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ABSTRACT

Comprehensive state-action exploration is essential for reinforce-

ment learning (RL) algorithms. It enables them to find optimal

solutions and avoid premature convergence. In value-based RL,

optimistic initialization of the value function ensures sufficient ex-

ploration for finding the optimal solution. Optimistic values lead to

curiosity-driven exploration enabling visitation of under-explored

regions. However, optimistic initialization has limitations in sto-

chastic and non-stationary environments due to its inability to

explore łinfinitely-oftenž. To address this limitation, we propose

a novel exploration strategy for value-based RL, denoted COIN,

based on recurring optimistic initialization. By injecting a continual

exploration bonus, we overcome the shortcoming of optimistic ini-

tialization (sensitivity to environment noise). We provide a rigorous

theoretical comparison of COIN versus existing popular exploration

strategies and prove it provides a unique set of attributes (coverage,

infinite-often, no visitation tracking, and curiosity). We demon-

strate the superiority of COIN over popular existing strategies on a

designed toy domain as well as present results on common bench-

mark tasks.We observe that COIN outperforms existing exploration

strategies in four out of six benchmark tasks while performing on

par with the best baseline on the other two tasks.
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1 INTRODUCTION

Sequential decision problems are commonly modeled as Markov

decision processes (MDP) [49]. A solution to an MDP is a pol-

icy that maps states to actions such that the resulting sequential

behavior is optimal with respect to a given utility function. Re-

inforcement learning (RL) algorithms [61] are designed to solve

MDPs via interactions with the underlying environment. RL algo-

rithms were shown to be effective on a variety of applications such

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 ś 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

as robotics [2, 37], autonomous driving [25, 29, 36], traffic signal

control [9, 10, 72], and drilling operations [5, 35, 68]. An RL agent

commonly explores the environment by executing actions and ob-

serving outcomes. The acquired knowledge enables the RL agent to

reason about the optimal policy. RL algorithms commonly require

that the Cartesian product of the state and action spaces is suffi-

ciently explored. Consequently, Exploration strategies are usually

designed to provide some theoretical assurances regarding the state-

action visitation distribution. These assurances result in desirable

learning guarantees [7, 8, 26, 60] relating to, policy convergence,

policy optimality, speed of convergence (sample efficiency), mem-

ory complexity, and regret bounds. Existing exploration strategies

can be divided into three categories (following taxonomy by Amin

et al. [4]) (C1) sampling-based, (C2) visitation-tracking, and (C3)

optimistic initialization-based. Each of these classes has unique

benefits and drawbacks with respect to the following properties;

(P1) state-action space coverage, (P2) infinite-often visitation, (P3)

visitation tracking, and (P4) curiosity.

In this paper, we first study the effectiveness of exploration strate-

gies in a specially designed MDPs denoted bridge crossing problems

(explained later in Section 3.1). These are a class of grid-world

problems, where popular exploration strategies struggle to find the

optimal policy efficiently. We then provide empirical evidence that

curiosity is a key property that helps overcome the challenges in

this problem and is inherently present in optimistic initialization-

based exploration strategies. In essence, curiosity encourages the

agent to visit unseen states and speed up learning in many cases.

We then present a novel exploration strategy, denoted COIN, for

𝑄-learning algorithms [69, 70]. COIN performs continual optimistic

initialization of the 𝑄-values through scaled optimistic initializa-

tions at łappropriatež steps. COIN is designed to overcome a major

shortcoming in standard optimistic initialization [40, 42, 61] while

preserving its beneficial traits. To the best of our knowledge, COIN

is the first general exploration strategy that satisfies properties P1,

P2, and P4 while obviating P3. We demonstrate the implications

of satisfying these properties using the designed bridge crossing

problem. We then present two variants of COIN, (V1) vanilla that

is applicable to tabular 𝑄-learning and (V2) dual-COIN that is ap-

propriate for𝑄-learning with approximation. Lastly, we provide an

empirical study comparing COIN against popular existing explo-

ration strategies on benchmark tasks. We demonstrate that COIN is

a general exploration strategy that scales to a range of tasks, both

with dense and sparse reward functions. In particular, empirical

results show that COIN performs consistently better or at par with

existing strategies on domains with sparse feedback.



2 PRELIMINARIES

2.0.1 Markov decision processes: Stochastic control problems are

commonly formulated as Markov decision processes (MDPs) [49]

represented by ⟨S,A,P, 𝑅,𝛾⟩ where S is the state space, A is the

action space, P : S × A × S → [0, 1] is the transition function,

𝑅 : S × A → R is the reward function, and 𝛾 is the discount factor.

An agent is assumed to follow an internal policy, 𝜋 : S → A,

which maps states to actions. At each timestep, 𝑡 , executing a visited

action, 𝑎𝑡 , at the current state, 𝑠𝑡 , leads the agent to a new state, 𝑠𝑡+1,

and results in a feedback signal, 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ), representing the

immediate utility gained from executing 𝑎𝑡 at 𝑠𝑡 . A finite sequence

of actions starting from an initial state 𝑠0,
1 results in an episode,

𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝑇 ). The cumulative discounted rewards

thus obtained over 𝜏 , also known as the episodic return, is defined

as R(𝜏) =
∑𝑇
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ). The expected return for a policy 𝜋

is 𝐽 (𝜋) = E𝜏∼𝜋 [R(𝜏)]. The optimal policy, 𝜋∗, is the policy that

maximizes 𝐽 , i.e., 𝜋∗ = argmax𝜋 𝐽 (𝜋).

2.0.2 𝑄-learning: The action-value function of𝜋 , denoted𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ),

is the expected return over trajectories generated by executing 𝑎𝑡 at

𝑠𝑡 and then following 𝜋 from 𝑠𝑡+1 onward. The optimal 𝑄-function,

𝑄𝜋∗ (𝑠𝑡 , 𝑎𝑡 ) is concisely denoted by𝑄
∗ (𝑠𝑡 , 𝑎𝑡 ). Off-policy𝑄-learning

algorithms update 𝑄∗ at each timestep via temporal difference (TD)

learning [67, 69, 70], given by

𝑄∗
(𝑘+1)

(𝑠𝑡 , 𝑎𝑡 ) := 𝑄∗
(𝑘 )
(𝑠𝑡 , 𝑎𝑡 )

+ 𝛼 (𝑘 )

(

𝑟𝑡 + 𝛾 max
𝑎′

𝑄∗
(𝑘 )
(𝑠𝑡+1, 𝑎

′) −𝑄∗
(𝑘 )
(𝑠𝑡 , 𝑎𝑡 )

)

(1)

where 𝛼 denotes the learning rate and 𝑘 denotes the 𝑄-update

iteration for (𝑠𝑡 , 𝑎𝑡 ) pairs. The term, 𝑟𝑡 + 𝛾 max𝑎′ 𝑄
∗
(𝑘 )
(𝑠𝑡+1, 𝑎

′) −

𝑄∗
(𝑘 )
(𝑠𝑡 , 𝑎𝑡 ), is also known as the TD-error. 𝑄-learning converges

to 𝜋∗ with probability 1 provided that the following conditions hold,

(1) the learning rate iswell-behaved, i.e.,
∑

𝑘 𝛼 (𝑘 ) = ∞,
∑

𝑘 𝛼
2
(𝑘 )

< ∞,

and, (2) every state-action pair is visited infinitely often, i.e., every

(𝑠, 𝑎) pair is visited an infinite number of times at the limit [13, 32].

While addressing Condition (1) is trivial, a plethora of effective

exploration strategies [34, 60, 67] was previously presented for

addressing Condition (2).

2.0.3 Off-policy learning: RL algorithms are designed to optimize

a target policy, 𝜋 . Nonetheless, they might use a different policy, de-

noted 𝜂, to explore the environment. We refer to 𝜂 as the exploration

strategy which is a mapping from states to actions. RL algorithms

which provide policy convergence guarantees only for the case

where 𝜂 ≡ 𝜋 are known as on-policy algorithms [43, 54, 55], else

(allowing 𝜂 to differ from 𝜋 ), they are denoted off-policy [30, 38, 44].

𝑄-learning is a prominent example of an off-policy algorithm.While

the target policy is defined by 𝜋 (𝑠) := argmax𝑎 𝑄 (𝑠, 𝑎), in many

cases the exploration strategy is different. For example, 𝑄-learning

is often paired with an 𝜖-greedy exploration strategy [60].

2.1 Related work

We follow the taxonomy presented by Amin et al. [4] to briefly

discuss the major advantages and shortcomings of common explo-

ration strategy classes for 𝑄-learning.

1In general, 𝑠0 might be sampled from an initial state distribution.

2.1.1 C1: Sampling-based exploration: 𝜂 (𝑠) = 𝑎 ∼ 𝑓 (𝑄 (𝑠, ·)), for a

probability density function, 𝑓 .

In sampling-based exploration strategies, actions are randomly

visited, e.g., uniformly (𝜖-greedy) [60], based on a distribution de-

rived from TD-errors [61, 65, 66], or from a Boltzmann distribution

over the Q-values [11, 39, 70, 71]. These strategies guarantee that

all state-action pairs will be visited infinitely often. However, prior

work has shown that such exploration strategies, in practice, are

sample inefficient in finding the optimal solution in long horizon

tasks, possibly hampering convergence to 𝜋∗ [24, 58].

2.1.2 C2:Uncertainty-based exploration: 𝜂 (𝑠) = argmax𝑎 [𝑄 (𝑠, 𝑎)+

𝑈 (𝑠, 𝑎)], for an uncertainty estimator,𝑈 .

Adding an exploration bonus to the Q-values based on the Opti-

mism in the Face of Uncertainty (OFU) principle [33, 64] is a promi-

nent example of this category of exploration strategies. Upper Con-

fidence Bounds (UCBs) [6] keeps a count of the state-action visi-

tation [33, 50, 59] or empirical estimates of reward and transition

probability [7] amongmany others as a proxy for exploration bonus.

Many curiosity-driven exploration [12, 17, 47] methods also fall

under this category. While providing desired performance guar-

antees, such approaches come at the cost of additional memory

requirements for storing state-action visitation counts [6, 7]. Alter-

natively, they are heavily dependent on the accuracy of an estimator

approximating state-action visitation counts [28, 63].

2.1.3 C3: Optimistic initialization-based exploration: 𝜂 (𝑠) =

argmax𝑎 𝑄 (𝑠, 𝑎).

This is a unique class of exploration strategies as 𝜂 (𝑠) equals

the target policy of 𝑄-learning. Exploration strategies belonging

to this class induce effective exploration through perturbation(s)

to the 𝑄-values. They promote exploration via optimistic initializa-

tion in which unvisited (𝑠, 𝑎) pairs are assumed to lead to the best

possible return [15, 61]. A few optimistic initialization methods

use estimates of the environment dynamics and reward function to

assign optimistic values uniformly to all states [15] or only to un-

known states [26, 62]. Alternatively, adding a fixed łbonusž to the

𝑄-function once at the start of training via reward shaping has been

shown to induce optimistic initialization [58]. Sun et al. [58] demon-

strate, through empirical results, that when used in conjunction

with a sampling-based strategy, it results in improved exploration

leading to better sample efficiency in 𝑄-learning-based algorithms.

However, it is unclear whether their proposed approach would

perform similarly in the absence of a sampling-based strategy (they

use 𝜖-greedy in conjunction with their proposed approach). Using

any sampling-based strategy, in theory, introduces limitations (as

mentioned previously in this section).

3 PROPERTIES OF EXPLORATION
STRATEGIES

We consider 4 properties, P1-4, of exploration strategies. We use

𝑃𝑟𝑖 (𝑠, 𝑎) to denote the probability of visiting a state-action pair

(𝑠, 𝑎) during episode 𝑖 , i.e., 𝑃𝑟 [(𝑠, 𝑎) ∈ 𝜏𝑖 ], under a given exploration

strategy. Note that exploration strategies might evolve over time.

Consequently, for a given (𝑠, 𝑎) pair, 𝑃𝑟𝑖 (𝑠, 𝑎) might be different

from 𝑃𝑟 𝑗 (𝑠, 𝑎) where 𝑖 ≠ 𝑗 .



Table 1: Comparison of exploration strategies. We specify the category under which an exploration strategy (‘Exp. strategy’)

falls as described in Section 2.1. We highlight which of the properties among coverage, infinite often visitation (‘∞-often’), and

curiosity is satisfied by each of the exploration strategies. We indicate whether each of them requires visitation tracking (‘No

vis. track.’). ‘Hyperparam.’ is the hyperparameter essential to the exploration strategy.

Exp. strategy Category Coverage ∞-often No vis. track. Curiosity Hyperparam.

𝜖-greedy C1 ✓ ✓ ✓ × 𝜖

Boltzmann C1 ✓ ✓ ✓ × Temperature

UCB C2 ✓ ✓ × ✓ Bonus coeff. (𝐶𝑝 )

Optimistic init. C3 ✓ × ✓ ✓ Initial 𝑄-values

COIN C3 ✓ ✓ ✓ ✓ Bonus (𝑏)

Definition 1 (P1: Coverage at limit). An exploration strategy is said

to provide coverage at limit if∀(𝑠, 𝑎) ∈ S×A,
∏∞

𝑖=0 (1 − 𝑃𝑟𝑖 (𝑠, 𝑎)) =

0. 2

Any exploration strategy that does not provide coverage at the

limit cannot guarantee convergence to the optimal policy as some

actions along the optimal sequence of actions might never have

been visited [61].

Definition 2 (P2: Infinite-often). Following the Borel-Cantelli

lemma [19, 22], an (𝑠, 𝑎) pair is said to be visited infinitely often if
∑∞
𝑖=0 𝑃𝑟𝑖 (𝑠, 𝑎) = ∞. An exploration strategy is said to be ‘Infinite-

often’ if every (𝑠, 𝑎) pair is visited infinitely often.

Note that an exploration strategy with the infinite-often property

implies that it also has the property of coverage at the limit but not

vice-versa. Various RL algorithms based on Watkins [70] and Singh

et al. [56] guarantee convergence to the optimal policy if infinite-

often visitation is satisfied [51]. Note that there is a difference

between the convergence of 𝜂 and 𝜋 . While 𝜂 is not required to,

and usually does not converge to 𝜋∗, 𝜋 can still converge to 𝜋∗.

Definition 3 (P3: Visitation tracking). An exploration strategy us-

ing visitation tracking continually tracks (or estimates) the number

of times each (𝑠, 𝑎) pair was visited.

See C2 in Section 2.1.2 for examples of exploration strategies that

track the number of (𝑠, 𝑎) visits either explicitly in tabular MDPs

or implicitly using an estimator in continuous state spaces.

Definition 4 (P4: Curiosity). An exploration strategy possesses

curiosity if action visitation precedence at a given state is inversely

correlated, in expectation, with the number of times that action

was visited. That is, for any state 𝑠 and action 𝑎, the probability

(sampling-based exploration) or score (hardmax exploration) for

visiting 𝑎 at 𝑠 monotonically decreases, in expectation, with the

number of visits to 𝑎. In general, this may also occur after a bounded

number of initial visits to 𝑎 at 𝑠 .

Exploration strategies possessing the property of curiosity have

been shown to outperform vanilla sampling-based methods on

many hard-exploration tasks [18]. However, previous work provide

vague definitions for curiosity. For example, the seminal curiosity

work [47] defines this property as łintrinsic motivation/rewardž.

Such reward is further defined as łMost formulations of intrinsic

2This paper assumes that all states in S can be reached with non-zero probability.

reward can be grouped into two broad classes: 1) encourage the

agent to explore ‘novel’ states [12, 41, 48] or, 2) encourage the

agent to perform actions that reduce the error/uncertainty in the

agent’s ability to predict the consequence of its own actions (i.e.

its knowledge about the environment) [20, 31, 45, 52, 53, 57]ž. As

a result, we provide a precise definition of curiosity (P4) that is

general (applying to known curiosity-based algorithms) while being

unambiguous. In common sampling-based exploration strategies

(𝜖-greedy and Boltzmann), 𝑄-values for specific (𝑠, 𝑎) pairs may

increase over visitations. This would lead to a violation of P4. On

the other hand, exploration in UCB-based algorithms, for instance,

UCB1 [6] defines 𝜂 (𝑠) = argmax𝑎

[

𝑄 (𝑠, 𝑎) +𝐶𝑝

√︃

ln𝑛
𝑁 (𝑠,𝑎)

]

, where

𝑛 is the total number of learning timesteps taken by the RL agent

and 𝑁 (𝑠, 𝑎) is the number of times an (𝑠, 𝑎) pair has been visited.

If 𝐶𝑝 is set to a large enough value, the score for visiting 𝑎 at

𝑠 monotonically decreases with the number of visits to 𝑎, hence

satisfying P4. In optimistic initialization, with sufficiently large

initialization of 𝑄-values, the expected TD-error is non-positive. 3

Since action visitation in optimistic initialization relies only on

a hardmax over the 𝑄-values, 𝑄 (𝑠, 𝑎) for an action 𝑎 visited at 𝑠

with a small 𝛼 , in expectation, decreases monotonically following

Equation 1. Hence, optimistic initialization satisfies P4.

Table 1 presents a summary of exploration strategies and their

associated properties.

3.1 Motivating example: the bridge problem

We further demonstrate the significance of curiosity on a toy exam-

ple containing a high proportion of terminal states with undesirable

outcomes. Consider the gridworld shown in Figure 1, which we

refer to as the bridge crossing problem. We model it as an MDP.

In the stationary bridge problem illustrated in Figure 1a, there are

two terminating goals; one optimal (green cell at the right extreme)

and another suboptimal (orange cell at the left extreme) along with

many terminating negative outcomes for falling off the bridge (red

cell). Assuming that the start state is fixed, an issue in this domain

is that it is easy for the agent to converge on a suboptimal policy

leading to the suboptimal goal, or take a long time to learn the

optimal policy. This issue is particularly exacerbated when the hori-

zon of the bridge, 𝐻 , is increased and sampling-based exploration

strategies are deployed.

3See Even-Dar and Mansour [26] for the sufficiently large𝑄-initialization required to
guarantee convergence.



(a) Stationary bridge (𝐻 ) problem.

(b) Non-stationary bridge (𝐻 ) problem.

Figure 1: The bridge (𝐻 ) problem, where 𝐻 corresponds to

the number of columns in the grid. The red, orange, and

green cells are terminal states with rewards of -10, 10, and

30 respectively. Non-terminal cells furnish an immediate

reward of 0. The start state is fixed at the cell markedwith the

stick figure (agent) and the column number is decided using

the rule ⌊(𝐻 − 1)/2⌋. The arrows represent the 4 actions, ‘up’,

‘down’, ‘left’, and ‘right’, that an agent can take at each cell. (b)

At some point in time, the stationary bridge (𝐻 ) changes to

a non-stationary bridge (𝐻 ). The blue cell is a new terminal

state with a reward of 40.

We demonstrate the shortcomings of popular exploration strate-

gies listed in Table 1 using the bridge problem and explain how

optimistic initialization addresses them.

3.1.1 Sampling-based: In this family of exploration strategies (Sec-

tion 2.1.1) the probability of the agent following the greedy ac-

tion over a sequence of states diminishes exponentially as 𝑇 in-

creases. Reaching the optimal goal in this example clearly requires

𝑇 ≥ 𝐻 − ⌊(𝐻 − 1)/2⌋ steps. The probability of the agent reaching

the optimal goal state by following the optimal greedy policy in

an episode is lim𝑇→∞
∏𝑇

𝑡=0 𝑃𝑟 (𝑎𝑡 |𝑠𝑡 , 𝜋
∗) = lim𝑇→∞ (1 − 𝜖)

𝑇
= 0,

where 𝜖 is the non-zero probability of selecting a non-greedy action

at each step. That is, the probability of reaching the optimal goal

state, diminishes exponentially with the bridge length even when

𝜋∗ is known. This results in sampling-based exploration strategies

becoming sample-inefficient in similar settings [27, 58].

3.1.2 Optimistic initialization-based: Since optimistic initialization

possesses curiosity, it encourages the RL agent to explore unvisited

(𝑠, 𝑎) pairs. This, in practice, results in optimistic initialization being

sample-efficient on the bridge problems.

3.1.3 Limitations of optimistic initialization: Optimistic initializa-

tion is known to potentially converge to suboptimal solutions in

Algorithm 1: COIN

Input: discount factor 𝛾 , learning rate 𝛼 , maximum

learning steps 𝑇

Initialize: action-value function 𝑄

1 for 𝑡 ← 1 to 𝑇 do

2 𝑎𝑡 ← argmax𝑎 𝑄 (𝑠𝑡 , 𝑎);

3 Execute 𝑎𝑡 and observe reward 𝑟𝑡 and state 𝑠𝑡+1;

4 𝑦𝑡 ←

{

𝑟𝑡 , 𝑠𝑡+1 = 𝑠𝑇

𝑟𝑡 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎
′), else

;

5 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 (𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑡 ));

6 if 𝑡 = appropriate 𝑏 addition step then

; /* COIN iteration */

7 𝑏 ← max𝑠 {max𝑎 𝑄 (𝑠, 𝑎) −min𝑎 𝑄 (𝑠, 𝑎)} + 𝜖𝑏 ;

8 𝑄 ← 𝑄 + 𝑏 ; /* Bonus (𝑏) update */

9 end

10 end

stochastic environments since it does not hold the infinite-often

property [26, 27]. In such scenarios, an appropriate 𝑄-initialization

may be a tedious hyperparameter to tune. Furthermore, optimistic

initialization has limited efficacy in non-stationary MDPs as explo-

ration ceases when Q-values converge.

4 CONTINUAL OPTIMISTIC INITIALIZATION

We turn to present our proposed continual optimistic initialization

exploration strategy, denoted COIN, an optimistic initialization-

based exploration strategy, to address the shortcomings of łvanillaž

optimistic initialization. As such, COIN follows 𝜂 (𝑠) = argmax𝑎
𝑄 (𝑠, 𝑎) while periodically augmenting the 𝑄-values in a way that

achieves effective exploration.

Based in𝑄-learning, COIN guarantees that the𝑄-values for each

(𝑠, 𝑎) pair along all the greedy trajectories will converge after a finite

number of𝑄-value updates [69]. We define a greedy trajectory as a

sequence of (𝑠, 𝑎) pairs obtained when following the greedy policy,

i.e., 𝜋𝑔 (𝑠) = argmax𝑎 𝑄 (𝑠, 𝑎). Once 𝑄-values converge along all

greedy trajectories, we add a positive bonus, 𝑏, to the 𝑄-function

across all (𝑠, 𝑎) ∈ S × A. We term the step at which such conver-

gence occurs as an łappropriate 𝑏 addition stepž. Intuitively, adding

𝑏 is analogous to initializing the 𝑄-function with optimistic values,

albeit continually. A pseudocode of COIN has been provided in

Algorithm 1 respectively.

Definition 5 (Appropriate 𝑏 addition step). We define an appro-

priate 𝑏 addition step as the training step at which the maximum

TD-error along the greedy trajectories is within an 𝜖 threshold.

We also call an appropriate 𝑏 addition as a COIN iteration to

reduce verbosity. Note there may be multiple episodes between two

consecutive COIN iterations.

4.0.1 𝑏 setting in COIN:. Although any positive 𝑏 is sufficient for

the theoretical properties of COIN to hold, empirically we observe

that setting 𝑏 such that

𝑏 = max
𝑠∈S𝜂

{

max
(𝑠,𝑎∈A)

𝑄 (𝑠, 𝑎) − min
(𝑠,𝑎∈A)

𝑄 (𝑠, 𝑎)

}

+ 𝜖𝑏 ,



where S𝜂 is the set of states reachable under 𝜂 and 𝜖𝑏 is a small

positive value, results in sample-efficient learning. This heuristic

makes all actions along the greedy trajectory to be optimistic with

respect to the current 𝜋𝑔 .

More formally, COIN follows: every COIN iteration, set ∀(𝑠, 𝑎) ∈

S×A, 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) +𝑏. Adding 𝑏 to the𝑄-function continually

at an infinite number of COIN iterations ensures infinite-often

visitation (P2) (see Lemma 1).

4.1 Theoretical properties of COIN

The following theoretical properties and analysis apply to tabular𝑄-

learning. While COIN can be coupled with function approximation

as we show later in section 5.2, our theoretical claims might no

longer be guaranteed.

Lemma 1 (COIN ensures infinite often visitation (P2)). As-

suming that the 𝑄-function is updated at each COIN iteration, any

(𝑠, 𝑎) ∈ S × A must be visited infinitely often under COIN, i.e.,
∑∞
𝑖=0 𝑃𝑟𝑖 (𝑠, 𝑎) = ∞.

Proof. We prove via induction that any (𝑠, 𝑎) pair must be vis-

ited within a bounded number of COIN iterations. As a result, an

infinite number of iterations would result in infinite-often visita-

tion.

Base case: (every action, 𝑎 ∈ A, will be visited at 𝑠 after a bounded

number of visitations to 𝑠 , and specifically for 𝑠 = 𝑠0): By contradic-

tion, we assume some action, 𝑎′, at 𝑠 will not be visited within a

finite number of COIN iterations.

Notation:

• 𝑄 (𝑜𝑙𝑑 ) :𝑄-function at the end of the COIN iteration when 𝑎′

was last visited at 𝑠 or iteration 0 if it was never visited.

• 𝑄 (𝑚) : 𝑄-function after𝑚 COIN iterations since 𝑎′ was last

visited.

• 𝑎𝑔 : argmax𝑎 𝑄
(𝑚) (𝑠, 𝑎).

Since 𝑎′ hasn’t been visited by the greedy policy in 𝑚 COIN

iterations,

𝑄 (𝑚) (𝑠0, 𝑎
𝑔) > 𝑄 (𝑚) (𝑠0, 𝑎

′), ∀𝑚 (2)

𝑄 (𝑚) (𝑠0, 𝑎
′) ≥ 𝑄 (𝑜𝑙𝑑 ) (𝑠0, 𝑎

′) +𝑚𝜖𝑏 (3)

As 𝑄 (𝑚) is updated following Equation 1, for a low enough 𝛼 ,

𝑄 (𝑚) (𝑠0, 𝑎
𝑔) ≤ 𝑄∗ (𝑠0, 𝑎

∗) ≤ 𝐶 (4)

Since, R is bounded, 𝐶 is finite. From Equations (2) and (3) it must

be that ∃𝑚 such that,

𝑄 (𝑜𝑙𝑑 ) (𝑠0, 𝑎
′) +𝑚𝜖𝑏 > 𝐶 (5)

Equations (2) and (3), in conjunction, contradict (5) as they imply

𝐶 < 𝐶 . Hence, 𝑎′ must be visited within a finite number COIN iter-

ations. Further, since 𝑏 > 0, an infinite number of COIN iterations

will result in 𝑎′ being visited infinitely often.

Induction assumption: (every action, 𝑎 ∈ A, at 𝑠𝑛−1 will be

visited after a bounded number of visitations to 𝑠𝑛−1, where 𝑠𝑛−1 is

any state reachable from 𝑠0 in 𝑛 steps.)

Induction step: Following the (general claim) base case, every

action at 𝑠𝑛−1 will be visited infinitely often. Hence, for any state,

𝑠𝑛 , if P(𝑠𝑛 |𝑠𝑛−1, 𝑎) > 0, it is reachable in (𝑛+1) steps from 𝑠0 with a

non-zero probability. As such, the general base case can be invoked

again. That is, any 𝑎′ will be visited at 𝑠𝑛 an infinite number of

times. □

Corollary 1 (COIN satisfies coverage at limit (P1)). Assum-

ing that the𝑄-function is updated at each COIN iteration, any (𝑠, 𝑎) ∈

S × A must be selected under COIN, i.e.,
∏∞

𝑖=0 (1 − 𝑃𝑟𝑖 (𝑠, 𝑎)) = 0.

Corollary 1 follows from Lemma 1 since infinite-often visitation

implies coverage at limit.

Remark 1. COIN has the property of curiosity.

After a finite number of COIN iterations, 𝑄 (𝑠, 𝑎) for any unvis-

ited (𝑠, 𝑎) pair must be overestimated as its𝑄-values are continually

inflated. For a small enough 𝛼 , 𝑄 (𝑠, 𝑎) for visited (𝑠, 𝑎) pairs are

also overestimated after a finite number of COIN iterations as any

reduction in their 𝑄-values will be overcome by the addition of 𝑏

to the 𝑄-function. Once, the 𝑄-values for all (𝑠, 𝑎) pairs are over-

estimated, they are updated following Equation 1 with a negative

TD-error, in expectation. This leads to a monotonic decrease in the

𝑄-values, in expectation, with each visitation to 𝑎.

4.2 Extension of COIN to non-stationary MDPs

COIN can be interpreted as a model-free restarting strategy for

non-stationary MDPs (if 𝑏 were held fixed and equivalent to op-

timistic initialization). Such strategies have been suggested pre-

viously for non-stationary episodic MDPs and multi-armed ban-

dit problems [3, 14]. COIN may be a suitable candidate for non-

stationary MDPs since it has infinite-often property. However,

convergence of RL algorithms in non-stationary MDPs is an ac-

tive branch of research as optimal convergence proofs of RL algo-

rithms often assume stationary transition and reward functions [46].

Notably, prior work has shown value function-based RL to pro-

duce policies "close" to optimal in a special class of non-stationary

MDPs [23]. Section 4.3.2 briefly discusses the effectiveness of COIN

on a toy non-stationary MDP. However, an in-depth analysis is left

for future work.

4.3 COIN on the bridge problem

We provide empirical results for COIN and the exploration strate-

gies presented in Table 1 when coupled with tabular 𝑄-learning

on a few variants of the bridge problem. Later in Section 5.2, we

present results on domains with continuous state spaces.

Since COIN has a deterministic policy, it avoids issues faced by

sampling-based exploration strategies. COIN ’s infinite-often visita-

tion property overcomes the limitation of optimistic initialization.

Note that it is expected to observe łdipsž in the learning curves

with COIN each time a 𝑏 addition is performed as it perturbs the

𝑄-values and encourages the greedy policy to explore. In order to

clearly present these trends, we perform a 𝑏 addition after a fixed

number of episodes instead of our proposed 𝑏 addition step from

Definition 5. 𝜖𝑏 and 𝜖 are set to 0.1 and 0.05 respectively.

4.3.1 Results for stationary bridge: Figures 2a and 2b show results

for the case where 𝐻=15 with deterministic and stochastic transi-

tions respectively. In the deterministic case, it can be observed that

all strategies except 𝜖-greedy find the optimal solution within 6,000

episodes of learning. While in the stochastic case, Optimistic init.

fails as learning progresses since it suffers from the issue explained



(a) Det. stationary (H=15) (b) Stoc. stationary (H=15) (c) Det. stationary (H=31)

(d) Stoc. stationary (H=31) (e) Det. non-stationary (H=7) (f) Stoc. non-stationary (H=7)

Figure 2: Learning curves of exploration strategies listed in Table 1 on the bridge problem. The shaded region represents 2

standard deviations of the return over 5 trials. The curves have been smoothed for visual clarity. ‘Det.’ and ‘Stoc.’ refer to a

deterministic and stochastic MDP respectively. The probability of the agent ‘slipping’ is set to 0.01 in the stochastic setting.

(e)-(f) Non-stationarity is introduced in episode 5,000. A 𝑏 addition is performed after every 2,000 and 4,000 episodes of learning

in the deterministic (a), (c), (e) and stochastic (b), (d), (f) cases respectively. In all the learning curves, the large dips in COIN

occur when a 𝑏 addition is performed.

in Section 3.1.3 whereas COIN does not since it visits (𝑠, 𝑎) pairs

infinitely often via continual 𝑏 additions. The results in Figures 2c

and 2d, where𝐻=31, offer similar insights but in addition, highlight

the advantages of optimistic initialization (Figure 2c) and COIN. We

speculate that the advantage stems from their curiosity property.

Note that we use a count-based intrinsic reward proposed in Belle-

mare et al. [12] and combine it with 𝜖-greedy exploration (Curious

𝜖-greedy). This approach leads to improved learning efficiency over

𝜖-greedy demonstrating that curiosity is helpful in this domain.

4.3.2 Results for non-stationary bridge. Although optimistic ini-

tialization with 𝑄-learning can converge to an optimal policy, it

is known to potentially reach a local optimum when the MDP is

non-stationary. Extending the bridge problem, let a new optimal

goal emerge at a new location. At the same time, a new path is

added such that it leads to the new optimal solution from the start

state. An illustration of the new problem is shown in Figure 1b. We

allow 𝑄-learning to first converge on the old setting and require

it to adjust to the new setting. The results in Figures 2e and 2f on

the non-stationary bridge (𝐻=7) tasks show that all methods except

COIN fail to reach the optimal solution. Since optimistic initializa-

tion does not visit state-action pairs infinitely often, it fails to find

the new optimal solution whereas COIN succeeds in doing so.

These results positively answer empirical questions on the capa-

bility of COIN in solving a simple instance of a non-stationary MDP

by updating 𝑏 continually, demonstrating its ability to successfully

address a major drawback of łvanillaž optimistic initialization.

5 DUAL-COIN

We present dual-COIN, an alternative view of COIN, where, instead

of adding 𝑏 to the 𝑄-function, we modify the reward function to

induce a similar effect. Consider the case where for𝑏 > 0 the reward

function is updated such that 𝑅−𝑏 := 𝑅 − 𝑏. That is we subtract a

positive constant from the reward function. It can be shown that the

𝑄-function learned using𝑄-learning converges to𝑄−𝑏 := 𝑄 − 𝑏
1−𝛾 ,

where 𝑄 is the 𝑄-function learned on 𝑅 (see Lemma 2 for proof). A

similar observation was also presented in prior work [42, 58] for

the optimistic initialization case.

Note that, when the MDP has a large or continuous state space,

a function approximator is commonly utilized to represent the 𝑄-

function. Updating the 𝑄-function to 𝑄 (𝑠, 𝑎) := 𝑄 (𝑠, 𝑎) + 𝑏 for all

(𝑠, 𝑎) ∈ S × A might become intractable in this case. Dual-COIN

makes COIN practical in such settings.



5.1 Theoretical properties of dual-COIN

As stated in section 4.1, we remind the reader that the following

theoretical properties and analysis apply to tabular 𝑄-learning.

Lemma 2 (Additive property of 𝑄-values). If a constant, 𝑏, is

uniformly added to 𝑅, 𝑄-values updated using 𝑄-learning converge

to 𝑄 + 𝑏
1−𝛾 for an infinite-horizon MDP.

Proof.

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = E

[

𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄 (𝑠𝑡+1, 𝑎𝑡+1)

]

Let 𝑅(𝑠, 𝑎) := 𝑅(𝑠, 𝑎) + 𝑏,∀(𝑠, 𝑎) ∈ S × 𝑎 ∈ A and 𝑄+𝑏 be the

new 𝑄-function.

𝑄+𝑏 (𝑠𝑡 , 𝑎𝑡 ) = E

[

𝑟𝑡 + 𝑏 + 𝛾 max
𝑎𝑡+1

𝑄+𝑏 (𝑠𝑡+1, 𝑎𝑡+1)

]

= E

[

𝑟𝑡 + 𝑏 + 𝛾

(

𝑟𝑡+1 + 𝑏 +max
𝑎𝑡+2

𝑄+𝑏 (𝑠𝑡+2, 𝑎𝑡+2)

)]

= 𝑏

𝑇
∑︁

𝑡=1

𝛾𝑡 + E

[

𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄 (𝑠𝑡+1, 𝑎𝑡+1)

]

= 𝑏
1 − 𝛾𝑇

1 − 𝛾
+𝑄 (𝑠𝑡 , 𝑎𝑡 )

For an infinite horizon MDP, i.e., 𝑇 →∞,

𝑄+𝑏 (𝑠𝑡 , 𝑎𝑡 ) = 𝑄 (𝑠𝑡 , 𝑎𝑡 ) +
𝑏

1 − 𝛾

□

5.1.1 𝑏 setting in dual-COIN:.

𝑏𝑑𝑢𝑎𝑙 =

(

1 − 𝛾

1 − 𝛾𝑇

)

max
𝑠∈S𝜂

{

max
(𝑠,𝑎∈A)

𝑄 (𝑠, 𝑎) − min
(𝑠,𝑎∈A)

𝑄 (𝑠, 𝑎)

}

+ 𝜖𝑏 ,

where S𝜂 is set of the states visited under 𝜂 so far and 𝜖𝑏 is a small

positive value.

Lemma 3 (Dual-COIN ensures infinite often visitation (P2)).

Assuming that𝑅 is updated at each COIN iteration, any (𝑠, 𝑎) ∈ S×A

must be visited infinitely often under dual-COIN, i.e.,
∑∞
𝑖=0 𝑃𝑟𝑖 (𝑠, 𝑎) =

∞.

Proof. We prove via induction that any (𝑠, 𝑎) pair must be vis-

ited within a bounded number of COIN iterations. 4 As a result, an

infinite number of iterations would result in infinite-often visita-

tion.

Base case: (every action, 𝑎 ∈ A, will be visited at 𝑠 after a bounded

number of visitations to 𝑠 , and specifically for 𝑠 = 𝑠0):

Notation:

• 𝑄 (𝑚) : 𝑄-function after𝑚 COIN iterations since 𝑎′ was last

visited or never visited.

• 𝑎𝑔 : argmax𝑎 𝑄
(𝑚) (𝑠, 𝑎).

Let 𝑎′ be unvisited by the greedy policy in𝑚 COIN iterations,

𝑄 (𝑚) (𝑠0, 𝑎
′) < max

𝑎
𝑄 (𝑚) (𝑠0, 𝑎), ∀𝑚 (6)

4In dual-COIN, a COIN iteration corresponds to subtracting 𝑏𝑑𝑢𝑎𝑙 from 𝑅.

As𝑄 (𝑚) (𝑠0, 𝑎
𝑔) is updated following Equation 1, from Lemma 2,

for a low enough 𝛼 ,

max
𝑎

𝑄 (𝑚) (𝑠0, 𝑎) < 𝑄∗
(

argmax
𝑎

𝑄 (𝑚) (𝑠0, 𝑎)
)

−𝑚𝜖𝑏

(

1 − 𝛾𝑇

1 − 𝛾

)

(7)

Since, R is bounded, 𝑄∗ is bounded. From Equations (6) and (7)

it must be that ∃𝑚 such that,

𝑄 (𝑚) (𝑠0, 𝑎
′) = max

𝑎
𝑄 (𝑚) (𝑠0, 𝑎) (8)

Hence, 𝑎′ must be visited within a finite number of dual-COIN

iterations. Further, since 𝑏𝑑𝑢𝑎𝑙 > 0, an infinite number of COIN

iterations will occur resulting in 𝑎′ being visited infinitely often.

Induction assumption: (every action, 𝑎 ∈ A, at 𝑠𝑛−1 will be

visited after a bounded number of visitations to 𝑠𝑛−1, where 𝑠𝑛−1 is

any state reachable from 𝑠0 in 𝑛 steps.)

Induction step: Following the (general claim) base case, every

action at 𝑠𝑛−1 will be visited after a bounded number of visitations

to 𝑠𝑛−1. Hence, for any state, 𝑠𝑛 , if P(𝑠𝑛 |𝑠𝑛−1, 𝑎) > 0, it is reachable

in (𝑛 + 1) steps from 𝑠0 with a non-zero probability. As such, the

same argument as the one presented in the base case can be applied.

Thus, 𝑎′ will be visited at 𝑠𝑛 an infinite number of times. □

Corollary 2 (Dual-COIN satisfies coverage at limit (P1)).

Assuming that𝑅 is updated at each COIN iteration, any (𝑠, 𝑎) ∈ S×A

must be selected under dual-COIN, i.e.,
∏∞

𝑖=0 (1 − 𝑃𝑟𝑖 (𝑠, 𝑎)) = 0.

Corollary 2 follows from Lemma 3 since infinite often visitation

implies coverage at the limit.

Remark 2. Dual-COIN has the property of curiosity.

After a finite number of COIN iterations, subtracting 𝑏 from

𝑅 continually leads to underestimated 𝑄-values along the greedy

trajectories. Specifically, as 𝑄-values of visited (𝑠, 𝑎) pairs decrease,

the expected TD-error is negative. Since action visitation in COIN

relies only on a hardmax over the 𝑄-values, similar to optimistic

initialization, 𝑄 (𝑠, 𝑎) for an action 𝑎 visited at 𝑠 with a small 𝛼 , in

expectation, decreases monotonically.

5.2 Empirical study

5.2.1 Domains: We evaluate dual-COIN on 6 benchmark domains

with continuous state spaces, from the OpenAI gym [16] and Mini-

Grid [21], covering both dense and sparse reward functions. The

domains with sparse reward functions were also used in Sun et al.

[58] to demonstrate the effectiveness of their proposed optimistic

initialization-based approach on tasks with sparse rewards. In 3 of

the 4 OpenAI gym domains, i.e., ‘Cartpole-v1’, ‘Acrobot-v1’, and

‘LunarLander-v2’ have dense reward functions. The 4th domain,

‘MountainCar-v0’, has a sparse reward function. A positive reward

is received by the agent only upon reaching the goal state, and a

negative reward at all other states. In the MiniGrid domains, i.e.,

‘Empty-Random-6x6-v0’ and ‘MultiRoom-N2-S4-v0’ the state is

only partially observable (agent-local view of the grid only). Mini-

Grid domains also have a sparse reward function where a positive

reward is given only on reaching the goal state and 0 otherwise.

5.2.2 Baselines. We use exploration strategies belonging to cate-

gories C1 (sampling-based), i.e., 𝜖-greedy, and Boltzmann, and C3



(a) Cartpole-v1 (b) Acrobot-v1 (c) LunarLander-v2

(d) MountainCar-v0 (e) Empty-Random-6x6-v0 (f) MultiRoom-N2-S4-v0

Figure 3: Learning curves of exploration strategies with vanilla DQN on benchmark domains. The shaded region represents 2

standard deviations of the return over 5 trials. The curves have been smoothed for visual clarity and hence dual-COIN dips

may not be prominent. Dual-COIN consistently performs on par or better compared to the baseline exploration strategies.

(optimism-based), i.e., Optimistic (norm.) [42], as baselines for com-

parison since, similar to COIN, they do not require learning any

additional estimator. We employ vanilla deep 𝑄-network learning

(DQN) [44] adapted from Achiam [1] as the underlying learning

algorithm for all of the baselines. These experiments aim to demon-

strate that COIN is a general exploration strategy and can perform

competitively with respect to popular exploration strategies with-

out additional assumptions.

5.2.3 Results. The graphs presented in Figure 3 provide a posi-

tive answer to the generalizability and competitiveness of dual-

COIN. Dual-COIN outperforms the baselines in terms of sample

efficiency on 4 out of 6 domains, namely, ‘CartPole-v1’ (Figure 3a),

‘LunarLander-v2’ (Figure 3c), ‘MountainCar-v0’ (Figure 3d), and

‘MultiRoom-N2-S4-v0’ (Figure 3e) while performing on par in the

remaining domains. In particular, we notice that in the sparse re-

ward tasks, dual-COIN consistently has better sample efficiency.

We believe that dual-COIN ’s property to induce curiosity plays a

major role in this. Complete details of the domains, hyperparameter

settings of dual-COIN and the baselines, and the codebase for these

experiments are available at https://github.com/Pi-Star-Lab/coin. 5

5In practice, we perform a COIN iteration when the average episodic returns are fairly
stable. That is the dispersion index of the returns is less than a threshold.

6 SUMMARY

We present a novel optimistic initialization-based approach, COIN,

possessing a unique set of properties associated with effective ex-

ploration strategies. It performs continual optimistic initialization

of 𝑄-values to overcome the limitations of optimistic initialization

in stochastic and non-stationary environments. We provide theoret-

ical evidence of COIN possessing infinite-often visitation property

which helps it overcome these limitations. We validate our claims

on the bridge crossing problem. Compared to common existing

exploration strategies, we demonstrate the superiority of COIN in

solving long-horizon stochastic and non-stationary bridge prob-

lems. Extending COIN to continuous state spaces, we then present

dual-COIN. Empirical results on 6 benchmark domains support our

claim that COIN is a general exploration strategy by outperforming

3 common existing exploration strategies on 4 out of 6 domains.

We observe that COIN is more effective than these strategies in

sparse reward benchmark domains which we speculate is a result

of its curiosity-driven behavior.
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