Chapter 15 ®)
A Real-Time Algorithm for Computing Gzt
the Tension Force in a Suspended Elastic
Sagging Cable
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Abstract An algorithm is presented for computing the tension in an elastic cable
subject to sagging under its own weight, a problem highly relevant in tethered systems
such as cable-driven parallel robots. This requires solving the two coupled equations
of the Irvine cable model, which give the endpoint position as a function of vertical
and horizontal components of tension. Via a change of variables, we reformulate this
system as a pair of uncoupled equations, which are shown to have a unique solution.
We develop an efficient numerical procedure to solve one of these, after which closed-
form formulas provide the solution of the second equation and ultimately the tension
components.

Keywords Sagging cable * Tension - Irvine model

15.1 Introduction

We present a solution for determining the tension force in a suspended sagging cable
and its associated profile at equilibrium, given the end-coordinates and the unstrained
length of the cable. This problem is highly relevant in tethered systems such as cable-
driven parallel robots (CDPRs), where real-time estimation of cable tension force
and profile is essential for effective planning and control. Due to the non-algebraic
nature of the cable sag equations, which are highly sensitive to minor variations
in geometric and material parameters, significant numerical challenges persist. A
recent study in the literature proposed a semi-analytical approximate solution for a
special case, assuming in-extensible cable properties [7]. However, for the general
elastic sagging cable system given by the Irvine model [3], the prevailing real-time
approach appears to involve the development of neural network models [6]. In this
work, we introduce an alternative near-closed-form solution flow that entails refor-
mulating the sagging cable model through a change of variables, thereby reducing
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it to the solution of a single equation in one variable. We prove that this resulting
non-algebraic equation always has a unique solution for valid geometric and mate-
rial parameters. The solution can be efficiently obtained in real-time using the secant
method with initial guesses derived based on real analysis. The implementation of
this algorithm addresses the outstanding computational challenges associated with
determining cable tension forces and estimating cable profiles in large CDPRs and
other tether cable systems.

15.2 Mathematical Model

Consider the schematic of a cable in the vertical XZ-plane with O as the origin
coinciding with one end of the suspended cable as shown in Fig. 15.1. We assume
gravity to act downwards along z-direction. We neglect all lateral static forces on the
cable. This makes it a planar approximation model in the vertical plane. The cable
is modeled as an elastic element capable of deforming under tension and sagging
under its own weight. Let i, A, and E be the physical properties associated with the
cable, namely, linear density, cross sectional area, and the Young’s modulus of the
cable material, respectively. Let L be the unstrained length of the cable and (x, z)
be the end-coordinates of the cable. Let F, and F, be the horizontal and vertical
components of the tension, respectively. The kineto-statics equations which relate
the end-coordinates, namely, (x, z) and the respective tension components (Fy, F,)
according to the Irvine model [3] are:

X F, (ﬁ + t (sinh_1 [%] — sinh™! [F—F/ng]))
= . (15.1)
2
o -8+ & (VR F2 = VR + (F. - ugl))
A necessary condition of the Irvine model for the cable to be in tension is
F, > 0. (15.2)

In particular, Eq. (15.1) together with the inequality condition in Eq. (15.2) accounts
for the configurations in the half-plane x > 0. Configurations in the half-plane where

Fig. 15.1 Irvine sagging
cable model

Cable length L
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x < 0 can be safely disregarded as they possess a mirror-symmetric equivalence
relation.

Problem statement. Suppose that (x, z) and L are known. For example, (x, z) can be
measured by an external measurement system such as a camera system and L can be
measured via encoder data from cable pulleys or other position sensors. The objective
is to determine the cable tension components (Fy, F,) quickly and accurately so that
they can be used in real-time to profile the cable. The challenge is that (F,, F;) are
computed by solving the non-algebraic system of equations given by Eq. (15.1). For
real-time computation, this is not straightforward due to the reliance on a good initial
guess for (Fy, F;) as well as the sensitivity of these forces to minor variations in the
geometric and material parameters involved.

Recent work [1] developed an alternative, but mathematically equivalent cable
model allowing cable sag, derived through a change of variables from (F,, F,)
to (a, B) under the physically-meaningful assumptions that u > 0 and L > 0,
namely:

X L %""“_'3

~ sinh[«a] — sinh[B]

(sinh [a] + sinh [B]) £& + cosh [a] — cosh [B]
(15.3)

The corresponding cable tension (F, F;) in the vertical plane is then:

Fe\ _ ngL 1
(Fz> " sinh[«] — sinh [8] (sinh [oz])' (15.4)

Equation (15.3) defines the sagging cable kineto-statics in terms of the new real
variables («, §) with a necessary operating condition that @ > §, which is equivalent
to Eq. (15.2). Although Eq. (15.3) cannot be made algebraic as it contains both
algebraic and exponential forms of o and B, it does define Pfaff manifolds [4].
Hence, one still obtains finiteness properties on the number of real roots for «, 8
given x, z, L. In particular, we show below that it admits a unique real root for all
valid parameters.

To further simplify Eq. (15.3), the following linear change of variables is intro-
duced:

1 1
§(a+ﬂ)=x, E(a—ﬁ)zw. (15.5)
Hence, («, B) can be expressed in terms of the new variables (x, ¥) via:

a=x+y, B=x—-1. (15.6)

Moreover, the inequality condition & > B becomes yr > 0.
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Using the following identities:

sinh[x + ¢] —sinh [y — ¢¥] = 2 cosh[x]sinh[y],
sinh[x 4+ ¥ ]+ sinh[x — ] = 2 sinh [x] cosh[y/],
cosh[x + ¥] — cosh[x — ] = 2 sinh[x]sinh [y],

Equation (15.3) can be rewritten as:

I (%-ﬁ-lﬂ) sech[x]
= , (15.7)

inh
sinh [/] (% cosh[lﬂ]-i-Sinh[l/f]) tanh [x ]

which is a representation of the Irvine cable model in terms of the variables (x, V).
This model also presents a geometric understanding of the Irvine cable model.
Here, ¥ > 0 directly gives a measure of cable sag. The greater the value of i, the
greater the cable sag for a given x, with ¥» — 0T approaching a fully taut config-
uration. Moreover, the variable x ranges from —oo to co and roughly indicates the
orientation of the cable axis within the cable half plane considered, x > 0. In this con-
text, the term ‘cable axis’ refers to the line joining the cable endpoints. When x = 0,
the cable axis is horizontal. Positive values of x correspond to cable configurations
in the quarter where z > 0, while negative values correspond to configurations in the
quarter where z < 0. The limits at 0o represent vertical orientations of the cable
axis.
Using the following identity:

sech? [x]+ tanh? [x]-1=0,

Eq. (15.7) uncouples to become:

. 2 2
f) = (ﬂ) n <Z—> —1=0, (15.8)

e+ ecoth[y]+1
=tanh™' | — (15.9)
= ecoth[y]+1]° '
where x,, = 7,zn =  and e = %. Here, ¢ is a quantity equivalent to the strain of

a vertical hung cable of length % under its self-weight. More importantly, Eq. (15.8)
is a univariate non-algebraic equation in v that can be solved for ¥ > 0 using
local methods and then Eq. (15.9) yields the corresponding value of x from . The
following analyzes Eq. (15.8) to show that f () = 0 always has a unique solution
with ¢ > 0 for any given set of valid parameters.
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15.3 Existence and Uniqueness

Forg(y) := % andh(y) = m,thefunction f () inEq. (15.8) becomes

FW) =x2 g+ 22 h(¥)* —1=0, (15.10)

where the valid parameters correspond with real x,, > 0, z,,, and € > 0. In order to
show that f () is strictly increasing for v > 0, it is sufficient to show that both
g(¥) and h(y) are positive-valued and strictly increasing themselves for ¢ > 0.

— g(¥): This function is positive for any ¢ > 0 since sinh[] is positive for ¢ > 0.
Furthermore, g'(y) = ngxz] (¢ + ¥ — tanh[y]) is always greater than zero for
Y > 0. Thus, g(¢) is a positive-valued and strictly increasing function for v > 0.
— h(y): Since coth[yr] > 0 for ¥ > 0, h(¥) is positive-valued. Additionally, the
strictly decreasing nature of coth[vr] for Y > 0 proves that () is strictly increas-

ing over the same domain.

Since f (1) is strictly increasing for ¥y > 0 with f(0) = —1 and limy_, . f(¥) =
00, this shows that f (1) = 0 always has a unique root for ¥ > 0.

With existence and uniqueness confirmed, the next step is to present a pathway
to compute this root.

15.4 Initial Guess Function

In most metallic cable systems, £ — 07 is a reasonable approximation in sagging
configurations as FE is large. This in-extensible cable approximation may be used to
obtain a good initial guess to solve for 1. In the limit of ¢ — 0T, f (1) = 0 becomes

. 2
2 (sml:/j[l//]) 42 —1=0. (15.11)

Since ¢ > 0 and x > 0, Eq. (15.11) is equivalent to

inh -2 JIZ-22
LW]zkwhere k:x/ Zm:\/ Z.
¥ Xom x

(15.12)

As expected, sinh [v/] /1 is strictly increasing for ¥ > 0 and limitsto 1™ as ¥ — 0%,
Hence, this approximation can only hold true when x? + z> < L? yielding k > 1.
As k — o0, it denotes configurations along the vertical axis, where x — 0. It must
be noted that in high tension taut configurations, the variable k£ may marginally drop
below 1. Therefore, we will address both cases: £ > 1 and £k < 1 to obtain initial
guesses for both scenarios.
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154.1 k>1

For the case of k > 1, we proceed by developing an implicit fixed-point rule based
on Eq. (15.12), which is equivalent to:

¥ =sinh™' [k y]. (15.13)

For deriving an explicit guess function ¥, the fixed-point rule can be used in recur-
sion with a starting basis function of the form a(k — 1)® for 3 iterations:

Yo = sinh™' [k sinh™' [k sinh™" [k a(k — 1)"]]]. (15.14)

For a > 0 and b > 0, the starting basis function a(k — 1)? is chosen based on the
observation that in Eq. (15.13) we have ¥ — 01 when k — 1% and v is strictly
increasing with respect to k. The parameters (a, b) can be computed by performing a
weighted numerical optimization to minimize error over 1 < k < oo in Eq. (15.13)
via:

. % (4o — sinh ™! [k Yo]\°
argmlna>0,b>0 k dk
k=1

yielding approximately a = 2.120 and b = 0.413. Figure 15.2 compares the pro-
posed explicit function v given by Eq. (15.14) against ¥ defined implicitly by
solving Eq. (15.13) which shows a good match.

As an alternative, a starting basis function of the form a cosh™![k] may also be
considered, based on the analysis presented in [7][§ IV]. For this basis function,
a cosh™'[k], in conjunction with 3 fixed-point iterations, the optimal value of a is
found to be 1.666.

The value ¥ given by Eq. (15.14) may already be accurate enough for many
applications, but to obtain an even more accurate solution, one can use it as the initial

8
6
s 4
5 w /=sinh™! [ /]
0 Y=o
1 25 50 75 100

k

Fig. 15.2 Comparison of the proposed explicit guess function ¥ against the implicitly defined
value satisfying the in-extensible cable model ¢ = sinh™! [k /]
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guess for a local root-finding method. To avoid computing the derivative required
for Newton’s method, we use the secant method instead. This requires a second
guess, 1, which we obtain by solving a first order Taylor series approximation of
Eq. (15.12) about v:

(15.15)

o1 = Yo (1 + ko — sinh [yr] ) .

cosh [vg] ¥ — sinh [yr]

Although the secant method has a lower convergence rate per iteration than Newton’s
method, its lower cost per iteration makes it the more efficient method.

1542 0<k=x1

In the alternative case of 0 < k < 1, it happens that ¥ — 07, so &£ dominates . By
Eq. (15.12), x> + z2 > L?, which means that the cable is in high tension, because
even with zero weight it would be stretched beyond its natural length. For this case, by
solving a second order approximation of f () given by Eq. (15.8) about ¢ = 0, we

obtain the alternative guess pair ¢y = 0 and ¢¥| = f+ —. As before, the guesses,
X Z/YX

Yo, Y1, are used to initialize the secant method to solve for 1.

15.5 Numerical Algorithm

Starting from the initial guesses ¥y and yr; computed in Sect. 15.4, the secant method
converges to the unique value of ¥ > 0 solving Eq. (15.8). In our experiments, due
to the accuracy of the initial guesses, the iterations converge to a tolerance of 10~'2
within 5 iterations. Once v has been obtained, x can be determined from Eq. (15.9).
Then, (c, B) are computed from (), 1) using Eq. (15.6), whichin turn yields (F, F;,)
from Eq. (15.4). The cable profile can be easily determined from parametric closed-
form Irvine expressions available in literature [3] in terms of (F,, F;). The entire
workflow is presented in Algorithm 1.

A test data set of 10,000 random samples is generated in the range x € [0.01, 10],
z € [—10, —0.1],and L € [0.01, 50] along with k > 0.95. The cable properties cho-
sen are as follows:

nw=0079kgm™', A=47-10"°m? E =100GPa,

and acceleration due to gravity g = 9.81 m s~2. Using this dataset, we demonstrate
that (F,, F;) can be computed in approximately 0.25 milliseconds on average using
Algorithm 1, with computations executed in Wolfram Mathematica [8] on an Intel®

™

Core = 2.80 GHz system. Figure 15.3 presents a histogram of the computation times
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Algorithm 1 Solving for Cable Tension in Irvine Sagging Cable
Initialize system parameters: x > 0,z € R,L >0, x> 0,8 <981, E >0,A>0
Set algorithm constants: a < 2.120, b < 0.413, tol <« 10712 Jmax < 25
Calculate normalized parameters: x,, < %, Im < %

uglL k «— 1=z}

2EA” Xm

Calculate ¢ <

. 2 2
Define the non-algebraic function f () := (X'” smh['“) + (S cotﬁﬁp]ﬂ) -1

ety
if £ > 1 then
Yo < sinh ™! [k sinh™! [k sinh™! [k a(k — D)?]]]
W""wo(l*’cmﬁﬁﬁiﬁﬂﬂﬁwu)
else
1//() ~0
£
1/11 < «/x,z,,+z%l
end if
Compute the function residues Fo < f (o) and F| < f ()
j<0
while j < jn.x do
Compute the next approximation of ¥ using the secant method: Yrmext < Y1 — Fp - ‘ﬁ: :ﬁg
if |Ynext — ¥1| < tol then
Converged: Yrmex; is the solution for v
break
end if
Yo < Y1, Fo < Fi
Y1 < Ynexts FI < f (Ynext)
J<Jj+1
end while
if j = jmax then
Not converged within jm,x iterations
return error
end if
¥ < tanh™! [

€ cotl:FII/H»l ]

a<—xtV¥,B<x—V

ugl ngL sinh[a]
Fy < sonalesmhig]’ £2 < smhia]—snhlg]

return Fy, F;

for solving each sample in the test dataset. The same algorithm, employing Newton’s
method instead of the secant method, takes about 0.3 milliseconds on average. This
justifies the choice of the secant method in this case, emphasizing the accuracy of
the proposed guess function.
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15.6 Summary

This work introduced a new algorithm for determining tension forces in sagging
cables for any given valid set of geometric and material parameters. We prove that
this non-algebraic system admits a unique solution and show that it can be found in
real-time using the secant method with carefully chosen initial guesses. Notably, this
work offers valuable insights for modeling CDPRs. When developing neural network
models for the kineto-statics of large CDPRs, e.g., [2, 5], it may be sufficient, subject
to further investigation, to develop a kinematic model instead of a kineto-static model
because forces and cable profiles can be back-calculated uniquely in real-time.
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