
Faster Linear Systems and Matrix Norm Approximation via Multi-level
Sketched Preconditioning

Micha l Dereziński∗ Christopher Musco† Jiaming Yang‡

Abstract

We present a new class of preconditioned iterative methods for solving linear systems of the form Ax = b.
Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix
sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using
additional levels of random sketching and preconditioning.

We prove that the convergence of our methods depends on a natural average condition number of A, which
improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster
runtimes for a number of fundamental linear algebraic problems:

1. We show how to solve any n × n linear system that is well-conditioned except for k outlying large
singular values in Õ(n2.065 + kω) time, improving on a recent result of [Dereziński, Yang, STOC 2024]
for all k ≳ n0.78.

2. We give the first Õ(n2 + dλ
ω) time algorithm for solving a regularized linear system (A + λI)x = b,

where A is positive semidefinite with effective dimension dλ = tr(A(A + λI)−1). This problem arises in
applications like Gaussian process regression.

3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example,
for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in Õ(n2.11) time, improving on

an Õ(n2.18) method of [Musco et al., ITCS 2018].

All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms
for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient
descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching.

1 Introduction

We consider the complexity of solving a system of linear equations: given an n × n matrix A and an n-
dimensional vector b, find x such that Ax = b. This ubiquitous task in numerical linear algebra has
applications across data science and machine learning, the physical sciences, engineering, and more. Despite
many existing methods for solving linear systems, they remain a major computational bottleneck, so faster
algorithms are a subject of active research. Much of the progress on faster algorithms concentrates on designing
methods tailored for matrices with special structure, such as Laplacian, Toeplitz, or Hankel matrices, among
others [KKM79,XXG12,ST14a,KMP12,KS16,CKK+18,PV21]. Progress on general, unstructured linear systems
has been slower.

One direction for developing faster algorithms is to improve on fast matrix multiplication. Thanks to Strassen’s
reduction showing that matrix inversion is equivalent to matrix multiplication [Str69, Pan84, CW87, Wil12],
general linear systems can be solved in O(nω) time, where ω < 2.372 is the current best known matrix
multiplication exponent [WXXZ23]. Another approach is to solve linear systems via iterative refinement, for
instance using deterministic methods such as the Conjugate Gradient (CG) or Lanczos algorithms [HS52], or
stochastic approaches like randomized coordinate descent [SV09,LL10,LS13]. Iterative methods tend to be faster
in many practical settings, as their runtime typically scales only quadratically with n, i.e., as O(n2). However, the
runtime of typical iterative methods involves a multiplicative factor depending on the condition number of A (the
ratio between its largest and smallest singular values) or related parameters, making them largely incomparable
to solvers based on fast matrix multiplication.

∗University of Michigan (derezin@umich.edu)
†New York University (cmusco@nyu.edu)
‡University of Michigan (jiamyang@umich.edu)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1972

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

One way to address this issue is to introduce a problem parameter k, such that any ill-conditioned part of A
is restricted to a k-dimensional subspace. Formally, we ask:

Problem 1.1. What is the time complexity of solving an n× n linear system Ax = b such that matrix A has at
most k singular values larger than O(1) times its smallest singular value?

When k = n, our fastest methods for solving Problem 1.1 run in O(nω) time via fast matrix multiplication. When
k = 0, the problem can be solved in Õ(n2) time via any standard iterative solver such as CG. We are interested
in the arguably more interesting intermediate regime, where A is a combination of a low-rank ill-conditioned
matrix and a full-rank well-conditioned one. Such matrices arise often in practice, either due to various forms of
regularization that are prevalent in machine learning, statistics and optimization [BV04,ZDW13,DW18,DM24], or
due to the presence of isotropic noise coming from measurement error, rounding, or compression [LW11,LGW+21].

A standard approach to Problem 1.1 is to construct an approximation to the rank k subspace identified by
A’s top singular values. That information can be used to precondition an iterative solver so that it runs in
Õ(n2) time [HMT11]. Constructing a sufficiently accurate approximation to the top subspace requires (block)
power iteration or related methods [MM15], which take Õ(nω(1,1,logn k)) time, where ω(1, 1, logn k) ∈ [2, ω] is the
exponent of rectangular matrix multiplication between an n×n and n×k matrix [LG12].1 This approach already
interpolates between the two extremes of the problem. In fact, it achieves a near-optimal Õ(n2) runtime for
k = O(n0.32).

Recently, [DY24] give the first improvement on this baseline by presenting a randomized Kaczmarz-like
iterative method that solves Problem 1.1 in time Õ(n2 + nkω−1). This result leads to an optimal Õ(n2) runtime

for any k = O(n
1

ω−1) = O(n0.73), and for larger k it gradually degrades to O(nω).

1.1 Main Results It might appear as though the result of [DY24] is optimal. In particular, the currently best
known algorithms for finding even a coarse (Frobenius norm error) approximation of the top rank k subspace
of A also require Õ(n2 + nkω−1) time [CW13,CEM+15,CMM17,CCKW22], and finding such an approximation
seems like a prerequiste for solving Problem 1.1. The contribution of this paper is to present an algorithm that
breaks through this complexity barrier. Along the way, we give new state-of-the-art runtimes for two other central
problems in linear algebra that are closely related to Problem 1.1: kernel ridge regression [ACW17] and Schatten
norm approximation [MNS+18].

Concretely, we prove the following result, which improves on the previously best known time complexity of
Õ(n2 + nkω−1) for Problem 1.1 for all k = Ω(n0.78). See Figure 1 for a comparison.

Theorem 1.1. (Main result, informal Theorem 3.1) Given an invertible n × n matrix A with at most k
singular values larger than O(1) times its smallest singular value, and a length n vector b, there is an algorithm
that, with high probability, computes x̃ such that ∥Ax̃− b∥ ≤ ϵ∥b∥ in time2:

Õ
((
n2.065 + kω

)
· log3 1/ϵ

)
.

To understand the significance of Theorem 1.1, consider the following special instance of Problem 1.1, where
A is a block-diagonal matrix with one k× k block that contains an arbitrary ill-conditioned matrix, and a second
(n−k) × (n−k) block that contains a well-conditioned (but non-trivial) matrix. Solving such a linear system
is equivalent to solving a small worst-case k × k linear system and a dense, well-condition system. Thus, under
the assumption that the worst-case time complexity of linear systems is governed by the complexity of matrix
multiplication, we can lower bound the cost of solving Problem 1.1 with current fast matrix multiplication by
Ω(n2 + kω) (this is formalized in Theorem 7.1). In comparison, our approach yields Õ(n2.065 + kω) time, which
matches the lower bound up to n0.065 everywhere and up to logarithmic factors for k = Ω(n0.87).

Surprisingly, our algorithm departs from the stochastic optimization approach used in the prior work of
[DY24]. Instead, we employ a deterministic solver with a randomized preconditioner. To do so, we combine two
main ingredients. First, building on prior work [FTU23,DEF+23], we show that even a very coarse approximation
to A’s top rank k subspace can be used to construct a “good enough” preconditioner. In particular, we can replace
the use of algorithms like block power method with more efficient, but less accurate, linear-time sketching methods

1This corresponds to the O(n2k) time for classical multiplication of n× n and n× k matrices.
2We use Õ(·) to hide logarithmic dependencies on the dimension n and the condition number of A.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1973

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

θ

β

0 .32 .73 .84 1
2

2.065

2.372

Power Method-based Preconditioning [HMT11]

Randomized Block Kaczmarz [DY24]

Multi-level Sketched Preconditioning (Thm 1.1)

Conditional lower bound (Thm 7.1)

Figure 1: Time complexity for solving an n×n linear system with k = nθ large singular values under current matrix
multiplication exponent ω ≈ 2.372. The x-axis denotes the exponent θ, while the y-axis denotes the exponent
β in the time complexity Õ(nβ). The yellow line is our work (Theorem 1.1), with the yellow area showing the
complexity improvement compared to prior work. The red line denotes a lower bound for the problem, which
we prove in Theorem 7.1. The red area is unachievable under the assumption that solving general dense linear
systems requires Ω(nω) time.

for low-rank approximation [CW13]. Second, we show that it is possible to avoid the final step of such methods,
which requires a prohibitive Õ(nkω−1) cost to explicitly construct a rank k subspace approximating A’s top
singular vectors. Instead, using Õ(nk + kω) preprocessing time, we show how to maintain a data structure that
lets us perform inexact matrix-vector products with an inverted low-rank preconditioner. The data structure
involves additional levels of solving linear systems with randomized sketching and preconditioning methods,
resulting in a framework that we call Multi-level Sketched Preconditioning (MSP). We discuss details of
our approach further in Section 1.2. Before doing so, we highlight two additional applications of the framework
beyond Theorem 1.1.

Regularized linear systems. An important case of linear systems that are well-conditioned except for a
few large singular values are those that are explicitly regularized by adding a scaled identity, λI, to a positive
semidefinite matrixA. This setting arises, for instance, in kernel ridge regression [EAM14,RCR17,MM17,ACW17,
FTU23] and second-order optimization [Lev44,Mar63,MS12, JJM23]. Prior results have shown that such linear
systems can be solved in Õ(n2 + ndλ

ω−1) time, where dλ = tr(A(A + λI)−1) ≤ n is the so-called λ-effective
dimension of the problem, often much smaller than n [ACW17,MM17]. We improve on this by using Multi-level
Sketched Preconditioning, leading to a time complexity of Õ(n2 + dλ

ω), which is optimal (up to log factors).

Theorem 1.2. (Regularized linear systems, informal Theorem 3.2) Given an n × n positive semidefi-
nite matrix A, an n-dimensional vector b, and λ > 0, there is an algorithm that, with high probability, computes
x̃ such that ∥(A+ λI)x̃− b∥ ≤ ϵ∥b∥ in time:

Õ
((
n2 + dλ

ω
)
· log3 1/ϵ

)
, where dλ = tr(A(A+ λI)−1).

Matrix norm estimation. Linear systems often arise in algorithms for solving other matrix problems,
including linear and semidefinite programming [CLS21, JKL+20], least squares and lp regression [Sar06, RT08,
MM13,CP15,CD21], and for estimating various matrix properties [MNS+18]. Our new algorithms can be used to
speed up any of these tasks. As a motivating example, we show how to improve methods for estimating various
matrix norms, a fundamental problem in linear algebra. We build on an approach of [MNS+18], which uses
regularized linear system solves to build rational function approximations that, when combined with stochastic
trace estimation methods [Hut90], allow for the estimation of various functions of the singular values faster than

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1974

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

O(nω) time, i.e. faster than the time it takes to compute all singular values outright.3

Perhaps the most important example is the sum of the singular values, i.e., the Schatten 1-norm ∥A∥1
(a.k.a. nuclear norm). [MNS+18] shows how to obtain a (1 + ϵ) multiplicative approximation to ∥A∥1 in time
Õ(n2.18poly(1/ϵ)). This is a surprising result, as no previous methods were able to beat the O(nω) complexity
of computing a full SVD. Moreover, work in fine-grained complexity (specifically, on triangle detection lower
bounds) suggests that O(nω) is tight for high-accuracy approximation (i.e., ϵ = poly(1/n)) [MNS+18,WW10].
By replacing the stochastic iterative methods used in [MNS+18] with our MSP solvers, we make further progress
on this problem.

Theorem 1.3. (Schatten 1-norm estimation, corollary of Theorem 3.3) Given an n×n matrix A and
ϵ > 0, there is an algorithm that, with high probability, computes X ∈ (1± ϵ)∥A∥1 in time:

Õ
(
n2.11poly(1/ϵ)

)
.

In fact, we show that our linear solver improves the exponent of n in the time complexity of Schatten p-norm
estimation for any p ∈ (0, 1.5), and it can also be used to approximate other matrix norms such as the Ky Fan
and Orlicz norms. See Section 3.2 for a discussion.

1.2 Our Techniques The starting point for our Multi-level Sketched Preconditioning comes from work on
solving regularized systems of the form (A+λI)x = b, where A is positive definite (PD). Here, a central technique
for preconditioning is the Nyström method [Nys30,WS01,GM16,MM17], which uses randomized sketching or sub-
sampling to build a low-rank approximation for A. As an illustration, let S ∈ Rl×n be a subsampling matrix,
so that AS⊤ contains a random subset of l columns from A. The classical Nyström approximation is defined as
Ânys = CW−1C⊤, where C = AS⊤ is the column submatrix and W = SAS⊤ is the corresponding l× l principal
submatrix of A. This can be extended to other sketching methods by replacing S with a sparse random matrix
(CountSketch, OSNAP, LESS, etc. [CW13, NN13, Coh16, DLDM21]) or a Subsampled Randomized Hadamard
Transform (SRHT, [AC09,Tro11]), all of which can be multiplied byA in Õ(n2) time. With sufficiently large sketch

size (namely, proportional to the effective dimension dλ = tr(A(A+ λI)−1)), one can show that M = Ânys + λI
is a good preconditioner for A + λI, i.e., the condition number of M−1(A + λI) is constant. At the same time,
M−1 can be applied quickly due to its decomposition into C and W. Concretely, using the inversion formula
M−1 = 1

λ

(
I−C(C⊤C+ λW)−1C⊤), we can compute M−1r for any vector r in Õ(nl) time after precomputing

(C⊤C+ λW)−1 in Õ(nlω−1) time.

Average Condition Number Bounds via Nyström Preconditioning. We improve on standard Nyström
preconditioning in two important ways. First, replacing the subsampling matrix S with a sparse sketching
matrix [CNW16], we leverage a moment version of the oblivious subspace embedding property in conjunction
with a spectral norm error low-rank approximation bound, to show that even when solving an unregularized
system Ax = b, a preconditioner of the form M = Ânys + λI can significantly improve conditioning. Note that
the scalar λ is now a parameter of the algorithm, and not of the problem, as was the case for standard Nyström
preconditioning. We prove that, using Nyström approximation with sketch size Õ(l) for any integer l, we can
choose λ so that the condition number of the preconditioned system M−1A can be reduced to Õ(nl · κ̄l), where
κ̄l = 1

n−l

∑
i>l

σi

σn
is the average condition number of A, excluding its top l singular values (here, σi are the

singular values of A listed in a decreasing order). We observe that the quality of the preconditioner exhibits a
dependence on l both through the n

l factor and the condition number κ̄l. Thus, obtaining the best condition
number requires carefully tuning the parameter ℓ for each application. For example, if A has at most k large
singular values, as in Problem 1.1, then κ̄l = O(1) for any l ≥ k, but due to the dependence on n

l , increasing l

past k still improves the preconditioner. Unfortunately, this happens at the expense of increasing the Õ(nlω−1)
cost of inverting the Nyström approximation, which motivates our second contribution.

Two-level Preconditioning for Positive Definite Systems. Instead of computing M−1 = 1
λ

(
I−C(C⊤C+

λW)−1C⊤) explicitly, as in standard Nyström preconditioning, we focus on simply implementing matrix-vector

3Concretely, [MNS+18] estimates quantities of the form tr(f(A)), with the nuclear norm equal to the case where f(x) = |x|.
Stochastic trace estimation methods like Hutchinson’s estimator and related techniques approximate tr(f (A)) by computing gT f(A)g
for randomly chosen g [MMMW21].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1975

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

multiplications with M−1, which suffice to apply a preconditioned iterative method like CG or Lanczos. The
main challenge in doing so is to implement efficient multiplications with (C⊤C+λW)−1, i.e., to solve the system
(C⊤C+ λW)x = r. We show how to do this using a second level of sketching and preconditioning. In particular,
since C is a tall n × l matrix, the linear system (C⊤C + λW)x = r can be solved efficiently by preconditioning
with C⊤Φ⊤ΦC+ λW, where Φ is an O(l)× n sketching matrix (specifically, an oblivious subspace embedding).
The preconditioner C⊤Φ⊤ΦC + λW can be constructed and inverted in just Õ(nl + lω) time, which leads to
an upfront cost of Õ(nl + lω) for implementing Õ(nl) time matrix-vector multiplications with M−1. This is
a significant improvement on the Õ(nlω−1) required by explicit inversion. Overall, we obtain a complexity of
Õ(n2

√
n/l+ lω) for solving Problem 1.1 when A is positive definite. Optimizing over the parameter l gives a final

runtime bound of Õ(n2.065 + kω) time for positive definite A, which is our first step towards proving the general
version of Theorem 3.2, which does not assume positive definiteness. See Section 4, Theorem 4.1, for details.

We note that to analyze the approach above, we leverage a stability analysis of the preconditioned Lanczos
method, which ensures that an optimal convergence rate is still obtained even when the preconditioner M−1 is
applied inexactly. We give this analysis in Section 6, building on prior work on the stability of the unpreconditioned
Lanczos method [Pai71,Pai76,Gre89,MMS18]. Many alternative approaches would also suffice. For example, we
could have obtained the same running times by using preconditioned Chebyshev iteration in place of Lanczos.
The robustness of Chebyshev iteration to inexact applications of M−1 is well understood, and leveraged, e.g., in
fast solvers for Laplacian systems [ST14b]. However, the method tends to converge much slower in practice than
more popular methods like Lanczos or the Conjugate Gradient method. Thus, providing a stability analysis of
the preconditioned Lanczos method is of independent interest beyond its application in our algorithms. Broadly,
an increasing number of algorithms in numerical linear algebra combine iterative methods with inexact “inner
loops”, often applied using randomized techniques. This approach has found applications in spectral density
estimation [BKM22], quantum inspired linear algebra [BT24], and a number of other problems [OSV12]. All of
this work hinges on stability analysis akin to our results on the preconditioned Lanczos method.

Three-level Preconditioning for Indefinite Systems. The above strategy, which involves two levels of
preconditioning, is restricted to positive definite matrices. Extending the approach to arbitrary linear systems
requires additional work. A natural first attempt is to reduce an arbitrary Ax = b linear system to a positive
(semi-)definite linear system via the normal equations, A⊤Ax = A⊤b. However, if we apply the Nyström
preconditioning approach discussed above, we realize that we require matrices C = A⊤AS⊤ and W = SA⊤AS⊤,
which can no longer be computed in Õ(n2) time, even if S is a sparse random matrix. To address this, we show
that the matrix (C⊤C+λW)−1 can nevertheless be applied efficiently by preconditioning with the approximation
(W2 + λW)−1 = 1

λ

(
W−1 − (W + λI)−1

)
. This preconditioner, in turn, can be applied by solving two linear

systems associated with W−1 and (W+λI)−1, both using a third level of sketching and preconditioning. Details
are included in Section 5.

While Theorem 1.1 focuses on solving linear systems with k large singular values, our main technical result
(Theorem 3.1) shows that Multi-level Sketched Preconditioning can be used for any linear system, with the caveat
that the condition number κ̄l will appear in the bounds. This more general setting is used to obtain our improved
Schatten norm algorithms, which are based on the work of [MNS+18], and require solving linear systems where
κ̄l can be bounded by O(

√
n/l). Optimizing over l yields the final time complexity of Õ(n2.11). See Section 3.2

for details.

1.3 Additional Related Work There has been significant prior work on solving linear systems with a small
number of outlying singular values, or more generally, whose condition number can be reduced by eliminating
large singular values. As discussed, our work is most closely related to methods that use coarse low-rank
approximations to build preconditioners for such linear systems, an approach that has been extremely popular
for solving large regularized regression problems arising e.g., in Gaussian process regression (kernel regression)
problems [RCR17,MB17,MCRR20,FTU23,DEF+23].

As discussed in the previous section, techniques like Fast Randomized Hadamard Transform, sparse sketching
matrices, or leverage score sampling [AM15, CMM17] can be used to construct a low-rank approximation in
just Õ(n2) time. When A is PSD, subquadratic time is even possible [MW17]. This is in contrast to ℓ-rank
approximation methods based on power iteration or other Krylov methods, which require Õ(n2ℓ) time [GOSS16].
However, previous methods for actually applying the low-rank preconditioner required at least O(nℓω−1),

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1976

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

motivating our Multi-level Sketched Preconditioning, which avoids the need for explicitly orthogonalizing an n×ℓ
matrix. The goal of avoiding orthogonalization also arises in other problems related to low-rank approximation,
notably the principal component regression (PCR) problem [FMMS16,JS19]. Our MSP methods may be able to
improve PCR algorithms, which rely on black-box solvers for regularized regression.

Another related line of work seeks to understand how iterative methods like the conjugate gradient method
behave for a matrix with few outlying singular values [SW09]. In fact, for Problem 1.1, it is well known that the
unpreconditioned CG or Lanczos methods will converge in roughly k + κ steps, where κ is the condition number
of A’s lower n − k singular values [AL86]. However, the cost of such methods would still be Õ(n2k), which
our work improves on. There has also been work on iterative methods for the conceptually related problem of
solving poorly conditioned linear system consisting of multiple well-conditioned subspaces [KMS+22], although
the challenges are different.

Also related to our work is recent progress on analyzing and improving stochastic iterative methods
like stochastic gradient descent, randomized Kaczmarz, stochastic coordinate descent, and variants thereof
[SV09,RSB12,JZ13,SSZ14]. A major development in the area is that it is possible to obtain runtimes for solving
linear systems that depend on the average condition number, κ̄ = 1

n

∑n
i=1

σi

σn
instead of the standard condition

number κ = σ1

σn
. E.g., for PD linear systems, [LS13] presents a variant of coordinate descent that runs in Õ(n2

√
κ̄)

time vs. Õ(n2
√
κ) for the conjugate gradient method. Similar results have been proven for variants of stochastic

gradient descent [FGKS15]. More recently, [DLNR24] uses a connection between block coordinate descent and

low-rank approximation [DR24], obtaining an algorithm that runs in Õ(n2
√
κ̄ℓ) time for ℓ = O(n

1
ω−1), where

κ̄ℓ = 1
n−ℓ

∑
i>ℓ

σi

σn
≤ κ̄. Naturally, these average condition numbers κ̄ and κ̄ℓ can be significantly smaller than

κ if A only has a few large singular values and is otherwise well-conditioned. Perhaps unsurprisingly then, the
current state-of-the-art methods for Problem 1.1 and downstream applications like matrix norm approximation
rely on stochastic iterative methods [MNS+18,DY24,DLNR24]. A high-level observation of our work is that it is
possible to match and actually exceed the efficiency of these methods using deterministic iterative methods with
randomized preconditioning. This will become more apparent in Section 3, where our main theorem is stated in
terms of a dependence on an average condition number.

2 Preliminaries

Notation. Throughout this paper, we use S+n to denote the positive semidefinite (PSD) cone and use S++
n

to denote the positive definite (PD) cone. For vector x, we use ∥x∥ to denote its Euclidean norm, and for a PSD

matrix A, we denote ∥x∥A :=
√
x⊤Ax. For matrix A with singular values σ1 ≥ σ2 ≥ . . . ≥ σn, we let ∥A∥ = σ1

and ∥A∥F denote the operator norm and Frobenius norm, respectively. We let κ(A) = σ1/σn denote its condition
number. We let A† = (A⊤A)−1A⊤ denote the pseudoinverse of A. We use nnz(A) to denote the number of
non-zero entries of A. For two n×n PSD matrices A,B and any ϵ > 0, we say A ≈1+ϵ B if 1

1+ϵA ⪯ B ⪯ (1+ϵ)A

holds, where ⪯ denotes the matrix Loewner order. In the following sections, for matrix A ∈ Rm×n and failure
probability δ > 0, we use Õ(·) to omit polylog(mn/δ) factors4. In this paper, by saying “with high probablity”
we mean with probability at least 1 − 1/poly(n).

For matrix A ∈ S+n , let {λi}ni=1 be its eigenvalues in non-increasing order. For any λ > 0, we define the
effective dimension of A as dλ := tr(A(A + λI)−1) =

∑n
i=1

λi

λi+λ . We will require the following basic lemma on
the effective dimension:

Lemma 2.1. (Lemma 5.4 in [FTU23]) For A ∈ S+n and λ > 0, we have the following holds:

1. For any γ > 0, if j ≥ (1 + γ−1)dλ, then λj ≤ γλ.

2. If k ≥ dλ, then
∑

i>k λi ≤ λ · dλ.

Sparse Subspace Embedding. Following [CNW16, Coh16], we define the sparse embedding matrix
S ∈ Rs×n with sparsity parameter γ, which will be used in our construction of the Nyström preconditioner,
as follows. Notice that given A ∈ Rn×n, SA can be computed in time O(γ · nnz(A)).

4Notice that in comparison, in Section 1 we use Õ(·) to hide all log factors for conciseness.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1977

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 2.1. (Sparse embedding matrix) We define an s × n matrix S to be a sparse embedding matrix
with sparsity γ, if the columns of S are independent, and for each column of S, there are γ random entries chosen
uniformly without replacement and set to ±1/√γ independently, with other entries in that column being set to 0.

Based on the construction of sparse embedding matrix, recent work [CDDR24] further constructs a fast
oblivious subspace embedding (OSE) matrix and shows an optimal O(d) result for embedding dimension, as
stated in the following lemma. Throughout this paper, we will use Φ to denote this oblivious embedding matrix,
which will be used in the construction of a preconditioner for the second level of linear system solving.

Lemma 2.2. (Adapted from Theorem 1.4 in [CDDR24]) Given A ∈ Rn×d, ϵ < 1/2, δ < 1/2, in time
O(nnz(A) log(d/δ)/ϵ + d2 log4(d/δ)/ϵ6) we can compute ΦA where Φ ∈ Rϕ×n is an embedding matrix with
ϕ = O((d+ log(1/δ))/ϵ2), such that with probability 1− δ we have

∀x ∈ Rd,
1

1 + ϵ
∥Ax∥ ≤ ∥ΦAx∥ ≤ (1 + ϵ)∥Ax∥.

Computational Model. Our results are proven in the real RAM model (i.e, exact arithmetic). We assume
the inputs A and b are given with real-valued entries, and basic arithmetic operations (+,−,×,÷,

√
·) can

be performed exactly on real numbers in O(1) time. We still need to leverage results on the finite-precision
behavior of iterative solvers like the Lanczos method [Pai76, MMS18] to account for the fact that we apply
preconditioners inexactly, even in the real RAM model. A full analysis of our methods in a finite precision model
of computation is beyond the scope of this work, but is an important next step for future work on Multi-level
Sketched Preconditioning.

3 Main Technical Results

In this section, we present our main technical result in its full generality, and then discuss how it can be used
to recover the claims in Section 1. In this result, we address the task of solving a linear system of the form
(A⊤A+λI)x = c for an m×n matrix A and λ ≥ 0. Note that the regularization parameter λ is entirely optional
(since we can set λ = 0), and it is included here primarily for the sake of applications to kernel ridge regression
and Schatten norm estimation. To recover the setting from Theorem 1.1, i.e., solving Ax = b, we can simply
rewrite this problem via the normal equations as A⊤Ax = A⊤b, then set c = A⊤b and λ = 0.

Theorem 3.1. (Main technical result) Given A ∈ Rm×n with condition number κ, vector b ∈ Rn and
regularization parameter λ ≥ 0, let {σi}ni=1 be the singular values of A in decreasing order, and let x∗ =
(A⊤A + λI)−1c. For any l ∈ {log n + 1, . . . , n}, define κ̄l,λ := (1

n−l

∑
i>l σ

2
i /(σ

2
n + λ))1/2. Given ϵ > 0 and

δ ∈ (0, 1/8), if Algorithm 3 is run with λ0 = 2
l

∑
i>l σ

2
i , s = O(l log(l/δ)), γ = O(log(l/δ)), ϕ = O(s+ log 1/δ) and

tmax = O(
√
n/l · κ̄l,λ log(κ̄l,λ/ϵ)), then with probability at least 1− δ, it will output x̃ such that ∥x̃−x∗∥A⊤A+λI ≤

ϵ∥x∗∥A⊤A+λI in time

Õ

(
nnz(A)

√
n

l
κ̄l,λ log

3(κ/ϵ) + lω
)

where Õ(·) hides polylog(mn/δ) factors. Moreover, if instead of matrix A, we are given the matrix A⊤A directly,
then the same time complexity can be achieved with nnz(A) replaced by nnz(A⊤A) by using Algorithm 1. See
Theorem 4.1 for details.

Remark 3.1. The quantity κ̄l,λ above has appeared (in similar forms) in prior work on the convergence of
stochastic iterative methods for linear systems [LS13, MNS+18, DY24]. When λ = 0, this quantity satisfies
1 ≤ κ̄l,0 ≤ σl+1/σn, and it behaves like a typical averaged condition number of A. However, when λ > 0, κ̄l,λ can
in fact be much less than 1, which we exploit in the application to kernel ridge regression.

We next demonstrate how Theorem 3.1 can be used to show our main result for matrices with k large singular
values. To do so, we will optimize over the choice of l as follows.

Proof. [Proof of Theorem 1.1] As mentioned above, to solve the consistent linear system Ax = b, we can apply
Theorem 3.1 with choice λ = 0 and c = A⊤b. The solution x∗ of the resulting linear system A⊤Ax = A⊤b,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1978

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

(A⊤A)−1A⊤b = A†b, is the minimum norm solution of the general linear system Ax = b. Additionally, the
output guarantee from Theorem 3.1, that ∥x̃− x∗∥A⊤A ≤ ϵ∥x∗∥A⊤A, ensures that ∥Ax̃− b∥ ≤ ϵ∥b∥ as required
by Theorem 1.1.

It remains to obtain the desired time complexity by optimizing over l, which we will choose to be larger than
k. Notice that for l > k, we have κ̄l,0 ≤ σl+1/σn = O(1) under the assumption of Theorem 1.1. So, upper
bounding nnz(A) ≤ n2, we can upper bound the runtime in Theorem 3.1 by:

Õ(n2.5/
√
l + lω), for any l ≥ k.

Optimizing over l so that both terms are proportionally large, we obtain the following two cases:

• If k ≤ n5/(2ω+1), then we choose l = n5/(2ω+1) and obtain time complexity Õ(lω) = Õ(n2+ ω−2
2ω+1).

• If n5/(2ω+1) < k < n, then we choose l = k, and obtain time complexity Õ(lω) = Õ(kω).

Thus, the overall time complexity becomes:

Õ(n2+ ω−2
2ω+1 + kω),

which, using current matrix multiplication exponent ω ≈ 2.372, simplifies to Õ(n2.065 + kω).

3.1 Applications to Regularized Linear Systems and Least Squares Some of the most important
applications of linear systems, particularly in the context of machine learning and statistics, are regularized
and unregularized least squares problems. In this section, we show how Theorem 3.1 can be adapted and applied
to these settings.

Kernel ridge regression. One of the most computationally expensive variants of these tasks arises when
we consider kernel-based learning methods [RCR17, MB17, MCRR20]. These approaches work by implicitly
constructing expanded high-dimensional representations of data points, which are accessed only through inner
products, which are computed using a kernel function. For a dataset with n datapoints, this gives rise to an n×n
positive definite kernel matrix K, whose (i, j) entry is the inner product between the ith and jth data point in the
expanded feature representation. The resulting prediction model forms the kernel ridge regression (KRR) task:

min
x

1

n

n∑
i=1

([Kx]i − yi)
2 +

λ

2
x⊤Kx,

where [Kx]i is the ith entry of the length n vector Kx and y1, . . . , yn are training labels. KRR is equivalent to
solving the regularized positive definite linear system (K + nλI)x = y. Since K is n× n, the cost of solving this
problem exactly scales with O(nω). Regularized linear systems of this form also arise independently in continuous
second-order optimization methods, where instead of the kernel matrix K, we consider a Hessian matrix H, and
the regularization term λ is a parameter of the optimization algorithm [Lev44,Mar63,MS12,JJM23].

We show how to adapt our main result to the setting above, giving a faster method for solving any linear
system of the form (A+ λI)x = b for a positive semidefinite matrix A. Our method improves on the previously
best known time complexity of this problem [ACW17,FTU23], from Õ(n2+ndλ

ω−1) to Õ(n2+dλ
ω), where recall

that dλ is the λ-effective dimension of A. We note that this result takes advantage of the fact that κ̄l,λ can in
fact be smaller than 1 for λ > 0.

Theorem 3.2. (Regularized linear systems, formal version of Theorem 1.2) Consider positive
semidefinite A ∈ S+n with condition number κ and effective dλ = tr(A(A + λI)−1) for λ > 0. For a target
b ∈ Rn, let x∗ = (A+ λI)−1b. Given ϵ > 0 and 0 < δ < 1/8, with probability 1− δ we can compute x̃ such that
∥x̃− x∗∥A+λI ≤ ϵ∥x∗∥A+λI in time

Õ
(
n2 · log3(κ/ϵ) + dλ

ω
)
.

Proof. Without loss of generality, we assume that dλ < n/4. If dλ is larger, the stated runtime follows by simply
using a direct O(nω) time method for inverting (A + λI).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1979

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We obtain the result by applying Theorem 3.1 to the matrix A1/2. As stated in the last lines of the theorem,
it holds even if we only have access to (A1/2)TA1/2 = A. We show that if we choose l = 2dλ, we have
κ̄2
l,λ(A

1/2) = O(l/n). In particular, recall that dλ = tr(A(A + λI)−1) and, from Lemma 2.1 we know that if we
choose l = 2dλ then λl(A) ≤ λ. We thus have:

l = 2dλ = 2
n∑

i=1

λi(A)

λi(A) + λ
> 2

n∑
i=l

λi(A)

λi(A) + λ
≥

2 ·
∑

i>l λi(A)

λl(A) + λ
≥ 1

λ

∑
i>l

λi(A).

By applying this result we have

κ̄2
l,λ(A

1/2) =
1

n− l

∑
i>l

λi(A)

λn(A) + λ
≤ 1

n− l
· lλ

λn(A) + λ
≤ l

n− l
≤ 2l

n
.

In the last step we use that, since dλ ≤ n/4 by assumption, l ≤ n/2.
Now we simply plug into Theorem 3.1, noting that

√
n
l κ̄l,λ can be upper bounded by

√
2 given the result

above. We conclude that we can compute x̃ such that ∥x̃−x∗∥A+λI ≤ ϵ∥x∗∥A+λI in time Õ(n2 · log3(κ/ϵ)+dλ
ω).

Least Squares. Our Theorem 3.1 naturally extends to over-determined linear systems. For simplicity we
state a result in the setting of Problem 1.1, where A has at most k large singular values and is otherwise well
conditioned.

Corollary 3.1. (Least squares) Given matrix A ∈ Rn×d with at most k singular values larger than O(1)
times its smallest singular value, b ∈ Rn, ϵ > 0 and 0 < δ < 1/8, with probability at least 1− δ, we can compute
x̃ such that ∥Ax̃− b∥2 ≤ minx ∥Ax− b∥2 + ϵ∥b∥2 in time

Õ
(
(nnz(A) + d2.065) · log 1/ϵ+ kω

)
.

This result is obtained by combining our MSP method with a standard sketch-and-precondition iterative solver
[RT08,Epp24]. In particular, for a tall matrix A ∈ Rn×d where n≫ d, one can first construct a sketch Ã with O(d)
rows using a constant-factor sparse oblivious subspace embedding (e.g., Lemma 2.2) which takes Õ(nnz(A) + d2)
time. To solve a least squares problem involving A, it suffices to solve O(log(1/ϵ)) linear systems of the form
(Ã⊤Ã)−1g for some vector g up to constant error. See e.g. Section 10 of [DY24] for details.

To solve these required linear systems, we apply Theorem 3.1 directly. We note that, since Ã is a subspace
embedding of A, all of its singular values are within a multiplicative constant factor of those of A. Accordingly, it
too has at most k singular values greater than a constant times its smallest singular value. We conclude that, for
l ≥ k, each application of Theorem 3.1 takes Õ(nnz(A) + d2

√
d/l) time. The additive O(lω) term in the runtime

of Theorem 3.1 comes from the construction of an inner preconditioner for Ã, so is only incurred a single time.
Optimizing over the choice of l yields Corollarly 3.1. Notice that we only incur a log 1/ϵ dependence in the result
instead of log3 1/ϵ. This is because each system involving Ã only needs to be solved to constant accuracy for the
overall sketch-and-precondition method to converge in O(log 1/ϵ) iterations.

3.2 Applications to Matrix Norm Estimation We next discuss how our methods can be used in the task
of estimating the Schatten norm of a matrix, providing a direct improvement over a result obtained in [MNS+18].
For the sake of simplicity, we focus on the case of a dense square matrix A ∈ Rn×n. However, using similar
strategies to those described in [MNS+18], our results can also be used to improve time complexities when A is
sparse or rectangular.

To obtain our results, we note that the norm estimation algorithms of [MNS+18] are in fact meta-algorithms
that require a black-box linear solver for regularized systems. Therefore any improvement to the time complexity
of the black-box solver leads to a potential improvement in the complexity of Schatten norm estimation (as well as
to other spectrum approximation tasks discussed in that paper). The key black-box requirement from [MNS+18]
is as follows: Given a matrix A ∈ Rn×n, parameter λ > 0, tolerance ϵ ∈ (0, 1), and a vector y ∈ Rn, return a
vector x such that:

∥x−M−1
λ y∥Mλ

≤ ϵ∥y∥M−1
λ
, where Mλ = A⊤A+ λI.(3.1)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1980

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A key parameter in the analysis of [MNS+18] for solving such linear systems turns out to be the same averaged
tail condition number that arises in our analysis (up to adjustments in notation):

κ̄k,λ(A) :=
(1

n− k

∑
i>k

σ2
i (A)

σ2
min(A) + λ

)1/2
.

In particular, the main result of [MNS+18] for Schatten norm estimation can be reformulated as follows:

Lemma 3.1. (adapted from the proof of Corollary 12 in [MNS+18]) For any matrix A ∈ Rn×n, pa-
rameter p ∈ (0, 2), ϵ ∈ (0, 1), and a parameter k ≤ n, there is an algorithm that, using Õ(1

ϵ5p) calls to an n × n

ridge regression problem (3.1) with κ̄k,λ ≤ 1
ϵ1/p

(nk)
1/p−1/2, returns X ∈ (1± ϵ)∥A∥pp.

We note that a similar statement applies to the general spectral sums approximation result of [MNS+18] (Theorem
11), which can also by used to approximate other norms like the Ky Fan and Orlicz norm. We focus on the
Schatten norms merely for the sake of simplicity and conciseness. Also, we only focus on Schatten norms with
0 < p < 2, including the most important case of p = 1, as the existing algorithms for the case of p ≥ 2 are already
near-optimal.

We are now ready to state our result for Schatten norm estimation, by combining Lemma 3.1 with our linear
system solver.

Theorem 3.3. For any p ∈ (0, 2) and A ∈ Rn×n there is an algorithm that, with high probability, returns
X ∈ (1± ϵ)∥A∥pp which runs in time:

Õ
(
n2+ ω−2

pω+1 poly(1/ϵ)
)
.

In particular, for p = 1, we can get a constant factor approximation to the Schatten 1-norm of A in Õ(n2.11)
time with fast matrix multiplication and in Õ(n2.25) time without fast matrix multiplication.

Remark 3.2. This result improves the exponent of n in the time complexity, compared to [MNS+18], for any
0 < p < 1.5. In particular, for p = 1, we improve from Õ(n2.18) to Õ(n2.11) with fast matrix multiplication,
and from Õ(n2.33) to Õ(n2.25) without fast matrix multiplication. While we did not optimize the time complexity
dependence on ϵ, it should be possible to recover the O(1

ϵmax{3,1+1/p}) dependence from [MNS+18] by carefully
repeating their optimized analysis given in Theorem 31.

Proof. We will prove this result by applying our main result, Theorem 3.1. However, observe that this theorem
has a logarithmic dependence on the condition number of A, which we would like to avoid. To do so, observe
that we can reduce to the case where the input A has condition number poly(n/ϵ). If it does not, we can simply
add zI to A, where I is an n× n identity matrix and z is a mean zero Gaussian random variable with standard
deviation ∥A∥ · poly(ϵ/n). ∥A∥ can be approximated to multiplicative accuracy in Õ(n2) time using standard
power method. With high probability, we will have that |z| ≤ ∥A∥ ·poly(ϵ/n), so the Schatten p-norm of A+zI is
within a multiplicative (1±ϵ/2) factor of that of A. Moreover, by a union bound and standard anti-concentration
of Gaussian random variables, we will have that all eigenvalues of A + zI are at least ∥A∥ · poly(ϵ/n) far away
from zero with high probability, leading to condition number poly(n/ϵ).

With the condition number bounded, for any λ > 0 and k, using our main linear system solver from Theorem
3.1, we can solve the regularized linear system (3.1) in time Õ(nnz(A)

√
n
k κ̄k,λ + kω). Focusing on dense matrices

so that nnz(A) = n2, and assuming that κ̄k,λ ≤ 1
ϵ1/p

(nk)
1/p−1/2 as in Lemma 3.1, we obtain the following overall

time complexity for Schatten norm estimation:

Õ

(
1

pϵ5
n2

√
n

k
ϵ−1/p

(n
k

)1/p−1/2

+ kω
)

= Õ
(1

pϵ5+1/p

n2+1/p

k1/p
+ kω

)
,

where we use the fact that the Õ(kω) (needed to build our recursive preconditioner) only has to be performed
once and can be reused for all linear solves. Now, it remains to optimize the time complexity over k. Without

optimizing over ϵ dependence, we simply balance out the two terms n2+1/p

k1/p and kω, obtaining n
2pω+ω
pω+1 = n2+ ω−2

pω+1 .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1981

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4 Two-Level MSP for Positive Definite Linear Systems

Before proceeding into the proof of our main result Theorem 3.1, we first consider a special (and easier) case of
solving (A+λI)x = b, where A ∈ S++

n and λ ≥ 0. Let {λi}ni=1 be the eigenvalues of A in decreasing order. Given
l < n and λ ≥ 0, we define the average regularized tail condition number of A as κ̄l,λ(A) := 1

n−l

∑n
i>l

λi

λn+λ .
Notice that κ̄l,λ(A) is decreasing in both l and λ. For simplicity, we denote it as κ̄l if we assume that λ = 0 and
matrix A is clear from the context.

We solve this positive definite linear system with preconditioned Lanczos method. The following Lemma 4.1
guarantees that, when using a preconditioner M, if for given vector r we can approximate M−1r well enough
and satisfy Eq.(4.1), then preconditioned Lanczos can converge in roughly the same number of iterations as if we
compute M−1r exactly. Details are in Section 6.

Lemma 4.1. (Preconditioned Lanczos, restated Theorem 6.1) Consider solving Ax = b for positive
definite A using preconditioned Lanczos provided with a function SolveM that, for some preconditioner M and
any vector r returns

∥SolveM(r)−M−1r∥M ≤ ϵ0 · ∥M−1r∥M.(4.1)

If ϵ0 ≤ (ϵ
κMn)

c for a fixed constant c > 0, where κM is the condition number of M−1/2AM−1/2, Then,
preconditioned Lanczos (Algorithm 6) with t = O(

√
κM log(κM/ϵ)) iterations returns x̃ s.t.:

∥x̃− x∗∥A ≤ ϵ · ∥x∗∥A where x∗ = A−1b.

The construction of preconditioner M is based on Nyström approximation. Let C = AS⊤ and W = SAS⊤ where
S ∈ Rs×n is some sketching matrix. Then the Nyström approximation of A can be expressed as Ânys = CW−1C⊤.

We show that if we choose S to be a sparse embedding matrix (according to Definition 2.1) with s = Õ(l) rows

and γ = Õ(1) non-zero entries per column, then we have the approximation guarantee ∥Ânys −A∥ ≤ 2
l

∑
i>l λi,

which in turn gives κM = O(κ̄l,λn/l) for M := Ânys + λ̃I where λ̃ := λ + 2
l

∑
i>l λi, see Lemma 4.2. With the

choice of M we can verify the following holds:

M−1r =
1

λ̃

(
r−C(C⊤C+ λ̃W)−1C⊤r

)
.

To approximate M−1r we can first solve the linear system (C⊤C+ λ̃W)y = C⊤r and get approximate solution
ŷ, then use ŵ := 1

λ̃
(r − Cŷ) as the approximator, see Lemma 4.3. However, constructing such a linear system

takes O(ns2) which is unaffordable for us. Instead, we introduce a second level, and again use preconditioned
Lanczos as the Level-2 solver to solve the linear system (C⊤C + λ̃W)y = C⊤r without explicitly computing
C⊤C. Compared with the first level where we do the preconditioning coarsely, in the second level we obtain an
optimal O(1) condition number after preconditioning.

Let Φ ∈ Rϕ×n be the oblivious subspace embedding matrix from Lemma 2.2 with ϕ = Õ(s). We can construct
the Level-2 preconditioner as M2 := C̃⊤C̃+ λW where C̃ = ΦC in time Õ(ns+ sω). Notice that this step only
needs to be done once. By transforming the error bound (that we get from Level-2 preconditioned Lanczos)
from ŷ to ŵ using Lemma 4.3, we can verify the assumption Eq.(4.1) which is required in Level-1 preconditioned
Lanczos, thus finishing the proof. Formally, we have the following theorem for solving positive definite linear
systems, where note that the condition number κ̄l,λ is defined differently in terms of the eigenvalues of A, rather
than in terms of the squared singular values. Also note that although we assume A ∈ S++

n , indeed we only need
A ∈ S+n and A+ λI ∈ S++

n (which is satisfied if λ > 0).

Theorem 4.1. (MSP, positive definite) Given A ∈ S++
n with condition number κ, b ∈ Rn and regularized

term λ ≥ 0. Let {λi}ni=1 be the eigenvalues of A in decreasing order, let x∗ = (A + λI)−1b be the solution of
the regularized linear system (A + λI)x = b. For any log n < l < n, we define κ̄l,λ := 1

n−l

∑n
i>l λi/(λn + λ).

Given ϵ > 0 and δ < 1/8, with probability at least 1 − δ, running Algorithm 1 with choice λ0 = 2
l ·
∑

i>l λi, s =

O(l log(l/δ)), γ = O(log(l/δ)), ϕ = O(s + log 1/δ) and tmax = O(
√
κ̄l,λn/l · log(κ̄l,λn/ϵ)) will output x̃ such that

∥x̃− x∗∥A+λI ≤ ϵ∥x∗∥A+λI in time

Õ

(
nnz(A)

√
κ̄l,λn

l
log2(κ/ϵ) + lω

)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1982

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where Õ(·) hides polylog(n/δ) factors.

Algorithm 1 MSP for solving regularized positive definite linear system (A+ λI)x = b.

1: Input: matrix A ∈ S++
n , regularizer terms λ and λ0, vector b ∈ Rn, sparse sketch size s, # of non-zeros γ,

level-2 sketch size ϕ, # of iterations tmax;
2: Construct sparse embedding matrix S ∈ Rs×n with γ non-zeros per column; ▷ Def. 2.1.
3: Compute λ̃ = λ+ λ0, C = AS⊤, W = SC;
4: Compute C̃ = ΦC ∈ Rϕ×s and M−1

2 = (C̃⊤C̃+ λ̃W)−1; ▷ Lemma 2.2.
5: Solve x̃ by calling preconditioned Lanczos with (A+ λI,b, SolveM1, tmax); ▷ Alg. 6.
6: return x̃; ▷ Solves (A+ λI)x = b.

Algorithm 2 Level-1 auxiliary function SolveM1 for solving Mw = r (positive definite case).

1: function SolveM1(r):
2: Solve ŷ by preconditioned Lanczos with (C⊤C+ λ̃W,C⊤r,M−1

2 , O(log κ/ϵ0)); ▷ Alg. 6.
3: Compute ŵ = 1

λ̃
(r−Cŷ);

4: return ŵ; ▷ Solves Mw = r for M = CW−1C⊤ + λ̃I.

4.1 Proof of Theorem 4.1 We give the proof in the following four parts.
Part 1: Nyström Preconditioner with Sparse Embedding. Let S ∈ Rs×n be the sparse embedding

matrix according to Definition 2.1 with s = O(l log(l/δ)) and γ = O(log(l/δ)). Denote C := AS⊤ and

W := SAS⊤, then we have Ânys = CW−1C⊤ and M = Ânys + λ̃I where λ̃ = λ+ λ0. According to Lemma 4.2,

with probability at least 1 − δ/2 we have κM ≤ Cκ̄l,λn
l for some C = O(1). For the proof of Lemma 4.2 and a

detailed discussion of sparse embedding matrices, see Section 4.2.

Lemma 4.2. (Preconditioner based on sparse embedding) Given positive definite matrix A ∈ Rn×n and

δ ∈ (0, 1/2). For log n < l < n, let Ânys = AS⊤(SAS⊤)−1SA be the Nyström approximation of A, where
S ∈ Rs×n is the sparse embedding matrix with s = O(l log(l/δ)) and γ = O(log(l/δ)). Given λ ≥ 0, let

M = Ânys + (λ + λ0)I where λ0 = 2
l

∑
i≥l+1 λi, then with probability 1 − δ the condition number κM of the

matrix M−1/2AM−1/2 satisfies:

κM ≤
Cκ̄l,λn

l
for some C = O(1).

Part 2: Level-1 Preconditioning. For the first level we use preconditioned Lanczos (Algorithm 6) to solve
(A+ λI)x = b with preconditioner M, where we need to compute M−1r in each iteration. The following lemma
guarantees that by using inverse formula, we can approximate M−1r well enough by solving a linear system with
matrix C⊤C+ λ̃W to a certain accuracy. For the proof of Lemma 4.3, see Section 4.3.

Lemma 4.3. Given matrix A ∈ S++
n , let Ânys = CW−1C⊤ be its Nyström approximation where C = AS⊤ and

W = SAS⊤. For λ̃ > 0, denote M = Ânys + λ̃I as the Nyström preconditioner and assume that M ≈2 A + λ̃I.

Given vector r ∈ Rn and ϵ1 > 0, suppose we can solve the linear system (C⊤C + λ̃W)y = C⊤r and compute ŷ
such that

∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1 · ∥y∗∥C⊤C+λ̃W where y∗ := (C⊤C+ λ̃W)−1C⊤r.

Then, ŵ = 1
λ̃
(r−Cŷ) is an approximate solution of the linear system Mw = r satisfying

∥ŵ −M−1r∥M ≤ c0ϵ1κ
3/2∥M−1r∥M for some c0 = O(1).(4.2)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1983

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

According to Eq.(4.5) in the proof of Lemma 4.3, we have the following holds:

M−1 =
1

λ̃

(
I−C(C⊤C+ λ̃W)−1C⊤

)
.

By using this inverse formula, we have w∗ := M−1r = 1
λ̃
(r−Cy∗). Instead of directly computing y∗, suppose we

can solve the linear system (C⊤C+ λ̃W)y = C⊤r approximately and have the guarantee (which will be proved
in Level-2 analysis later) that ∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1 · ∥y∗∥C⊤C+λ̃W, then Lemma 4.3 guarantees that Eq.(4.2)

holds as long as M ≈2 A+ λ̃I. The assumption here can be easily verified: for one side we have

M = Ânys + λ̃I ⪯ A+ λ̃I ≺ 2(A+ λ̃I)

and for the other side, using that ∥Ânys −A∥ ≤ λ0 we have

2M− (A+ λ̃I) = 2Ânys −A+ λ̃I ⪰ Ânys −A+ λ0I ⪰ 0

which together give M ≈2 A+ λ̃I. Thus we can use Lemma 4.3 and have Eq.(4.2) holds. Now given any ϵ > 0,
if in Eq.(4.2) we set ϵ1 = O(ϵ0/κ

3/2) for ϵ0 = O(1
(κM·n/ϵ)c), then by Lemma 4.1, after tmax = O(

√
κM log(κM/ϵ))

iterations, preconditioned Lanczos outputs x̃ such that

∥x̃− x∗∥A+λI ≤ ϵ · ∥x∗∥A+λI.

Thus, we obtain the final convergence result. Next, we analyze the second level.
Part 3: Level-2 Preconditioning. For the second level we use preconditioned Lanczos to solve the s× s

linear system (C⊤C+ λ̃W)y = C⊤r. As for the preconditioner we choose M2 = C̃⊤C̃+ λ̃W = C⊤Φ⊤ΦC+ λ̃W,
where Φ ∈ Rϕ×n is a sparse sketching matrix constructed using standard subspace embedding techniques
[CDDR24] (see Lemma 2.2) with choice ϕ = O(s + log 1/δ). By Lemma 2.2, with probability 1 − δ/2 we

have κM2
:= κ(M

−1/2
2 (C⊤C + λ̃W)M

−1/2
2) = O(1). Since in Algorithm 1 we pre-compute M−1

2 exactly, the
error caused by the preconditioner is 0. By using Theorem 6.1 we know that after O(

√
κM2 log(κM2/ϵ1)) =

O(log 1/ϵ1) = O(log(κ/ϵ0)) iterations, preconditioned Lanczos will output ŷ that satisfies

∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1 · ∥y∗∥C⊤C+λ̃W

which is exactly the assumption we need in Level-1. By applying a union bound we finish the proof.
Part 4: Total Cost. Finally we consider the total cost of Algorithm 1. First we pre-compute C = AS⊤

and W = SC which takes O(γ ·nnz(A)+γ ·nnz(C)) time. Notice that γ = O(log(l/δ)) and nnz(C) ≤ γ ·nnz(A),
thus this step takes O(nnz(A) log2(l/δ)) time. Next, we pre-compute C̃ = ΦC and M−1

2 = (C̃⊤C̃ + λ̃W)−1

using Lemma 2.2, which takes O(nnz(C) log(s/δ) + s2 log4(s/δ) + sω) = O(nnz(A) log2(l/δ) + lω logω(l/δ)).
By Theorem 6.1 and above analysis, the number of iterations for Level-1 preconditioned Lanczos is tmax =
O(
√
κM log(κM/ϵ)) = O(

√
κ̄l,λn/l log(κ̄l,λn/ϵ)).

In Level-2, in each iteration we need to compute matrix-vector products of C⊤C + λ̃W. Notice that
(C⊤C + λ̃W)x = (SA + S)AS⊤x for any vector x, thus we can first compute S⊤x which takes O(n log(l/δ)),
then compute A(S⊤x) which takes O(nnz(A)), and finally apply SA and S to this vector which takes
O(n log(l/δ) + nnz(A)) time. Since there are O(log 1/ϵ1) = O(log(κ/ϵ0)) iterations of preconditioned Lanczos for
Level-2, we conclude that the total cost is

O

(
nnz(A) log2(l/δ) + lω logω(l/δ) + nnz(A) log(l/δ) log(κ/ϵ0) ·

√
κ̄l,λn/l log(κ̄l,λn/ϵ)

)
= O

(
nnz(A)

√
κ̄l,λn/l log

2(l/δ) log(κ/ϵ0) log(κ̄l,λn/ϵ) + lω logω(l/δ)

)
= Õ

(
nnz(A)

√
κ̄l,λn/l log

2(κ/ϵ) + lω
)
.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1984

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.2 Coarse Nyström Preconditioner Based on Sparse Embedding In this section we give a proof of
Lemma 4.2, which measures the quality of Nyström preconditioner based on a sparse embedding matrix. Notice
that, compared to the most commonly used guarantee that the preconditioned linear system has a constant
condition number, we are using a “coarse” Nyström preconditioner which benefits us by reducing the cost of
constructing it, while slightly sacrificing its quality and allowing the condition number after preconditioning to
be “not so small”.

To characterize the properties of sparse embedding matrix, we first introduce the following notion of oblivious
subspace embedding moments property, which can be seen as a generalization of the “JL-moment property”
introduced by [KN14].

Definition 4.1. (Definition 4 in [CNW16]) A distribution D over Rs×n has (ϵ, δ, d, ℓ)-OSE moments if for
all matrices U ∈ Rn×d with orthonormal columns, we have

EΠ∼D∥(ΠU)⊤(ΠU)− I∥ℓ < ϵℓ · δ.

[Coh16] showed that a sparse embedding matrix (Definition 2.1) with sketch size s = O(d log(d/δ)/ϵ2) and
γ = O(log(d/δ)/ϵ) non-zeros per column satisfies (ϵ, δ, d, log(d/δ))-OSE moments property, as stated in the
following lemma.

Lemma 4.4. (Theorem 4.2 in [Coh16]) For any ϵ, δ ∈ (0, 1/2) and B > 2, a sparse subspace embedding matrix
S with s = O(Bd log(d/δ)/ϵ2) and γ = O(logB(d/δ)/ϵ) satisfies

E ∥(SU)⊤(SU)− I∥log(d/δ) < ϵlog(d/δ) · δ.

[CNW16] showed that the aforementioned OSE moment property is a sufficient condition for the approximated
matrix multiplication (AMM), see Lemma 4.5. Moreover, as a corollary they provided a low rank approximation
result based on the AMM property, see Lemma 4.6.

Lemma 4.5. (Theorem 6 in [CNW16]) Given k, ϵ, δ ∈ (0, 1/2), let D be any distribution over matrices with n
columns with the (ϵ, δ, 2k, ℓ)-OSE moment property for some ℓ ≥ 2, then for any A,B we have

Pr
Π∼D

(∥∥(ΠA)⊤(ΠB)−A⊤B
∥∥ ≥ ϵ

√
(∥A∥2 + ∥A∥2F /k)(∥B∥2 + ∥B∥2F /k)

)
< δ.

Lemma 4.6. (Theorem 8 in [CNW16]) For matrix A ∈ Rn×d, let A = UΣV⊤ be its SVD and Ak =
UkΣkV

⊤
k be its best rank-k approximation. If S ∈ Rs×n satisfies the following two properties:

1. approximate spectral norm matrix multiplication w.r.t. Uk and Ak̄ := A−Ak, that is:

∥U⊤
k S

⊤SAk̄ −U⊤
k Ak̄∥2 ≤

ϵ

8

(
∥Uk∥2 +

∥Uk∥2F
k

)(
∥Ak̄∥2 +

∥Ak̄∥2F
k

)
2. S is a 1/2-subspace embedding for the column space of Uk,

then, defining PS as the orthogonal projection onto the row-space of SA, and denoting Ãk as the best rank-k
approximation of Ã = APS, we have:

∥A− Ãk∥2 ≤ (1 + ϵ)∥A−Ak∥2 + (ϵ/k) · ∥A−Ak∥2F .

In order to use Lemma 4.6 to get a low-rank approximation result, there are two requirements that we need to
satisfy. As for the first approximate spectral norm matrix multiplication assumption, it follows directly since the
OSE moment property holds; as for the second subspace embedding property, it can be shown from the definition
of sparse embedding matrix. Formally, we give the proof of Lemma 4.2 as follows.

Proof. [Proof of Lemma 4.2] For positive definite matrix A, we denote Z := A1/2 be such that A = ZZ⊤. Given
δ < 1/2 and l < n, we first verify that the sparse embedding matrix S ∈ Rs×n with s = O(l log(l/δ)) and
γ = O(log(l/δ)) satisfies the two requirements of Lemma 4.6 on matrix Z:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1985

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Requirement 1: we use Lemma 4.4 with choice d = l and ϵ = 1/2
√
2, thus the sparse embedding matrix

with s = O(l log(l/δ)) and γ = O(log(l/δ)) satisfies the (1/2
√
2, δ/2, l, log(l/δ))-OSE moment property. By

using Lemma 4.5 to matrix Uk and Ak̄, we can show the first requirement holds to ϵ = 1 with probability
at least 1− δ/2.

• Requirement 2: we also use Lemma 4.4 with Markov’s inequality, which shows that S satisfies

∥(SUl)
⊤(SUl)−U⊤

l Ul∥ ≤
1

2
√
2
<

1

2

with probability at least 1 − δ/2. Thus we have the 1/2-subspace embedding property.

With the above two requirements being satisfied, we apply Lemma 4.6 with choice ϵ = 1 to matrix Z, and have
the following holds with probability 1 − δ:

∥Z− Z̃l∥2 ≤ 2σ2
l+1 +

1

l

∑
i≥l+1

σ2
i(4.3)

where {σi}ni=1 are the singular values of Z in decreasing order. Notice that here Z̃ = ZPS and Z̃l is the best
rank-l approximation of Z̃, thus by denoting Pl = VlV

⊤
l , we have Z̃l = Z̃Pl = ZPSPl. Moreover, in Lemma 4.7

we show that ∥Z − Z̃l∥ ≥ ∥Z − Z̃∥, by combining this result and Eq.(4.3) we have an error bound on the term
∥Z− Z̃∥2 = ∥Z− ZPS∥2. Further notice the following:

∥Z (I−PS)∥2 =
∥∥Z (I−PS)Z

⊤∥∥ =
∥∥ZZ⊤︸ ︷︷ ︸

A

−ZZ⊤S⊤(SZZ⊤S⊤)−1SZZ⊤︸ ︷︷ ︸
Ânys

∥∥.
Thus, if we denote Ânys := AS⊤(SAS⊤)−1SA as the rank-s Nyström approximation of matrix A, then we can
bound the error as

∥(A+ λI)− (Ânys + λI)∥ = ∥A− Ânys∥ ≤ 2σ2
l+1 +

1

l

∑
i≥l+1

σ2
i = 2λl+1 +

1

l

∑
i≥l+1

λi.

Based on this result, if we construct the preconditioner as M = Ânys+λI+λ0I where λ0 ≥ 2λ2l+1+
1
2l

∑
i≥2l+1 λi

and Ânys is the rank-2s (instead of rank-s) Nyström approximation, then we have A+λI ⪯M ⪯ (A+λI)+λ0I,
which gives κM ≤ 1 + λ0

λn+λ . Further notice that we can bound this term as

2λ2l+1 +
1

2l

∑
i≥2l+1

λi ≤
2

l

2l∑
i=l+1

λi +
1

2l

∑
i≥2l+1

λi ≤
2

l

∑
i≥l+1

λi,

thus by setting λ0 = 2
l

∑
i≥l+1 λi we have the following holds for some C = O(1):

κM ≤ 1 +
λ0

λn + λ
≤ C

l

∑
i≥l+1

λi

λn + λ
≤ Cκ̄l,λn

l
.(4.4)

Lemma 4.7. We have PSPl = Pl, which gives Z̃l = ZPl. We further have

∥Z− Z̃l∥ ≥ ∥Z− Z̃∥.

Proof. Let Z̃ = ŨΣ̃Ṽ⊤ be its SVD, then according to definition we have Z̃l = ŨlΣ̃lṼ
⊤
l , and we can write the

projection matrix Pl as Pl = ṼlṼ
⊤
l where Ṽl ∈ Rn×l. With these, we can always write PS as PS = QQ⊤ where

Q ∈ Rn×s satisfies Ṽl = QIl for some Il ∈ Rs×l satisfying I⊤l Il = I. Thus we have

PSPl = QQ⊤ṼlṼ
⊤
l = QQ⊤QIlI

⊤
l Q

⊤ = QIlI
⊤
l Q

⊤ = ṼlṼ
⊤
l = Pl.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1986

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.3 Variable Transformation In this section we give a proof of Lemma 4.3.

Proof. [Proof of Lemma 4.3] We first show the relation between the two aforementioned linear systems
(C⊤C+ λ̃W)y = C⊤r and Mw = r. Notice that

M ·
(
I−C(C⊤C+ λ̃W)−1C⊤

)
=
(
CW−1C⊤ + λ̃I

)
·
(
I−C(C⊤C+ λ̃W)−1C⊤

)
= CW−1C⊤ −CW−1C⊤C(C⊤C+ λ̃W)−1C⊤ + λ̃I− λ̃C(C⊤C+ λ̃W)−1C⊤

= CW−1C⊤ −CW−1C⊤ + λ̃C(C⊤C+ λ̃W)−1C⊤ + λ̃I− λ̃C(C⊤C+ λ̃W)−1C⊤

= λ̃I

which gives

M−1 =
1

λ̃

(
I−C(C⊤C+ λ̃W)−1C⊤

)
.(4.5)

Thus, if we denote y∗ = (C⊤C + λ̃W)−1C⊤r as the solution of the first linear system, then the solution of the
second system can be expressed as w∗ = 1

λ̃
(r−Cy∗), and we further have λ̃(ŵ−w∗) = C(y− ŷ). Furthermore,

by assumption M = Ânys + λ̃I ≈2 A+ λ̃I we have

C⊤MC ≈2 C⊤(A+ λ̃I)C = SA(A+ λ̃I)AS⊤.

Based on this observation and the assumption that ∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1∥y∗∥C⊤C+λ̃W, we have

λ̃2∥ŵ −w∗∥2M = ∥C(ŷ − y∗)∥2M = ∥ŷ − y∗∥2C⊤MC ≤ 2∥ŷ − y∗∥2
SA(A+λ̃I)AS⊤

= 2∥AS⊤(ŷ − y∗)∥2
A+λ̃I

≤ 2∥A1/2∥2 · ∥A1/2S⊤(ŷ − y∗)∥2
A+λ̃I

= 2∥A∥ · ∥ŷ − y∗∥2
S(A2+λ̃A)S⊤ = 2∥A∥ · ∥ŷ − y∗∥2

C⊤C+λ̃W

≤ 2ϵ21∥A∥ · ∥y∗∥2
C⊤C+λ̃W

= 2ϵ21∥A∥ · ∥A1/2S⊤y∗∥2
A+λ̃I

≤ 2ϵ21κ(A) · ∥AS⊤y∗∥2
A+λ̃I

= 2ϵ21κ(A) · ∥y∗∥2
SA(A+λ̃I)AS⊤

≤ 4ϵ21κ(A) · ∥y∗∥2C⊤MC = 4ϵ21κ(A) · ∥Cy∗∥2M.

Thus we have

∥ŵ −w∗∥M ≤
2ϵ1

λ̃

√
κ(A) · ∥Cy∗∥M(4.6)

Furthermore, since r = Mw∗ = 1
λ̃
M(r−Cy∗), we have

∥r∥M = ∥M1/2r∥ ≤ ∥M∥∥M−1/2r∥ = 1

λ̃
∥M∥∥M1/2(r−Cy∗)∥ = 1

λ̃
∥M∥∥r−Cy∗∥M.(4.7)

By combining Eq.(4.6) and (4.7), we have the following holds for some constant c0 > 4:

∥ŵ −w∗∥M ≤
2ϵ1κ

1/2

λ̃
∥Cy∗∥M ≤

2ϵ1κ
1/2

λ̃
(∥r−Cy∗∥M + ∥r∥M)

≤ 2ϵ1κ
1/2

(
∥M∥
λ̃

+ 1

)
· 1
λ̃
∥r−Cy∗∥M = 2ϵ1κ

1/2 ∥M+ λ̃I∥
λ̃

· ∥ŵ∥M

≤ 4ϵ1κ
1/2 ∥A+ λ̃I∥

λ̃
· ∥ŵ∥M ≤ c0ϵ1κ

3/2∥ŵ∥M

where κ = κ(A). Thus we finish the proof.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1987

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

5 Three-Level MSP for Solving General Linear Systems

With the easier to analyze PD case being proved in Section 4, in this section we give a proof of Theorem 3.1,
where given A ∈ Rm×n with full column rank, c ∈ Rn and λ ≥ 0, we want to solve (A⊤A + λI)x = c. As we
discuss in Section 3, such a linear system is more general in the sense that it can not only recover the rectangular
linear system, but also have applications to kernel ridge regression and Schatten norm estimation.

Since A⊤A + λI ∈ S++
n , one natural idea is to construct the Nyström preconditioner similar as before.

Given sketching matrix S ∈ Rs×n, define Ã := AS⊤,C := A⊤AS⊤ = A⊤Ã and W := SA⊤AS⊤ = Ã⊤Ã.
Then, CW−1C⊤ is the classical Nyström preconditioner of matrix A⊤A. Let {σi}ni=1 be the singular values of
A in decreasing order. By using Lemma 4.2, we can again show that the matrix M := CW−1C⊤ + λ̃I where
λ̃ := λ+ 2

l

∑
i>l σ

2
i , is a useful preconditioner for this problem, and we also have the inversion formula:

M−1 =
1

λ̃

(
I−C(C⊤C+ λ̃W)−1C⊤

)
.

However, different from the positive definite case where we can compute C and W explicitly, in this case
constructing C and W takes Õ(s · nnz(A)) time which is much too expensive. To avoid computing C, we
first observe that ÃÃ⊤ + λ̃I ≈2 AA⊤ + λ̃I (which is proved in Lemma 5.1), concluding that

W2 + λ̃W = Ã⊤(ÃÃ⊤ + λ̃I)Ã ≈2 Ã⊤(AA⊤ + λ̃I)Ã = C⊤C+ λ̃W.

With this observation, we do not need to computeC, and we can useM2 := W2+λ̃W as the Level-2 preconditioner
for solving the linear system (C⊤C+ λ̃W)y = r. However we still cannot afford to compute W, not to mention
M2. To address this, notice that

M−1
2 = (W2 + λ̃W)−1 = (Ã⊤Ã)−1(Ã⊤Ã+ λ̃I)−1

= (Ã⊤Ã)−1 1

λ̃

(
I− Ã⊤Ã(Ã⊤Ã+ λ̃I)−1

)
=

1

λ̃

(
(Ã⊤Ã)−1 − (Ã⊤Ã+ λ̃I)−1

)
.

Since we only need to have access to M−1
2 r in Level-2 preconditioned Lanczos, it suffices to compute (Ã⊤Ã)−1r

and (Ã⊤Ã + λI)−1r. To solve this, we introduce the third level, where we again use preconditioned Lanczos
to solve two positive definite linear systems (Ã⊤Ã)u = r and (Ã⊤Ã + λ̃I)v = r. To construct the Level-3
preconditioners, notice that Ã is an m× s tall matrix, and we can thus construct an O(s)× s sketch of it.

Let Φ ∈ Rϕ×m be the oblivious embedding matrix in Lemma 2.2 with ϕ = O(s). We first compute

Â = ΦÃ ∈ Rϕ×s, then construct the preconditioner M−1
3a := Â⊤Â and M−1

3b := Â⊤Â + λ̃I. Lemma 2.2
guarantees that both preconditioned linear systems have a constant condition number, thus solving them using
preconditioned Lanczos only takes O(log 1/ϵ2) steps for the targeted accurancy ϵ2. Moreover, since both M3a

and M3b are s× s positive definite matrices, we can afford to compute their inverse exactly, and the errors caused
by the Level-3 preconditioners are 0. By going back from Level-3 → Level-2 → Level-1 and analyzing the error
bounds carefully, we can finally arrive at the convergence result on the original linear system.

Our algorithms are as follows. Algorithm 3 is the main algorithm for solving the linear system (A⊤A+λI)x =
c, in which we run preconditioned Lanczos with Level-1 preconditioner M defined by function SolverM1.
Algorithm 4 defines function SolverM1 by solving linear system Mw = r with preconditioned Lanczos, where
the Level-2 preconditioner M2 is defined by function SolverM2. Lastly, Algorithm 5 defines function SolveM2 by
solving two linear systems (Ã⊤Ã)u = r and (Ã⊤Ã+ λ̃I)v = r with preconditioned Lanczos respectively, whereas
the Level-3 preconditioners M3a and M3b are pre-computed (see line 6 of Algorithm 3). As a comparison of the
quality of the preconditioners we use in different levels, we have:

Level-1: κM := κ(M−1/2(A⊤A+ λI)M−1/2) = O(κ̄2
l,λn/l) Coarse

Level-2: κM2
:= κ(M

−1/2
2 (C⊤C+ λ̃W)M

−1/2
2) = O(1) Fine

Level-3a: κM3a
:= κ(M

−1/2
3a (Ã⊤Ã)M

−1/2
3a) = O(1) Fine

Level-3b: κM3b
:= κ(M

−1/2
3b (Ã⊤Ã+ λ̃I)M

−1/2
3b) = O(1) Fine

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1988

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3 MSP for solving linear system (A⊤A+ λI)x = c.

1: Input: matrix A ∈ Rm×n, regularize term λ and λ0, vector c ∈ Rn, sparse sketch size s, # of non-zeros γ,
level-2 sketch size ϕ, # of iterations tmax;

2: Compute λ̃ = λ+ λ0;
3: Construct sparse embedding matrix S ∈ Rs×n with γ non-zeros per column; ▷ Def. 2.1.
4: Compute Ã = AS⊤ and Â = ΦÃ ∈ Rϕ×s; ▷ Lemma 2.2.
5: Compute M3a = Â⊤Â and M3b = M3a + λ̃I
6: Compute M−1

3a and M−1
3b ;

7: Solve x̃ by preconditioned Lanczos with (A⊤A+ λI, c, SolveM1, tmax); ▷ Alg. 6.
8: return x̃; ▷ Solves (A⊤A+ λI)x = c.

Algorithm 4 Level-1 auxiliary function SolveM1 for solving Mw = r.

1: function SolveM1(r):
2: Solve ŷ by Lanczos with (Ã⊤AA⊤Ã+ λ̃Ã⊤Ã, Ã⊤Ar, SolveM2, O(log κ/ϵ0)); ▷ Alg. 6.
3: Compute ŵ = 1

λ̃
(r−A⊤Ãŷ);

4: return ŵ; ▷ Solves Mw = r for M = CW−1C⊤ + λ̃I.

Algorithm 5 Level-2 auxiliary function SolveM2 for solving M2z = r.

1: function SolveM2(r):
2: Solve û by preconditioned Lanczos with (Ã⊤Ã, r,M−1

3a , O(log κl/ϵ0)); ▷ Alg. 6.
3: Solve v̂ by preconditioned Lanczos with (Ã⊤Ã+ λ̃I, r,M−1

3b , O(log κl/ϵ0)); ▷ Alg. 6.
4: Compute ẑ = 1

λ̃
(û− v̂);

5: return ẑ; ▷ Solves M2z = r for M2 = W2 + λ̃W.

5.1 Proof of Theorem 3.1 Given matrix A ∈ Rm×n and λ ≥ 0, we consider to solve the regularized
linear system (A⊤A + λI)x = c without explicitly computing A⊤A. Since A has full column rank, we know
A⊤A+ λI ∈ Rn×n is positive definite. We prove the result in following five parts.

Part 1: Nyström Preconditioner with Sparse Embedding. Let S ∈ Rs×n be the sparse embedding
matrix according to Lemma 4.2 with s = O(l log(l/δ)) and γ = O(log(l/δ)). Denote C := A⊤AS⊤ and W :=
SA⊤AS⊤, then CW−1C⊤ is the Nyström approximation of A⊤A. Denote λ̃ = λ+ λ0, let M = CW−1C⊤ + λ̃I
be the preconditioner, then according to Eq.(4.5) in the proof of Lemma 4.3 we have

M−1 =
1

λ̃

(
I−C(C⊤C+ λ̃W)−1C⊤

)
.

Given 0 < δ < 1/8, by applying Lemma 4.2 to matrix A⊤A, if we set λ0 = 2
l

∑
i≥l+1 λi(A

⊤A) = 2
l

∑
i≥l+1 σ

2
i ,

then with probability at least 1 − δ/3 we have κM ≤
Cκ̄2

l,λn

l for some C = O(1).
Part 2: Level-1 Preconditioning. Similar with the positive definite case, for the first level we use

preconditioned Lanczos method (Algorithm 6) where in each iteration we need to compute w∗ := M−1r. Similarly,
we introduce y∗ := (C⊤C+ λ̃W)−1C⊤r and approximate w∗ by ŵ = 1

λ̃
(r−Cŷ). Suppose we can solve the linear

system (C⊤C+ λ̃W)y = C⊤r and have the guarantee that (which will be proved in Level-2 and Level-3):

∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1 · ∥y∗∥C⊤C+λ̃W.(5.1)

Notice that since κ(A⊤A) = κ2, Lemma 4.3 guarantees that

∥ŵ −M−1r∥M ≤ c0ϵ1κ
3∥M−1r∥M for some c0 = O(1).

By setting ϵ1 = O(ϵ0/κ
3) we verify the assumption of Lemma 4.1 stated in Eq.(4.1), also note that κ(A⊤A+λI) ≤

κ2. Thus by using Lemma 4.1, after tmax = O(
√
κM log(κM/ϵ)) iterations of preconditioned Lanczos, we can

obtain x̃ such that

∥x̃− x∗∥A⊤A+λI ≤ ϵ · ∥x∗∥A⊤A+λI.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1989

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Thus we obtain the final convergence result we want. Next, we analyze the second level.
Part 3: Level-2 Preconditioning. Compared with the positive definite case in Section 4, the difference

here is that we cannot afford to compute C and W, which makes the analysis more difficult. To address this, we
first show in the following Lemma 5.1 that the sketch Ã = AS⊤ satisfies ÃÃ⊤ + λ̃I ≈2 AA⊤ + λ̃I holds with
probability 1− δ/3.

Lemma 5.1. (Spectral approximation) Given matrix A ∈ Rm×n with full column rank, λ ≥ 0 and 0 < δ <
1/2. Given log n < l < n, let λ0 = 2

l

∑
i>l σ

2
i and denote λ̃ = λ + λ0. Let S ∈ Rn×s be the sparse subspace

embedding matrix with s = O(l log(l/δ)) and each column having γ = O(log(l/δ)) non-zeros. Denote Ã = AS⊤,
then with probability at least 1− δ we have

ÃÃ⊤ + λ̃I ≈2 AA⊤ + λ̃I.

Conditioned on this event, we have

W2 + λ̃W = Ã⊤(ÃÃ⊤ + λ̃I)Ã ≈2 Ã⊤(AA⊤ + λ̃I)Ã = C⊤C+ λ̃W.

With this result, to solve the linear system (C⊤C + λ̃W)y = C⊤r, we can use preconditioned Lanczos with

M2 := W2 + λ̃W as the preconditioner, and have κM2 = κ(M
−1/2
2 (C⊤C + λ̃W)M

−1/2
2) ≤ 4. However, we

still can not construct M2 since we cannot afford to compute W. Instead of constructing M2 explicitly, in each
iteration we only need access to M−1

2 r for a given vector r. Further notice that M−1
2 can be expressed as follows:

(W2 + λ̃W)−1 = (Ã⊤Ã)−1(Ã⊤Ã+ λ̃I)−1

= (Ã⊤Ã)−1 1

λ̃

(
I− Ã⊤Ã(Ã⊤Ã+ λ̃I)−1

)
=

1

λ̃

(
(Ã⊤Ã)−1 − (Ã⊤Ã+ λ̃I)−1

)
,

thus in order to compute M−1
2 r, it suffices to compute u∗ := (Ã⊤Ã)−1r and v∗ := (Ã⊤Ã+ λ̃I)−1r. Suppose we

can solve two linear systems (Ã⊤Ã)u = r, (Ã⊤Ã + λ̃I)v = r approximately, and have the following guarantee
(which will be proved in Level-3):

{
∥û− u∗∥Ã⊤Ã ≤ ϵ2,1 · ∥u∗∥Ã⊤Ã;

∥v̂ − v∗∥Ã⊤Ã+λ̃I ≤ ϵ2,2 · ∥v∗∥Ã⊤Ã+λ̃I.

Denote z∗ := M−1
2 r = 1

λ̃
(u∗ − v∗) as the quantity we want to approximate, and denote ẑ := 1

λ̃
(û − v̂). Observe

that W2 + λ̃W = Ã⊤ÃÃ⊤Ã+ λ̃Ã⊤Ã = Ã⊤(ÃÃ⊤ + λ̃I)Ã, then we have

λ̃∥ẑ− z∗∥W2+λ̃W = ∥(û− v̂)− (u∗ − v∗)∥W2+λ̃W

≤ ∥û− u∗∥W2+λ̃W + ∥v̂ − v∗∥W2+λ̃W

=
∥∥Ã(û− u∗)

∥∥
ÃÃ⊤+λ̃I

+
∥∥Ã(v̂ − v∗)

∥∥
ÃÃ⊤+λ̃I

≤ ∥ÃÃ⊤ + λ̃I∥1/2 ·
∥∥Ã(û− u∗)

∥∥+ ∥∥Ã(Ã⊤Ã+ λ̃I)1/2(v̂ − v∗)
∥∥

≤ ∥ÃÃ⊤ + λ̃I∥1/2 · ϵ2,1∥Ãu∗∥+ ∥Ã⊤Ã∥1/2 · ϵ2,2
∥∥(Ã⊤Ã+ λ̃I)1/2v∗∥∥

where in the fourth step we use the commutable property, i.e., (ÃÃ⊤ + λ̃I)1/2Ã = Ã(Ã⊤Ã + λ̃I)1/2. Notice
that from the definition of u∗ and v∗ we naturally have (Ã⊤Ã)u∗ = r = (Ã⊤Ã + λ̃I)v∗, which gives
u∗ = 1

λ̃
(Ã⊤Ã + λ̃I)(u∗ − v∗) = (Ã⊤Ã + λ̃I)z∗, and also v∗ = 1

λ̃
Ã⊤Ã(u∗ − v∗) = Ã⊤Ãz∗. By using these

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1990

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

facts we can express u∗ and v∗ in terms of z∗, and have

λ̃∥ẑ− z∗∥W2+λ̃W

≤ ϵ2,1∥ÃÃ⊤ + λ̃I∥1/2 · ∥Ãu∗∥+ ϵ2,2∥Ã⊤Ã∥1/2 · ∥(Ã⊤Ã+ λ̃I)1/2v∗∥
= ϵ2,1∥ÃÃ⊤ + λ̃I∥1/2 · ∥Ã(Ã⊤Ã+ λ̃I)z∗∥+ ϵ2,2∥Ã⊤Ã∥1/2 · ∥(Ã⊤Ã+ λ̃I)1/2Ã⊤Ãz∗∥
= ϵ2,1∥ÃÃ⊤ + λ̃I∥1/2 · ∥(ÃÃ⊤ + λ̃I)Ãz∗∥+ ϵ2,2∥Ã⊤Ã∥1/2 · ∥Ã⊤(ÃÃ⊤ + λ̃I)1/2Ãz∗∥
≤ ϵ2,1∥ÃÃ⊤ + λ̃I∥ · ∥(ÃÃ⊤ + λ̃I)1/2Ãz∗∥+ ϵ2,2∥ÃÃ⊤∥ · ∥(ÃÃ⊤ + λ̃I)1/2Ãz∗∥

=
(
ϵ2,1∥ÃÃ⊤ + λ̃I∥+ ϵ2,2∥ÃÃ⊤∥

)
· ∥z∗∥W2+λ̃W.

Thus given ϵ0 > 0, by choosing ϵ2,1 ≤ ϵ0λ̃

2∥ÃÃ⊤+λ̃I∥ and ϵ2,2 ≤ ϵ0λ̃
2∥ÃÃ⊤∥ , we have

∥ẑ− z∗∥W2+λ̃W ≤ ϵ0 · ∥z∗∥W2+λ̃W.(5.2)

Notice that z∗ = M−1
2 r. With this result, we apply Lemma 4.1 to linear system (C⊤C + λ̃W)y = C⊤r with

preconditioner M2, and obtain ŷ such that

∥ŷ − y∗∥C⊤C+λ̃W ≤ ϵ1 · ∥y∗∥C⊤C+λ̃W

in O(
√
κM2

log(κM2
/ϵ1)) = O(log 1/ϵ1) iterations, since κM2

= O(1). Notice that this is exactly the requirement
we need for Level-1 (see Eq.(5.1)). Moreover, we have the following bounds:

ϵ0λ̃

2∥ÃÃ⊤ + λ̃I∥
≥ ϵ0λ̃

4∥AA⊤ + λ̃I∥
≥ ϵ0λ0

4(σ2
1 + λ0)

=
ϵ0λ0/σ

2
n

4κ2 + 4λ0/σ2
n

=
ϵ0(n− l)κ̄2

l

2κ2l + 4(n− l)κ̄2
l

≥ ϵ0(n− l)

2κ2l + 4(n− l)
≥ ϵ0

2κ2l + 4
≥ ϵ0

4κ2l

where we use the fact that λ0

σ2
n
= 2(n−l)

l κ̄2
l and κ̄l ≥ 1, and similarly,

ϵ0λ̃

2∥ÃÃ⊤∥
≥ ϵ0λ̃

4∥AA⊤∥
≥ ϵ0λ0

4∥AA⊤∥
=

ϵ0λ0

4σ2
1

≥
ϵ0(n− l)κ̄2

l,λ

2κ2l
≥ ϵ0

4κ2l
.

Thus we can choose ϵ2,1 = ϵ2,2 = ϵ0/4κ
2l to guarantee that the requirement we need for Level-2 (see Eq.(5.2))

holds. Finally we step into the innermost Level-3.
Part 4: Level-3 Preconditioning. As the innermost level (Algorithm 5), we use preconditioned Lanczos to

solve two positive definite linear systems (Ã⊤Ã)u = r and (Ã⊤Ã+ λ̃I)v = r, with preconditioners M3a := Â⊤Â

and M3b := Â⊤Â+ λ̃I respectively, where Â := ΦÃ ∈ Rϕ×s and Φ is the oblivious embedding matrix defined by
Lemma 2.2 with ϕ = O(s+log(1/δ)). With probability 1−δ/3 we have κM3a

= κM3b
= O(1). Since in Algorithm 3

we pre-compute M−1
3a and M−1

3b exactly, the error terms for these two preconditioners are 0. By using Lemma 4.1,
we need O(

√
κM3a

log(κM3a
/ϵ2,1)) and O(

√
κM3b

log(κM3b
/ϵ2,2)) iterations respectively to guarantee{

∥û− u∗∥Ã⊤Ã ≤ ϵ2,1 · ∥u∗∥Ã⊤Ã;

∥v̂ − v∗∥Ã⊤Ã+λ̃I ≤ ϵ2,2 · ∥v∗∥Ã⊤Ã+λ̃I.

Furthermore, since we choose ϵ2,1 = ϵ2,2 = ϵ0/4κ
2l, thus the number of iterations in Level-3 are

O(
√
κM3a log(κM3a/ϵ2,1)) = O(log 1/ϵ2,1) = O(log(κl/ϵ0)). Notice that the above guarantees are exactly the

requirements we need for Level-2, thus, by going back from Level-3 → Level-2 → Level-1 and applying a
union bound over the probabilities of “κM = O(κ̄2

l,λn/l), κM2
= κM3a

= κM3b
= O(1)”, we conclude that

∥x̃− x∗∥A⊤A+λI ≤ ϵ∥x∗∥A⊤A+λI holds with probability 1 − δ.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1991

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Part 5: Total Cost. Finally we consider the total cost of Algorithm 3 together with Algorithm 4 and
5. We first pre-compute Ã = AS⊤ which takes O(nnz(A) log(l/δ)), and also compute Â = ΦÃ which
takes O(nnz(Ã) log(s/δ) + s2 log4(s/δ)) according to Lemma 2.2. With these, we can compute the Level-3

preconditioners M−1
3a = (Â⊤Â)−1 and M−1

3b = (Â⊤Â+ λ̃I)−1 in time O(sω). To conclude, line 2-6 of Algorithm 3
takes in total:

O(nnz(Ã) log(s/δ) + s2 log4(s/δ) + sω) = O(nnz(A) log2(l/δ) + lω logω(l/δ)).

Within each iteration, we need to compute matrix-vector products of matrix A⊤A+ λI which takes O(nnz(A)),
and call SolveM1 as in Algorithm 4. Denote TM−1 as the time of calling SolveM1, and denote TM−1

2
as the

time of calling SolveM2 as in Algorithm 5. Observe that in each iteration of Algorithm 5 we need to compute
Ã⊤Ãr = SA⊤AS⊤r for any given vector r, which takes O(n log(l/δ) + nnz(A)) = O(nnz(A) log(l/δ)). Since
there are O(log(κl/ϵ0)) iterations, the complexity for Algorithm 5 becomes

TM−1
2

= O (nnz(A) log(l/δ) log(κl/ϵ0)) .

In each iteration of Algorithm 4 we need to compute Ã⊤Ãr which is similar, thus we have

TM−1 = O((nnz(A) log(l/δ) + TM−1
2
) · log 1/ϵ1)

= O(nnz(A) log(l/δ) log(κl/ϵ0) log 1/ϵ1)

= O(nnz(A) log(l/δ) log(κl/ϵ0) log(κ/ϵ0)).

Finally, since there are tmax = O(κ̄l,λ

√
n/l · log(κ̄l,λn/ϵ)) iterations in total, we compute the overall complexity

of Algorithm 3 as the following:

O(nnz(A) log2(l/δ) + lω logω(l/δ)︸ ︷︷ ︸
preconditioning

+(nnz(A) + TM−1) · κ̄l,λ

√
n/l log(κ̄l,λn/ϵ)︸ ︷︷ ︸

iteration

)

= O(nnz(A) log2(l/δ) + lω logω(l/δ) + nnz(A) log(l/δ) log(κl/ϵ0) log(κ/ϵ0) · κ̄l,λ

√
n/l log(κ̄l,λn/ϵ))

= O(nnz(A) log2(l/δ) log2(κ/ϵ0) · κ̄l,λ

√
n/l log(κ̄l,λn/ϵ) + lω logω(l/δ))

= Õ

(
nnz(A)

√
n

l
κ̄l,λ log

3(κ/ϵ) + lω
)
.

5.2 Proof of Lemma 5.1 For λ̃ = λ+ λ0 ≥ 2
l

∑
i>l σ

2
i , denote Σλ = AA⊤ + λ̃I and B = A⊤Σ

−1/2

λ̃
. Here we

list some basic properties of B:{
∥B∥2 = ∥BB⊤∥ = ∥A⊤Σ−1

λ̃
A∥ ≤ 1

∥B∥2F = tr(BB⊤) = tr(AA⊤(AA⊤ + λ̃I)−1) =: dλ̃

By using Lemma 4.4, we know that the sparse subspace embedding matrix with s = O(dλ̃ log(dλ̃/δ)) and each
column having γ = O(log(dλ̃/δ)) satisfies the (

1
6 , δ, dλ̃, log(dλ̃/δ))-OSE moment property, thus by using Lemma 4.5,

with probability 1− δ we have

∥B⊤S⊤SB−B⊤B∥ ≤ 1

6
(∥B∥2 + 2∥B∥2F /dλ̃) ≤

1

2
.

Conditioned on this guarantee, we have the following holds:

B⊤B− 1

2
I ⪯ B⊤S⊤SB ⪯ B⊤B+

1

2
I

⇔ Σ
−1/2

λ̃
AA⊤Σ

−1/2

λ̃
− 1

2
I ⪯ Σ

−1/2

λ̃
AS⊤SA⊤Σ

−1/2

λ̃
⪯ Σ

−1/2

λ̃
AA⊤Σ

−1/2

λ̃
+

1

2
I

⇔ AA⊤ − 1

2
(AA⊤ + λ̃I) ⪯ AS⊤SA⊤ ⪯ AA⊤ +

1

2
(AA⊤ + λ̃I)

⇔ 1

2
(AA⊤ + λ̃I) ⪯ AS⊤SA⊤ + λ̃I ⪯ 3

2
(AA⊤ + λ̃I)

⇒ ÃÃ⊤ + λ̃I ≈2 AA⊤ + λ̃I.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1992

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Finally we bound dλ̃ by l by using the fact that λ̃ ≥ 2
l

∑
i>l σ

2
i :

dλ̃ =
n∑

i=1

σ2
i

σ2
i + λ̃

=
l∑

i=1

σ2
i

σ2
i + λ̃

+
n∑

i=l+1

σ2
i

σ2
i + λ̃

≤ l +
n∑

i=l+1

σ2
i l

2
∑

j>l σ
2
j

=
3

2
l,

thus we conclude that s = O(l log(l/δ)) and γ = O(log(l/δ)) suffices for the spectral approximation.

6 Analysis of Inexact Preconditioned Lanczos Iteration

Our Multi-level Sketched Preconditioning (MSP) algorithms described in Sections 4 and 5 rely on multiple calls
to a preconditioned Lanczos algorithm. This method requires routines for matrix-vector multiplication with A,
as well as matrix-vector multiplication with the inverse of the preconditioner, M. A key feature of our framework
is that, in many cases, we do not explicitly construct M−1, but rather compute M−1r for a given vector r ∈ Rn

approximately. It is not clear a priori that the outer iterative method used in our algorithms is robust to this
approximation, i.e. that Lanczos still converges as quickly as the case when M−1 is applied exactly. In particular,
while there has been significant work showing that the unpreconditioned Lanczos method is robust to inexact
matrix-vector multiplications, and actually to round-off error in all arithmetic operations [Pai76,Gre89,MMS18],
there is less work on analyzing preconditioned Lanczos.

One line of work studies the closely related Preconditioned Conjugate Gradient (PCG) method, which
returns exactly the same output as Lanczos when all computations are performed exactly [GY99]. That work
establishes that PCG still converges when M−1 is applied approximately. However, it has the disadvantage of
only providing a non-accelerated convergence rate. I.e., it establishes convergence depending on the condition
number κM = κ(M−1/2AM−1/2) of the preconditioned system. On the other hand, if M−1 is applied exactly, a
dependence on

√
κM is achievable. This better

√
κM dependence is critical for obtaining our final results. Other

efforts to analyze the stability of iterative methods also fail to obtain an accelerated rate. For example, there has
been interesting recent work on the stability of preconditioned gradient descent [Epp24], but any gradient descent
type method will have convergence depending on κM instead of

√
κM.

We address this issue by proving a new result for the Lanczos method with inexact preconditioning that
maintains the accelerated rate. We suspect that a similar result can be achieved for PCG, which is more commonly
used in practice than Lanczos, although we leave this effort to future work. As discussed in Section 1.2, we also
note that our analysis of Lanczos is not strictly necessary for this paper. For example, [ST14b] give an analysis
of inexact preconditioned Chebyshev iteration, which could have been used instead. However, the preconditioned
Lanczos method is easier to implement (e.g., does not require eigenvalue bounds) and much more widely used
in practice since it tends to converge much more quickly than Chebyshev iteration, even though it has the same
worst-case guarantees [ACG+23]. As such, we expect that our stability analysis of the preconditioned Lanczos
method will be of general interest beyond this work.

6.1 Inexact Preconditioned Lanczos Method Concretely, in this section we analyze the preconditioned
Lanczos method described in Algorithm 6. The specific implementation of Lanczos in Algorithm 6 is based on an
implementation of an unpreconditioned Lanczos method whose numerical stability was analyzed in seminal work
by Christopher Paige [Pai71, Pai76]. Paige’s work was later used to show that Lanczos can stably solve linear
systems and more general matrix function problems on finite precision computers [Gre89,MMS18]. Our analysis
will rely on these previous results. Formally, we prove the following result:

Theorem 6.1. Consider solving Ax = b for positive definite A using Algorithm 6 provided with a function
SolveM that, for some positive semidefinite preconditioner M and any vector r returns

∥SolveM(r)−M−1r∥M ≤ ϵ0 · ∥M−1r∥M.(6.1)

If ϵ0 ≤ (ϵ
κMn)

c for a fixed constant c > 0, where κM is the condition number of M−1/2AM−1/2, then the algorithm

outputs xt such that ∥xt −A−1b∥A ≤ ϵ∥A−1b∥A in t = O(
√
κM log(κM/ϵ)) iterations.

We prove Theorem 6.1 in an indirect way by comparing the output of Algorithm 6 to the output of a more
easily analyzed variant of Lanczos with symmetric preconditioning, which is given as Algorithm 7. This variant

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1993

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 6 Preconditioned Lanczos Iteration

1: Input: positive definite A ∈ Rn×n, vector b ∈ Rn, function SolveM, # of iterations t;
2: Output: vector xt ∈ Rn that approximates A−1b;
3: w0 ← SolveM(b), z′ =

√
⟨b,w0⟩;

4: q0 = 0,q1 = w′/z,q1 = b/z, β′
1 = 0;

5: for i = 1, . . . , t do
6: ui ← Aqi − β′

iqi−1;
7: α′

i ← ⟨ui,qi⟩;
8: wi ← ui − α′

iqi, wi = SolveM(wi);

9: β′
i+1 ← ⟨wi,wi⟩1/2;

10: if β′
i+1 == 0 then

11: break;
12: end if
13: qi+1 ← wi/β

′
i+1, qi+1 ← wi/β

′
i+1;

14: end for

15: T′ ∈ Rt×t ←


α′
1 β′

2 0

β′
2 α′

2

. . .

. . .
. . . β′

t

0 β′
t α′

t

 , Q ∈ Rn×t ←
[
q1 . . . qt

]
;

16: return x′
t = z′QT′−1e1 where e1 ∈ Rt denotes the first standard basis vector.

Algorithm 7 Symmetric Preconditioned Lanczos Iteration.

1: Input: positive definite A ∈ Rn×n, vector b ∈ Rn, positive definite preconditioner M ∈ Rn×n, # of iterations
t;

2: Output: vector y ∈ Rn that approximates A−1b;
3: w0 ←M−1/2b, z ← ∥w0∥;
4: q0 ← 0,q1 ← w/z, β1 = 0;
5: for i = 1, . . . , t do
6: ui ←M−1/2AM−1/2qi − βiqi−1;
7: αi ← ⟨ui,qi⟩;
8: wi ← ui − αiqi;
9: βi+1 ← ∥wi∥;

10: if βi+1 == 0 then
11: break;
12: end if
13: qi+1 ← wi/βi+1;
14: end for

15: T ∈ Rt×t ←


α1 β2 0

β2 α2
. . .

. . .
. . . βk

0 βk αk

 , Q ∈ Rn×t ←
[
q1 . . . qk

]
;

16: return xt = M−1/2(zQT−1e1), where e1 ∈ Rt denotes the first standard basis vector.

assumes access to the symmetrically preconditioned matrix M−1/2AM−1/2. To motivate the algorithm, observe
that:

A−1b = M−1/2(M−1/2AM−1/2)−1M−1/2b.

Algorithm 7 is obtained by just running the standard unpreconditioned Lanczos method (see e.g., [MMS18])
with right hand side M−1/2b and matrix (M−1/2AM−1/2), and then multiplying the final result by M−1/2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1994

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

In our application, we only have access to M−1, so we cannot implement Algorithm 7 directly: it is only used
for our analysis of Algorithm 6. In particular, we will take advantage of the fact that it can be easily shown
that Algorithm 7 is robust to implementation in finite precision arithmetic. This is because, unlike Algorithm 6,
Algorithm 7 is formally equivalent to unpreconditioned Lanczos run with a particular choice of inputs. The
robustness of the unpreconditioned Lanczos method to round-off errors has been widely studied.

Formally, suppose all basic arithmetic operators are computed up to relative accuracy. I.e., for any operation
x ◦ y where ◦ ∈ {+,−,×,÷}, the computer running Algorithm 7 returns a result

z = (1 + δ)(x ◦ y) such that |δ| ≤ ϵmach,(6.2)

where ϵmach is the machine precision. Similarly, for any x, the computer can compute z = (1 + δ)(x ◦ y) where
|δ| ≤ ϵmach. In this setting, we have the following bound:

Fact 6.1. (Corollary of Theorem 1 [MMS18]) Suppose Algorithm 7 is given access to the exact value of
M−1/2AM−1/2 and M−1/2b and is then implemented on a finite precision computer with machine precision
ϵmach = poly(ϵ/nκM), except that the final multiplication by M−1/2 on line 16 is performed exactly. Here
κM = κ(M−1/2AM−1/2). Then the algorithm will return xt such that ∥xt − A−1b∥A ≤ ϵ∥A−1b∥A after
t = O

(√
κM log(κM/ϵ)

)
iterations.

Proof. This fact is obtained by applying Theorem 1 of [MMS18] to solving the positive definite preconditioned
system M−1/2AM−1/2x = M−1/2b, which has solution M1/2A−1b. Observe that Algorithm 7 is exactly
equivalent to the Lanczos method analyzed in that work, except for the last step: to return an approximate
solution to M−1/2AM−1/2x = M−1/2b, we should return just

y = zQT−1e1

instead of xt = M−1/2(zQT−1e1). Let λ1 ≥ . . . ≥ λn > 0 denote the eigenvalues of the M−1/2AM−1/2. We
apply Theorem 1 with f(x) = 1/x and η = λn/2, and use the well known fact (see, e.g. [She94]) that for any
δ < 1, there exists a degree O(

√
κM log(1/δ)) polynomial such that:

max
x∈[λn,λ1]

|p(x)− 1/x| ≤ δ

λn
.

Setting δ = poly(ϵ/κM) and ϵmach = poly(nκM/ϵ), Theorem 1 from [MMS18] implies that after t =
O(
√
κM log(κM/ϵ)) iterations,

∥y −M1/2A−1b∥ ≤ ϵ

κMλn
∥M−1/2b∥.(6.3)

Using that xt = M−1/2y exactly (since we assumed the last multiplication by M−1/2 is perfomed exactly on Line
16, we have:

∥y −M1/2A−1b∥ = ∥(A1/2M−1/2)−1A1/2M−1/2y − (A1/2M−1/2)−1A−1/2b∥

≥ 1√
λ1

∥A1/2xt −A−1/2b∥ = 1√
λ1

∥xt −A−1b∥A.

We further have that:

ϵ

κMλn
∥M−1/2b∥ = ϵ

κMλn
∥(A−1/2M1/2)−1A−1/2b∥ ≤ ϵ

κMλn

√
λ1∥A−1b∥A.

Plugging both of these bounds into (6.3), we conclude that, as desired.

∥xt −A−1b∥A ≤
ϵλ1

κMλn
∥A−1b∥A = ϵ∥A−1b∥A.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1995

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We can actually slightly strengthen Fact 6.1. In particular, the analysis in [MMS18] is based in a black-box way
on a bound from [Pai76] on the output of the general Lanczos tridiagonalization method in finite precision. This
result is stated as Theorem 8 in [MMS18] and is the first theorem in [Pai76]. So, the fact actually holds for any
sequence of round-off errors for which this critical theorem remains true.

Fact 6.2. The result of Fact 6.1 holds when Algorithm 7 is implemented with any sequence of round-off errors
for which the main Theorem of [Pai76] (Theorem 8 in [MMS18]) holds with ϵmach = poly(nκM/ϵ). This includes,
e.g., any sequence of adversarially chosen round-off errors on basic arithmetic operations that satisfy (6.2), even if
those are not precisely the errors that would be made in a standard implementation of finite precision arithmetic.

We leverage Fact 6.2 to prove Theorem 6.1 by arguing that the output of Algorithm 6, the preconditioned Lanczos
method that we hope to analyze, is exactly equivalent to the output of Algorithm 7 for some choice of round-off
errors that satisfy the requirements to prove Paige’s theorem. The proof is completed below. It is not self-
contained: the reader will require access to [Pai76]. As of April 2024, a copy can be found on the author’s
webpage.

Proof. [Proof of Theorem 6.1] Before beginning the proof, we make a remark on notation. The variable names in
Algorithm 6 are chosen to mirror the variable names in Algorithm 7. In particular, if Algorithm 6 and Algorithm 7
are implemented in exact arithmetic and with exact applications of all matrix-vector multiplications, it can be
checked that any variable x satisfies the relationship

x = M−1/2x and x = M1/2x.

E.g., at Line 6 of Algorithm 6, ui would exactly equal M1/2ui computed at Line 6 of Algorithm 7. Additionally,
any variable that appears with a single tick mark in Algorithm 6 would be exactly equal to the corresponding
variable in Algorithm 7. I.e. we would have that z′ = z on Line 3.

To motivate Algorithm 6, note that it is essentially equivalent to Algorithm 7, except that, instead of keeping
track of Q = [q1, . . . ,qk], it keeps track of M−1/2Q = [q1, . . . ,qk]. This can be done without every having access
to M−1/2 and, importantly, allows use to avoid the final step of Algorithm 7, which requires multiplying M−1/2

by a vector in the span of Q.
Concretely, we will prove that there is a sequence of round-off errors in Algorithm 7 for which Paige’s main

theorem holds, and for which T′ = T and Q = M−1/2Q, where T′ and Q are the quantities computed by
Algorithm 6 run with a procedure SolveM for applying M−1 that satisfies the accuracy guarantee of (6.1). We
will actually argue that this equivalence holds when Algorithm 7 is run on a slight perturbation of b, b′. We will
account for this difference towards the end of the proof.

Our proof will proceed via induction. In particular, we will prove that for all i,

α′
i = αi β′

i = βi, qi = M−1/2qi and ∥qi −M1/2qi∥M−1 ≤ ϵmach .(6.4)

To establish this bound, we will inductively assume that it holds for all j ≤ i. We begin with the base cases,
which includes any variable set outside of the for loop on Line 5.

Base Case. We start by noting that trivially, 0 = q0 = M1/2q0 = 0 and 0 = β′
1 = β1 = 0. Moreover, by (6.1),

w0 = M−1b +∆0, where ∆0 is a vector with ∥∆0∥M ≤ ϵ0∥M−1b∥M. I.e. w0 = M−1(b +M∆0). So, for some
b′ satisfying

b′ − b = M∆0,(6.5)

we have that, for w0 = M−1/2b′,

w0 = M−1/2w0.(6.6)

Next, we have that

(z′)2 = ⟨b,w0⟩ = ∥M−1/2b∥2 + ⟨∆0,b⟩.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1996

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://www.cs.mcgill.ca/~chris/pubClassic/76JIMA001.pdf
https://www.cs.mcgill.ca/~chris/pubClassic/76JIMA001.pdf

By Cauchy-Schwarz, |⟨∆0,b⟩| ≤ ∥M−1/2b∥∥M1/2∆0∥ and we have that ∥M1/2∆0∥ = ∥∆0∥M ≤ ϵ0∥M−1/2b∥2.
It follows that, as long as ϵ0 ≤ ϵmach, (z

′)2 = (1 + ∆1)∥M−1/2b∥2 for some scalar ∆1 with |∆1| ≤ ϵmach, and
therefore that:

z′ = (1 +∆2)∥M−1/2b∥

for scalar ∆2 with |∆2| ≤ ϵmach. On Line 3 of Algorithm 7, Paige’s analysis allows for z ← ∥w0∥ to be computed
up to relative error (1 + ϵmach(n + 2)/2) (see [Pai76], equation 12). So, there is a choice of acceptable roundoff
error for which z′ = z. Combined with (6.6), we conclude that:

q1 = M−1/2q1.(6.7)

This establishes the second equation in (6.4), so to complete the base case analysis for i = 1, we are left to
address the third equation, i.e. that ∥q1 −M1/2q1∥ ≤ ϵmach ∥M1/2∥. We have from (6.7) that M1/2q1 = Mq1 =

M · (M−1b+∆0)/z
′. We have that q1 = b/z′, so we conclude that:

∥q1 −M1/2q1∥M−1 = ∥M∆0/z
′∥M−1 = ∥∆0/z

′∥M.

As shown above, as long as ϵmach ≤ 1/2, z′ ≥ 1
2∥M

−1/2b∥, so we have that

∥q1 −M1/2q1∥M−1 ≤ 2

∥M−1/2b∥
∥∆0∥M ≤ 2ϵ0.

So, we have prove the third equation of (6.4) as long as ϵ0 ≤ ϵmach

2 .

Inductive Case. We can now move onto the inductive case of (6.4). I.e., to proving the statement for all i ≥ 2,
assuming it holds for j < i.

We proceed with a line by line analysis of Algorithms 6 and 7.

Line 6. Our first goal is to prove that for some choice of acceptable roundoff error in Algorithm 7,

M−1/2ui = ui.(6.8)

Observe that

M−1/2ui = M−1/2Aqi − β′
iM

−1/2qi−1

= M−1/2AM−1/2qi − βiM
−1/2qi−1

= M−1/2AM−1/2qi − βiqi−1 + βi∆3,

where, using our inductive assumption, ∆3 = qi−1 −M−1/2qi−1 is a vector with Euclidean norm bounded by

ϵmach. Paige’s analysis allows for ui ←M−1/2AM−1/2qi − βiqi−1 to be computed up to additive error bounded
in norm by ϵmach 2∥βiqi−1∥ (see [Pai76], equation 8).

Using that ∥qi∥ ≥ 1/2 as long as ϵmach ≤ 1
2(n+4) (see [Pai76] equation 14) we thus have that there is a choice

of allowable error in Algorithm 7 such that M−1/2ui = ui. So, we have proven (6.8) as desired.

Line 7. Next, by our inductive assumption and (6.9), we have that

⟨ui,qi⟩ = ⟨ui,qi⟩,

so we immediately have that, even with no roundoff error in Algorithm 7,

α′
i = αi.(6.9)

This establishes the first condition of (6.4).

Line 8. We want to prove that, for some choice of acceptable rounding error in Algorithm 7,

M1/2wi = wi.(6.10)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1997

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

By Equation (6.9) and Equation (6.1) we have:

wi = M−1ui − αiM
−1qi +∆4,(6.11)

where ∥∆4∥M ≤ ϵ0∥M−1/2(ui − αiqi)∥. Furthermore, by (6.4), we have that M−1/2qi = qi + ∆5, where
∥∆5∥ ≤ ϵmach. Combining with (6.8), it follows that:

M1/2wi = M−1/2ui − αiM
−1/2qi +M1/2∆4(6.12)

= ui − αiqi+1 + αi∆5 +M1/2∆4.(6.13)

Paige’s analysis requires that wi equals ui−αiqi up to additive error with norm bounded by ϵmach(∥ui∥+2αi∥qi∥)
(see [Pai76], equation 8). So to establish (6.10), we need to show that:

∥αi∆5 +M1/2∆4∥ ≤ ϵmach(∥ui∥+ 2αi∥qi∥).(6.14)

Observe that, by triangle inequality,

∥M1/2∆4∥ ≤ ϵ0∥M−1/2(ui − αiqi)∥ = ϵ0∥ui − αiM
−1/2qi∥

≤ ϵ0∥ui − αiqi∥+ αi∆5.

Combined with our bound on ∆5, we have:

∥αi∆5 +M1/2∆4∥ ≤ ϵ0∥ui∥+ 2αi ϵmach .

Using that ∥qi∥ ∈ [1/2, 2] as long as ϵmach ≤ 1
2(n+4) (see [Pai76] equation 14), we see that (6.14) holds as long as

ϵ0 ≤ ϵmach. It follows that (6.10) holds.
We also claim that, directly from (6.10) and (6.1),

∥wi −M−1/2wi∥ = ∥wi −M−1wi∥M ≤ ϵ0∥M−1wi∥M = ϵ0∥M−1/2wi∥.(6.15)

Line 9. By (6.15) and (6.10), we have that:

⟨wi,wi⟩ = ⟨M−1/2wi,M
1/2wi⟩ = ⟨wi,wi⟩+ ⟨∆6,wi⟩,

where ∥∆6∥ ≤ ϵ0∥M−1/2wi∥. Applying Cauchy-Schwarz, it follows that:

⟨wi,wi⟩ = ⟨wi,wi⟩+∆7,

where ∆7 is a scalar with |∆7| ≤ ϵ0∥wi∥∥M−1/2wi∥. As long as ϵ0 ≤ 1/2, we can check from (6.15) that

∥M−1/2wi∥ ≤ 2∥wi∥. It follows that ⟨wi,wi⟩ = (1 +∆8)⟨wi,wi⟩ where |∆8| ≤ 2ϵ0, and thus√
⟨wi,wi⟩ = (1 +∆9)

√
⟨wi,wi⟩,(6.16)

again for |∆9| ≤ 2ϵ0. Paige’s analysis assumes that
√
⟨wi,wi⟩ is computed up to multiplicative accuracy

(1 + ϵmach(n+ 2)/2) (see [Pai76] equation (12)), so as long as 2ϵ0 ≤ ϵmach(n+ 2)/2, then there is some choice of
acceptable roundoff error such that, as desired.

β′
i+1 = βi+1,(6.17)

This establishes the second condition of (6.4).

Line 10. By (6.17), the if condition in Line 9 evaluates to true in Algorithm 6 if and only if it evaluates to true
in Algorithm 7, so we can move onto Line 13.

Line 13. We have immediately from (6.10) and (6.17) that:

qi+1 = M−1/2qi+1.(6.18)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1998

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

This proves our third condition in (6.4) for i+ 1. Additionally, from (6.15) and (6.17), we have that:

∥qi −M1/2qi∥M−1 =
1

βi
∥wi −M1/2wi∥M−1 =

1

βi
∥M−1/2wi −wi∥M−1 ≤ ϵ0

βi
∥M−1/2wi∥,

As before, we have that ∥M−1/2wi∥ ≤ 2∥wi∥ and, from [Pai76] equation 12, as long as ϵmach ≤ 1
n+2 , βi+1 ≥ 1

2∥wi∥.
So, we conclude that

∥qi −M1/2qi∥M−1 ≤ 4ϵ0

which implies our fourth condition in (6.4) as long as 4ϵ0 ≤ ϵmach.

Completing the Proof. With (6.4) in place, we are ready to prove our main result, Theorem 6.1. We have
established that if Algorithm 6 is run with input b and function SolveM satisfying (6.1) with ϵ0 ≤ ϵmach /4, then it
generates a tridiagonal matrix T′ that is identical to the output of Algorithm 7 run with input b′ and a particular
set of round-off errors that satisfy the condition of Fact 6.2. Moreover, the matrix Q generated by Algorithm 6 is
identical to M−1/2Q, where Q is the matrix generated Algorithm 7. Since we have also establishes that z = z′,
it follows that Line 16 of each algorithm returns and identical output. We conclude from Fact 6.2 that, as long
as ϵmach = poly(ϵ/nκM), for t = O

(√
κM log(κM/ϵ)

)
, the vector x′

t returned by Algorithm 6 satisfies:

∥x′
t −A−1b′∥A ≤ ϵ∥A−1b′∥A.(6.19)

Recalling that b′ = b+M∆0 for a vector ∆0 with ∥M1/2∆0∥ ≤ ϵ0∥M−1/2b∥, we further have that:

∥A−1b−A−1b′∥A = ∥A−1/2b−A−1/2b′∥ = ∥A−1/2M∆0∥
≤ ϵ0|A−1/2M1/2∥∥M−1/2b∥
≤ ϵ0|A−1/2M1/2∥∥M−1/2A1/2∥A−1/2b∥
= ϵ0
√
κM∥A−1b∥A

Combining with (6.19) via triangle inequality, we have that, as long as ϵ0 ≤ ϵ√
κM

,

∥x′
t −A−1b∥A ≤ 3ϵ∥A−1b∥A.

Adjusting the constant on ϵ proves Theorem 6.1.

7 Lower Bound for Linear Systems with k Large Singular Values

In this section, we give a lower bound for the time complexity of solving linear systems with k large singular
values.

Theorem 7.1. Assuming that the time complexity of solving an arbitrary n × n linear system to precision ϵ =
1/poly(n) is Ω(nω), the time complexity of solving an n×n linear system Ax = b such that σk+1(A)/σmin(A) =
O(1) is at least Ω(n2 + kω).

Proof. The proof will be divided into two parts. First, we will give an information theoretic lower bound showing
that to solve a linear system with k large singular values, one must read at least Ω(n2) entries of the matrix A.
To do this, consider the following class of n× n matrices parameterized by an index pair (i, j), where ei denotes
the ith n-dimensional standard basis vector:

A =
{
In + eie

⊤
j − eje

⊤
i : i ̸= j

}
.

Matrix A ∈ A is a matrix with identity on the diagonal and then two off-diagonal entries, 1 and −1, symmetrically
across from each other, and then zeros everywhere else. We then choose an all-ones vector b = [1, ..., 1]⊤ ∈ Rn

and consider such a linear system: 

1
1 1

1
. . .

−1 1
1





x1

x2

x3

...
xn−1

xn


=



1
1
1
...
1
1



Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited1999

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Note that this linear system can be written more concisely as satisfying the following equations:

for l ̸= i, j, xl = 1,

xi + xj = 1,

−xi + xj = 1,

which implies that the solution vector x is an all-ones vector except for xi = 0. To find the singular values
associated with the matrix A, observe that:

A⊤A = (In + eie
⊤
j − eje

⊤
i)

⊤(In + eie
⊤
j − eje

⊤
i) = In + eie

⊤
i + eje

⊤
j .

Since A⊤A is diagonal, its eigenvalues can be found immediately, which gives us the singular values of A (in
decreasing order): σ1 =

√
2, σ2 =

√
2 and σ3 = ... = σn = 1. Thus, A is well-conditioned and it satisfies the k

large singular values property for any k. Suppose that the matrix A is given to us in an n × n two-dimensional
array. How long does it take to find either of the non-zero off-diagonal entries of A? Naturally, this will require
in the worst-case reading Ω(n2) entries, since we have no information about the index pair 1 ≤ i < j ≤ n. On the
other hand, if we were able to solve this linear system in time o(n2), obtaining (an approximation of) vector x,
then we could find i, j pair in an additional O(n) time by finding the entry of x that is not equal 1. This shows,
by contradiction, that the time complexity of solving such a linear system must be Ω(n2).

We note that, while our construction gives a sparse matrix, which may be stored more efficiently in a column-
row-value format, this does not circumvent our lower bound, since we can also consider the above matrix A
that has been distorted entry-wise with, say, random ±1/poly(n) values, so that it is no longer sparse, but this
distortion will not meaningfully affect its condition number or the linear system solution. Thus, the above lower
bound applies also for such dense matrices.

In the second part of the proof, we observe that to solve an n× n linear system with k large singular values,
one must (effectively) solve an arbitrary k × k linear system. Namely, consider an arbitrary k × k rank k matrix
M and a vector c ∈ Rk, and consider the following n × n linear system that can be written in a block-diagonal
form: [

M
σmin(M) · In−k

] [
x
y

]
=

[
c

0n−k

]
,

where we are solving for the vectors x and y. Note that the singular values of this system are simply the singular
values of M, with its smallest singular value additionally repeated n − k times. Thus, σk+1/σmin = 1 for this
system, and it satisfies the k large singular values property. Also, note that the solution of this system is x = M−1c
and y = 0. Now, if we can solve this system in time o(kω), then, by simply reading off the first k entries of the
solution vector, we obtain the solution to the k×k system Mx = c. This concludes the proof of the lower bound.

Acknowledgements

MD would like to acknowledge NSF CAREER for partial support. CM was partially supported by NSF Award
(2045590).

References

[AC09] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate nearest neighbors.
SIAM Journal on computing, 39(1):302–322, 2009.

[ACG+23] Noah Amsel, Tyler Chen, Anne Greenbaum, Cameron Musco, and Christopher Musco. Near-optimal
approximation of matrix functions by the lanczos method. arXiv preprint arXiv:2303.03358, 2023.

[ACW17] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression using sketching and
preconditioning. SIAM Journal on Matrix Analysis and Applications, 38(4):1116–1138, 2017.

[AL86] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the preconditioned conjugate gradient method.
Numerische Mathematik, 48:499–524, 1986.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2000

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[AM15] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical guarantees. In
Advances in Neural Information Processing Systems, volume 28, 2015.

[BKM22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Sublinear time spectral density estimation. In
54th Annual Symposium on Theory of Computing (STOC), 2022.

[BT24] Ainesh Bakshi and Ewin Tang. An improved classical singular value transform for quantum machine learning. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
[CCKW22] Nadiia Chepurko, Kenneth L Clarkson, Praneeth Kacham, and David P Woodruff. Near-optimal algorithms for

linear algebra in the current matrix multiplication time. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 3043–3068. SIAM, 2022.

[CD21] Xue Chen and Michal Derezinski. Query complexity of least absolute deviation regression via robust uniform
convergence. In Conference on Learning Theory, pages 1144–1179. PMLR, 2021.

[CDDR24] Shabarish Chenakkod, Micha l Dereziński, Xiaoyu Dong, and Mark Rudelson. Optimal embedding dimension
for sparse subspace embeddings. In 56th Annual ACM Symposium on Theory of Computing, 2024.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimensionality
reduction for k-means clustering and low rank approximation. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 163–172, 2015.

[CKK+18] Michael B Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B Rao, and Aaron
Sidford. Solving directed laplacian systems in nearly-linear time through sparse lu factorizations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 898–909. IEEE, 2018.

[CLS21] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication
time. Journal of the ACM (JACM), 68(1):1–39, 2021.

[CMM17] Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approximation via
ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1758–1777. SIAM, 2017.

[CNW16] Michael B Cohen, Jelani Nelson, and David P. Woodruff. Optimal Approximate Matrix Product in Terms
of Stable Rank. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016),
volume 55, pages 11:1–11:14, 2016.

[Coh16] Michael B Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms, pages 278–287. SIAM, 2016.

[CP15] Michael B Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 183–192, 2015.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In Proceedings of
the nineteenth annual ACM symposium on Theory of computing, pages 1–6, 1987.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity time. In
Proceedings of the forty-fifth annual ACM symposium on Theory of Computing, pages 81–90, 2013.

[DEF+23] Mateo Dı́az, Ethan N. Epperly, Zachary Frangella, Joel A. Tropp, and Robert J. Webber. Robust, randomized
preconditioning for kernel ridge regression. arXiv preprint arXiv:2304.12465, 2023.

[DLDM21] Michal Derezinski, Zhenyu Liao, Edgar Dobriban, and Michael Mahoney. Sparse sketches with small inversion
bias. In Conference on Learning Theory, pages 1467–1510. PMLR, 2021.

[DLNR24] Micha l Dereziński, Daniel LeJeune, Deanna Needell, and Elizaveta Rebrova. Fine-grained analysis and faster
algorithms for iteratively solving linear systems. arXiv preprint arXiv:2405.05818, 2024.

[DM24] Micha l Dereziński and Michael W Mahoney. Recent and upcoming developments in randomized numerical linear
algebra for machine learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 6470–6479, 2024.

[DR24] Micha l Dereziński and Elizaveta Rebrova. Sharp analysis of sketch-and-project methods via a connection to
randomized singular value decomposition. SIAM Journal on Mathematics of Data Science, 6(1):127–153, 2024.

[DW18] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and
classification. The Annals of Statistics, 46(1):247–279, 2018.

[DY24] Micha l Dereziński and Jiaming Yang. Solving dense linear systems faster than via preconditioning. In 56th Annual
ACM Symposium on Theory of Computing (STOC), 2024.

[EAM14] Ahmed El Alaoui and Michael W Mahoney. Fast randomized kernel methods with statistical guarantees. stat,
1050:2, 2014.

[Epp24] Ethan N. Epperly. Fast and forward stable randomized algorithms for linear least-squares problems. arXiv
preprint arXiv:2311.04362, 2024.

[FGKS15] Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Un-regularizing: approximate proximal point and
faster stochastic algorithms for empirical risk minimization. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, pages 2540–2548, 2015.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2001

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[FMMS16] Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford. Principal component projection without
principal component analysis. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48, pages 2349–2357, 2016.

[FTU23] Zachary Frangella, Joel A Tropp, and Madeleine Udell. Randomized Nyström preconditioning. SIAM Journal
on Matrix Analysis and Applications, 44(2):718–752, 2023.

[GM16] Alex Gittens and Michael W. Mahoney. Revisiting the Nyström method for improved large-scale machine learning.
J. Mach. Learn. Res., 17(1):3977–4041, 2016.

[GOSS16] Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using sketched precondi-
tioned SVRG. In Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 1397–1405, 2016.

[Gre89] Anne Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra and
its Applications, 113:7 – 63, 1989.

[GY99] Gene H Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM
Journal on Scientific Computing, 21(4):1305–1320, 1999.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

[HS52] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal of
research of the National Bureau of Standards, 49(6):409–436, 1952.

[Hut90] Michael F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines.
Communications in Statistics-Simulation and Computation, 19(2):433–450, 1990.

[JJM23] Ruichen Jiang, Qiujiang Jin, and Aryan Mokhtari. Online learning guided curvature approximation: A quasi-
newton method with global non-asymptotic superlinear convergence. arXiv preprint arXiv:2302.08580, 2023.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior point
method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations of computer science
(FOCS), pages 910–918. IEEE, 2020.

[JS19] Yujia Jin and Aaron Sidford. Principal component projection and regression in nearly linear time through
asymmetric svrg. In Advances in Neural Information Processing Systems, volume 32, 2019.

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems, volume 26, 2013.

[KKM79] Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear equations.
Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

[KMP12] Ioannis Koutis, Gary L Miller, and Richard Peng. A fast solver for a class of linear systems. Communications
of the ACM, 55(10):99–107, 2012.

[KMS+22] Jonathan Kelner, Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, and Honglin Yuan. Big-step-
little-step: Efficient gradient methods for objectives with multiple scales. In Proceedings of Thirty Fifth Conference
on Learning Theory, volume 178, pages 2431–2540, 2022.

[KN14] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM (JACM),
61(1):1–23, 2014.

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians - fast, sparse, and simple.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 573–582. IEEE Computer
Society, 2016.

[Lev44] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of
applied mathematics, 2(2):164–168, 1944.

[LG12] Francois Le Gall. Faster algorithms for rectangular matrix multiplication. In IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 514–523, 2012.

[LGW+21] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization for deep
neural network acceleration: A survey. Neurocomputing, 461:370–403, 2021.

[LL10] Dennis Leventhal and Adrian S Lewis. Randomized methods for linear constraints: convergence rates and
conditioning. Mathematics of Operations Research, 35(3):641–654, 2010.

[LS13] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster algorithms for solving
linear systems. In 2013 ieee 54th annual symposium on foundations of computer science, pages 147–156. IEEE, 2013.

[LW11] Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and missing data: Provable
guarantees with non-convexity. Advances in neural information processing systems, 24, 2011.

[Mar63] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society
for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[MB17] Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on large-scale shallow
learning. In Advances in Neural Information Processing Systems, volume 30, 2017.

[MCRR20] Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessandro Rudi. Kernel methods through the roof:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2002

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Handling billions of points efficiently. In Advances in Neural Information Processing Systems, volume 33, pages
14410–14422, 2020.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 91–100, 2013.

[MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate
singular value decomposition. Advances in neural information processing systems, 28, 2015.

[MM17] Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. Advances in neural
information processing systems, 30, 2017.

[MMMW21] Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff. Hutch++: Optimal
stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA), pages 142–155, 2021.

[MMS18] Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the Lanczos method for matrix function
approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1605–1624, 2018.

[MNS+18] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P Woodruff. Spectrum
approximation beyond fast matrix multiplication: Algorithms and hardness. In 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018.

[MS12] Renato DC Monteiro and Benar F Svaiter. Iteration-complexity of a newton proximal extragradient method for
monotone variational inequalities and inclusion problems. SIAM Journal on Optimization, 22(3):914–935, 2012.

[MW17] Cameron Musco and David P. Woodruff. Sublinear time low-rank approximation of positive semidefinite matrices.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 672–683, 2017.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser subspace
embeddings. In 2013 ieee 54th annual symposium on foundations of computer science, pages 117–126. IEEE, 2013.

[Nys30] E. J. Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben.
Acta Math., 54:185–204, 1930.

[OSV12] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K Vishnoi. Approximating the exponential, the lanczos
method and an o (m)-time spectral algorithm for balanced separator. In 44th Annual Symposium on Theory of
Computing (STOC), 2012.

[Pai71] Christopher C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis,
University of London, 1971.

[Pai76] Christopher C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. IMA
Journal of Applied Mathematics, 18(3):341–349, 1976.

[Pan84] Victor Pan. How to multiply matrices faster. Springer-Verlag, 1984.
[PV21] Richard Peng and Santosh Vempala. Solving sparse linear systems faster than matrix multiplication. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.
[RCR17] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. Advances

in neural information processing systems, 30, 2017.
[RSB12] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence

rate for finite training sets. In Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 2, pages 2663–2671, 2012.

[RT08] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear least-squares regression.
Proceedings of the National Academy of Sciences, 105(36):13212–13217, 2008.

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In 2006 47th annual
IEEE symposium on foundations of computer science (FOCS’06), pages 143–152. IEEE, 2006.

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical
report, Carnegie Mellon University, USA, 1994.

[SSZ14] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss
minimization. In Proceedings of the 31st International Conference on Machine Learning, volume 32, pages 64–72,
2014.

[ST14a] Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications, 35(3):835–885, 2014.

[ST14b] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and Applications, 35(3):835–885,
2014.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356, 1969.
[SV09] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with exponential convergence. Journal

of Fourier Analysis and Applications, 15(2):262–278, 2009.
[SW09] Daniel A Spielman and Jaeoh Woo. A note on preconditioning by low-stretch spanning trees. arXiv preprint

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2003

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

arXiv:0903.2816, 2009.
[Tro11] Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in Adaptive Data

Analysis, 3(01n02):115–126, 2011.
[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the

forty-fourth annual ACM symposium on Theory of computing, pages 887–898, 2012.
[WS01] Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel machines. In

Advances in Neural Information Processing Systems 13, pages 682–688. 2001.
[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and triangle

problems. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 645–654, 2010.
[WXXZ23] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix

multiplication: from alpha to omega. arXiv preprint arXiv:2307.07970, 2023.
[XXG12] Jianlin Xia, Yuanzhe Xi, and Ming Gu. A superfast structured solver for toeplitz linear systems via randomized

sampling. SIAM Journal on Matrix Analysis and Applications, 33(3):837–858, 2012.
[ZDW13] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression. In Conference

on learning theory, pages 592–617. PMLR, 2013.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2004

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 2

16
.1

65
.9

5.
17

6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Main Results
	Our Techniques
	Additional Related Work

	Preliminaries
	Main Technical Results
	Applications to Regularized Linear Systems and Least Squares
	Applications to Matrix Norm Estimation

	Two-Level MSP for Positive Definite Linear Systems
	Proof of Theorem 4.1
	Coarse Nyström Preconditioner Based on Sparse Embedding
	Variable Transformation

	Three-Level MSP for Solving General Linear Systems
	Proof of Theorem 3.1
	Proof of Lemma 5.1

	Analysis of Inexact Preconditioned Lanczos Iteration
	Inexact Preconditioned Lanczos Method

	Lower Bound for Linear Systems with k Large Singular Values

