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ABSTRACT as robotics [2, 37], autonomous driving [25, 29, 36], traffic signal

Comprehensive state-action exploration is essential for reinforce-
ment learning (RL) algorithms. It enables them to find optimal
solutions and avoid premature convergence. In value-based RL,
optimistic initialization of the value function ensures sufficient ex-
ploration for finding the optimal solution. Optimistic values lead to
curiosity-driven exploration enabling visitation of under-explored
regions. However, optimistic initialization has limitations in sto-
chastic and non-stationary environments due to its inability to
explore “infinitely-often”. To address this limitation, we propose
a novel exploration strategy for value-based RL, denoted COIN,
based on recurring optimistic initialization. By injecting a continual
exploration bonus, we overcome the shortcoming of optimistic ini-
tialization (sensitivity to environment noise). We provide a rigorous
theoretical comparison of COIN versus existing popular exploration
strategies and prove it provides a unique set of attributes (coverage,
infinite-often, no visitation tracking, and curiosity). We demon-
strate the superiority of COIN over popular existing strategies on a
designed toy domain as well as present results on common bench-
mark tasks. We observe that COIN outperforms existing exploration
strategies in four out of six benchmark tasks while performing on
par with the best baseline on the other two tasks.
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1 INTRODUCTION

Sequential decision problems are commonly modeled as Markov
decision processes (MDP) [49]. A solution to an MDP is a pol-
icy that maps states to actions such that the resulting sequential
behavior is optimal with respect to a given utility function. Re-
inforcement learning (RL) algorithms [61] are designed to solve
MDPs via interactions with the underlying environment. RL algo-
rithms were shown to be effective on a variety of applications such
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control [9, 10, 72], and drilling operations [5, 35, 68]. An RL agent
commonly explores the environment by executing actions and ob-
serving outcomes. The acquired knowledge enables the RL agent to
reason about the optimal policy. RL algorithms commonly require
that the Cartesian product of the state and action spaces is suffi-
ciently explored. Consequently, Exploration strategies are usually
designed to provide some theoretical assurances regarding the state-
action visitation distribution. These assurances result in desirable
learning guarantees [7, 8, 26, 60] relating to, policy convergence,
policy optimality, speed of convergence (sample efficiency), mem-
ory complexity, and regret bounds. Existing exploration strategies
can be divided into three categories (following taxonomy by Amin
et al. [4]) (C1) sampling-based, (C2) visitation-tracking, and (C3)
optimistic initialization-based. Each of these classes has unique
benefits and drawbacks with respect to the following properties;
(P1) state-action space coverage, (P2) infinite-often visitation, (P3)
visitation tracking, and (P4) curiosity.

In this paper, we first study the effectiveness of exploration strate-
gies in a specially designed MDPs denoted bridge crossing problems
(explained later in Section 3.1). These are a class of grid-world
problems, where popular exploration strategies struggle to find the
optimal policy efficiently. We then provide empirical evidence that
curiosity is a key property that helps overcome the challenges in
this problem and is inherently present in optimistic initialization-
based exploration strategies. In essence, curiosity encourages the
agent to visit unseen states and speed up learning in many cases.

We then present a novel exploration strategy, denoted COIN, for
Q-learning algorithms [69, 70]. COIN performs continual optimistic
initialization of the Q-values through scaled optimistic initializa-
tions at “appropriate” steps. COIN is designed to overcome a major
shortcoming in standard optimistic initialization [40, 42, 61] while
preserving its beneficial traits. To the best of our knowledge, COIN
is the first general exploration strategy that satisfies properties P1,
P2, and P4 while obviating P3. We demonstrate the implications
of satisfying these properties using the designed bridge crossing
problem. We then present two variants of COIN, (V1) vanilla that
is applicable to tabular Q-learning and (V2) dual-COIN that is ap-
propriate for Q-learning with approximation. Lastly, we provide an
empirical study comparing COIN against popular existing explo-
ration strategies on benchmark tasks. We demonstrate that COIN is
a general exploration strategy that scales to a range of tasks, both
with dense and sparse reward functions. In particular, empirical
results show that COIN performs consistently better or at par with
existing strategies on domains with sparse feedback.



2 PRELIMINARIES

2.0.1  Markov decision processes: Stochastic control problems are
commonly formulated as Markov decision processes (MDPs) [49]
represented by (S, A, P, R, y) where S is the state space, A is the
action space, P : S X A X S — [0,1] is the transition function,
R: 8 x A — Ris the reward function, and y is the discount factor.
An agent is assumed to follow an internal policy, 7 : S — A,
which maps states to actions. At each timestep, t, executing a visited
action, ay, at the current state, ¢, leads the agent to a new state, s¢41,
and results in a feedback signal, r; = R(ss, a;), representing the
immediate utility gained from executing a; at s;. A finite sequence
of actions starting from an initial state sg,' results in an episode,
T = (80, ao, 10, $1, 41, 71, - - - » ST ). The cumulative discounted rewards
thus obtained over 7, also known as the episodic return, is defined
as R(r) = ZLO Y'R(st, ar). The expected return for a policy 7
is J(r) = Er~x [R(7)]. The optimal policy, ©*, is the policy that
maximizes J, ie., 7% = arg max, J (7).

2.0.2 Q-learning: The action-value function of &, denoted Q” (s, ar),
is the expected return over trajectories generated by executing a; at
s; and then following 7 from s;4; onward. The optimal Q-function,
O™ (s, az) is concisely denoted by Q* (s, a;). Off-policy Q-learning
algorithms update Q* at each timestep via temporal difference (TD)
learning [67, 69, 70], given by

Q?k+1) (st.ar) = Q?k) (st. ar)

+ak) |re+ymaxQpy (se41.0') = Qg (st.ar) | ()

where a denotes the learning rate and k denotes the Q-update
iteration for (s, a;) pairs. The term, r; + y max,y ka) (st+1,a’) —
Q*(‘k) (st ar), is also known as the TD-error. Q-learning converges

to ™ with probability 1 provided that the following conditions hold,
(1) the learning rate is well-behaved, i.e., 3. A(k) = 0, 2k a%k) < oo,
and, (2) every state-action pair is visited infinitely often, i.e., every
(s, a) pair is visited an infinite number of times at the limit [13, 32].
While addressing Condition (1) is trivial, a plethora of effective
exploration strategies [34, 60, 67] was previously presented for
addressing Condition (2).

2.0.3 Off-policy learning: RL algorithms are designed to optimize
a target policy, 7. Nonetheless, they might use a different policy, de-
noted 7, to explore the environment. We refer to 1 as the exploration
strategy which is a mapping from states to actions. RL algorithms
which provide policy convergence guarantees only for the case
where n = 7 are known as on-policy algorithms [43, 54, 55], else
(allowing # to differ from ), they are denoted off-policy [30, 38, 44].
Q-learning is a prominent example of an off-policy algorithm. While
the target policy is defined by 7(s) := argmax, Q(s, a), in many
cases the exploration strategy is different. For example, Q-learning
is often paired with an e-greedy exploration strategy [60].

2.1 Related work

We follow the taxonomy presented by Amin et al. [4] to briefly
discuss the major advantages and shortcomings of common explo-
ration strategy classes for Q-learning.

In general, sy might be sampled from an initial state distribution.

2.1.1 C1: Sampling-based exploration: n(s) = a ~ f(Q(s, ")), fora
probability density function, f.

In sampling-based exploration strategies, actions are randomly
visited, e.g., uniformly (e-greedy) [60], based on a distribution de-
rived from TD-errors [61, 65, 66], or from a Boltzmann distribution
over the Q-values [11, 39, 70, 71]. These strategies guarantee that
all state-action pairs will be visited infinitely often. However, prior
work has shown that such exploration strategies, in practice, are
sample inefficient in finding the optimal solution in long horizon
tasks, possibly hampering convergence to 7* [24, 58].

2.1.2  C2: Uncertainty-based exploration: n(s) = arg max,[Q(s, a)+
U(s, a)], for an uncertainty estimator, U.

Adding an exploration bonus to the Q-values based on the Opti-
mism in the Face of Uncertainty (OFU) principle [33, 64] is a promi-
nent example of this category of exploration strategies. Upper Con-
fidence Bounds (UCBs) [6] keeps a count of the state-action visi-
tation [33, 50, 59] or empirical estimates of reward and transition
probability [7] among many others as a proxy for exploration bonus.
Many curiosity-driven exploration [12, 17, 47] methods also fall
under this category. While providing desired performance guar-
antees, such approaches come at the cost of additional memory
requirements for storing state-action visitation counts [6, 7]. Alter-
natively, they are heavily dependent on the accuracy of an estimator
approximating state-action visitation counts [28, 63].

2.1.3 C3: Optimistic initialization-based exploration: n(s) =
argmaxg Q(s, a).

This is a unique class of exploration strategies as r(s) equals
the target policy of Q-learning. Exploration strategies belonging
to this class induce effective exploration through perturbation(s)
to the Q-values. They promote exploration via optimistic initializa-
tion in which unvisited (s, a) pairs are assumed to lead to the best
possible return [15, 61]. A few optimistic initialization methods
use estimates of the environment dynamics and reward function to
assign optimistic values uniformly to all states [15] or only to un-
known states [26, 62]. Alternatively, adding a fixed “bonus” to the
Q-function once at the start of training via reward shaping has been
shown to induce optimistic initialization [58]. Sun et al. [58] demon-
strate, through empirical results, that when used in conjunction
with a sampling-based strategy, it results in improved exploration
leading to better sample efficiency in Q-learning-based algorithms.
However, it is unclear whether their proposed approach would
perform similarly in the absence of a sampling-based strategy (they
use e-greedy in conjunction with their proposed approach). Using
any sampling-based strategy, in theory, introduces limitations (as
mentioned previously in this section).

3 PROPERTIES OF EXPLORATION
STRATEGIES

We consider 4 properties, P1-4, of exploration strategies. We use
Pri(s,a) to denote the probability of visiting a state-action pair
(s, a) during episode i, i.e., Pr[(s, a) € 7;], under a given exploration
strategy. Note that exploration strategies might evolve over time.
Consequently, for a given (s, a) pair, Pr;(s, a) might be different
from Prj(s, a) where i # j.



Table 1: Comparison of exploration strategies. We specify the category under which an exploration strategy (‘Exp. strategy’)
falls as described in Section 2.1. We highlight which of the properties among coverage, infinite often visitation (‘co-often’), and
curiosity is satisfied by each of the exploration strategies. We indicate whether each of them requires visitation tracking (‘No
vis. track’). ‘Hyperparam. is the hyperparameter essential to the exploration strategy.

Exp. strategy Category Coverage oo-often No vis. track. Curiosity Hyperparam.
e-greedy C1 v v v X €

Boltzmann C1 v v v X Temperature
UCB C2 v v X v Bonus coeff. (Cp)
Optimistic init. C3 v X v v Initial Q-values
COIN C3 v v v v Bonus (b)

Definition 1 (P1: Coverage at limit). An exploration strategy is said
to provide coverage at limitif ¥ (s, a) € SxA, [12, (1 = Pri(s,a)) =
0.2

Any exploration strategy that does not provide coverage at the
limit cannot guarantee convergence to the optimal policy as some
actions along the optimal sequence of actions might never have
been visited [61].

Definition 2 (P2: Infinite-often). Following the Borel-Cantelli
lemma [19, 22], an (s, a) pair is said to be visited infinitely often if
Y20 Pri(s, a) = co. An exploration strategy is said to be ‘Infinite-
often’ if every (s, a) pair is visited infinitely often.

Note that an exploration strategy with the infinite-often property
implies that it also has the property of coverage at the limit but not
vice-versa. Various RL algorithms based on Watkins [70] and Singh
et al. [56] guarantee convergence to the optimal policy if infinite-
often visitation is satisfied [51]. Note that there is a difference
between the convergence of n and 7. While 7 is not required to,
and usually does not converge to ¥, 7 can still converge to 7*.

Definition 3 (P3: Visitation tracking). An exploration strategy us-
ing visitation tracking continually tracks (or estimates) the number
of times each (s, a) pair was visited.

See C2 in Section 2.1.2 for examples of exploration strategies that
track the number of (s, a) visits either explicitly in tabular MDPs
or implicitly using an estimator in continuous state spaces.

Definition 4 (P4: Curiosity). An exploration strategy possesses
curiosity if action visitation precedence at a given state is inversely
correlated, in expectation, with the number of times that action
was visited. That is, for any state s and action a, the probability
(sampling-based exploration) or score (hardmax exploration) for
visiting a at s monotonically decreases, in expectation, with the
number of visits to a. In general, this may also occur after a bounded
number of initial visits to a at s.

Exploration strategies possessing the property of curiosity have
been shown to outperform vanilla sampling-based methods on
many hard-exploration tasks [18]. However, previous work provide
vague definitions for curiosity. For example, the seminal curiosity
work [47] defines this property as “intrinsic motivation/reward”.
Such reward is further defined as “Most formulations of intrinsic

2This paper assumes that all states in S can be reached with non-zero probability.

reward can be grouped into two broad classes: 1) encourage the
agent to explore ‘novel’ states [12, 41, 48] or, 2) encourage the
agent to perform actions that reduce the error/uncertainty in the
agent’s ability to predict the consequence of its own actions (i.e.
its knowledge about the environment) [20, 31, 45, 52, 53, 57]”. As
a result, we provide a precise definition of curiosity (P4) that is
general (applying to known curiosity-based algorithms) while being
unambiguous. In common sampling-based exploration strategies
(e-greedy and Boltzmann), Q-values for specific (s, a) pairs may
increase over visitations. This would lead to a violation of P4. On
the other hand, exploration in UCB-based algorithms, for instance,

UCBI1 [6] defines n(s) = arg max, [Q(s, a) +Cp, /%], where
n is the total number of learning timesteps taken by the RL agent
and N (s, a) is the number of times an (s, a) pair has been visited.
If Cp is set to a large enough value, the score for visiting a at
s monotonically decreases with the number of visits to a, hence
satisfying P4. In optimistic initialization, with sufficiently large
initialization of Q-values, the expected TD-error is non-positive. 3
Since action visitation in optimistic initialization relies only on
a hardmax over the Q-values, Q(s, a) for an action a visited at s
with a small @, in expectation, decreases monotonically following
Equation 1. Hence, optimistic initialization satisfies P4.

Table 1 presents a summary of exploration strategies and their
associated properties.

3.1 Motivating example: the bridge problem

We further demonstrate the significance of curiosity on a toy exam-
ple containing a high proportion of terminal states with undesirable
outcomes. Consider the gridworld shown in Figure 1, which we
refer to as the bridge crossing problem. We model it as an MDP.
In the stationary bridge problem illustrated in Figure 1a, there are
two terminating goals; one optimal (green cell at the right extreme)
and another suboptimal (orange cell at the left extreme) along with
many terminating negative outcomes for falling off the bridge (red
cell). Assuming that the start state is fixed, an issue in this domain
is that it is easy for the agent to converge on a suboptimal policy
leading to the suboptimal goal, or take a long time to learn the
optimal policy. This issue is particularly exacerbated when the hori-
zon of the bridge, H, is increased and sampling-based exploration
strategies are deployed.

3See Even-Dar and Mansour [26] for the sufficiently large Q-initialization required to
guarantee convergence.
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(a) Stationary bridge (H) problem.

(b) Non-stationary bridge (H) problem.

Figure 1: The bridge (H) problem, where H corresponds to
the number of columns in the grid. The red, orange, and
green cells are terminal states with rewards of -10, 10, and
30 respectively. Non-terminal cells furnish an immediate
reward of 0. The start state is fixed at the cell marked with the
stick figure (agent) and the column number is decided using
the rule [ (H — 1)/2]. The arrows represent the 4 actions, ‘up’,
‘down’, ‘left’, and ‘right’, that an agent can take at each cell. (b)
At some point in time, the stationary bridge (H) changes to
a non-stationary bridge (H). The blue cell is a new terminal
state with a reward of 40.

We demonstrate the shortcomings of popular exploration strate-
gies listed in Table 1 using the bridge problem and explain how
optimistic initialization addresses them.

3.1.1  Sampling-based: In this family of exploration strategies (Sec-
tion 2.1.1) the probability of the agent following the greedy ac-
tion over a sequence of states diminishes exponentially as T in-
creases. Reaching the optimal goal in this example clearly requires
T > H - | (H - 1)/2] steps. The probability of the agent reaching
the optimal goal state by following the optimal greedy policy in
an episode is lim7_,c HLO Pr(at|ss, 7*) = imr_00 (1 — e)T =0,
where € is the non-zero probability of selecting a non-greedy action
at each step. That is, the probability of reaching the optimal goal
state, diminishes exponentially with the bridge length even when
7* is known. This results in sampling-based exploration strategies
becoming sample-inefficient in similar settings [27, 58].

3.1.2  Optimistic initialization-based: Since optimistic initialization
possesses curiosity, it encourages the RL agent to explore unvisited
(s, a) pairs. This, in practice, results in optimistic initialization being
sample-efficient on the bridge problems.

3.1.3 Limitations of optimistic initialization: Optimistic initializa-
tion is known to potentially converge to suboptimal solutions in

Algorithm 1: COIN

Input: discount factor y, learning rate o, maximum
learning steps T
Initialize: action-value function Q
1 fort < 1toT do
2 ar « argmaxg Q(ss, a);

3 Execute a; and observe reward r; and state sy41;
Tt St+1 = ST
4 Yr < , ;
rr +ymaxgy Q(sr+1,a’), else
Q(st, ar) < Q(sr,ar) + alyr — Q(se, ar));
6 if t = appropriate b addition step then
; /* COIN iteration */
b « max, {max, Q(s,a) — ming Q(s,a)} + €p;

3

=

8 Q«—Q+b; /* Bonus (b) update */
9 end
10 end

stochastic environments since it does not hold the infinite-often
property [26, 27]. In such scenarios, an appropriate Q-initialization
may be a tedious hyperparameter to tune. Furthermore, optimistic
initialization has limited efficacy in non-stationary MDPs as explo-
ration ceases when Q-values converge.

4 CONTINUAL OPTIMISTIC INITIALIZATION

We turn to present our proposed continual optimistic initialization
exploration strategy, denoted COIN, an optimistic initialization-
based exploration strategy, to address the shortcomings of “vanilla”
optimistic initialization. As such, COIN follows r(s) = arg max,
Q(s, a) while periodically augmenting the Q-values in a way that
achieves effective exploration.

Based in Q-learning, COIN guarantees that the Q-values for each
(s, a) pair along all the greedy trajectories will converge after a finite
number of Q-value updates [69]. We define a greedy trajectory as a
sequence of (s, a) pairs obtained when following the greedy policy,
ie., 79(s) = argmaxg Q(s, a). Once Q-values converge along all
greedy trajectories, we add a positive bonus, b, to the Q-function
across all (s,a) € S x A. We term the step at which such conver-
gence occurs as an “appropriate b addition step”. Intuitively, adding
b is analogous to initializing the Q-function with optimistic values,
albeit continually. A pseudocode of COIN has been provided in
Algorithm 1 respectively.

Definition 5 (Appropriate b addition step). We define an appro-
priate b addition step as the training step at which the maximum
TD-error along the greedy trajectories is within an e threshold.

We also call an appropriate b addition as a COIN iteration to
reduce verbosity. Note there may be multiple episodes between two
consecutive COIN iterations.

4.0.1 b setting in COIN:. Although any positive b is sufficient for
the theoretical properties of COIN to hold, empirically we observe
that setting b such that

b= ,a)— mi : ,
sesn {<sf3?§t> Qls.a) - mminy, Qs a)} T



where S7 is the set of states reachable under 1 and ¢, is a small
positive value, results in sample-efficient learning. This heuristic
makes all actions along the greedy trajectory to be optimistic with
respect to the current 79.

More formally, COIN follows: every COIN iteration, set ¥ (s, a) €
SXA,Q(s,a) = Q(s, a) + b. Adding b to the Q-function continually
at an infinite number of COIN iterations ensures infinite-often
visitation (P2) (see Lemma 1).

4.1 Theoretical properties of COIN

The following theoretical properties and analysis apply to tabular Q-
learning. While COIN can be coupled with function approximation
as we show later in section 5.2, our theoretical claims might no
longer be guaranteed.

LEMMA 1 (COIN ENSURES INFINITE OFTEN VISITATION (P2)). As-
suming that the Q-function is updated at each COIN iteration, any
(s,a) € S X A must be visited infinitely often under COIN, i.e.,
Yoo Pri(s, a) = co.

ProoF. We prove via induction that any (s, a) pair must be vis-
ited within a bounded number of COIN iterations. As a result, an
infinite number of iterations would result in infinite-often visita-
tion.

Base case: (every action, a € A, will be visited at s after a bounded
number of visitations to s, and specifically for s = sp): By contradic-
tion, we assume some action, a’, at s will not be visited within a
finite number of COIN iterations.

Notation:

o 0(0ld); o_function at the end of the COIN iteration when a’
was last visited at s or iteration 0 if it was never visited.
. Q(m): Q-function after m COIN iterations since a’ was last
visited.
e a9: arg max, oM (s, q).
Since a’ hasn’t been visited by the greedy policy in m COIN
iterations,

Q™ (s0.a%) > Q"™ (s0,a), Ym @)
0™ (so,a’) > QD (50,a") + mey, (3)

As Q(m) is updated following Equation 1, for a low enough «,
0™ (s9,a9) < Q*(sp,a*) < C @)

Since, R is bounded, C is finite. From Equations (2) and (3) it must
be that 3 m such that,

0l (50, a") + mep, > C (5)

Equations (2) and (3), in conjunction, contradict (5) as they imply
C < C. Hence, a’ must be visited within a finite number COIN iter-
ations. Further, since b > 0, an infinite number of COIN iterations
will result in @’ being visited infinitely often.

Induction assumption: (every action, a € A, at sp—1 will be
visited after a bounded number of visitations to s,—1, where sp—1 is
any state reachable from s in n steps.)

Induction step: Following the (general claim) base case, every
action at s,—1 will be visited infinitely often. Hence, for any state,
sn, if P(snlsn—1,a) > 0, itis reachable in (n+1) steps from sp with a
non-zero probability. As such, the general base case can be invoked

again. That is, any a’ will be visited at s, an infinite number of
times. m]

CoROLLARY 1 (COIN SATISFIES COVERAGE AT LIMIT (P1)). Assum-
ing that the Q-function is updated at each COIN iteration, any (s, a) €
S x A must be selected under COIN, i.e., [172, (1 - Pri(s,a)) = 0.

Corollary 1 follows from Lemma 1 since infinite-often visitation
implies coverage at limit.

Remark 1. COIN has the property of curiosity.

After a finite number of COIN iterations, Q(s, a) for any unvis-
ited (s, a) pair must be overestimated as its Q-values are continually
inflated. For a small enough a, Q(s, a) for visited (s, a) pairs are
also overestimated after a finite number of COIN iterations as any
reduction in their Q-values will be overcome by the addition of b
to the Q-function. Once, the Q-values for all (s, a) pairs are over-
estimated, they are updated following Equation 1 with a negative
TD-error, in expectation. This leads to a monotonic decrease in the
Q-values, in expectation, with each visitation to a.

4.2 Extension of COIN to non-stationary MDPs

COIN can be interpreted as a model-free restarting strategy for
non-stationary MDPs (if b were held fixed and equivalent to op-
timistic initialization). Such strategies have been suggested pre-
viously for non-stationary episodic MDPs and multi-armed ban-
dit problems [3, 14]. COIN may be a suitable candidate for non-
stationary MDPs since it has infinite-often property. However,
convergence of RL algorithms in non-stationary MDPs is an ac-
tive branch of research as optimal convergence proofs of RL algo-
rithms often assume stationary transition and reward functions [46].
Notably, prior work has shown value function-based RL to pro-
duce policies "close" to optimal in a special class of non-stationary
MDPs [23]. Section 4.3.2 briefly discusses the effectiveness of COIN
on a toy non-stationary MDP. However, an in-depth analysis is left
for future work.

4.3 COIN on the bridge problem

We provide empirical results for COIN and the exploration strate-
gies presented in Table 1 when coupled with tabular Q-learning
on a few variants of the bridge problem. Later in Section 5.2, we
present results on domains with continuous state spaces.

Since COIN has a deterministic policy, it avoids issues faced by
sampling-based exploration strategies. COIN’s infinite-often visita-
tion property overcomes the limitation of optimistic initialization.
Note that it is expected to observe “dips” in the learning curves
with COIN each time a b addition is performed as it perturbs the
Q-values and encourages the greedy policy to explore. In order to
clearly present these trends, we perform a b addition after a fixed
number of episodes instead of our proposed b addition step from
Definition 5. €, and € are set to 0.1 and 0.05 respectively.

4.3.1 Results for stationary bridge: Figures 2a and 2b show results
for the case where H=15 with deterministic and stochastic transi-
tions respectively. In the deterministic case, it can be observed that
all strategies except e-greedy find the optimal solution within 6,000
episodes of learning. While in the stochastic case, Optimistic init.
fails as learning progresses since it suffers from the issue explained
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Figure 2: Learning curves of exploration strategies listed in Table 1 on the bridge problem. The shaded region represents 2
standard deviations of the return over 5 trials. The curves have been smoothed for visual clarity. ‘Det. and ‘Stoc’ refer to a
deterministic and stochastic MDP respectively. The probability of the agent ‘slipping’ is set to 0.01 in the stochastic setting.
(e)-(f) Non-stationarity is introduced in episode 5,000. A b addition is performed after every 2,000 and 4,000 episodes of learning
in the deterministic (a), (c), (e) and stochastic (b), (d), (f) cases respectively. In all the learning curves, the large dips in COIN

occur when a b addition is performed.

in Section 3.1.3 whereas COIN does not since it visits (s, a) pairs
infinitely often via continual b additions. The results in Figures 2c
and 2d, where H=31, offer similar insights but in addition, highlight
the advantages of optimistic initialization (Figure 2c) and COIN. We
speculate that the advantage stems from their curiosity property.
Note that we use a count-based intrinsic reward proposed in Belle-
mare et al. [12] and combine it with e-greedy exploration (Curious
e-greedy). This approach leads to improved learning efficiency over
e-greedy demonstrating that curiosity is helpful in this domain.

4.3.2  Results for non-stationary bridge. Although optimistic ini-
tialization with Q-learning can converge to an optimal policy, it
is known to potentially reach a local optimum when the MDP is
non-stationary. Extending the bridge problem, let a new optimal
goal emerge at a new location. At the same time, a new path is
added such that it leads to the new optimal solution from the start
state. An illustration of the new problem is shown in Figure 1b. We
allow Q-learning to first converge on the old setting and require
it to adjust to the new setting. The results in Figures 2e and 2f on
the non-stationary bridge (H=7) tasks show that all methods except
COIN fail to reach the optimal solution. Since optimistic initializa-
tion does not visit state-action pairs infinitely often, it fails to find
the new optimal solution whereas COIN succeeds in doing so.

These results positively answer empirical questions on the capa-
bility of COIN in solving a simple instance of a non-stationary MDP
by updating b continually, demonstrating its ability to successfully
address a major drawback of “vanilla” optimistic initialization.

5 DUAL-COIN

We present dual-COIN, an alternative view of COIN, where, instead
of adding b to the Q-function, we modify the reward function to
induce a similar effect. Consider the case where for b > 0 the reward
function is updated such that R_j, := R — b. That is we subtract a
positive constant from the reward function. It can be shown that the
Q-function learned using Q-learning converges to Q_p := Q — ITI’},,
where Q is the Q-function learned on R (see Lemma 2 for proof). A
similar observation was also presented in prior work [42, 58] for
the optimistic initialization case.

Note that, when the MDP has a large or continuous state space,
a function approximator is commonly utilized to represent the Q-
function. Updating the Q-function to Q(s, a) := Q(s, a) + b for all
(s,a) € S x A might become intractable in this case. Dual-COIN
makes COIN practical in such settings.



5.1 Theoretical properties of dual-COIN

As stated in section 4.1, we remind the reader that the following
theoretical properties and analysis apply to tabular Q-learning.

LEMMA 2 (ADDITIVE PROPERTY OF Q-VALUES). Ifa constant, b, is
uniformly added to R, Q-values updated using Q-learning converge
to Q + % for an infinite-horizon MDP.

Proor.

O(s,a) = E

re +ymax Q(ss+1, at+1)]
at+1

Let R(s,a) := R(s,a) + b,¥(s,a) € S x a € A and Q,, be the
new Q-function.

Qsp(s,ar) =E

re+b+ y max Qup(st+1, at+1)]
t+1

=L

re+b+y (rm +b+max Qp (si+2, at+z))]
t+2

T
=b ) y'+E
=1

7
-y

For an infinite horizon MDP, i.e., T — oo,

re +ymax Q(s+1, at+1)]
a1l

—_ o~

=b

+Q(st,ar)

Oip(st,ar) = Q(ss, ar) + IL
-y

5.1.1 b setting in dual-COIN..

b = (1 max | max 0600~ min o]+
= max { max s,a) — min s,a €p,
dual 1- )/T s€87 | (s,aeA) (s,aeA) b
where S” is set of the states visited under 7 so far and €, is a small
positive value.

LEMMA 3 (DUAL-COIN ENSURES INFINITE OFTEN VISITATION (P2)).
Assuming that R is updated at each COIN iteration, any (s, a) € SXA
must be visited infinitely often under dual-COIN, i.e, 3.2 Pri(s,a) =

[S B

ProOF. We prove via induction that any (s, a) pair must be vis-
ited within a bounded number of COIN iterations. ¢ As a result, an
infinite number of iterations would result in infinite-often visita-
tion.

Base case: (every action, a € A, will be visited at s after a bounded
number of visitations to s, and specifically for s = s ):

Notation:

e 0(™): O-function after m COIN iterations since a’ was last
visited or never visited.
o aJ: arg max, Q(m) (s, a).

Let @’ be unvisited by the greedy policy in m COIN iterations,
0™ (so,a’) < max Q™ (so, a), Vm (6)
a

4In dual-COIN; a COIN iteration corresponds to subtracting b g,,q; from R.

As Q(m) (s0, a9) is updated following Equation 1, from Lemma 2,
for a low enough a,
T
L ) )
-y

Since, R is bounded, Q* is bounded. From Equations (6) and (7)
it must be that 3 m such that,

Q"™ (s0,a') = max Q'™ (50, a) ®)

max Q'™ (so, a) < Q* (arg max Q™ (so, a)) — mey, (1
a a 1

Hence, a’ must be visited within a finite number of dual-COIN
iterations. Further, since by, > 0, an infinite number of COIN
iterations will occur resulting in @’ being visited infinitely often.

Induction assumption: (every action, a € A, at sp—1 will be
visited after a bounded number of visitations to s,—1, where sp_1 is
any state reachable from sq in n steps.)

Induction step: Following the (general claim) base case, every
action at s,—1 will be visited after a bounded number of visitations
to sp—1. Hence, for any state, sp, if  (sn|sp—1,a) > 0, it is reachable
in (n + 1) steps from sy with a non-zero probability. As such, the
same argument as the one presented in the base case can be applied.
Thus, a’ will be visited at s, an infinite number of times. O

COROLLARY 2 (DUAL-COIN SATISFIES COVERAGE AT LIMIT (P1)).
Assuming that R is updated at each COIN iteration, any (s, a) € SXA
must be selected under dual-COIN, i.e., [1;2, (1 = Pri(s,a)) = 0.

Corollary 2 follows from Lemma 3 since infinite often visitation
implies coverage at the limit.

Remark 2. Dual-COIN has the property of curiosity.

After a finite number of COIN iterations, subtracting b from
R continually leads to underestimated Q-values along the greedy
trajectories. Specifically, as Q-values of visited (s, a) pairs decrease,
the expected TD-error is negative. Since action visitation in COIN
relies only on a hardmax over the Q-values, similar to optimistic
initialization, Q(s, a) for an action a visited at s with a small , in
expectation, decreases monotonically.

5.2 Empirical study

5.2.1 Domains: We evaluate dual-COIN on 6 benchmark domains
with continuous state spaces, from the OpenAlI gym [16] and Mini-
Grid [21], covering both dense and sparse reward functions. The
domains with sparse reward functions were also used in Sun et al.
[58] to demonstrate the effectiveness of their proposed optimistic
initialization-based approach on tasks with sparse rewards. In 3 of
the 4 OpenAl gym domains, i.e., ‘Cartpole-v1’, ‘Acrobot-v1’, and
‘LunarLander-v2’ have dense reward functions. The 4th domain,
‘MountainCar-v0’, has a sparse reward function. A positive reward
is received by the agent only upon reaching the goal state, and a
negative reward at all other states. In the MiniGrid domains, i.e.,
‘Empty-Random-6x6-v0” and ‘MultiRoom-N2-S4-v0’ the state is
only partially observable (agent-local view of the grid only). Mini-
Grid domains also have a sparse reward function where a positive
reward is given only on reaching the goal state and 0 otherwise.

5.2.2 Baselines. We use exploration strategies belonging to cate-
gories C1 (sampling-based), i.e., e-greedy, and Boltzmann, and C3
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Figure 3: Learning curves of exploration strategies with vanilla DQN on benchmark domains. The shaded region represents 2
standard deviations of the return over 5 trials. The curves have been smoothed for visual clarity and hence dual-COIN dips
may not be prominent. Dual-COIN consistently performs on par or better compared to the baseline exploration strategies.

(optimism-based), i.e., Optimistic (norm.) [42], as baselines for com-
parison since, similar to COIN, they do not require learning any
additional estimator. We employ vanilla deep Q-network learning
(DQON) [44] adapted from Achiam [1] as the underlying learning
algorithm for all of the baselines. These experiments aim to demon-
strate that COIN is a general exploration strategy and can perform
competitively with respect to popular exploration strategies with-
out additional assumptions.

5.2.3 Results. The graphs presented in Figure 3 provide a posi-
tive answer to the generalizability and competitiveness of dual-
COIN. Dual-COIN outperforms the baselines in terms of sample
efficiency on 4 out of 6 domains, namely, ‘CartPole-v1’ (Figure 3a),
‘LunarLander-v2’ (Figure 3c), ‘MountainCar-v0’ (Figure 3d), and
‘MultiRoom-N2-S4-v0’ (Figure 3e) while performing on par in the
remaining domains. In particular, we notice that in the sparse re-
ward tasks, dual-COIN consistently has better sample efficiency.
We believe that dual-COIN’s property to induce curiosity plays a
major role in this. Complete details of the domains, hyperparameter
settings of dual-COIN and the baselines, and the codebase for these
experiments are available at https://github.com/Pi-Star-Lab/coin. 3

5In practice, we perform a COIN iteration when the average episodic returns are fairly
stable. That is the dispersion index of the returns is less than a threshold.

6 SUMMARY

We present a novel optimistic initialization-based approach, COIN,
possessing a unique set of properties associated with effective ex-
ploration strategies. It performs continual optimistic initialization
of Q-values to overcome the limitations of optimistic initialization
in stochastic and non-stationary environments. We provide theoret-
ical evidence of COIN possessing infinite-often visitation property
which helps it overcome these limitations. We validate our claims
on the bridge crossing problem. Compared to common existing
exploration strategies, we demonstrate the superiority of COIN in
solving long-horizon stochastic and non-stationary bridge prob-
lems. Extending COIN to continuous state spaces, we then present
dual-COIN. Empirical results on 6 benchmark domains support our
claim that COIN is a general exploration strategy by outperforming
3 common existing exploration strategies on 4 out of 6 domains.
We observe that COIN is more effective than these strategies in
sparse reward benchmark domains which we speculate is a result
of its curiosity-driven behavior.
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