(c/4ϵ)−2

= 1− qg
cl/4
min

(n · κ)(c/4ϵ)−2

≥ 1− g
cl/4
min

(n · κ)(c/4ϵ)−3
.(4.73)

In the second step above, we upper bounded the binomial coefficients
(
q
t

)
by (eq/t)t. In the fourth and final step

above, we bounded q by n. In the fourth step, we also used the fact that 2eq
(n·κ)c/2ϵ << 1 for large enough c. So,
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using the lower bound from (4.73) in (4.72), we get:

g(λ̃i(A))

g(λi(A))
≥ 1− g

cl/4
min

(n · κ)(c/4ϵ)−3
.(4.74)

Now, from the upper bounds on pi(λ̃i(A)) and g(λ̃i(A))
g(λi(A)) from (4.64) and (4.69) respectively, we get:

pi(λ̃i(A))
g(λ̃i(A))

g(λi(A))
≤ 1 +

gc4lmin

(n · κ)c4/ϵ
,

for some large enough c4. Similarly, from the lower bounds on pi(λ̃i(A)) and g(λ̃i(A))
g(λi(A)) from (4.64) and (4.74)

respectively, we get:

pi(λ̃i(A))
g(λ̃i(A))

g(λi(A))
≥ 1− gc5lmin

(n · κ)c5/ϵ
,

for some c5. Finally, using the upper and lower bounds on pi(λ̃i(A)) g(λ̃i(A))
g(λi(A)) in (4.63), we get:

|r(λ̃i(A))| =
∣∣∣∣1− pi(λ̃i(A))

g(λ̃i(A))

g(λi(A))

∣∣∣∣ ≤ gc8lmin

(n · κ)c8/ϵ
,

for some constant c8. This gives us the third claim.

Claim 4: For the fourth and final property, using property 3 for |pi(x)| from Lemma 4.8, we get that for any
|x| ≤ σl+1(A),

|r(x)− 1| ≤
k∑

i=1

|g(x)|
|g(λi(A))|

|pi(x)| ≤
α

α2(Cl log(1/gmin)+
C
ϵ log(nκ/δ))

· 23l

g2lmin

≤ gc9lmin

(n · κ)c9/ϵ
,

for some large constant c9 > 0. Here, in the second step, we also used property 2 of g(x) from Lemma 4.9,
i.e., g(λi(A)) ≥ |λi(A)| ≥ 2α for |λi(A)| ≥ |λk(A)| ≥ 2α for lower bounding bounding the denominator, and
property 3 for g(x) when |x| ≤ σl+1(A) ≤ α which gives g(x) ≤ α

2q log 2−1 from Lemma 4.9 for upper bounding the
numerator.

Definition 4.1. (Moment Matching Polynomial) Let ti(x) = T̄i(x)r(x) where T̄i(x) is the ith normalized
Chebyshev polynomial for i ∈ [O(1/ϵ)] and r(x) is a degree O(l log( 1

gmin
) + 1

ϵ log(
(n·κ)

δ )) polynomial as defined in
Lemma 4.10. Thus, ti(x) has degree O(l log( 1

gmin
) + 1

ϵ log(
n·κ
δ )).

We run Lanczos with A as input for O(l log( 1
gmin

) + 1
ϵ log(

(n·κ))
δ )) iterations. We will now show that the

moments of the spectral density of A as well as the output of Algorithm 4 (SLQ) with respect to ti(x) is
approximately equal to the ith normalized Chebyshev moment of the SDE of A and the output of SLQ respectively
for all i ∈ [O(1/ϵ)].

Lemma 4.11. Consider the setting of Lemma 4.10. Let A ∈ Rn×n be such that ∥A∥2 ≥ 1 and κ = ∥A∥2. Let k ∈
[l] such that σk(A) ≥ 1 and σk+1(A) ≤ 1. Let ti(x) = T̄i(x)r(x) for i ∈ O( 1ϵ ) be the polynomials in Definition 4.1.
Let f(x) be the final output after running Algorithm 4 with A as input for m = O(l log( 1

gmin
)+ 1

ϵ log(
n·κ
δ )) iterations

for some ϵ, δ ∈ (0, 1). Then, with probability at least 1− δ, for i ∈ O( 1ϵ ), we have (for constant c1, c2 > 0)∣∣∣∣⟨ti, sA⟩ − 1

n

n∑
j=k+1

T̄i(λj(A))

∣∣∣∣ ≤ gc1lmin

(n · κ)c1/ϵ

and ∣∣∣∣⟨ti, f⟩ − m∑
j=k+1

w2
j T̄i(λj(T))

∣∣∣∣ ≤ gc2lmin

(n · κ)c2/ϵ
.
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Proof. We have T = QTAQ where T ∈ Rm×m is the output of Algorithm 4 and Q is the orthonormal basis of
the Krylov subspace generated by the Lanczos algorithm in 3. Note that the nonzero eigenvalues of QQTAQQT

are the same as those of QTAQ i.e. λi(T) = λi(QQTAQQT ) for i ∈ [m].

Moments of sA: We have:

⟨ti, sA⟩ = 1

n

n∑
j=1

ti(λj(A))

=
1

n

k∑
j=1

T̄i(λj(A))r(λj(A)) +
1

n

l∑
j=k+1

T̄i(λj(A))r(λj(A)) +
1

n

n∑
j=l+1

T̄i(λj(A))r(λj(A))

= 0 +
1

n

l∑
j=k+1

T̄i(λj(A)) +
1

n

n∑
j=l+1

T̄i(λj(A))r(λj(A)),

where the second step follows from the definition of ti(x) and sA(x) and the last step follows from properties
1 and 2 of r(x) in lemma 4.10. Finally, by property 4 of r(x) in lemma 4.10, we have r(λj(A)) = 1 + ej such

that |ej | ≤
g
c7l

min

(n·κ)c9/ϵ for j ∈ {l + 1, . . . , n} and for some constant c9 > 0. Also, note that |T̄j(λj(A)| ≤
√

2
π for

j ∈ {l + 1, . . . , n} as |λj(A)| ≤ |λl+1(A)| = 1 by our assumptions. So, using triangle inequality we finally get∣∣∣∣⟨ti, sA⟩ − 1

n

n∑
j=k+1

T̄i(λj(A))

∣∣∣∣ ≤ 1

n

n∑
j=l+1

|T̄i(λj(A)||ej | ≤
gc9lmin

(n · κ)c9/ϵ
,

for some constant c9 > 0. This proves the first claim of the lemma. We now prove the second claim.

Moments of f : We have

⟨ti, f⟩ =
m∑
j=1

w2
j ti(λj(T))

=
k∑

j=1

w2
j T̄i(λj(T))r(λj(T)) +

l∑
j=k+1

w2
j T̄i(λj(T))r(λj(T)) +

m∑
j=l+1

w2
j T̄i(λj(T))r(λj(T))

=

k∑
j=1

w2
j T̄i(λj(T))r(λj(T)) +

l∑
j=k+1

w2
j T̄i(λj(T)) +

m∑
j=l+1

w2
j T̄i(λj(T))r(λj(T)),(4.75)

where the last step follows from the properties of r(x) in Lemma 4.10.
Suppose |λj(T)| ≥ 1 for some j ∈ [k]. So, from (2.4), we get that Ti(λj(T)) can be written as

Ti(λj(T)) =
1

2

[(
|λj(T)|+

√
|λj(T)|2 − 1

)i

+

(
|λj(T)| −

√
|λj(T)|2 − 1

)i]
≤ (2|λj(T)|)i.

Thus,

T̄i(λj(T)) ≤
√

2

π
(2|λj(T)|)i.(4.76)

Thus, for any j ∈ [k], we have T̄i(λj(T)) ≤
√

2
π max((2|λj(T)|)k, 1). We can also bound each w2

j as

(wj)
2 = (vT

i e1)
2 ≤ 1 for all j ∈ [m]. From property 3 of lemma 4.10, we have r(λj(T)) ≤ g

c6l

min

(n·κ)c6/ϵ for j ∈ [k] and
some constant c6. So, using the bounds on wj , r(λj(T)) and (4.76), for any j ∈ [k] such that that |λj(T)| ≥ 1,
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we get:

|w2
j T̄i(λj(T))r(λj(T))| ≤

√
2

π
(2∥A∥2)i

(
gc6lmin

(n · κ)c6/ϵ

)
≤
√

2

π
(2∥A∥2)c

′/ϵ

(
gc6lmin

(n · κ)c6/ϵ

)
≤ gc8lmin

(n · κ)c8/ϵ
,(4.77)

for a large enough constant c8, where we also use the facts that i ≤ O( 1ϵ ) and κ = ∥A∥2 by assumption. Similarly,
|w2

j T̄i(λj(T))r(λj(T))| ≤ 1 if |λj(T)| ≤ 1 for any j ∈ [k]. From property 2 of Lemma 4.10, we have r(λj(T)) = 1
for j ∈ {k + 1, . . . , l}. Also, since |λj(T)| ≤ |λj(A)| ≤ |λl+1(A)| = 1 for all j ∈ {l + 1, . . . ,m}, from property 4

of Lemma 4.10, we again have r(λj(T)) = 1 + ej such that |ej | ≤
g
c2l

min

(n·κ)c2/ϵ for some constant c2 > 0. Also, note
that we again have |T̄j(λj(T))| ≤ 1 for j ∈ {l + 1, . . . ,m}. So, we have

m∑
j=l+1

w2
j T̄i(λj(T))r(λj(T)) =

m∑
j=l+1

w2
j T̄i(λj(T)) +

m∑
j=l+1

w2
j T̄i(λj(A)ej .

Finally, from (4.75), using (4.77) and the bound above (where |ej | ≤
g
c2l

min

(n·κ)c2/ϵ ) and using triangle inequality we
have that

|⟨ti, f⟩ −
m∑

j=k+1

w2
j T̄i(λj(T))| ≤

k∑
j=1

w2
j |T̄i(λj(A)||r(λj(T))|+

m∑
j=l+1

w2
j |T̄i(λj(A)||ej |

≤ gc10lmin

(n · κ)c10/ϵ
,

for some large constant c10 > 0. This proves the second claim. Note that everything above holds with probability
at least 1 − δ after adjusting δ by constant factors (as the bounds in Lemma 4.10 hold with probability at least
1− δ).

We now bound the difference between the moments of sA and f with respect to the polynomials ti(x) for
each i ∈ O(1/ϵ).

Lemma 4.12. Consider the setting of Lemma 4.11. Let gi ∼ U(Sn−1) be the starting vector in SLQ (Algorithm 4)
where U(Sn−1) is a uniform distribution on the unit sphere. Let r(x) be the polynomial as defined in Lemma 4.10
with degree O(l log( 1

gmin
) + 1

ϵ log(
(n·κ)

δ )). Let Algorithm 4 be run for m = O(l log( 1
gmin

) + 1
ϵ log(

(n·κ)
δ )) iterations.

Let m1 = O
(
1
ϵ

)
. Then, for n ≥ Ω(log2(1/δ)) and i ∈ {0, 1, . . . ,m1},

|⟨ti, f⟩ − ⟨ti, sA⟩| ≤ C log(1/ϵδ)√
n

,

for some constant C > 0 with probability at least 1− δ.

Proof. Observe that ⟨ti, f⟩ =
∑m

j=1 w
2
i ti(λj(T)) =

∑m
j=1(e

T
1 vj)

2ti(λj(T)) =
∑m

j=1 e
T
1 vjv

T
j e1ti(λj(T)) =

e1(
∑m

j=1 ti(λj(T))vjv
T
j )e1 = eT1 ti(λj(T))e1. Then, since r(x) is a polynomial of degree C2(l log(

1
gmin

) +
1
ϵ log(

(n·κ)
δ )) for some constant C2 > 0 and T̄i(x) has degree at most C1

ϵ for some C1 > 0, the polynomial
ti(x) = T̄i(x)r(x) has degree at most (C1 + C2)(l log(

1
gmin

) + 1
ϵ log(

(n·κ)
δ )). Following the proof of Lemma 4.2, as

long as (C1 + C2)(l log(
1

gmin
) + 1

ϵ log(
(n·κ)

δ )) ≤ m we get ⟨ti, f⟩ = gT ti(A)g.
We also have ⟨ti, sA⟩ = 1

n tr(ti(A)). Thus, from Lemma 4.3, we have that (for a single repetition of the
hutchinson’s estimator and number), for each i ∈ O(1/ϵ), with probability at least 1−O(δ/ϵ), for some constant
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C > 0:

|⟨ti, f⟩ − ⟨ti, sA⟩| = |gT ti(A)g − 1

n
tr(ti(A))| ≤ C log(1/ϵδ)

n
∥ti(A)∥F ≤ C log(1/ϵδ)√

n
∥ti(A)∥2.

Now, observe that for j ∈ [k], from property 1 of Lemma 4.10, we get that ti(λj(A)) = T̄i(λj(A))r(λj(A)) = 0.
Also, recall that from the assumptions of Lemma 4.11, we have that σk+1(A) = 1. Now, for j ≥ k + 1,
|ti(λj(A))| = |T̄i(λj(A))r(λj(A))| ≤ 2 where we use property 2 of Lemma 4.10 and the fact that |T (x)| ≤ 1
for |x| ≤ 1. Thus, we have ∥ti(A)∥2 ≤ maxj∈{k+1,...,n} |ti(λj(A))| ≤ 2. So, we finally get:

|⟨ti, f⟩ − ⟨ti, sA⟩| ≤ C log(1/ϵδ)√
n

.

Taking a union bound over all i ∈ O(1/ϵ) completes the claim.

Next we bound the weights w2
i in the distribution f , the output of SLQ. We will show that w2

i for the top k
weights is at most Õ(1/n). This will help us bound the Wasserstein error from the spectral density of the large
eigenvalues of T.

Lemma 4.13. Consider the setting of Lemma 4.11. Let wi = vT
i e1 be the weights in the output of distribution

of SLQ (Algorithm 4) where e1 ∈ Rm is the first standard basis vector and vi is the ith eigenvector of QTAQ.
Then, for δ ∈ (0, 1) such that n ≥ Ω(log(1/δ)), for all i ∈ [k], with probability at least 1− δ, we have:

w2
i ≤

C
√
log(k/δ)

n
,

where C > 0 is a large constant.

Proof. Let zi = Qvi where Q is the orthonormal basis of the Krylov subspace generated by the Lanczos algorithm
(Algorithm 3) after m iterations. Then, zi are the eigenvectors of QQTAQQT . Also, g = Qe1 or QTg = e1.
From Lemma 4.7, we have that for every i ∈ [k], zi = ui + bi where ui is the ith eigenvector of A and

∥bi∥2 ≤ gclmin

(n · κ)c/ϵ
,

for some constant c > 0, with probability at least 1 − δ. Also, we have wi = vT
i e1 = (Qvi)

T (Qe1) = zTi g =
(ui + bi)

Tg = uT
i g + bT

i g. w2
i = (uT

i g)
2 + (bT

i g)
2 + 2(uT

i g)(b
T
i g)

Since g is sampled from a uniform distribution on the unit sphere, g
d
:= yi√∑n

j=1 y2
j

where y ∈ Rn is a random

vector such that yi ∼ N (0, 1) for i ∈ [n]. So, we have:

w2
i = (uT

i g)
2 + (bT

i g)
2 + 2(uT

i g)(b
T
i g)

d
=

(
∑n

j=1 uijyj)
2∑n

r=1 y
2
r

+
(
∑n

j=1 bijyj)
2∑n

r=1 y
2
r

+ 2
(
∑n

j=1 uijyj)(
∑n

j=1 bijyj)∑n
r=1 y

2
r

.(4.78)

We will now bound
∑n

r=1 y
2
r ,
∑n

j=1 uijyj and
∑n

j=1 bijyj individually. Note that
∑n

r=1 y
2
r is a Chi-squared

random variable with n degrees of freedom. Then, using well-known tail bounds for Chi-squared variables
(see 2.21 [Wai19b]) we have that with probability at least 1 − δ, |

∑n
r=1 y

2
r − n| ≤ 2

√
2n log 2

δ . This gives us∑n
r=1 y

2
r ≥ n

2 (for δ ∈ (Ω(1/en), 1) ). Next, observe that since uT
i y =

∑n
j=1 bijyj is a linear combination of

N (0, 1) random variables and ∥u∥2 = 1, uT
i y is another N (0, 1) random variable. So, (uT

i y)
2 is a Chi-squared

random variable and using the Chi-squared tail bound again, we have (uT
i y)

2 ≤ 1 + 2
√
2 log 2

δ ≤ 3
√
2 log 2

δ

with probability at least 1 − δ. So, we have
(
∑n

j=1 uijyj)
2∑n

r=1 y2
r

≤ 6
√

2 log(2/δ)

n with probability at least 1 − 2δ. Next,

using Cauchy Schwartz inequality,
∑n

j=1 bijyj ≤ ∥bij∥2∥y∥2. So,
(
∑n

j=1 bijyj)
2∑n

r=1 y2
r

≤ ∥bi∥22 ≤ g2cl
min

(n·κ)2c/ϵ . Also,
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2
(
∑n

j=1 uijyj)(
∑n

j=1 bijyj)∑n
r=1 y2

r
≤ 2∥bi∥2 ≤ 2gcl

min

(n·κ)c/ϵ . So, taking a union bound over all these events from (4.78) for all
i ∈ [k], and adjusting δ by a factor of 2k, we get that with probability at least 1− δ, for every i ∈ [k]:

w2
i ≤

6
√
2 log(2k/δ)

n
+

3gclmin

(n · κ)c/ϵ
≤ O

(√
log(k/δ)

n

)
.

We are now ready to prove our final theorem in this section which bounds the Wasserstein-1 error between

sA and f . Let α = max(σl+1(A),
∥A∥2g

c/4
min

nc/4 ) for some constant c > 0. We will now consider two cases in the proof:
when there exists some k ∈ [l] such that σk(A) is at least a constant multiplicative factor larger than α and when
there isn’t any such k. When there is such a k, we will use the bounds from Section 4.2 and Lemma 4.13 to
show that the Wasserstein-1 error of the parts of sA and f defined by the large magnitude eigenvalues of A and
T is at most Õ(l∥A∥2/n) Then, we will use Lemma 4.11 to show that the Chebyshev moments of the spectral
density defined by the small magnitude eigenvalues (≤ σk+1(A)) of A and T are approximately equal. So, the
Wasserstein-1 error of the parts of sA and f defined by the small eigenvalues is bounded by ϵσk+1(A). When
there isn’t such a k, all singular values of A are small (< 2α), and we can use the bounds using moment matching
in Section 4.1 to bound the error by ϵα in this case. Before proving the theorem, we state a couple of results which
we will use in our proof. We first state a result from [BKM22] on uniform approximation of Lipschitz continuous
functions by a Chebyshev series:

Fact 4.1. (Fact 3.2 of [BKM22]) Let f : [−1, 1] → R be a Lipschitz continuous function with Lipschitz
constant λ > 0. Then, for every N ∈ 4N+, there exists N + 1 constants 0 ≤ bN < . . . < b0 = 1 such that
the polynomial f̄N =

∑N
k=0 bk⟨f, w · T̄k⟩T̄k has the property that maxx∈[−1,1] |f(x)− f̄N (x)| ≤ 18λ

N .

We now state another result from [BKM22] bounding the magnitude of the inner-product of a Lipschitz
function f with the k-th normalized Chebyshev polynomial T̄k:

Fact 4.2. (Fact 3.3 of [BKM22]) Let f : [−1, 1] → R be a Lipschitz continuous function with Lipschitz
constant λ > 0. Then, for any k ≥ 0, we have that |f, w · T̄k| = |

∫ 1

−1
f(x)T̄k(x)w(x)dx| ≤ 2λ

k .

Theorem 1.3. Let A ∈ Rn×n be symmetric and consider any l ∈ [n] and ϵ, δ ∈ (0, 1). Let gmin =

mini∈[l]
σi(A)−σi+1(A)

σi(A) and κ = ∥A∥2

2α . Let α = max

(
σl+1(A),

∥A∥2g
c/4
min

nc/4

)
for some constant c > 0. Algorithm 4

(SLQ) run for m = O(l log 1
gmin

+ 1
ϵ log

n·κ
δ ) iterations performs m matrix vector products with A and outputs a

probability density function f such that, with probability at least 1− δ, for a fixed constant C,

W1(sA, f) ≤ ϵ · σl+1(A) +
C log(n/ϵ) log(1/ϵ)√

n
· σl+1(A) +

Cl log(1/ϵ)
√

log(l/δ)

n
∥A∥2.

Proof. We will prove the theorem for two complementary cases and analyze them separately below:

Case 1: Let there be some k ∈ [l] such that σk(A) ≥ 2α and σk+1(A) < 2α. Assume that we run SLQ
(Algorithm 4) with input B = 1

2αA instead of A for m = O(l log 1
gmin

+ 1
ϵ log

(n·κ)
δ ) iterations. The output of

Lanczos (Algorithm 3) will be the scaled tridiagonal matrix T1 = 1
2αT after m iterations. Observe that B satisfies

all the conditions of Lemma 4.11 since σk(B) = σk(A)
2α ≥ 1, σk+1(B) ≤ 1, ∥B∥2 = ∥A∥2

2α ≥ 1 and κB = ∥B∥2.
Let the output of Algorithm 4 with B as input be fB(x) =

∑m
j=1 w

2
j δ(x − λj(T1)) =∑m

j=1 w
2
j δ
(
x− λj(T)

σl+1(A)

)
= f

(
x

σl+1(A)

)
where wj = vT

j e1 (recall that vj is the eigenvector of T corresponding to

λj(T)). Also, the spectral density of B is given by sB(x) =
1
n

∑m
j=1 δ(x − λj(T1)) =

1
m

∑m
j=1 δ(x − λj(T)

σl+1(A) ) =

sA

(
x

σl+1(A)

)
. Thus, we must have:

W1(s, f) ≤ 2α ·W1(sB, fB).(4.79)
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Let L = ∥B∥2 = 1
2α∥A∥2. Then, the spectrum of both B and T1 are in [−L,L] (as |λi(T1)| ≤ |λi(B)| for all

i ∈ [m] by the minimax principle). So, we have:

W1(sB, fB) = sup
h∈1-Lip

∫ L

−L

h(x) (sB(x)− fB(x)) dx

=

∫ L

−L

h∗(x)

(
1

n

n∑
i=1

δ(x− λi(B))−
m∑
i=1

w2
i δ(x− λi(T1))

)
dx

=

∫ L

−L

h∗(x)

(
1

n

k∑
i=1

δ(x− λi(B))−
k∑

i=1

w2
i δ(x− λi(T1))

)
dx︸ ︷︷ ︸

I1

+

∫ L

−L

h∗(x)

(
1

n

n∑
i=k+1

δ(x− λi(B))−
m∑

i=k+1

w2
i δ(x− λi(T1))

)
dx︸ ︷︷ ︸

I2

.(4.80)

Here, h∗(x) is a 1-Lipschitz function that maximizes the integral for computing the Wasserstein distance. We will
bound I1 and I2 separately.

Note that σi(B) ≤ σk+1(B) ≤ 1 for i ∈ {k + 1, . . . , n} and σi(T1) ≤ σi(B) ≤ 1 for i ∈ {k + 1, . . . ,m} by the
minimax principle. So, the support of 1

n

∑n
i=k+1 δ(x − λi(B)) and

∑m
i=k+1 w

2
i δ(x − λi(T1) is in [−1, 1] and we

can write I2 as follows:

I2 =

∫ 1

−1

h∗(x)

(
1

n

n∑
i=k+1

δ(x− λi(B))−
m∑

i=k+1

w2
i δ(x− λi(T1))

)
dx =

∫ 1

−1

h∗(x) (r1(x)− r2(x))) dx,

where r1(x) =
∑n

i=k+1
1
nδ(x− λi(B)) and r2(x) =

∑m
i=k+1 w

2
i δ(x− λi(T1)).

Let N = O(1/ϵ). We will now bound this by following the Chebyshev moment matching proof of
Lemma 3.1 in [BKM22] where we match N normalized Chebyshev moments of r1(x) and r2(x). Let h̄N (x) =∑N

i=0 bi⟨h∗, w.T̄i⟩T̄i (where w(x) = 1√
1−x2

) be the function from Fact 4.1 for constants 0 ≤ bN . . . ≤ b0 = 1 such
that maxx∈[−1,1] |h∗(x)− h̄N (x)| ≤ 18

N . Then, using triangle inequality, the integral can be upper bounded:

I2 ≤
∫ 1

−1

|h∗(x)− h̄N (x)|(r1(x)− r2(x))dx︸ ︷︷ ︸
t1

+

∫ 1

−1

h̄N (x)(r1(x)− r2(x))dx︸ ︷︷ ︸
t2

.(4.81)

Since maxx∈[−1,1] |h∗(x)− h̄N (x)| ≤ 18
N ,
∫ 1

−1
r1(x) =

n−k
n and

∫ 1

−1
r2(x) =

∑m
i=k+1 w

2
i , we have

t1 ≤ 18

N

(
n− k

n
+

m∑
i=k+1

w2
i

)
≤ 36

N
,

where we used the fact that
∑m

i=k+1 w
2
i ≤ 1. Next, we bound t2 using the Chebyshev series expansion of h̄N (x).

First note that r1(x) − r2(x) ∈ [−1, 1] and so its Chebsyshev series expansion is
∑∞

i=0⟨r1 − r2, T̄i⟩T̄i. This gives
us:

t2 =

∫ 1

−1

h̄N (x)w(x)
r1(x)− r2(x)

w(x)
dx =

∫ 1

−1

h̄N (x)w(x) ·
∞∑
i=0

⟨r1 − r2, T̄i⟩T̄idx

=

∫ 1

−1

w(x)

(
N∑
i=0

bi⟨h∗, w.T̄i⟩T̄i

)( ∞∑
i=0

⟨r1 − r2, T̄i⟩T̄i

)
dx.
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By the orthogonality of Chebyshev polynomials under weight w(x) and since ⟨T̄k, wT̄k⟩ = 1 for k ∈ [N ], we can
bound t2 as:

t2 ≤
N∑
i=0

⟨h∗, w.T̄i⟩ · (⟨r1, T̄i⟩ − ⟨r2, T̄i⟩)

≤ ⟨h∗, w.T̄0⟩ · (⟨r1, T̄0⟩ − ⟨r2, T̄0⟩) +
N∑
i=1

|⟨h∗, w.T̄i⟩| · |⟨r1, T̄i⟩ − ⟨r2, T̄i⟩|

≤ ⟨h∗, w.T̄0⟩√
π

·

n− k

n
−

m∑
j=k+1

w2
j

+
N∑
i=1

2

i
· |⟨r1, T̄i⟩ − ⟨r2, T̄i⟩|

≤ ⟨h∗, w.T̄0⟩√
π

·

n− k

n
−

m∑
j=k+1

w2
j

+
N∑
i=1

2

i
·
∣∣∣∣ 1n

n∑
j=k+1

T̄i(λj(B))−
m∑

j=k+1

w2
j T̄i(λj(T1))

∣∣∣∣,(4.82)

where for the first step, we used the fact that b̂N (i)

b̂N (0)
≤ 1, and

∫ 1

−1
⟨r1 − r2, T̄i⟩ = ⟨r1, T̄i⟩ − ⟨r2, T̄i⟩ for i ∈ [N ]. For

the second step, we bound the sum from 1 to N by its absolute value. For the third inequality, we used the fact
that T̄o(x) =

1√
π

and so ⟨r1, T̄0⟩ = n−k
n
√
π

and ⟨r2, T̄0⟩ =
∑m

j=k+1 w2
j√

π
for the first term and use Fact 4.2 which gives us

|⟨h∗, w.T̄i⟩| ≤ 2
i for i ∈ [N ] for the second term. For the final step, we replace ⟨r1, T̄i⟩ and ⟨r2, T̄i⟩ by evaluating

the integrals. Let ti(x) be the polynomial defined in Lemma 4.11. Then, using triangle inequality, for constants
c9, c10 > 0 and C > 0, we get for any i ∈ [N ]:

∣∣∣∣ 1n
n∑

j=k+1

T̄i(λj(B))−
m∑

j=k+1

w2
j T̄i(λj(T1))

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑

j=k+1

T̄i(λj(B))− ⟨ti, sB⟩
∣∣∣∣

+

∣∣∣∣ m∑
j=k+1

w2
j T̄i(λj(T1))− ⟨ti, fB⟩

∣∣∣∣+ ∣∣∣∣⟨ti, fB⟩ − ⟨ti, sB⟩
∣∣∣∣

≤ gc9lmin

(n · κ)c9/ϵ
+

gc10lmin

(n · κ)c10/ϵ

+
C log(N/δ)√

n
.(4.83)

To bound
∣∣∣∣⟨ti, fA⟩ − ⟨ti, sA⟩

∣∣∣∣, the final step uses Lemma 4.12 and the fact that κB = ∥B∥2 = ∥A∥2

2α = κ. Putting

together the bounds on t1 and t2 from (4.82) and (4.83), and bounding
∑N

i=1
2
i ≤ logN , we get from (4.81) (for

some constant c11):

I2 ≤ 36

N
+

⟨h∗, w.T̄0⟩√
π

·

n− k

n
−

m∑
j=k+1

w2
j

+
2gc11lmin logN

(n · κ)c11/ϵ
+

C log(N/δ) logN√
n

.(4.84)
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We now bound I1. We have the following:

I1 =

∫ L

−L

h∗(x)

(
1

n

k∑
i=1

δ(x− λi(B))−
k∑

i=1

w2
i δ(x− λi(T1))

)
dx

=
k

n

∫ L

−L

h∗(x)

(
1

k

k∑
i=1

δ(x− λi(B))− 1

k

k∑
i=1

δ(x)

)
dx

+
k∑

j=1

w2
j

∫ L

−L

h∗(x)

(∑k
i=1 w

2
i δ(x)∑k

j=1 w
2
j

−
∑k

i=1 w
2
i δ(x− λi(T1))∑k

j=1 w
2
j

)
dx

+

∫ L

−L

h∗(x)

(
1

n

k∑
i=1

δ(x)−
k∑

i=1

w2
i δ(x)

)
dx.(4.85)

We now bound the three terms above. First observe that 1
k

∑k
i=1 δ(x − λi(B)) and 1

k

∑k
i=1 δ(x) are density

functions of distributions (defined by dirac deltas at λ1(B), . . . , λk(B) with weights 1
n and at 0 with weight

1 respectively). So, suph∈1−Lip
∫ L

−L
h∗(x)

(
1
k

∑k
i=1 δ(x− λi(B))− 1

k

∑k
i=1 δ(x)

)
is the Wasserstein-1 distance

between the distributions. Using the Earth mover’s distance interpretation of Wasserstein-1 distance, we have:

∫ L

−L

h∗(x)

(
1

k

k∑
i=1

δ(x− λi(B))− 1

k

k∑
i=1

δ(x)

)
≤ sup

h∈1−Lip

∫ L

−L

h(x)

(
1

k

k∑
i=1

δ(x− λi(B))− 1

k

k∑
i=1

δ(x)

)

≤
∑k

i=1 |λi(B)|
k

≤ ∥B∥2.

Similarly, by interpreting
∑k

i=1 w2
i δ(x)∑k

j=1 w2
j

and
∑k

i=1 w2
i δ(x−λi(T1))∑k
j=1 w2

j

as probability densities and using the earth mover’s
distance interpretation of Wasserstein-1 distance we have:

∫ L

−L

h∗(x)

(∑k
i=1 w

2
i δ(x)∑k

j=1 w
2
j

−
∑k

i=1 w
2
i δ(x− λi(T1))∑k

j=1 w
2
j

)
dx ≤

k∑
i=1

w2
i |λi(T1)|∑k

j=1 w
2
j

≤
k∑

i=1

w2
i ∥T1∥2∑k
j=1 w

2
j

.

Finally, to bound
∫ L

−L
h∗(x)

(
1
n

∑k
i=1 δ(x)−

∑k
i=1 w

2
i δ(x)

)
dx, we again use the proof technique outlined in Lemma

3.1 of [BKM22] and for bounding I2 here. Observe that similar to (4.81) we have:

∫ L

−L

h∗(x)

(
1

n

k∑
i=1

δ(x)−
k∑

i=1

w2
i δ(x)

)
dx

≤
∫ 1

−1

(h∗(x)− h̄N (x))

(
1

n

k∑
i=1

δ(x)−
k∑

i=1

w2
i δ(x)

)
dx︸ ︷︷ ︸

t1

+

∫ 1

−1

h̄N (x)

(
1

n

k∑
i=1

δ(x)−
k∑

i=1

w2
i δ(x)

)
dx︸ ︷︷ ︸

t2

.

We can bound t1 and t2 the same way as in the case of I2 to get t1 ≤ 36
N and (similar to (4.82))

t2 ≤ ⟨h∗, w · T̄o⟩√
π

k

n
−

k∑
j=1

w2
j

+
N∑
i=1

2

i
·
∣∣∣∣ 1n

k∑
j=1

T̄i(0)−
k∑

j=1

w2
j T̄i(0)

∣∣∣∣
≤ ⟨h∗, w · T̄o⟩√

π

k

n
−

k∑
j=1

w2
j

+
N∑
i=1

2

i

∣∣∣∣kn −
k∑

j=1

w2
j

∣∣∣∣.
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From Lemma 4.13, we have
∑k

j=1 w
2
j ≤ Ck

√
log 2/δ

n for some large C > 0. So, using the upper bounds on all the
terms on the right hand side of (4.85) (and using the fact that ∥T1∥2 ≤ ∥B∥2), we get that:

I1 ≤ k

n
∥B∥2 + (

k∑
i=1

w2
i )∥T1∥2 +

⟨h∗, w · T̄o⟩√
π

k

n
−

k∑
j=1

w2
j

+
N∑
i=1

2

i

∣∣∣∣kn −
k∑

j=1

w2
j

∣∣∣∣
≤

k(1 + C
√
log k/δ)

n
∥B∥2 +

⟨h∗, w · T̄o⟩√
π

k

n
−

k∑
j=1

w2
j

+
3Ck logN

√
log k/δ

n
,(4.86)

where in the last step we used triangle inequality to bound the final term. Finally, using the bounds on I1 and I2
from (4.86) and (4.84) respectively in (4.80) (and using the fact that

∑m
j=1 w

2
j = 1), we get that:

W1(sB, fB) ≤
36

N
+

k(1 + 4C logN
√
log k/δ)

n
∥B∥2 +

2gc11lmin logN

(n · κ)c11/ϵ
+

C log(N/δ) logN√
n

≤ 36

N
+

5Ck logN
√
log k/δ

n
∥B∥2 +

2C log(N/δ) logN√
n

,

where we also use the fact that the constant c11 can be chosen to be large enough so that the third term in
the first inequality can be made small enough. Recall that we set N = O( 1ϵ ). From (4.79), we also have
W1(s, f) ≤ 2αW1(sB, fB). Thus, we finally get (using the fact B = A

2α ):

W1(s, f) ≤ 72ϵα+
5Ck log(1/ϵ)

√
log k/δ

n
∥A∥2 +

4C log(1/ϵδ) log(1/ϵ)α√
n

≤
5Cl log(1/ϵ)

√
log(k/δ)

n
∥A∥2 +

(
72ϵ+

4C log(1/ϵδ) log(1/ϵ)√
n

)
σl+1(A)

≤
5Cl log(1/ϵ)

√
log(l/δ)

n
∥A∥2 +

(
72ϵ+

4C log(1/ϵδ) log(1/ϵ)√
n

)
σl+1(A).

where we also used the fact that 2α < 2σl+1(A) +
2∥A∥2g

c/4
min

nc/4 and k ≤ l. Also note that the term(
72ϵ+ 4C log(1/ϵδ) log(1/ϵ)√

n

)
2∥A∥2g

c/4
min

nc/4 <
Cl log(1/ϵ)

√
log(l/δ)

n ∥A∥2 for a large c and hence is absorbed into that term
by making the constant C larger. We get the final bound by adjusting ϵ by constant factors. This concludes the
case when such a k exists.

Case 2: Now, when such a k doesn’t exist, i.e. we have ∥A∥2 ≤ 2α < 2σl+1(A) +
2∥A∥2g

c/4
min

nc/4 , from Theorem 4.1
we directly get error W1(sA, f) ≤ 2ϵα+ C log(1/ϵδ) log(1/ϵ)√

n
2α ≤ ϵσl+1(A)+ 2C log(1/ϵδ) log(1/ϵ)√

n
σl+1(A)+ C∥A∥2

n after
adjusting ϵ by constants.

Finally, observe that the condition n ≥ Ω(log(1/δ)) in Lemmas 4.11 and 4.4 must always be satisfied if we
want a non-trivial (≤ n) number of matrix vector products with A. Adjusting δ by some constant factors gives
us the final bound.

4.4 Variance reduced SLQ We introduce our variant of SLQ with better error guarantees here. The
algorithm, which we call the Variance reduced SLQ is described in Algorithm 5. The main difference between this
algorithm and Algorithm 4 is that here, we set the weights w2

i corresponding to the converged large magnitude
eigenvalues of T (the output of Lanczos) to 1

n (and adjust the remaining weights so that the square of the weights
sum to one). This is described in lines 4-9 of Algorithm 3. From Lemma 4.6, we know that in the presence
of a constant multiplicative gap between σk(A) and σl+1(A), the top k eigenvalues of T will approximately be
equal to those of A. Hence the correct weights corresponding to these eigenvalues must be 1

n . This lets us avoid
the Õ( l

n∥A∥2) error SLQ was incurring on the large magnitude eigenvalues. However, we do not actually know
the value of k or even if there exists such a k ∈ [l] with a constant multiplicative gap. Hence, we check two
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convergence conditions for each of the top l indices which will always be true for the top k ≤ l eigenvectors of T
(the output of Lanczos) and corresponding weights (vT

j e1)
2 if such a k ∈ [l] exists.

The two convergence conditions to find the indices for which we set the weights to 1
n are given in line 5

of Algorithm 5. The first condition (∥AQvj − λj(T)Qvj∥2 ≤ ∥A∥2

nβ/ϵ ) checks if an eigenvector vj of T (and its
corresponding eigenvalue) is also approximately an eigenvector and eigenvalue of A. Note that from Lemma 4.7
this condition will always be true for the top k eigenvalues and eigenvectors of T as long as there is at least a
constant multiplicative factor gap between σk(A) and σl+1(A). This helps us set the correct weights of 1

n for
the top k eigenvalues. However, there might be some eigenvectors of T outside of the top k indices for which
this condition is also true. Unfortunately, we can’t guarantee that the corresponding eigenvalues of T outside of

the top k have converged to an eigenvalue of A. The second condition ((v2
je1)

2 ≤
√

log(l/δ)

n ) ensures that in case
this happens, we don’t incur too much error by correcting the weights to 1

n . Note that from Lemma 4.13, this
condition will also be true for the top k weights of the SLQ distribution as long as there is at least a constant
multiplicative factor gap between σk(A) and σl+1(A). But in case there is spurious convergence of an eigenvector
of T without the corresponding eigenvalue of T converging to an eigenvalue of A, this condition essentially bound

the error we incur by correcting the weights by
√

log(l/δ)

n . Also, since the corresponding eigenvalue of A (and T)
is at most σk+1(A), the total error we incur by incorrectly setting weights for these spurious eigenvectors is at
most Õ( lσk+1(A)

n ) ≤ Õ( lσl+1(A)
n ) as opposed to Õ( l∥A∥2

n ) as the magnitude of these eigenvalues will always be less
than σk+1(A) ≤ O(σl+1(A)).

We now analyze the algorithm below. The proof is similar to that of Theorem 1.3 except now, we use the
Backward Perturbation Bound (Lemma 3.7) to first show that there exists some matrix with the same converged
eigenvalues and eigenvectors of A and which is spectrally close to A (as we had done in the proof of Theorem 1.1).
This helps us bound the error incurred on the converged eigenvectors. For bounding the Wasserstein error of
the spectral density corresponding to the eigenvalues with non-converged eigenvectors (which will also have small
magnitude), we use the moment matching analysis of Theorem 1.3 again.

Algorithm 5 Variance reduced Stochastic Lanczos Quadrature

Input: Symmetric A ∈ Rn×n, number of iterations m(≤ n), convergence parameters l ∈ [n], β,C > 0.6
1: Sample g ∼ U(Sn−1).
2: Run Lanczos (Algorithm 3) on A,g for m steps to compute symmetric tridiagonal matrix T ∈ Rm×m and

orthonormal basis Q ∈ Rn×m such that T = QTAQ [GM09]. Let the eigenvectors of T be v1, . . . ,vm.
3: Set S = {}
4: for j = 1, . . . , l do

5: if ∥AQvj − λj(T)Qvj∥2 ≤ ∥A∥2

nβ and (vT
j e1)

2 ≤ C
√

log(l/δ)

n
7 then

6: S = S ∪ {j}
7: end if
8: end for
9: Set f(x) =

∑
j∈S

1
nδ(x− λj(T)) +

(
1− |S|

n∑
i∈[m]\S w2

i

)∑
j∈[m]\S w2

j δ(x− λj(T)), where wj = vT
j e1.

10: return f(x).

Theorem 1.4. Let A ∈ Rn×n be symmetric and consider any l ∈ [n] and ϵ, δ ∈ (0, 1). Let gmin =

mini∈[l]
σi(A)−σi+1(A)

σi(A) and κ = ∥A∥2

2α . Let α = max

(
σl+1(A),

∥A∥2g
c/4
min

nc/4

)
for some constant c > 0. Algorithm 5 run

for m = O(l log 1
gmin

+ log(n·κ)
ϵ ) iterations, performs m matrix vector products with A and outputs a distribution

f such that, with probability at least 1− δ, for large fixed constants C > 0 and c2 > 0,

W1(sA, f) ≤ ϵ · σl+1(A) +

(
C log(n/ϵ) log(1/ϵ)√

n
+

Cl log(1/ϵ)
√

log(l/δ)

n

)
· σl+1(A) +

∥A∥2
nc2

.

6refer to Theorem 1.4 for instructions on setting these parameters.
7δ ∈ (0, 1) is the failure probability.
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Proof. Throughout the proof, for ease of writing, we will abuse notation slightly and assume that the first
convergence condition in line 5 of Algorithm 5 is given by ∥AQvj − λj(T)Qvj∥2 ≤ ∥A∥2

nβ/ϵ i.e. the first parameter
is β/ϵ instead of just β. Let k ∈ [l] be such that σk(A) ≥ 2α and σk+1(A) < 2α. We will again consider two
cases as in Theorem 1.3, i.e. when such a k exists and when it doesn’t.

Case 1: We first consider the case when such a k exists. In this case, similar to proof of case 1 of Theorem 4.1,
let B = 1

2αA and let T1 = 1
2αT where T1 is the output of running Lanczos with B as input. Then, as in (4.79),

we have:

W1(sA, f) ≤ 2αW1(sB, fB),(4.87)

where sB(x) =
∑m

j=1
1
mδ(x−λi(B)) and fB(x) =

∑
j∈S

1
nδ(x−λj(T1)+

(
1− |S|

n∑
i∈[m]\S w2

i

)∑
j∈[m]\S w2

j δ(x−λj(T1)),

where wj = vT
j e1 for each j ∈ [m] and S is the set of indices containing the converged eigenvectors as defined

in Algorithm 5. Let VS ∈ Rm×|S| contain the set of all eigenvectors vi of T1 such that i ∈ S. Let ZS = QVS

where Q is the orthonormal basis of the Krylov subspace generated by the Lanczos algorithm (Algorithm 3).
Then, ∥BZS − ZSΛ̃∥F =

√∑
i∈S ∥BQvi − λi(A)Qvi∥22 ≤ ∥B∥2

n(β−1)/ϵ where Λ̃ is a matrix with the eigenvalues of
T1 corresponding to the eigenvectors of VS on its diagonal and zeros everywhere else. Then, using the backwards
error bound (Lemma 3.7) we get that there exists a matrix C such that CZS = ZSΛ̃ and ∥B−C∥2 ≤ 2∥B∥2

n(β−1)/ϵ .
Using Weyls’ inequality (Fact 2.1), we get that for all i ∈ [n]

|λi(B)− λi(C)| ≤ 2∥B∥2
n(β−1)/ϵ

.(4.88)

Then, 1
n

∑n
i=1 |λi(B)− λi(C)| ≤ 2∥B∥2

n(β−1)/ϵ which implies that

W1(sB, sC) ≤
2∥B∥2
n(β−1)/ϵ

.(4.89)

where sC(x) is the spectral density function of C. Let S1 ⊆ [n] such |S1| = |S| and for every j ∈ S1, there
exists an i ∈ S such that λj(C) = λi(T1). We know such a set S1 must exist as Λ̃ are eigenvalues of C. Let
L = max(∥C∥2, ∥B∥2). Then we have:

W1(sC, fB) = sup
h∈1−Lip

∫ L

−L

h(x)(sC(x)− fB(x))dx

=

∫ L

−L

h∗(x)

(
1

n

n∑
i=1

δ(x− λi(C))−
∑
j∈S

1

n
δ(x− λj(T1)

−
(

1− |S|
n∑

i∈[m]\S w2
i

) ∑
j∈[m]\S

w2
j δ(x− λj(T1))

)
dx

=
|S|
n

∫ L

−L

h∗(x)

(
1

|S|
∑
i∈S1

δ(x− λi(C))− 1

|S|
∑
i∈S

δ(x− λi(T1))

)
dx︸ ︷︷ ︸

I1

+
n− |S|

n

∫ L

−L

h∗(x)

(
1

n− |S|
∑

i∈[n]\S1

δ(x− λi(C))− 1∑
j∈[m]\S w2

j

∑
i∈[m]\S

w2
i δ(x− λi(T1))

)
dx

︸ ︷︷ ︸
I2

.(4.90)

Here, in the second step, h∗(x) is the function that maximizes the integral in the first step. By definition
of the set S1 we have I1 = 0. Now we bound I2. Let s1(x) = 1

n−|S|
∑

i∈[n]\S1
δ(x − λi(C)), s2(x) =

1
n−|S|

∑
i∈[n]\S1

δ(x− λi(B)) and f1(x) =
1∑

j∈[m]\S w2
j

∑
i∈[m]\S w2

i δ(x− λi(T1) be three density functions. Using
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triangle inequality, and the fact that h∗(x) is a 1-Lipschitz function, we have:

I2 =
n− |S|

n

∫ L

−L

h∗(x)(s1(x)− f1(x))dx

≤ n− |S|
n

W1(s1, f1) ≤
n− |S|

n

(
W1(s1, s2) + W1(s2, f1)

)
.(4.91)

Using (4.88) and the earth movers’ interpretation of the 1-Wasserstein distance, we can bound W1(s1, s2) as

W1(s1, s2) ≤
1

n− |S|
∑

i∈[n]\S1

|λi(C)− λi(B)| ≤ 2∥B∥2
n(β−1)/ϵ

.(4.92)

We now bound W1(s2, f1). Let zi = Qvi. Recall that vi are eigenvectors of QTBQ for eigenvalues λi(Q
TBQ),

zi are the eigenvectors of QQTBQQT corresponding to eigenvalues λi(Q
TBQ) = λi(QQTBQQT ). From

Lemma 4.7, we have that for every i ∈ [k], either ∥zi − ui∥2 ≤ g
cl/4
min

(n·κ)c/2ϵ−1 or ∥zi + ui∥2 ≤ g
cl/4
min

(n·κ)c/2ϵ−1 . From
Lemma 4.6, we have that for i ∈ [k] ,

|λi(B)− λi(QQTBQQT )| ≤ gclmin∥B∥2
(n · κ)c/ϵ

.

Let us assume we have ∥zi − ui∥2 ≤ g
cl/4
min

(n·κ)c/2ϵ−1 for some i ∈ [k]. Using triangle inequality and spectral
submultiplicativity, we get that for i ∈ [k]:

∥Bzi − λi(Q
TBQ)zi∥ ≤ ∥B(zi − ui)∥2 + ∥Bui − λi(Q

TBQ)ui∥2 + ∥λi(Q
TBQ)(ui − zi)∥2

≤ g
cl/4
min ∥B∥2

(n · κ)c/2ϵ−1
+ ∥(λi(B)− λi(QQTBQQT ))ui∥2 +

g
cl/4
min ∥B∥2

(n · κ)c/2ϵ−1

≤ 3g
cl/4
min ∥B∥2

(n · κ)c/2ϵ−3
.

For the second step, we also used the fact that λi(QQTBQQT ) = λi(Q
TBQ). We can similarly prove that

∥Bzi − λi(QQTBQQT )zi∥ ≤ 3g
cl/4
min ∥B∥2

(n·κ)c/2ϵ−3 when ∥zi + ui∥2 ≤ g
cl/4
min

(n·κ)c/2ϵ−1 . Moreover, from Lemma 4.13, for any

i ∈ [k], we have w2
i = (vT

i e1)
2 ≤ C

√
log(k/δ)

n ≤ C
√

log(l/δ)

n for some constant C > 0. Thus, if we set the constants
β,C1 in Algorithm 5 such that β ≤ c

2 − 3ϵ, and C1 ≥ C, then v1, . . .vk must satisfy the conditions in line 5 that

∥BQvj−λj(T1)Qvj∥2 ≤ ∥B∥2

nβ/ϵ and (vT
j e1)

2 ≤ C1

√
log(l/δ)

n , i.e. [k] ⊆ S. Thus, maxi∈[n]\S |λi(B)| ≤ |λk+1(B)| ≤ 1.
Also, by the minimax principle, maxi∈[m]\S |λi(T1)| ≤ |λk+1(T1)| ≤ |λk+1(B)| ≤ 1. Thus, the support of s2(x)
and f1(x) is in [−1, 1]. To bound W1(s2, f1), we use Lemma 3.1 of [BKM22] to get that for any N ∈ 4N+, we
have:

W1(s2, f1) ≤
36

N
+ 2

N∑
i=1

|⟨T̄i, s2⟩ − ⟨T̄i, f1⟩|
i

,

where T̄i is the ith normalized Chebyshev polynomial. Then, we get:

n− |S|
n

W1(s2, f1) ≤
n− |S|

n
· 36
N

+ 2
N∑
i=1

1

i

∣∣∣∣ 1n ∑
j∈[n]\S1

T̄i(λj(B))−
n−|S|

n∑
p∈[m]\S w2

p

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣.(4.93)

We can set N = O
(
1
ϵ

)
since the total number of iterations of Lanczos is m = Õ

(
l + 1

ϵ

)
. Then, using triangle
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inequality, and the fact that [k] ⊆ S and [k] ⊆ S1, we get that for any i ∈ [N ]:

∣∣∣∣ 1n ∑
j∈[n]\S1

T̄i(λj(B))−
n−|S|

n∑
p∈[m]\S w2

p

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
j=k+1

T̄i(λj(B))−
m∑

j=k+1

w2
j T̄i(λj(T1))

∣∣∣∣+ ∣∣∣∣ 1n ∑
j≥k+1,j∈S1

T̄i(λj(B))−
∑

j≥k+1,j∈S

w2
j T̄i(λj(T1))

∣∣∣∣
+

∣∣∣∣ n−|S|
n∑

p∈[m]\S w2
p

∑
j∈[m]\S

w2
j T̄i(λj(T1))−

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣.(4.94)

We will now bound the three terms above individually. Let f2(x) =
∑m

i=1 w
2
i δ(x − λi(T1)), i.e., the output of

SLQ with B as input. Next, observe that B satisfies all the conditions of Lemma 4.11 since σk(B) = σk(A)
2α ≥ 1

and σk+1(B) ≤ 1. Let ti(x) be the polynomial defined in Lemma 4.11 for i ∈ [N ]. Then, for the first term, using
triangle inequality, we have that:

∣∣∣∣ 1n
n∑

j=k+1

T̄i(λj(B))−
m∑

j=k+1

w2
j T̄i(λj(T1))

∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑

j=k+1

T̄i(λj(B))− ⟨ti, sB⟩
∣∣∣∣

+

∣∣∣∣ m∑
j=k+1

w2
j T̄i(λj(T1))− ⟨ti, f2⟩

∣∣∣∣+ ∣∣∣∣⟨ti, f2⟩ − ⟨ti, sB⟩
∣∣∣∣.

From Lemma 4.11, we have that
∣∣∣∣∑m

j=k+1 w
2
j T̄i(λj(T1)) − ⟨ti, f2⟩

∣∣∣∣ ≤ g
c3l

min

(n·κ)c3/ϵ and
∣∣∣∣ 1n ∑n

j=k+1 T̄i(λj(B)) −

⟨ti, sB⟩
∣∣∣∣ ≤ g

c4l

min

(n·κ)c4/ϵ for constants c3, c4 > 0 for all i ∈ O( 1ϵ ). From Lemma 4.12, we have that
∣∣∣∣⟨ti, f2⟩− ⟨ti, sB⟩

∣∣∣∣ ≤
C2 log(N/δ)√

n
≤ C2 log(1/ϵδ)√

n
for some constant C2 and for all i ∈ O(1/ϵ) with probability at least 1− δ. Thus, we get

that

∣∣∣∣ 1n
n∑

j=k+1

T̄i(λj(B))−
m∑

j=k+1

w2
j T̄i(λj(T1))

∣∣∣∣
≤ gc3lmin

(n · κ)c3/ϵ
+

gc4lmin

(n · κ)c4/ϵ
+

C2 log(1/ϵδ)√
n

≤ 2C2 log(1/ϵδ)√
n

,

for all i ∈ O( 1ϵ ). We now bound the second term in (4.94). Note that since |λj(B)| ≤ 1 for j ≥ k + 1, we have

that T̄i(λj(B)) ≤
√

2
π . Also, |λj(T1)| ≤ |λj(B)| ≤ 1 for j ≥ k + 1 and w2

j ≤ C1

√
log(l/δ)

n for all j ∈ S. Thus, we
get that:

∣∣∣∣ 1n ∑
j≥k+1,j∈S1

T̄i(λj(B))−
∑

j≥k+1,j∈S

w2
j T̄i(λj(T1))

∣∣∣∣
≤ 1

n

∑
j≥k+1,j∈S1

|T̄i(λj(B))|+
∑

j≥k+1,j∈S

w2
j |T̄i(λj(T1))|

≤
√

2

π

|S1|
n

+

√
2

π

C1|S|
√

log(l/δ)

n
≤

C3l
√

log(l/δ)

n
.

for some constant C3 > 0 and where we used the fact that |S1| = |S| and |S| ≤ l in the last step. We finally
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bound the last term in (4.94). Observe that we have (for some constant C4 > 0):∣∣∣∣∣∣
n−|S|

n∑
p∈[m]\S w2

p

∑
j∈[m]\S

w2
j T̄i(λj(T1))−

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

j∈[m]\S

w2
j T̄i(λj(T1))

(
n−|S|

n∑
p∈[m]\S w2

p

− 1

)∣∣∣∣∣∣
≤

∣∣∣∣∣
n−|S|

n −
∑

p∈[m]\S w2
p∑

p∈[m]\S w2
p

∣∣∣∣∣+
∣∣∣∣∣∣
∑

p∈[m]\S

w2
p

√
2

π

∣∣∣∣∣∣
≤
√

2

π

∣∣∣∣∣∣
∑
p∈S

w2
p −

|S|
n

∣∣∣∣∣∣
≤
√

2

π

C2|S|
√
log(l/δ)

n
+

√
2

π

|S|
n

≤
C4l
√
log(l/δ)

n
.

In the second step above, we used the fact that since [k] ⊆ S, we have λj(T1) ≤ λk(T1) ≤ λk(B) ≤ 1 for

j ∈ [m] \ S. So we have T̄i(λj(T1)) ≤
√

2
π for j ∈ [m] \ S. In the third step, we used the fact that

∑
i∈[m] w

2
i = 1

and in the fourth step, we bounded w2
p ≤ C2

√
log(l/δ)

n . Finally, using the upper bounds on the three terms on the
right hand side of (4.94), and observing that for large enough we get that for i ∈ O( 1ϵ ) (for constants C2, C5 > 0),
with probability at least 1− δ:∣∣∣∣∣∣ 1n

∑
j∈[n]\S1

T̄i(λj(B))−
n−|S|

n∑
p∈[m]\S w2

p

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣∣∣ ≤ C2 log(1/ϵδ)√
n

+
C5l
√
log(l/δ)

n
.

From (4.93), we get that (using the fact that N = O
(
1
ϵ

)
):

n− |S|
n

W1(s2, f1) ≤ C6ϵ
n− |S|

n
+

(
C6 log(1/ϵδ)√

n
+

C6l
√
log(l/δ)

n

)
N∑
i=1

1

i

≤ C6ϵ+
C6 log(1/ϵδ) log(1/ϵ)√

n
+

C6l
√
log(l/δ) log(1/ϵ)

n
,

for large constant C6 > 0. Finally, using the bounds on W1(s2, f1) from above, and on W1(s1, s2) from (4.92),
in (4.91), we get that:

I2 ≤ 2∥B∥2
n(β−1)/ϵ

+ C6ϵ+
C6 log(1/ϵδ) log(1/ϵ)√

n
+

C6l
√

log(l/δ) log(1/ϵ)

n
,

where we also used the fact that n−|S|
n ≤ 1. Thus, from (4.90), we get that W1(sC, fB) ≤ 2∥B∥2

n(β−1)/ϵ + C6ϵ +

C6 log(1/ϵδ) log(1/ϵ)√
n

+
C6l

√
log(l/δ) log(1/ϵ)

n . Then, from (4.89) and using triangle inequality, we get that:

W1(sB, fB) ≤ W1(sB, sC) + W1(sC, fB)

≤ 4∥B∥2
n(β−1)/ϵ

+ C6ϵ+
C6 log(1/ϵδ) log(1/ϵ)√

n
+

C6l
√
log(l/δ) log(1/ϵ)

n
.
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Finally, from (4.87), we get that:

W1(sA, f) ≤ 2α

(
4∥B∥2
n(β−1)/ϵ

+ C6ϵ+
C6 log(1/ϵδ) log(1/ϵ)√

n
+

C6l
√
log(l/δ) log(1/ϵ)

n

)

≤ 4∥A∥2
n(β−1)/ϵ

+ 2α

(
C6ϵ+

C6 log(1/ϵδ) log(1/ϵ)√
n

+
C6l
√
log(l/δ) log(1/ϵ)

n

)
,

where the second step follows from the facts that B = A
2α . Also note that we have α ≤ σl+1(A) +

∥A∥2g
c/4
min

nc/4 .
Simplifying the above expression we get that for some large constants C ′ > 0 and c2 > 0 such that 4

n(β−1)/ϵ << 1
nc2

,
we have:

W1(sA, f) ≤ C ′ϵσl+1(A) +
C ′ log(1/ϵδ) log(1/ϵ)√

n
σl+1(A) +

C ′l
√
log(l/δ) log(1/ϵ)

n
σl+1(A) +

∥A∥2
nc2

.

Case 2: We now consider the case when such a k doesn’t exist. In this case, we have ∥A∥2 ≤ 2α. Then, following
case 2 of Theorem 1.3, let B = A

2α such that ∥B∥2 ≤ 1. Then, following case 1, we can again apply the backwards
error to get a matrix C such that ∥B−C∥2 ≤ 2∥B∥2

n(β−1)/ϵ . We can again split W1(sC, fB) into the integrals I1 and
I2 as in (4.90) such that I1 = 0 and I2 can be bounded as I2 ≤ n−|S|

n

(
W1(s1, s2)+W1(s2, f1)

)
(as in (4.91)) such

that W1(s1, s2) ≤ 2∥B∥2

n(β−1)/ϵ (as in (4.92)) and n−|S|
n W1(s2, f1) is bounded using Lemma 3.1 of [BKM22] by the

Chebyshev moments of s2 and f1 as in (4.93). Then, using triangle inequality, we can bound the moments of f1
and s2 again as in (4.94) such that we have:∣∣∣∣ 1n ∑

j∈[n]\S1

T̄i(λj(B))−
n−|S|

n∑
p∈[m]\S w2

p

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣
≤
∣∣∣∣ 1n ∑

j∈[n]

T̄i(λj(B))−
∑
j∈[m]

w2
j T̄i(λj(T1))

∣∣∣∣+ ∣∣∣∣ 1n ∑
j∈S1

T̄i(λj(B))−
∑
j∈S

w2
j T̄i(λj(T1))

∣∣∣∣
+

∣∣∣∣ n−|S|
n∑

p∈[m]\S w2
p

∑
j∈[m]\S

w2
j T̄i(λj(T1))−

∑
j∈[m]\S

w2
j T̄i(λj(T1))

∣∣∣∣.(4.95)

Since w2
j ≤ C2

√
log(l/δ)

n for j ∈ S and λj(T1) ≤ λj(B) ≤ 1, the second and third terms on the right

hand side above can be bounded by O

(
l
√

log(l/δ)

n

)
as in case 1. To bound the first term, observe that

1
n

∑
j∈[n] T̄i(λj(B)) = 1

n tr(T̄i(B)) and
∑

j∈[m] w
2
j T̄i(λj(T1)) is the ith Chebyshev moment of the output of SLQ

(Algorithm 4) with B as input. Thus, from Lemma 4.4 we get that
∣∣∣∣ 1n ∑j∈[n] T̄i(λj(B))−

∑
j∈[m] w

2
j T̄i(λj(T1))

∣∣∣∣ ≤
O
(

log(N/δ)√
n

)
≤ O

(
log(1/ϵδ)√

n

)
. Thus, we get

∣∣∣∣ 1n ∑j∈[n]\S1
T̄i(λj(B)) −

n−|S|
n∑

p∈[m]\S w2
p

∑
j∈[m]\S w2

j T̄i(λj(T1))

∣∣∣∣ ≤

O

(
log(1/ϵδ)√

n
+

l
√

log(l/δ)

n

)
.The rest of the proof follows the proof of case 1 which gives us the final bound of

W1(s, f) ≤ ϵσl+1(A) +
C ′ log(1/ϵδ) log(1/ϵ)√

n
σl+1(A) +

C ′l
√
log(l/δ) log(1/ϵ)

n
σl+1(A) +

∥A∥2
nc2

.

Finally, observe that adjusting δ by some constant factors gives us the final bound

5 Lower Bound
We now prove the lower bound on the number of matrix vector queries required by any algorithm to estimate
the spectral density of any matrix A upto Wasserstein error ϵσl+1(A). Our proof proceeds via a reduction of the
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spectral density estimation problem to the problem of distinguishing between two Wishart matrices with ranks
very close to each other (Theorem 17 of [SW23]). Our lower bound of O(l+ 1

ϵ ) shows that our upper bounds for
estimating the SDE via explicit deflationa s well as SLQ are nearly tight (upto polylog factors).

Theorem 1.2. Any (possibly randomized) algorithm that given symmetric A ∈ Rn×n outputs s̃A such that, with
probability at least 1/2, W1(sA, s̃A) ≤ ϵσl+1(A) for ϵ ∈ (0, 1) and l ∈ [n] must make Ω

(
l + 1

ϵ

)
(possibly adaptively

chosen) matrix-vector product queries to A.

Proof. Let A be an adaptive algorithm that estimates the spectral density of A up to error ϵσl+1(A) in the
Wasserstein-1 norm. Let W (n, r) be the n dimensional Wishart distribution with r degrees of freedom i.e., the
distribution of GGT where G ∈ Rn×r has i.i.d. standard normal entries. We will use Theorem 17 of [SW23]
which states that at least Ω(r) (possibly adaptive) matrix vector queries are required by any adaptive algorithm
to distinguish between two Wishart matrices W (n, r) and W (n, r + 2) with probability at least 2

3 . We prove the
lower bound by considering the two cases: l > 1

ϵ and l ≤ 1
ϵ .

Case 1.
(
l > 1

ϵ

)
: The non-zero eigenvalues of the Wishart ensembles W (n, l) and W (n, l + 2) are bounded

between n
2 and 2n with probability at least 5/6 as long as n ≥ Cl for some constant C [Ver18]. Let n = Cl.

Consider the Wishart ensembles A1 = W (n, l) and A2 = W (n, l + 2). Observe that A1 and A2 have ranks of l
and l + 2 respectively. So, σl+3(A1) = σl+3(A2) = 0. Let A use k matrix-vector products with the input matrix
to estimate the spectral density sA(x) up to error ϵσl+3(A) = 0 in both cases with probability at least 0.5 i.e.
the spectral density of the input matrix is estimated exactly. So, the rank of A in both cases is given exactly
by n

∫ 2n

n/2
sA(x)dx with probability at least 0.5. Hence, A can distinguish between W (n, l) and W (n, l + 2) with

probability at least 2
3 . Thus, from Theorem 17 of [SW23], we must have k = Ω(l).

Case 2.
(
l ≤ 1

ϵ

)
: In this case, let r = ⌊ 1

ϵ ⌋ and let us consider the normalized Wishart ensembles A1 = 1
2nW (n, r)

and A2 = 1
2nW (n, r + 2) where n = 2Cr. Let either A1 or A2 be the input to A. Since the nonzero eigenvalues

of A1 and A2 lie in [0.25, 1] with probability at least 5/6, by setting the error parameter to ϵ
1000C we can

estimate the spectral density of the input to A up to error ϵ
1000C max(σl+1(A1), σl+1(A2)) ≤ ϵ

1000C in the
Wasserstein-1 distance. Let λ1 ≥ . . . ≥ λn be the true eigenvalues of the input to A. Then, using the
estimated spectral density returned by A, we can construct a list of n values [λ̃1, . . . , λ̃n] in time linear in n
and 1

ϵ such that
∑n

i=1 |λi − λ̃i| ≤ 3ϵn
1000C ≤ 6

1000 (see [CSKSV18], theorem B.1 in [BKM22]). So, we have
|λr+1 − λ̃r+1| ≤

∑n
i=1 |λi − λ̃i| ≤ 6

1000 . When, A1 is the input we gt |λ̃r+1| ≤ 6
1000 since λr+1 = 0 in this case.

When, A3 is the input, via triangle inequality, we get |λ̃r+1| ≥ |λr+1| − 6
1000 ≥ 0.25 − 6

1000 since λr+1 > 0.25 in
this case. So, we can distinguish between A1 and A2 with probability at least 2

3 . So, using Theorem 17 of [SW23],
we again have k ≥ Ω( 1ϵ ).

Finally, observe that setting δ = 1
nc′ for some constant c′ gives us the final bound.

6 Empirical Evaluation
In this section, we compare the empirical performance of the algorithms studied in this paper and several other
standard algorithms in approximating the spectral densities of several synthetic and publicly available matrices.
We observe that the SLQ algorithm (Algorithm 4) and its variance reduced variant, VR-SLQ (Algorithm 5)
generally out perform explicit moment matching methods like KPM and Chebyshev moment matching in the
Wasserstein distance metric. This finding aligns with our results in Theorem 1.3 and 1.4 that these methods
perform implicit deflation for any deflation parameter ℓ allowing them to adapt to the matrix spectrum to achieve
stronger error bounds.

6.1 Datasets Our comparisons are performed on the following matrices:

• The Gaussian matrix, which is a 5000 × 5000 matrix, constructed by first drawing 5000 eigenvalues from
a Gaussian distribution to get Λ ∈ N (0, 1)5000, normalizing Λ = Λ/∥Λ∥∞, then generating a random
orthonoromal matrix V ∈ R5000×5000, and finally computing A = VΛVT . This matrix is generated from
the descriptions of the Gaussian matrix in [BKM22].

• The Uniform matrix is constructed analogously to the Gaussian matrix, except its eigenvalues are drawn
uniformly and independently from [−1, 1]. This matrix is generated from the descriptions of the Uniform
matrix in [BKM22].
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• The inverse spectrum matrix is a 5000× 5000 diagonal matrix with entries 1, 1/2, . . . , 1/5000.

• The power law spectrum matrix is a 5000× 5000 diagonal matrix with entries 1, 1/22, . . . , 1/25000.

• The low-rank matrix is a 5000× 5000 diagonal matrix with 100 entries drawn uniformly and independently
from a Gaussian distribution N (0, 1), and normalized as Λ = Λ/∥Λ∥∞. The remaining diagonal entries are
set at 0.

• Finally, Erdos992 is the adjacency matrix of the Erdös collaboration network (snapshot of 1992) with
6100 vertices and containing 15030 undirected edges. It is taken from a publicly available sparse matrix
collection [DH11]. The adjacency matrix has one eigenvalue at 1, roughly 1000 eigenvalues at 0, and roughly
500 eigenvalues of magnitude greater than 0.2.

We note that all algorithms considered in this paper are ‘rotationally invariant’ in that their performance
should not depend on the actual eigenvector basis of A. For this reason, most of our test matrices are simply
diagonal matrices. And we indeed see no systematic difference in performance depending on the eigenvector basis.

6.2 Implementation Details We consider three baseline SDE algorithms: 1) stochastic Lanczos quadrature
(SLQ), 2) the Chebyshev moment matching (CMM) algorithm (Algorithm 1 of [BKM22]), and 3) the Jackson
damped kernel polynomial method (KPM) (Algorithm 6 of [BKM22]) which is a popular moment matching
algorithm that can be thought of as an approximation of CMM. We implement two versions of our explicit
deflation algorithm (Algorithm 1) – one of which uses CMM after deflation (the one we analyze), and one that
uses KPM. We call these algorithms def-CMM and def-KPM respectively. Along with these algorithms, we also
compare the performance of SLQ algorithm (Algorithm 4) and VR-SLQ (Algorithm 5).

Since we test for relatively small n, as the number of iterations/moments performed by each algorithm
increases, we may reach small ϵ = õ(1/

√
n) values for which more than one random vectors in Hutchinson’s

method in the explicit moment matching methods or more than one independent trial of SLQ are needed. For
simplicity, for all moment matching methods we use 15 random vectors for Hutchinson’s method. For SLQ-
based methods we perform 15 independent trials of the method (using 15 independent random starting vectors)
and average together the output densities to obtain our final spectral density estimate. For block Krylov based
deflation we perform 15 iterations to generate the Krylov subspace.

We compare each algorithm based on the Wasserstein-1 error achieved for a fixed number of total matrix-
vector queries to the input matrix. Since the iterations in Krylov and number of vectors in Hutchinson’s algorithm
are fixed at 15, to ensure that def-CMM or def-KPM uses the same number of matrix-vector queries as other
algorithms we then need to split the moment budget of CMM or KPM to accomodate for the matrix-vector queries
due to block Krylov. We split this in the ratio 1 : 3, i.e., for every 2 moment computations of CMM or KPM in
def-CMM or def-KPM, we use a block size of 3 to compute deflation via block Krylov algorithm. Note, for block
size of 3 and ℓ iterations, block Krylov method uses 6ℓ matrix-vector queries. We vary the total matrix-vector
query budget for all algorithms, i.e., increase the total moments approximated by CMM-based algorithms, or
increase the total number of iterations in SLQ-variants, and report the Wasserstein-1 error in Figure 1 across all
matrices.

To compute N moment estimates, the CMM algorithm [BKM22] is evaluated on a discrete and evenly-spaced
grid of length d + 1 in the interval [−1, 1]. Theoretically, the algorithm requires setting d = ⌈N3/3⌉. In our
experiments, we found setting d = 20000 to be sufficient. To solve the ℓ1-regression problem in the CMM
algorithm, we use HiGHS solvers [HH18] within SciPy [VGO+20]. To ensure that the solution vector falls within
the probability simplex we use Algorithm 1 of [Con16]. The eigenvalues of any matrix are computed using numpy
[Com21].

We repeat each experiment for t = 10 independent trials. In the plots in Figure 1, the x-axis denotes the total
matrix-vector queries used by each algorithm per trial, and the y-axis represents the corresponding Wasserstein-1
SDE error. The bold lines in the plot represent the mean error across 10 trials. The 10th and the 90th percentile
of the observed errors are represented by the faded envelope around the bold lines.

Code. All codes are written in Python and available at https://github.com/archanray/SDE_SLQ.

6.3 Summary of Results We observe that across all of the matrices, SLQ (Algorithm 4) and VR-SLQ
(Algorithm 5) outperform the explicit moment matching-based algorithms that we test. Among these two
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algorithms, VR-SLQ more often outperforms SLQ, especially when the spectrum of the input matrix contains
only a few large eigenvalues, as in this case, the variance reduction step can have a significant positive effect on
the spectral density estimate. We also observe that the variants of Algorithm 1 (def-CMM and def-KPM) more
often outperform naive CMM and KPM, in particular for matrices with only a few large eigenvalues, as expected.
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Figure 1: Wasserstein-1 error of spectral density estimation approximation algorithms. In the figures
above, we plot the Wasserstein-1 error of approximating the spectral density of several matrices using the
algorithms presented in the paper and some baseline algorithms. We observe that in almost all cases, VR-SLQ
algorithm outperforms all other SDE algorithms. We also observe that the variants of our deflation algorithm
(Algorithm 1) generally outperform the corresponding baseline of CMM and KPM.
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