Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Local Lipschitz Filters for Bounded-Range Functions with
Applications to Arbitrary Real-Valued Functions

Jane Lange* Ephraim Linderf Sofya Raskhodnikova? Arsen Vasilyan®

Abstract

We study local filters for the Lipschitz property of real-valued functions f : V' — [0, r], where the Lipschitz
property is defined with respect to an arbitrary undirected graph G = (V, E). We give nearly optimal local
Lipschitz filters both with respect to ¢1-distance and {y-distance. Previous work only considered unbounded-
range functions over [n]%. Jha and Raskhodnikova (SICOMP ‘13) gave an algorithm for such functions with
lookup complexity exponential in d, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary
in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with
filters for functions whose range is bounded in [0,7]. For functions f : [n]¢ — [0,7], we achieve running time
(d"logn)©U°8™ for the ¢;-respecting filter and d°™ polylogn for the fo-respecting filter, thus circumventing
the lower bound. Our local filters provide a novel Lipschitz extension that can be implemented locally.
Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on r for the domain
{0, 1}d, an important special case of the domain [n]d. In addition, our lower bound resolves an open question of
Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our
lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness
for adaptive algorithms.

Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on
the range. In the first application, we use them in conjunction with the Laplace mechanism for differential
privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions,
even in the presence of malicious clients. In particular, our differentially private mechanism for arbitrary
real-valued functions runs in time 2P°Wo8min(mnd) 4nq for honest clients, has accuracy comparable to the
Laplace mechanism for Lipschitz functions, up to a factor of O(log min(r,nd)). In the second application, we
use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property. Our tester works
for functions of the form £ : {0,1}% — R, makes 20(Vd) queries, and has tolerance ratio 2.01. Our applications
demonstrate that local filters for bounded-range functions can be applied to construct efficient algorithms for
arbitrary real-valued functions.

*MIT, jlange@mit.edu. Supported in part by NSF Graduate Research Fellowship under Grant No. 2141064, NSF Awards CCF-

2006664, DMS-2022448, CCF-2310818 and Microsoft Research. Part of this work was conducted while the author was visiting the
Simons Institute for the Theory of Computing.

tejlinder@bu.edu. Boston University, Department of Computer Science.

isofya@bu.edu. Boston University, Department of Computer Science.

$UC Berkeley. arsen@berkeley.edu. Supported in part by NSF awards CCF-2006664, DMS-2022448, CCF-1565235, CCF-1955217,
CCF-2310818, Big George Fellowship and Fintech@QCSAIL. Part of this work was conducted while the author was visiting the Simons
Institute for the Theory of Computing.

Copyright (© 2025

2881 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1 Introduction

We study local Lipschitz filters for real-valued functions. Local Lipschitz filters were first investigated by Jha and
Raskhodnikova [JR13] who motivated their research by an application in private data analysis. Intuitively, a local
filter for some property of functions (in our case, the Lipschitz property) is a randomized algorithm that gets
oracle access to a function f and locally reconstructs the desired property in the following sense: it provides query
access to a related function g that is guaranteed to have the property (in our case, guaranteed to be Lipschitz).
The implicit output function g may depend on the internal randomness of the algorithm, but not on the order of
queries. When the input function f has the desired property, then g = f. If, in addition, the distance between f
and g is relatively small compared to the distance from f to the nearest function with the desired property, the
filter is called distance-respecting. The goal in the design of local filters is to minimize the running time and the
number of lookups', i.e., oracle calls to the input function f.

The computational task performed by local filters is called local reconstruction. It was introduced by Saks and
Seshadhri [SS10] and is one of the fundamental tasks studied in the area of local computation [RTVX11, ARVX12]
and sublinear-time algorithms. It has been studied for properties of functions, including monotonicity [SS10,
BGJ*T12, AJMR15, LRV22, LV23] and the Lipschitz property [JR13, AJMR15], as well as for properties of
graphs [CGR13].

Local filters are useful in applications where some algorithm A computing on a large dataset requires that its
input satisfy a certain property. For example, in the application to privacy, which we will discuss in detail later,
correctness of algorithm A is contingent upon the input function f being Lipschitz. In such applications, rather
than directly relying on the oracle for f, algorithm A can access its input via a local filter that guarantees that
the output will satisfy the desired property, modifying f on the fly if necessary. Local filters can also be used in
distributed settings, where multiple processes access different parts of the input, as well as in other applications
described in previous work [SS10, BGJ*12, JR13, AJMR15]. Local reconstruction is also naturally related to
other computational tasks and, for example, has been recently used to improve learning algorithms for monotone
functions [LRV22, LV23].

1.1 Our Contributions We demonstrate that important applications of local Lipschitz filters can be
accomplished with computational objects that are much weaker than local Lipschitz filters for general functions:
it suffices to construct local Lipschitz filters for bounded-range functions. This holds even for applications that
deal with arbitrary real-valued functions, with no a priori bound on the range. We achieve efficient local Lipschitz
filters for bounded-range functions, circumventing the existing lower bounds that are exponential in the dimension
and enabling applications to real-valued functions, with no restriction on the range.

1.1.1 Local Lipschitz Filters Motivated by the applications, we consider functions over [n]¢, where [n] is a
shorthand for {1,...,n}. A function f : [n]? — R is called c-Lipschitz if increasing or decreasing any coordinate by
one can only change the function value by ¢. The parameter c is called the Lipschitz constant of f. A 1-Lipschitz
function is simply referred to as Lipschitz?. Intuitively, changing the argument to the Lipschitz function by a
small amount does not significantly change the value of the function.

In previous work, only unbounded-range functions were considered in the context of Lipschitz reconstruction.
Jha and Raskhodnikova [JR13] obtained a deterministic local filter that runs in time O((log n+1)?). This direction
of research was halted by a strong lower bound obtained by Awasthi et al. [AJMR16]. They showed that every
local Lipschitz filter, even with significant additive error, needs exponential in the dimension d number of lookups.

We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for
functions whose range is bounded in [0, 7]. By focusing on this class of functions, we circumvent the lower bound
from [AJMR16] and achieve running time polynomial in d for constant r. Moreover, our filters satisfy additional
accuracy guarantees compared to the filter in [JR13], which is only required to (1) give access to a Lipschitz
function g; (2) ensure that g = f if the input function f is Lipschitz. Our filters achieve an additional feature
of being distance-respecting, i.e., they ensure that g is close to f. We provide this feature w.r.t. both ¢; and
lp-distance. The ¢;-distance between functions f and g is defined by ||f — glli = E.[|f(z) — g(z)|], and the

LOracle calls by the filter are called lookups to distinguish them from the queries made to the filter.
2In this work, we focus on reconstruction to Lipschitz functions. All our results extend to the class of c-Lipschitz functions via
scaling all function values by a factor of c.

Copyright (© 2025

2882 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Lo-distance is defined by ||f — g|lo = Prz[f(x) # g(z)], where the expectation and the probability are taken over a
uniformly distributed point in the domain. The distance of f to Lipschitzness is defined as the minimum over all
Lipschitz functions g of the distance from f to g, and can be considered with respect to both norms. Our filters
are distance-respecting in the following sense: the distance between the input function f and the output function
g is at most twice the distance of f to the Lipschitz property (w.h.p.).

Our algorithms work for functions over general graphs. To facilitate comparison with prior work and our lower
bound, we state their guarantees only for the [n]? domain. (This domain can be represented by the d-dimensional
hypergrid graph HZ.) Our first local Lipschitz filter is distance-respecting with respect to the ¢;-distance.

THEOREM 1.1. (INFORMAL VERSION OF THEOREM 2.1 ({;-FILTER)) There is an algorithm A that, given lookup
access to a function f : [n)]? — [0,7], a query x € [n]¢, and a random seed p € {0,1}*, has the following properties:

e Efficiency: A has lookup and time complexity (d" - polylogn)©U°8™) per query.

e Consistency: With probability at least 1 — n=% over the choice of p, algorithm A provides query access to
a 1.01-Lipschitz function g, with ||g, — f|l1 at most twice the {,-distance from f to Lipschitzness.

If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

Our second local Lipschitz filter is distance-respecting w.r.t. £o. Unlike the filter in Theorem 2.1, the /-
respecting filter provides access to a 1-Lipschitz function.

THEOREM 1.2. (INFORMAL VERSION OF THEOREM 3.1 ({o-FILTER)) There is an algorithm A that, given lookup
access to a function f : [n]? — [0,7], a query x € [n]¢, and a random seed p € {0,1}*, has the following properties:

e Efficiency: A has lookup and time complexity d°) polylog(n).

e Consistency: With probability at least 1 — n=% over the choice of p, algorithm A provides query access to
a 1-Lipschitz function g, with ||g, — fllo at most twice the ly-distance from f to Lipschitzness.

If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

An important special case of the hypergrid domain is the hypercube, denoted H?. (It corresponds to the case
n = 2, but its vertex set is usually represented by {0,1}¢ instead of [2]%.) Prior to our work, no local Lipschitz
filter for the hypercube domain could avoid lookups on the entire domain (in the worst case). Our algorithms
do that for the case when r < d/ log? d. Moreover, we show that our filters are nearly optimal in terms of their
dependence on r for this domain. Our next theorem shows that the running time of d*(") is unavoidable in
Theorems 2.1 and 3.1; thus, our filters are nearly optimal. Moreover, even local Lipschitz filters that are not
distance-respecting (as in [JR13]) must still run in time d(").

THEOREM 1.3. (INFORMAL VERSION OF THEOREM 4.1 (FILTER LOWER BOUND)) Let A(z,p) be an algorithm
that, given lookup access to a function f : {0,1}¢ — [0,7], a query = € {0,1}%, and a random seed p € {0,1}*,
has the following property:

o Weak Consistency: With probability at least % over the choice of p, the algorithm A(-, p) provides query
access to a 1-Lipschitz function g, such that whenever f is 1-Lipschitz g, = f.

Then, for all integers r > 4 and d > Q(r), there exists a function f : {0,1}% — [0,7] for which the lookup
complexity of A is (%)Q(T).

The lower bound for local Lipschitz filters in [AJMR15] applies only to filters that are guaranteed to output
a Lipschitz function (or a Lipschitz function with small error in values) for all random seeds. They can still
have a constant error probability, but the only mode of failure allowed is returning a function that is far from f
when f already satisfied the property. Awasthi et al. [AJMR15] suggest as a future research direction to consider
local filters whose output does not satisfy the desired property P with small probability and mention that their
techniques do not work for this case. We overcome this difficulty by providing different techniques that work
for filters whose output fails to satisfy the Lipschitz property with constant error probability. In particular,
Theorem 4.1 applied with » = ©(d) yields the lookup lower bound of 22?9 as in [AJMR15], but without their
restriction on the mode of failure, thus answering their open question.

Copyright (© 2025

2883 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.1.2 Applications We showcase two applications of our local Lipchitz filters: to private data analysis and to
tolerant testing. Both of them deal with real-valued functions with no a priori bound on the range.

Application to black-box privacy. Our first application is for providing differentially private mechanisms
for releasing outputs of black-box functions, even in the presence of malicious clients. Differential privacy,
introduced by [DMNS06], is an accepted standard of privacy protection for releasing information about sensitive
datasets. A sensitive dataset can be modeled as a point x in {0, 1}%, representing whether each of the d possible
types of individuals is present in the data®. More generally, it is modeled as a point = in [n]¢ that represents a
histogram counting the number of individuals of each type.

DEFINITION 1.1. (DIFFERENTIAL PRIVACY) Tuwo datasets x,z’ € [n]? are neighbors if vertices z,x" are neighbors
in the hypergrid He. For privacy parameters ¢ > 0 and § € (0,1), a randomized mechanism M : [n]? — R is
(¢, 6)-differentially private if, for all neighboring x,z' € [n]? and all measurable sets Y C R,

PrM(z) € Y] < e Pr[M(z') € Y] + 4.
When § = 0, then we call M purely differentially private; otherwise, it is approximately differentially private.

A statistic (or any information about the sensitive dataset) is modeled as a function f(x). One of the most
commonly used building blocks in the design of differentially private algorithms is the Laplace mechanism®. The
Laplace mechanism computing on a sensitive dataset = can approximate the value f(z) for a desired c-Lipschitz
function f by adding Laplace noise proportional to ¢ to the true value f(z). The noisy value is safe to release
while satisfying differential privacy.

Multiple systems that allow analysts to make queries to a sensitive dataset while satisfying differential privacy
have been implemented, including PINQ [McS10], Airavat [RSK*10], Fuzz [HPN11], and PSI [GHK T16]. They all
allow releasing approximations to (some) real-valued functions of the dataset. In these implementations, the client
sends a program to the server, requesting to evaluate it on the dataset, and receives the output of the program
with noise added to it. The program f can be composed from a limited set of trusted built-in functions, such as
sum and count. In addition, f can use a limited set of (untrusted) data transformations, such as combining several
types of individuals into one type, whose Lipschitzness can be enforced using programming languages tools.

The limitation of the existing systems is that the functionality of the program is restricted by the set of trusted
built-in functions available and the expressivity of the programming languages tools. Ideally, future systems would
allow analysts to query arbitrary functions, specified as a black box. One reason for the black-box specification
is to allow the clients to construct arbitrarily complicated programs. Another reason is to allow researchers
analyzing sensitive datasets to obfuscate their programs in order to hide what analyses they are running from the
data curator and their competitors.

The difficulty with allowing general queries is that when f (supplied by a distrusted client) is given as a
general purpose program, it is hard to compute its least Lipschitz constant, or even an upper bound on it. The
data curator can ask the client to supply the Lipschitz constant for the query function f. However, as noted in
[JR13], even deciding if f has Lipschitz constant at most ¢ is NP-hard for functions over the finite domains we
study (if f is specified by a circuit). Applying the Laplace mechanism with ¢ smaller than a Lipschitz constant
(if the client supplied incorrect ¢) would result in a privacy breach, while applying it with a generic upper bound
on the least Lipschitz constant of f would result in overwhelming noise. One reason that a client might supply
incorrect ¢ is simply because analyzing Lipschitz constants is difficult even for specialists (see [CSVW22] for
significant examples of underestimation of Lipschitz constants in the implementations of the simplest functions,
such as sums, in differentially private libraries). Another reason is that client could lie in order to gain access to
sensitive information®.

3A point z € {0,1}% can also represent a dataset containing data of d individuals, with one bit per individual: e.g., z; = 1 could
indicate that the individual ¢ has a criminal record or some illness.

4Gaussian mechanism is another popular differentially private algorithm that calibrates noise to the Lipschitz constant of f; for
simplicity, we focus on the Laplace mechanism as a canonical example.

5We give a specific example when f has domain {0, 1}d and a small range. Suppose z; = 1 if the individual i has some illness that
would disqualify them from getting a good rate on insurance and 0 otherwise. Say, a client would like to determine the secret bit of
individual ¢ in the dataset. The client can submit a function f such that f(z) = 0 if ; = 0 and f(x) = 10/e if z; = 1, obfuscated
or with really complicated code. The range of the function is [0, 10/¢]. If the data curator (incorrectly) believes that the function is
1-Lipschitz and uses the Laplace mechanism (formally specified in Lemma 5.1) with noise parameter 1/e then the client will be able
to figure out the bit z; with high probability, violating the privacy of ¢ in the strongest sense.

Copyright (© 2025

2884 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

To the best of our knowledge, no existing (g,0)-DP mechanisms for the black-box privacy problem
simultaneously achieve a runtime that is polynomial in d and log% while providing an accuracy guarantee that
is comparable to the Laplace mechanism. One solution to the black-box privacy problem with the untrusted
client can be obtained using the propose-test-release method of Dwork and Lei [DL09] and is described in [CD14].
However, the runtime of this mechanism is dO(zlog 3) which, when § = polly 5
even when the input function has bounded range® (note that the propose-test-release method does not yield a
local Lipschitz filter.) A second solution to the black-box privacy problem was recently proposed in [KL23]. They

is d?°gd) and it remains the same

present a mechanism called “TAHOE” which runs in time dO(Z1o85) and outputs an answer with significantly
more noise than the Laplace mechanism for 1-Lipschitz functions. The advantage of TAHOE is that the algorithm
need only query the function on subsets of the input. Another solution to the black-box privacy problem was
proposed by Jha and Raskhodnikova [JR13] who designed the following filter mechanism: A client who does
not have direct access to x can ask the data curator for information about the dataset by specifying a Lipschitz”
function f. The data curator can run a local filter to obtain a value g(x), where g is guaranteed to be Lipschitz.
Then the curator can use the Laplace mechanism and release the obtained noisy value. If the client is truthful (i.e.,
the function is Lipschitz), then, assuming that the local filter gives access to ¢ = f in the case that f is already
Lipschitz, the accuracy guarantee of the filter mechanism is inherited from the Laplace mechanism. However,
if the client is lying about f being Lipschitz, the filter ensures that privacy is still preserved. Observe that the
running time and accuracy of the filter mechanism directly depends on the running time and accuracy of the local
Lipschitz filter. The lower bound by Awasthi et al. [AJMR16] on the complexity of local Lipschitz filters implies
22(4) running time for filter mechanisms, even for releasing functions of the form f: {0,1}¢ — R.

We provide a mechanism for privately releasing outputs of black-box functions, even in the presence of
malicious clients, in time that is quasi-polynomial in the dimension d while providing accuracy comparable to
the Laplace mechanism. For bounded-range functions, the running time of our mechanism is polynomial in d
and log %. We bypass the lower bound in [AJMR16] by using the filter mechanism for bounded-range functions
repeatedly to simulate a noisy binary search. Our mechanism needs only query access to the input function, that
is, it can be specified as a black box (e.g., as a complicated or obfuscated program).

THEOREM 1.4. (INFORMAL VERSION OF THEOREM 5.2 (BINARY SEARCH FILTER MECHANISM)) For all e > 0
and 0 € (0,1), there exists an (g,0)-differentially private mechanism M that gets lookup access to a function
f:[n]¢ — [0,7] and has the following properties. Let k = logmin(r, nd).

e Efficiency: The lookup and time complexity of M are dO(Erlogr) polylog %.

e Accuracy: If f is Lipschitz, then for all x € [n]¢, we have M(z) ~ f(x) + Laplace(Z) with probability at
least 0.99.

In Section 5, we state and prove more detailed guarantees for black-box privacy mechanisms. In particular,
our guarantees are stronger for the case when the client can provide an upper bound r on the range diameter
that is significantly smaller than nd. There are many bounded-range functions that are hard to implement with
a fixed set of trusted functions (and thus they are not implemented in current systems). One primitive often
used in differentially private algorithms is determining whether the secret dataset x is far from a specified set S
(where “far” means that many records in « would have to change in order to obtain S). The set S could capture
datasets with the desired property or satisfying a certain hypothesis. For instance, S is the set of datasets with
no outliers in Brown et al. [BGS*21]. To solve this, the client could submit a function f : [n]? — [0,10/¢] that
outputs max(distance(z, S),10/¢), where ¢ is the privacy parameter. The range of f is [0,10/e]. Here n and d
can be huge, whereas ¢ could be, say 1/10 (a typical value of £ used in industry today is even larger than that).
Since f is 1-Lipschitz, it can be released with sufficient accuracy to determine whether x is far from S with high
probability.

6Since the mechanism stated in [CD14, Ch. 7.3, algorithm 13] computes the distance to the nearest “unstable” point, the runtime is

1 1
actually n%. However, the following small modification suffices to obtain the runtime of dO(z1°8 5) When releasing a noisy “distance
to the nearest unstable instance” d, one can add noise from a Laplace distribution truncated to ié log % instead of a regular Laplace

distribution. As a result, the mechanism need only consider points at distance at most % log %
7If the function is c-Lipschitz, it can be rescaled by dividing by c.

Copyright (© 2025

2885 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Both of our filters can be used in the filter mechanism, and we show the type of resulting guarantees for
bounded-range functions in Section 5. The work of [JR13] provides a Lipschitz filter as well, intended to be used
in the filter mechanism. The filter mechanism instantiated with their filter satisfies the stronger guarantee of
pure differential privacy, while performing ©((logn + 1)%) lookups per query. In contrast, the filter mechanism
instantiated with either of our filters uses only poly(d) lookups per query with constant-range functions, satisfies
approzimate differential privacy, and has a stronger accuracy guarantee because of the distance-respecting nature
of the filters. Whereas the accuracy guarantee of [JR13] only holds when the client is honest about the function
f being Lipschitz, our distance-respecting filters provide an additional accuracy guarantee for “clumsy clients”
that submit a function that is close to Lipschitz—on average over possible datasets, the error of the mechanism
is proportional to f’s distance to the class of Lipschitz functions.

Finally, we use the filter mechanism for bounded-range functions to construct a mechanism for arbitrary-
range functions and prove Theorem 5.2. Since every Lipschitz function with domain [n]¢ can have image diameter
at most nd, we can require that the client translate the range of their function to the interval [0,nd]. Observe
that the range restriction f(z) € [0,nd] can be easily enforced locally®, i.e., without evaluating f at points other
than z. In order to privately release f(z) at some x € [n]? in time exp(polylog(nd)), we simulate a noisy binary
search for the value of f(z). The simulation answers queries of the form “Is f(z) > v?”, by clipping the range
of f to the interval [v — 7, v + r], where r = ©(1lognd), and running an instance of the filter mechanism on
the clipped function to obtain a noisy answer a(z). The noisy answer a(x) can be interpreted as f(z) > v if
a(z) > v+ tlogr; f(z) = v if a(z) € [v— Llogr,v + Llogr]; and f(x) < v, otherwise. The resulting noisy
implementation of the binary search provides accurate answers when f is Lipschitz and results in a mechanism
that is always differentially private, no matter how the client behaves.

Application to tolerant testing. The second application we present is to tolerant testing of the Lipschitz
property of real-valued functions on the hypercube domains. Tolerant testing, introduced in [PRRO6] with the
goal of understanding the properties of noisy inputs, is one of the fundamental computational tasks studied in the
area of sublinear algorithms. Tolerant testing has been investigated for various properties of functions, including
monotonicity, being a junta, and unateness [FF05, ACCL07, FR10, BCET19, LW19, CGGT19, PRW22, BKR23|.

In the standard property testing terminology, a property P is a set of functions. Given a parameter ¢ € (0, 1),
a function f is e-far from P if at least an ¢ fraction of function values have to change to make f € P; otherwise,
f is e-close to P. Given parameters €g,¢ € (0,1) with €9 < € and query access to an input function f, an (gg,€)-
tolerant tester for P accepts with probability at least 2/3 if f is gg-close to P and rejects with probability at least
2/3 if f is e-far from P. For the special case when g = 0, the corresponding computational task is referred to as
(standard) testing.

Testing of the Lipschitz property was introduced in [JR13] and subsequently studied in [CS13, DJRT13,
BRY14, AJMR16, CDJS17, DRTV18, KRV23]. Lipschitz testing of functions f : {0,1}¢ — R can be performed
with O(g) queries [JR13, CS13]. In contrast, prior to our work, no nontrivial tolerant tester was known for
this property. As shown in [FF05], tolerant testing can have drastically higher query complexity than standard
testing: some properties have constant-query testers, but no sublinear-time tolerant testers. Moreover, exp(dl/ 4
queries are required for tolerantly testing the Lipschitz property with nonadaptive algorithms (i.e., algorithms
that specify all queries in advance, before receiving any answers). This result follows from the monotonicity-to-
Lipschitzness reduction of Chakrabarty et al. [CDJS17] and the lower bounds for tolerantly testing monotonicity
[PRW22, CDL™24]). Though our algorithm is adaptive, the existence of this lower bound provides evidence that
the problem may be inherently hard.

As an application of our local filters,we construct the first nontrivial tolerant Lipschitz tester (see Theorem 6.1)
for functions f : {0,1}¢ — R.

THEOREM 1.5. (RESTATEMENT OF THEOREM 6.1 (TOLERANT TESTER)) For all € € (0, %) and all sufficiently
large d € IN, there exists an (g,2.01¢)-tolerant tester for the Lipschitz property of functions on the hypercube H?.

The tester has query and time complezity E%do(\/ dlog(d/e))

8Other natural assumptions (which can be viewed as promises on the function that filter gets and which one can potentially try
to use to circumvent strong lower bounds for local Lipschitz filters) cannot be enforced as easily. Some examples are monotonicity
(which is not easy to enforce and has been studied in the context of local filters [SS10, BGJ*12, AJMR15]) and C’-Lipschitzness (i.e.,
assuming the function is C’-Lipschitz and trying to enforce that it is c-Lipschitz for ¢ < C’).

Copyright (© 2025

2886 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We stress that our tolerant tester can handle functions with any range. Given that Lipschitz functions on {0, 1}¢
can have range [0,d], and our ly-filter has time complexity d°(") for functions f : {0,1}¢ — [0,7], one might
expect our tester to run in time exp(d) when no a priori upper bound on f is available. We leverage additional
structural properties of Lipschitz functions to reduce this to exp(\/a).

1.2 Our Techniques

Algorithms. Our ¢;-respecting filter for functions with range [0, 7] is essentially a local simulation of a new
distributed algorithm that iteratively “transfers mass” from large function values to small function values, with
each round reducing a bound on the Lipschitz constant by a factor of 2/3. Transferring mass from element x to
element y is defined as changing the values of f(z) and f(y) to make these values closer to each other by the
same amount (which we refer to as the amount of mass transferred), in order to decrease the distance of f to
Lipschitz. We use the notion of the violation graph for a function f, which connects the pairs of elements (z,y)
for which the Lipschitzness property is violated, i.e., the difference f(x) — f(y) exceeds dist(x,y). Previous work
[AJMR16] used the idea of transferring mass for integer-valued functions on the hypergrid and transferred one
unit through edges in the violation graph along a single dimension in each iteration. Our work shows that if we
take a maximal matching M in the violation graph and transfer mass equal to 2/3 of the maximum violation
score | f(x) — f(y)| — distg(z,y) along every edge in this matching, this results in a reduction of the maximum
violation score by a factor of 2/3. Together with the fact that maximum violation score in the original function is
at most r, this implies that O(logr) rounds suffice to turn f into a Lipschitz function. The local implementation
is built on the recent algorithm of [Gha22] for giving local access to a maximal independent set.

Our local Lipschitz filters leverage powerful advances in local computation algorithms (LCAs). Both of them
are built on an LCA for obtaining a maximal matching based on Ghaffari’s LCA [Gha22] for maximal independent
set, and they rely on the locality of the independent set algorithm to give lookup-efficient access to the corrected
values. We run the maximal matching LCA on the violation graph of a function f with each edge labeled by the
violation score | f(x) — f(y)| — distg(z,y), as developed in property testing [DGL199, FLN102, JR13, AJMR16].
To get efficient local filters for functions with range [0, r], we take advantage of the fact that, for such functions,
the maximum degree of the violation graph is at most D, (where Dy denotes the maximum degree of G) and the
fact that the matching LCA has lookup complexity that is polynomial in the degree.

Our /¢;-respecting filter runs in multiple stages. In each stage, it calls the maximal matching LCA on the
current violation graph, which captures pairs of points with relatively large violation score. For each matched
pair, the filter decreases the larger value and increases the smaller value by an amount proportional to the current
bound on the violation score. This shrinking operation reduces the Lipschitz constant by a multiplicative factor,
and does not increase the ¢;-distance to the class of Lipschitz functions. Our fy-respecting filter uses a different
approach that only requires one stage. It relies on a well known technique for computing a Lipschitz extension
of any real-valued function with a metric space domain. Leveraging an LCA for maximal matching allows us to
simulate this extension procedure locally.

We remark that Lange, Rubinfeld and Vasilyan [LRV22] used an LCA for maximal matching to correct
monotonicity of Boolean functions. Their corrector fixes violated pairs by swapping their labels; however, this
technique fails to correct Lipschitzness. Additionally, unlike the corrector of [LRV22], which may change a
monotone function on a constant fraction of the domain, our filters guarantee that Lipschitz functions are never
modified.

Lower bounds. The first idea in the proof of our lower bound for local filters is to reduce from the problem
of distribution-free property testing. Our hardness result for this problem uses novel ideas for proving lower
bounds for adaptive algorithms, typically a challenging task, for which the community has developed relatively
few techniques. Specifically, we show that our construction allows an adaptive algorithm to be simulated by
a nonadaptive algorithm with extra information and the same query complexity. One of our main technical
contributions is a query lower bound for distribution-free Lipschitz testing of functions f : {0,1}% — [0,7] that is
exponential in 7 and log(d/r) for any even 7 satisfying 4 < r < 276d. The lower bound we achieve demonstrates
that our filters have nearly optimal query complexity.

Distribution-free testing — property testing with respect to an arbitrary distribution D on the domain using
both samples from D and queries to the input — was first considered in [HKO07]. Lipschitz testing has been
investigated with respect to uniform distributions [CS13, DJRT13, BRY14, AJMR16, CDJS17, DRTV18, KRV23]
and product distributions [DJRT13, CDJS17], but not with respect to arbitrary distributions. Our lower bound

Copyright (© 2025

2887 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

demonstrates a stark contrast in the difficulty of Lipschitz testing with respect to arbitrary distributions compared
to product distributions. In particular, the Lipschitz tester of [CDJS17] for functions f : {0,1}¢ — R has query
complexity linear in d for all product distributions, whereas our lower bound for distribution-free Lipschitz testing
(formally stated in Theorem 4.2) implies that a query complexity of 224) is unavoidable for arbitrary distributions.
To prove our lower bound for distribution-free testing, we start by constructing two distributions, on positive and
negative instances of this problem, respectively. The instances consist of a pair (f,U), where f : {0,1}¢ — [0,7] is
a function on the hypercube and U is a uniform distribution over an exponentially large set of points called anchor
points. The anchor points come in pairs (x,y) such that z and y are at distance r for the positive distribution and
distance r — 1 for the negative. The function values are set to f(z) = 0 and f(y) = r. For the points not in the
support of U, the values are chosen to ensure that the Lipschitz condition is locally satisfied around the anchor
points, and then the remaining values are set to /2. We note that [HKO05] also uses a construction involving
pairs of anchor points to prove query and sample complexity lower bounds for distribution-free monotonicity
testing; however, our approach introduces a novel “simulation” technique for proving lower bounds on the query
complexity of adaptive algorithms.

The crux of the proof of Theorem 4.2 is demonstrating that every deterministic (potentially adaptive) tester
T with insufficient sample and query complexity distinguishes the two distributions only with small probability.
(By the standard Yao’s principle this is sufficient.) An algorithm is called nonadaptive if it prepares all its queries
before making them. A general (adaptive) algorithm, in contrast, can decide on queries based on answers to
previous queries. One of the challenges in proving that the two distributions are hard to distinguish for 7 is
dealing with adaptivity. We overcome this challenge by showing that 7 can be simulated by a monadaptive
algorithm Ty, that is provided with extra information. Specifically, it gets one point from every pair of grouped
anchor points. One of the key ideas in the analysis is that our hard distributions, and the sampling done by the
tester, can be simulated by first obtaining the information provided to 7, using steps which are identical for the
two hard distributions, and only then selecting the remaining anchor points to obtain the full description of the
function f and the distribution U. It allows us to show that, conditioned on avoiding a small probability bad
event, 7 cannot distinguish the distributions.

Applications. Our main technical contribution to the two application areas we consider is realizing that
they can benefit from local filters for bounded-range functions, even when the functions in the applications have
unbounded range. For the privacy application, we obtain our differentially private mechanism for general real-
valued functions provided by using our local filters to simulate a noisy binary search. For the application to
tolerant testing, we use McDiarmid’s inequality and the observation that our £y-respecting Lipschitz filter works
even with partial functions.

1.3 Preliminaries on Lipschitz Functions First, we define two important special families of graphs. We
consider the hypercube H¢ with vertices {0,1}¢ and the hypergrid H¢ with vertices [n]?. For both of them, two
vertices are adjacent if they differ by one in one coordinate and agree everywhere else. Now, we give preliminaries
on Lipschitz functions. When we discuss the range (or image) of functions, we often refer to its diameter. The
diameter of a closed and bounded S C R is maxyes(y) — minges(y). Let G = (V, E) be an undirected graph and
let f:V = R.

DEFINITION 1.2. (¢-LIPSCHITZ FUNCTIONS) Fiz a constant ¢ > 0 and a graph G = (V, E). A function f : V - R
is c-Lipschitz w.r.t. G if |f(x) — f(y)| < ¢ distg(z,y) for all z,y € V. A 1-Lipschitz function is simply referred
to as Lipschitz. Let Lip(G) be the set of Lipschitz functions w.r.t. G.

DEFINITION 1.3. (DISTANCE TO LIPSCHITZNESS) For all graphs G = (V, E), functions f : V — R, distributions
D over V, and b € {0,1}, define the {y-distance to Lipschitz w.r.t. a distribution D as €, p(f, Lip(G)) =

minge cipa) |f — gllv,0, where
If = gllo.p = Pre~plf(z) # g(x)];
If = glli,p = Eennllf(z) — g()]].

When D is the uniform distribution, we omit it from the notation. The definition of ||f — gl|lo applies when
f and g are partial functions.

Next, we define the violation score of a pair of points, and the violation graph of a function.

Copyright (© 2025

2888 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DEFINITION 1.4. (VIOLATED PAIR, VIOLATION SCORE) For z,y € V, let distg(z,y) denote the shortest path
distance from x toy in G. A pair (z,y) of vertices is violated with respect to f if |f(x)— f(y)| > distg(z,y). The
violation score of a pair (x,y) with respect to f, denoted V. Sy(x,y), is

VSp(z,y) = |f(z) — f(y)] — dista(z, y)

if (z,y) is violated and 0 otherwise. We extend these definitions to partialfunctions g : V. — R U {7}, where ?
denotes an undefined value, by stipulating that if x or y is in g~(?) then (z,y) is not violated.

DEFINITION 1.5. (VIOLATION GRAPH) The T-violation graph with respect to f is a directed graph, denoted B; j,
with vertex set V and edge set {(z,y) : V.S¢(z,y) > 7 and f(z) < f(y)}.

1.4 Preliminaries on Local Computation Algorithms First, we define a local computation algorithm
(LCA) for a graph problem.

DEFINITION 1.6. (GRAPH LCA) Fiz 6 € (0,1). A graph LCA A(z,p) is a randomized algorithm that gets
adjacency list access® to an input graph G = (V, E), a query x € V, and a random seed p € {0,1}*. For each p,
the set of outputs {A(x,p) : x € V'} is consistent with some object defined with respect to G, such as a maximal
matching in G. The fraction of possible random strings for which A fails (i.e., defines an object that does not
satisfy the constraints) of the problem, is at most §.

We use an LCA for obtaining a maximal matching based on Ghaffari’s LCA [Gha22] for maximal independent
set. The description of how to obtain an LCA for a maximal matching based on Ghaffari’s result [Gha22] is
standard and appears, for example, in [LRV22].

THEOREM 1.6. ([GHA22]) Fiz N,Dy € N, and d9 € (0,1). There exists a graph LCA GHAMATCH for the
mazximal matching problem for graphs with N wvertices and maximum degree Dy. Specifically, on input x, it
outputs y if (x,y) or (y,x) is in the matching, and outputs L if © has no match. GHAMATCH uses a random seed
of length poly(Dy -1og(N/dy)), runs in time poly(Dg -log(N/dg)) per query, and has failure probability at most dg.

We specify an LCA for accessing the violation graph. To simplify notation, we assume that any algorithm
used as a subroutine gets access to the inputs of the algorithm which calls it; only the inputs that change in
recursive calls are explicitly passed as parameters.

Algorithm 1 LCA: VioL(f(-), 7,)

Input: Adjacency lists access to G = (V, E), lookup access to f : V — [0,7], range diameter r € R, threshold
T<r,vertexx €V
Output: Neighbor list of z in B; ¢

1: return {y : distg(z,y) < |f(z) — f(y)| — 7} > Compute by performing a BFS from z

Local filters were introduced by Saks and Seshadhri [SS10] and first studied for Lipschitz functions by Jha
and Raskhodnikova [JR13].

DEFINITION 1.7. (LOCAL LIPSCHITZ FILTER) For all ¢ > 0 and & € (0,1), a local (c,d)-Lipschitz filter!® over a
graph G = (V| E) is an algorithm A(x, p) that gets a query x € V and a random seed p € {0,1}*, as well as lookup
access to a function f:V — R and adjacency lists access to G. With probability at least 1 — § (over the random
seed), the filter A provides query access to a c-Lipschitz function g, : V. — R such that whenever f is c-Lipschitz
g, = f. In addition, for all X\ > 0, the filter is £,-respecting with blowup A if || f —g,llp < A-£p(f, Lip(G)) whenever
gp s c-Lipschitz.

9 An adjacency list lookup takes a vertex = and returns the set of vertices adjacent to x.
10While the graph is hardcoded in this definition, our filters work when given adjacency list access to any graph.

Copyright (© 2025

2889 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2 /;-respecting Local Lipschitz Filter

The d-dimensional hypergrid of side length n is the undirected graph, denoted HZ, with the vertex set [n]¢ and
the edge set {(z,y): |z —y| = 1}.

THEOREM 2.1. For all v > 0 and § € (0,1), there is an £1-respecting local (1 + ~,8)-Lipschitz filter with blowup
2 over the d-dimensional hypergrid He. Given lookup access to a function f : [n]¢ — [0,7], and a random seed p
of length d°) - polylog(nlog(r/v)/d)), the filter has lookup and time complexity (d” - polylog(n/§))C1ee(/7)) for
each query x € [n]?. If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds.

We first give a global Lipschitz filter (Algorithm 2) and then show how to simulate it locally (in Algorithm 3)
by using the result of [Gha22] stated in Theorem 1.6.

Algorithm 2 GLOBALFILTER;
Input: Graph G = (V, E), function f: V — [0,r], range diameter r € R, and approximation parameter v > 0
Output: (1 + 7)-Lipschitz function g : V — [0, r]
1: Let g1 «+ f
2: for ¢ <= 2 to logy/5(5) + 1 do > Start at ¢ = 2 for GLOBALFILTER;-LOCALFILTER; analogy.
3: Set threshold 7 < 7 - (2)"~! and move-amount A < % - ()72
4 Construct B, g4, , (Definition 1.5) and compute a maximal matching M, of B, 4, ,
5 Set g¢ < ge—1
6 for (z,y) € M; do > Recall: f(x) < f(y)
7: Set gi(x) < g¢(x) + A
8
9:

Set g:(y) < g:(y) — A
return g;, where ¢ = logg 5() + 1

2.1 Analysis of the Global Filter The guarantees of GLOBALFILTER (Algorithm 2) are summarized in the
following lemma.

LEMMA 2.1. For all input graphs G = (V,E), functions f : V. — [0,7], and v > 0, if g is the output of
GLOBALFILTER+, then g is a (1 + 7)-Lipschitz function and ||g — f|l1 < 2¢1(f, Lip(G)).

We prove Lemma 2.1 via a sequence of claims. Claim 2.1 makes an important observation about the violation
scores on adjacent edges in the violation graph. Claim 2.2 argues that the violation scores decrease after each
iteration of the loop. Claim 2.3 converts the guarantee for each iteration to the guarantee on the Lipschitz constant
for the output function. Finally, Claim 2.4 bounds the ¢;-distance between the input and output functions.

Cram 2.1. If (z,y) and (y,z) are edges in the violation graph By y then V.Sy(z,z) > V. Sy(x,y) + VS (y, 2).
Proof. Since (z,y) and (y, z) are edges in the violation graph By ¢, then f(z) < f(y) < f(z). Therefore,

VS¢(x,2) = f(z) — f(x) — dista(z, 2)
> f(2) = fy) + f(y) = f(2) = distg(2,y) — dista(y, 2)
= VSi(z,y) + VS;(y, 2),

by the definition of the violation score and the triangle inequality. 0

Next, we abstract out and analyze the change to the function values made in each iteration of the loop in
Algorithm 2.

Cram 2.2. (MAXIMUM VIOLATION SCORE REDUCTION) Let G = (V, E) be a graph and let g : V — [0,7] be a
function such that V.Sy(x,y) < v for all v,y € V. Let M be a mazrimal matching in By, /s 4 such that g(x) < g(y)
for all (x,y) € M. Obtain h as follows: set h = g and then, for every edge (x,y) € M, set h(zx) < h(z) +v/3
and h(y) < h(y) —v/3. Then VSy(z,y) < 2v/3 for all x,y € V.

Copyright (© 2025

2890 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. Suppose z,y € V, assume w.l.o.g. that g(x) < g(y), and consider the following two cases. Recall that
edges in the violation graph (x,y) are directed from the smaller value z to the larger value y.

Case 1: (7,y) is an edge in By, 3 4. By Claim 2.1, we cannot have vertices a, b, ¢ such that (a,b) and (b, c) are
both in By, /3 4, since otherwise V' Sy (a, c¢) would be at least V' Sy(a,b)+VSy(b,c) > 2v/3+42v/3 > v, contradicting
the upper bound of v on violation scores stated in Claim 2.2. Thus, in Bs,/3 4, each edge incident on x is outgoing
and each edge incident on y is incoming. Consequently, h(z) > g(z) and h(y) < g(y).

Moreover, since (x,y) is in By, /3, and M is a maximal matching, at least one of x,y is matched in M.
W.lo.g. assume that M contains an edge (z,z). Then h(x) = g(z) + v/3. Since h(y) < g(y), we have
VSu(z,y) < VSy(z,y) —v/3 < 2v/3.

Case 2: (z,y) is not an edge in By, /3,4. Then V.Sy(x,y) < 2v/3. Consider how the values of 2 and y change
when we go from g to h. Observe that |h(z) — g(z)| is 0 or v/3 for all 2z € V. If both values for « and for y stay
the same, or move in the same direction (both increase or both decrease), then V.Sy,(z,y) = VS, (z,y) < 2v/3. If
they move towards each other, then VSy,(z,y) < 2v/3, whether h(x) < h(y) or not.

Now consider the case when they move away from each other, that is, h(z) < g(x) and h(y) > g(y), and at
least one of the inequalities is strict. First, suppose both inequalities are strict. Then there are vertices zg, 2,
such that (2,), (y,2y) € M. By Claim 2.1, pair (z,y) is not violated in g (since otherwise V.S,(2z, z,) would
be at least V.Sy(zy,z) + VSy(z,y) + VS,(y, 2z,) > 4v/3, contradicting the assumption on violation scores in the
claim). Since the values of the endpoints move by v/3 each, the new violation score V.S (x,y) < 2v/3.

Finally, consider the case when only one of the inequalities is strict. W.l.o.g. suppose h(y) > ¢(y). Then there
is z € V such that (y,z) € M. By Claim 2.1, the violation score VSy(z,y) < v/3, since otherwise V.Sy(x, 2)
would be at least V.S,(z,y) + VSy(y,2) > v/3 + 2v/3 = v, contradicting the assumption on violation scores in
the claim. Thus, VS, (z,y) < VSy(x,y) +v/3 < 2v/3, as required. 0

Next, we use Claim 2.2 to bound the Lipschitz constant of the function output by the global filter.

CLAIM 2.3. For all t > 1, the function g, computed in Algorithm 2 is (14 r(2)*=')-Lipschitz. In particular, if
t* = loggo(r/y) + 1 then gi= is (1 + ~)-Lipschitz.

Proof. Fix a graph G = (V, E) and a function f: V — [0,7]. Then V.S¢(z,y) <r for all z,y € V.
For all t > 1, let vy = r(%)“l. Notice that, in Line 3 of Algorithm 2, we set 7 = 2v;_; and

3
A= %(2)'5_2 = %vt,y To prove the claim, it suffices to show that for all ¢ > 1 and z,y € V,

3
(2.1) VSg,(x,y) < vy,

since then |g:(x) — g:(y)| < diste(z, y)(1 + v¢). We prove Equation (2.1) by induction on t.

In the base case of t = 1, we have V.Sy, (z,y) < r =v; for all z,y € V. Assume Equation (2.1) holds for some
t > 1. Then, instantiating Claim 2.2 with g = g4, h = gy41, and v = v; yields V'Sy, ., (z,y) < 2v4/3 = vy for all
z,yeV.

In conclusion, since v¢= = 7, the function g+ is (1 + ~y)-Lipschitz. 0

Finally, we argue that the ¢;-distance between the input and the output functions of Algorithm 2 is small.

CLAM 2.4. Fiz a graph G = (V,E) and a function f : V — [0,7]. Suppose h is the closest (in ¢1-distance)
Lipschitz function to f. Then for allt > 1, the functions g; computed by Algorithm 2 satisfy ||gi+1—h|1 < ||ge—h]1

and ||g: — flli < 20:.(f, Lip(G)).

Proof. Fix t > 1. Since g; and g4+1 only differ on the endpoints of the edges in the matching M1, we restrict
our attention to those points. For each edge (z,y) € M1, we will show

(2.2) |gt+1(2) = h(@)] + ge+1(y) — h(y)] < |ge(@) — h(@)| + |g:(y) — h(y)]-

Let 7 =7(2)" and A = 5(2)"~! = Z. Suppose (z,y) € M;11. Recall that this implies that V.S, (z,y) > 7 =
2A and g¢(z) < ¢¢(y). By construction, g¢11(z) = ¢g:(x) + A and gy11(y) = g¢(y) — A. Thus, the violation score
of (z,y) decreased by 2A, so (z,y) is still violated by g1, i.e.,

(2.3) gi1(x) + dista(z,y) < gir1(y)-

Copyright (© 2025

2891 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Define ®(z) = |gt11(2) — h(2)| — |gt(2) — h(z)] for all z € V. (Intuitively, it captures how much further from
h(z) the value on z moved when we changed g¢; to g:+1.) Then Equation (2.2) is equivalent to ®(x) + ®(y) < 0.
If both ®(x) < 0 and ®(y) < 0, then Equation (2.2) holds. Otherwise, ®(z) > 0 or ®(y) > 0. Suppose w.l.o.g.
®(z) > 0. Since giy1(x) = gi(z) + A, we know that ®(z) < A. To demonstrate that Equation (2.2) holds, it
remains to show that ®(y) < —A.

Since ®(x) > 0, the value h(x) is closer to g:(x) than to g1 (z). Since gry1(x) = gi(z) + A, it implies that
h(z) must be below the midpoint between g;(x) and g¢11(x), which is g;11(x) = A/2. That is,

(2.4) h(z) < gep1(x) — A/2.
We use that h is Lipschitz, then apply Equations (2.4) and (2.3) to obtain
h(y) < h(z) + distg(z,y) < gry1(z) — A/2 + distg(z,y) < g1 (y) — A/2.

Since h(y) < gr+1(y) — A/2 and gi41(y) = 9:(y) — A, we get that ¢:(y) and g¢+1(y) are both greater than h(y).
Thus, |gt+1(y) — h(y)| = |g:(y) — h(y)| — A and hence, ®(y) = —A, so Equation (2.2) holds.

We proved that Equation (2.2) holds for every edge in My, 1. Moreover, for all vertices z outside of M;1, we
have g;11(2) = g:(2) and, consequently, ®(z) = 0. Summing over all vertices, we get that ., ®(z) < 0. Thus,
l9t+1 = hllx < llge — hll1. By the triangle inequality, ||g: — flls < llge — hllx + | = fllx < llgr = hllx + [If = Al =
20, (f, Lip(GQ)). O

Lemma 2.1 follows from Claims 2.3 and 2.4.

2.2 Analysis of the Local Filter In this section, we present a local implementation of Algorithm 2 and
complete the proof of Theorem 2.1. We claim that for each ¢t € [log(r/y) + 1], Algorithm 3 simulates
round t of Algorithm 2 and, for graphs on N vertices with maximum degree D, has lookup complexity
(D" - polylog(N/§))CUoe(r/7),

Algorithm 3 LCA: LOCALFILTER (z, ¢, p1 © ... © pt)
Input: Adjacency lists access to graph G = (V, E), lookup access to f : V — [0, 7], range diameter r € R, vertex
x € V, iteration number ¢, approximation parameter v > 0, and random seed p = p; o...0p;
Subroutines: GHAMATCH (see Theorem 1.6) and VIOL (see Algorithm 1)
Output: Query access to (r - (2)'~!)-Lipschitz function g, : V — [0,]
if t=1orr-(2)""" <~ then
return f(x)

: Set threshold 7 <— - (2)*~! and move amount A « % - ()72

. Set fi(x) + LOCALFILTERy (z,t — 1,p10...0pt—1)
Set y <~ GHAMATCH(VIOL(LOCALFILTER; (-,t — 1,p1 0...0 pt_1),7,"), T, pt)
if y # 1 then

fi—1(y) < LOCALFILTER, (y,t — 1,p10...0 pt_1)

fe(@) < fe(x) +sign(fi-1(y) — fe(2)) - A

return f;(z)

2
3

© P TSR N

DEFINITION 2.1. (GOOD SEED) Let G = (V, E) be a graph and fiz t > 1. Consider a function f :V — [0,7]. A
string p = p1 o ... o p is a good seed for G and f if, for all i € [t], the matching computed by GHAMATCH in
LOCALFILTER (-, %, p1 © ... © p;) 18 mazimal.

Cramm 2.5. Fiz a graph G = (V, E), a function f : V — [0,7], and v > 0. Let t* = logy5(r/v) + 1 and fiz a
good seed p = pyo---opp. Let g(x) denote LOCALFILTER; (z,t*, p) for allx € V. Then g is a (1 4 ~y)-Lipschitz
function with range [0,7] and ||f — gll1 < 261(f, Lip(G)).

Proof. For all ¢ € [t*], let g; be the function computed by GLOBALFILTER; on G, r, f, and « after iteration ¢ using
the matching computed by the call to GHAMATCH in LOCALFILTER (2, t, p1 o ... o p;). Recall that the matching

Copyright (© 2025

2892 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

computed by each call to GHAMATCH in LOCALFILTER; (z,t, p1 © ... 0 p;) is maximal and therefore can be used
as the matching in the iteration ¢ of the loop in GLOBALFILTER;.

By an inductive argument, LOCALFILTER; (x,t,p1 0...0p;) = g¢(x) for all z € V and ¢ € [t*]. The base case
is LOCALFILTER, (2,1, p1) = f(z) = g1, and every subsequent g; computed by GLOBALFILTER; is the same as
LOCALFILTER (-, ¢, p10...0p;). Hence, LOCALFILTER (z, t*, p) provides query access to g;+. By Lemma 2.1, g4
is (1 + ~)-Lipschitz and satisfies ||gi — f|| < 2¢1(f, Lip(G)). 0

LEMMA 2.2. Fiz v > 0 and § € (0,1). Let G = (V, E) be a graph with |V| = N and maximum degree D. Let
f 2V = [0,r] and t* = logg5(r/v) + 1. Then, for a random seed p = py o ... o py=, which is a concatenation
of t* strings of length D) polylog(Nt*/§) each, the algorithm LOCALFILTER,(-,t*, p) is an £;-respecting local
(1 + 1+, 0)-Lipschitz filter with blowup 2 and lookup and time complexity (D" - polylog(N/§))PUee(r/7),

Proof. Since the range of f is at most r, two vertices in a violated pair can be at distance at most r — 1. Hence,
the maximum degree of the violation graph B, ¢ is at most D". By Theorem 1.6 instantiated with Dy = D"
and &y = %, the failure probability of each call to GHAMATCH is at most t%. Since there are at most t* calls to
GHAMATCH, the probability that any call fails is at most . It follows that a random string p of length specified
in the lemma is a good seed (see Definition 2.1) with probability at least 1 —§. This allows us to apply Claim 2.5,
and conclude that LOCALFILTER, (z,t*, p) provides query access to a (1 + ~)-Lipschitz function and fails with
probability at most § over the choice of p.

Let Q(t) be the lookup complexity of LOCALFILTER;(z,t,p1 0 ... © pt). Then Q(1) = 1 and, since the max
degree of B, y is D", each lookup made by GHAMATCH to the violation graph oracle in the (¢ — 1)-st iteration
requires at most D"Q(t — 1) lookups to compute. Since GHAMATCH makes D) polylog(N/5) such lookups,
Q(t) < DO polylog(n/8)Q(t — 1). Thus, the final lookup complexity is Q(t*) < (D" - polylog(N/4))Ctes(r/7),
By inspection of the pseudocode, we see that the running time is polynomial in the number of lookups. |

Proof of Theorem 2.1. The theorem follows as a special case of Lemma 2.2 with G equal to the hypergrid
H. The hypergrid has n? vertices and maximum degree 2d. This gives lookup and time complexity
(d" - polylog(n/8))°Uee(*/7) 1f f is Lipschitz, then all violation graphs are empty; therefore, any local matching
algorithm returns an empty matching (or can otherwise be amended to do so by checking whether the returned
edge is in the graph and returning L if it is not). Thus, when f is Lipschitz, the returned value is always f(z).
d

3 {p-respecting Local Lipschitz Filter

In this section, we present a local Lipschitz filter that respects fp-distance rather than ¢;-distance. Unlike the
{1-respecting filter, the {y-respecting filter outputs a function that is 1-Lipschitz.

THEOREM 3.1. For all 6 € (0,1), there exists an lo-respecting local (1,8)-Lipschitz filter with blowup 2 over
the d-dimensional hypergrid HE. Given lookup access to a function f : [n]¢ — [0,7], and a random seed p of
length d°(") - polylog(n/$)), the filter has lookup and time complezity d°) - polylog(n/6) for each query x € [n]?.
If f is Lipschitz, then the filter outputs f(x) for all queries x and random seeds. If for all y € [n]¢ we have
|f(z) — f(y)| < |z —y| then the filter outputs f(x).

We give a global view (Algorithm 4) and prove its correctness before presenting a local implementation
(Algorithm 5). We use the convention that max,eg(-) is defined to be zero when S is the empty set.

Algorithm 4 GLOBALFILTERg
Input: Graph G = (V, E), function f: V — [0, 7]
Output: Lipschitz function g : V' — [0, 7]

1: Construct By ¢ (see Definition 1.5) and compute a vertex cover C' of By ¢
2: Set go + f

3: for every vertex u € C' do

4 Set go(u) « max(0, max,ev\c(gc(v) — distg (u, v)))

5: return gc

Copyright (© 2025

2893 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3.1 Analysis of the Global Filter Algorithm 4 reassigns the labels on a vertex cover C of the violation graph
By, . Observe that the partial function f on the domain V' \ C' is Lipschitz w.r.t. G, because its violation graph
has no edges. We claim that this algorithm extends this partial function to a Lipschitz function defined on all of
G. Tt is well known that for a function f : X — R with a metric space domain, if f is Lipschitz on some subset
Y C X, then f can be made Lipschitz while only modifying points in X \ Y. See, for example, [JR13] and [BL0O0].
We include a proof for completeness.

Cram 3.1. (LIPSCHITZ EXTENSION) Let G = (V, E) be a graph, and f : V — [0,7] a function. Then, for all
vertex covers C of By, the function gc returned by Algorithm 4 is Lipschitz.

Proof. Let f : V. — [0,7] U {?} be a partial Lipschitz function and let A; be the set of points on which f
is defined. Fix a vertex ¢ Ay and obtain the function g as follows: Set g(y) = f(y) for all y € Ay. Set
g(x) = max,ea, (f(v) —distg(x,v))). Note that in the case where Ay is empty, the function f is nowhere defined,
and hence setting g(«) = 0 will always result in a Lipschitz function. Thus, assume w.l.o.g. that A is not empty.

We will first argue that g is Lipschitz. Let v* = argmax,ca,(f(v) — distg(z,v)), i.e., a vertex such that
g(x) = f(v*) — distg(z, v*). Then, for all v € Ay,

g(z) — g(v) = f(v*) — distg(z,v™) — f(v) < distg(v,v") — distg(z,v™) < distg(z, v).

Similarly, g(v) — g(z) < f(v) + distg(z,v) — f(v) = distg(z,v), so g is Lipschitz. Notice that if ¢ is a Lipschitz
function, then max(0, g) is also a Lipschitz function (truncating negative values can only decrease the distance
between g(z) and g(y) for all pairs x,y in the domain). Thus, setting g(z) = max(0, max,ca, (f(v) —distg(z,v)))
will also yield a Lipschitz function.

Next, we argue that the order of assignment does not affect the extension. Let A, be set of points on which
g is defined and note that A, = Ay U {z}. We will show that for all z ¢ A, we have

max(0, grelz%(f(v) — distg(z,v))) = max(0, 1{23};(9(1}) — distg(z,v))).

Let f(z) = max(0, max,c4,(f(v) — distg(z,v))) and g(z) = max(0, max,ea,(g(v) — distg(z,v))). Then, since
Ay = Ay U {z}, we obtain ¢g(z) = max(f(z), g(z) — diste(z, 2)). If g(x) = 0 then f(z) = g(z) since by definition
f(2) > 0. On the other hand, if g(z) > 0 then g(z) = f(v*) — distg(z,v*) and hence,

f(z) = f(v*) = distg(v*, z) > (f(v*) — distg(z, v")) — distg(z, 2)
= g(x) — distg(z, 2),

which implies f(z) = g(z). To complete the proof of Claim 3.1, Let f : V' — [0,7] be a function with violation
graph By ¢. Notice that if C is a vertex cover of By then f : V'\C — [0,] is Lipschitz, and thus, setting f(z) =7
for all x € C and applying the extension procedure inductively, we see that g¢ is a Lipschitz function.]

The following claim relates the distance to Lipschitzness to the vertex cover of the underlying graph. This
relationship is standard for the Lipschitz and related properties, such as monotonicity over general partially
ordered sets [FLNT02, Corrolary 2]. See [CS13, Theorem 5] for the statement and proof for the special case of
hypergrid domains. The arguments in these papers extend immediately to the setting of general domains.

Cram 3.2. (DISTANCE TO LIPSCHITZ) For all graphs G = (V, E) on n vertices and functions f : V — R, the
size of the minimum vertex cover of the violation graph By y is exactly n - Lo(f, Lip(G)).

Proof of Claim 3.2. Let C be any minimum vertex cover of By . We first argue that n- ¢y (f, Lip(G)) < |C|. If g
is a partial function that is equal to ? on vertices in C' and equals f elsewhere, then g is Lipschitz outside of C.
Then, by Claim 3.1 with C' as the cover in Algorithm 4, there exist values y1,...,¥c| such that setting g(z;) = y;
for each z; € C yields a Lipschitz function. It follows that n - ¢y (f, Lip(G)) < |C].

Next, using the function g defined in the previous paragraph, suppose the set P = {z : g(z) # f(x)} is not
a vertex cover for By s. Then, there exists some edge (z,y) in By such that f(z) = g(x) and f(y) = g(y) (i.e.
z,y ¢ P). But by definition of By, r, this implies that |g(x) — g(y)| > diste(z,y) which contradicts the fact that
g is Lipschitz. It follows that n - £y(f, Lip(G)) = |C]. |

Copyright (© 2025

2894 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3.2 Analysis of the Local Filter Using Algorithm 1 and GHAMATCH from Theorem 1.6, we construct
Algorithm 5, an LCA which provides query access to a Lipschitz function close to the input function. It is
analyzed in Lemma 3.1.

Algorithm 5 LCA: LOCALFILTERq(z, p)
Input: Adjacency lists access to graph G = (V, E), lookup access to f : V — [0, 7], range diameter r € R, vertex
x € V, random seed p
Subroutines: GHAMATCH (see Theorem 1.6) and VIOL (see Algorithm 1).
Output: Query access to Lipschitz function g : V' — [0, 7].
1. if GHAMATCH(VIOL(f,0,),z, p) = L then

2: return f(x)

3: else

4: S+ {y : distg(z,y) < r and GHAMATCH(VIOL(f,0,),y,p) = L}
5: return max(0, maxyes(f(y) — dista(z,y)))

LeEMMA 3.1. (LOCALFILTERg) Fiz § € (0,1). Let G = (V,E) be a graph with N vertices and mazimum degree
D. Then, for a random seed p of length DO") - polylog(N/§), the algorithm LOCALFILTERq(x, p) (Algorithm 5)
is an Lo-respecting local (1,6)-Lipschitz filter with blowup 2 and lookup and time complexity D°) - polylog(N/5).

Proof. Since the range of f is bounded by r, a pair of violated vertices x,y must have distg(z,y) < r, and thus,
the maximum degree of By ¢ is at most D”. By Theorem 1.6 instantiated with Dy = D" and d¢ = 6, the algorithm
GHAMATCH has lookup and time complexity D) . polylog(NN/d) per query, and fails to provide query access
to a maximal matching with probability at most § over the choice of p. Since LOCALFILTERy makes at most D"
queries to GHAMATCH and only fails when GHAMATCH fails, LOCALFILTER(has lookup and time complexity
DO . polylog(N/6§) and failure probability at most 8. Let p be a seed for which GHAMATCH does not fail, and
let C' be the set of vertices that are matched by GHAMATCH when given adjacency lists access to By . Since the
matching is maximal, C' is a 2-approximate vertex cover of By r. Hence, we can run GLOBALFILTER (Algorithm 4)
and use C as the vertex cover. Since LOCALFILTERg and GLOBALFILTER(apply the same procedure to every
vertex in V', and since C' has at most twice as many vertices as a minimum vertex cover, Claims 3.1 and 3.2 imply
that LOCALFILTERg provides query access to some Lipschitz function g satisfying || f—gllo = |C| < 260 (f, Lip(G)).
d

Proof of Theorem 3.1. This is an application of Lemma 3.1 to the d-dimensional hypergrid H%. The hypergrid has
n¢ vertices and a maximum degree of 2d, therefore, the lookup and time complexity are d°(") - polylog(n/§) =
d°) . polylog(n/§). Similarly, the length of the random seed is also d°(") - polylog(n/d). If f is Lipschitz, then all
violation graphs are empty; therefore, any local matching algorithm returns an empty matching (or can otherwise
be amended to do so by checking whether the returned edge is in the graph and returning L if it is not). Thus,
when f is Lipschitz, the returned value is always f(z).

If for all y € [n]? we have |f(x) — f(y)| < |# — y| then no edges in the violation graph are incident onz.
Therefore, every local matching algorithm returns a matching that does not contain x, or can otherwise be
amended to do so by checking whether the returned edge is in the graph and returning L if it is not. Hence, the
returned value is always f(x). d

4 Lower Bounds

In this section, we prove our lower bound for local filters, stated in Section 1. We start with a more detailed
statement of the lower bound.

THEOREM 4.1. (LOCAL LISPCHITZ FILTER LOWER BOUND) For all local (1, 7)-Lipschitz filters A over the hy-
percube H?, for all even r > 4 and integer d > 267, there exists a function f : {0,1}% — [0,7] for which the
lookup complexity of A is (%)Q(T).

Note that the same bound on lookup complexity applies to local (1 + %, %)—Lipschitz filters over H%. This
can be seen by observing the Lipschitz constant in the hard distributions constructed in the proof of the theorem

Copyright (© 2025

2895 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(in Definition 4.2). Our proof is via a reduction from distribution-free testing. In Section 4.1, we state our lower
bound on distribution-free testing of Lipschitz functions and use it to derive the lower bound on local Lipschitz
filters stated in Theorem 4.1. In Section 4.2, we prove our lower bound for distribution-free testing.

4.1 Testing Definitions and the Lower Bound for Local Lipschitz Filters We start by defining
distribution-free testing of the Lipschitz property.

DEFINITION 4.1. (DISTRIBUTION-FREE LIPSCHITZ TESTING) Fiz ¢ € (0,1/2] and r € R. A distribution-free
Lipschitz e-tester T is an algorithm that gets query access to the input function f : {0,1}¢ — [0,7] and sample
access to the input distribution D over {0,1}. If f is Lipschitz, then T (f, D) accepts with probability at least
2/3, and if Lo p(f, Lip(H?)) > e, then it rejects with probability at least 2/3.

We give a sample and query lower bound for this task.

THEOREM 4.2. (DISTRIBUTION-FREE TESTING LOWER BOUND) Let T be a distribution-free Lipschitz %-tester.
Then, for all sufficiently large d € N and even integers 4 < r < 27184, there exists a function f :{0,1}¢ — [0,7]
and a distribution D, such that T (f, D) either has sample complexity 22D, or query complexity (g)ﬂ(’“).

Before proving Theorem 4.2, we use it to prove the lower bound on the lookup complexity of local Lipschitz
filters, stated in Theorem 4.1. Recall that it says that every local (1, i)—Lipschitz filter over the hypercube H¢
w.r.t. £o-distance has worst-case lookup complexity (%)Q(T).

Proof of Theorem 4.1. Let A be a local (1, %)—Lipschitz filter for functions f : {0,1}¢ — [0, r] over the hypercube
H?. Then, given an instance (f, D) of the distribution-free Lipschitz testing problem with proximity parameter
e, we can run the following algorithm, denoted T (f, D):

1. Sample a set S of 3/¢ points from D.
2. If A(z, p) # f(x) for some x € S then reject; otherwise, accept.

If f is Lipschitz then, with probability at least 3/4 > 2/3, we have A(x,p) = f(z) for all z € S and,
consequently, T(f, D) accepts. Now suppose f is e-far from Lipschitz with respect to D. Then A fails with
probability at most 1/4. With the remaining probability, it provides query access to some Lipschitz function g,.
This function disagrees with f on a point sampled from D with probability at least €. In this case, T incorrectly
accepts with probability at most (1 — 5)3/ ¢ < e73. By a union bound, 7T fails or accepts with probability at most
% +e3< % Therefore, T satisfies Definition 4.1. By Theorem 4.2, T needs at least (%)Q(T) queries, so A must
make at least (4)%(" lookups. d

4.2 Distribution-Free Testing Lower Bound We prove Theorem 4.2 by constructing two distributions, Dy
and Dy, on pairs (f, D) and then applying Yao’s Minimax Principle [Yao77]. We show that Dy has most of its
probability mass on positive instances and D; has most of its mass on negative instances of distribution-free
Lipschitz testing. The crux of the proof of Theorem 4.2 is demonstrating that every deterministic (potentially
adaptive) tester with insufficient sample and query complexity distinguishes Dy and D; only with small probability.

We start by defining our hard distributions. In both distributions, D is uniform over a large set of points,
called anchor points, partitioned into sets A and A’, both of size 24/64. We treat A (and A’), both as a set and
as an ordered sequence indexed by i € [2%/54]. Points in A and A’ with the same index are paired up; specifically,
the pairs are (A[i], A’[i]) for all i € [24/64]. For every point in € {0,1}¢ and radius ¢t > 0, let BALL(z) denote
the open ball centered at z, that is, the set {y € {0,1} : |z — y| < t}. For each point 2 € A, the function value
of every point y € BALL%(I‘) is equal to the distance from x to y. For each point 2z € A’, the function value of
every point y € BALLz (x) is equal to r minus the distance from x to y where r is the desired image diameter of
the functions. The points in A’ are chosen so that every pair (A[i], A'[¢]) satisfies the Lipschitz condition with
equality in Dy and violates the Lipschitz condition in D;.

DEFINITION 4.2. (HARD DISTRIBUTIONS) Fiz sufficiently large d € N and 4 < r < 2716d. For all b € {0,1}, let
Dy, be the distribution given by the following sampling procedure:

1. Sample a list A of 2¢/5* elements in {0,1}¢ independently and uniformly at random.

Copyright (© 2025

2896 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2. Sample a list A" of the same length as A as follows. For each i € [2%/%%], pick the element A'[i] uniformly
and independently from {y € {0,1}¢ : |A[i] — y| = r — b}. The elements of AU A’ are called anchor points.
Additionally, for each i € [2¢/4], we call A[i] and A'[i] corresponding anchor points.

3. Define f:{0,1}¢ — [0,7] by

|z — Ali]| ifx e BALLg(A[iD for some i € [Qd/64];
fle)=qr—|z—Ai]| elseif x € BALLL (A'[i]) for some i € [29/64];
/2 otherwise.

4. Output (f,U), where U is the uniform distribution over AU A’.

Next, we define a bad event B that occurs with small probability and analyze the distance to Lipschitzness
of functions arising in the support of distributions D, conditioned on B. For a distribution D and an event F,
let D|g denote the conditional distribution of a sample from D given E.

LEMMA 4.1. (DISTANCE TO LIPSCHITZNESS) Let By be the event that |A[i] — A[j]| < d/4 for some distinct
i,j € [2Y/54]. Then

1. Prp,[Bo) <2793 for all b € {0,1}.
2. If (f,U) ~ Dol then f is Lipschitz, and if (f,U) ~ D155 then lou(f, Lip(H?)) > 3.

Proof. To prove Item 1, choose z,y € {0,1}% by setting each coordinate to one independently with probability
p=13. Let p=E,,ld(z,y)] = 2dp(l —p) = g. By Chernoff bound, Pr, ,[d(z,y) < 5] < e~5 < 279/16 There
are at most 2%/32 pairs of points in A. By a union bound over all such pairs, Pr[By] < 2—d/16 . 9d/32 _ 9—d/32
To prove Item 2, recall that r < 27'6d. Suppose that By did not occur. If b = 0 then f is Lipschitz because
balls BALL: (z) are disjoint for all anchor points z. When b = 1, every pair (A[i], A[i]) violates the Lipschitz

condition, so f is 1/2-far from Lipschitz w.r.t. U. |

4.2.1 Indistinguishability of the Hard Distributions by a Deterministic Algorithm Fix a determin-
istic distribution-free Lipschitz %—tester T that gets access to input (f,U), takes s = % - 24/128 samples from
U and makes ¢ queries to f. Since the samples from U are independent (and, in particular, do not depend on
query answers), we assume w.l.o.g. that T receives all samples from U prior to making its queries. One of the
challenges in proving that the distributions Dy and D; are hard to distinguish for 7 is dealing with adaptivity.
We overcome this challenge by showing that 7 can be simulated by a nonadaptive algorithm T, that is provided
with extra information. In addition to its samples: Ty, gets at least one point from each pair (A[i], A'[4]), as well
as function values on these points. Next, we define the extended sample given to 7,, and the associated event
B; that indicates that the sample is bad. We analyze the probability of B; immediately after the definition.

DEFINITION 4.3. (SAMPLE SET, EXTENDED SAMPLE, BAD SAMPLE EVENT By) Fiz b € {0,1} and sample
(f,U) ~ Dy. Let S denote the sample set of % 241128 points obtained i.i.d. from U by the tester T. The
extended sample S+ is the set SU{A[i] :i € 24/ A A[i] € SAA'[i] ¢ S}. Let S~ denote the set (AU A’)\ S+.
A set ST is good if all distinct x,y € ST satisfy |x —y| > d/5 and bad otherwise. Define By as the event that
ST is bad.

LEMMA 4.2. (By BOUND) Fiz b€ {0,1}. Then Prp, s[B1] < 55.

Proof. Recall the bad event By from Lemma 4.1. By the law of total probability,

(45) PrDh’S[Bl] = PTDb7s[Bl|BQ] 'Pl“Db [B()] + PrDb,S[BllBO} . PI"Db [Bo} < Pl"Db [BO] + PrDb,S[BllBO]'

To bound Prp, s[B1|Bg], observe that if By did not occur, then all pairs (x,y) of anchor points, except for the
corresponding pairs, satisfy |z — y| > % —2r > g because r < d - 2716, In particular, it means that all anchor

points are distinct. Now, condition on By. Then event By can occur only if both A[i] and A’[i] for some i € [2%/64]

Copyright (© 2025

2897 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

appear in the extended sample S*. By Definition 4.3, this is equivalent to the event that both A[i] and A’[4] for
some i € [2d/ 64] appear in S. Each pair of samples in S is a pair of corresponding anchor points with probability
at most 2-%64, By a union bound over the at most 6%1 - 24/64 pairs of samples taken for S, the probability that
Ali], A'i] € S for some i is at most g - 2%/64.274/64 = L Hence, Prp,,s[B1|Bo] < ¢&. The lemma follows from
Equation (4.5) and Lemma 4.1. O

4.2.2 The Simulator One of the key ideas in the analysis is that our hard distributions, and the sampling
done by the tester, can be simulated by first obtaining the set ST using steps which are identical for b = 0 and
b =1, and only then selecting points in S~ to obtain the full description of the function f and the distribution
U. Next, we state the simulation procedure. Note that the first 3 steps of the procedure do not use bit b, that is,
are the same for simulating Dy and D;.

DEFINITION 4.4. (SIMULATOR) Fiz b € {0,1}. Let Dy be the distribution given by the following procedure:
1. Sample a list St of 2%/% elements in {0,1}? independently and uniformly at random.

2. For each i € [2¢/%4], do the following: if i < o 24128 ' then assign ST[i] to either A[i] or A'[i] uniformly
and independently at random; if i > & - 2%/128 then assign S*[i] to Ali).

3. Proceed as in Step 3 of the procedure in Definition 4.2 to set f(z) for all x € ST.

4. For each i € [24/%4], pick the element S~ [i] uniformly and independently from {y € {0,1} : |S*[i] — y| =
r —b}. Assign it to A'[i] if ST[i] was assigned to Ali] and vice versa.

5. Proceed as in Step 3 of the procedure in Definition 4.2 to set f(x) for all x ¢ ST and output (f,U,ST),
where U is the uniform distribution over AU A’.

Observation 4.1 states that, conditioned on Bj, the simulator produces identical distributions on the extended
sample ST and function values f(x) on points x € ST, regardless of whether it is run with b = 0 or b = 1. Moreover,
conditioned on By, it faithfully simulates sampling (f,U) from Dy, and S from U, and then extending S to ST
according to the procedure described in Definition 4.3.

OBSERVATION 4.1. (SIMULATOR FACTS) Let (fy,Up, S;) ~ ﬁb|Bf1 for each b € {0,1}. Let f(ST) denote function
f restricted to the set ST. Then the distribution of (Sq, f(Sy)) is identical to the distribution of (ST, f(S7)).

Now fiz b € {0,1}. Sample (f,U) ~ Dy|g; and S ~ U. Then the distribution of (f,U, S is identical to the
distribution of (fy, Up, Sy).

Proof. Since the first 3 steps in Definition 4.4 do not depend on b, the distribution of (Sg, f(Sg)) is the same
as the distribution of (S, f(S{)). Now, fix b € {0,1}. Notice that in the procedure for sampling from D
(Definition 4.2), for all i € [2%/64] the anchor point A[i] is a uniformly random point in {0,1}%, and the anchor
point A’[i] is sampled uniformly from {y : |y — A[{]| = r — b}. By the symmetry of the hypercube, the marginal
distribution of A’[4] is uniform over {0,1}%. Hence, sampling A’[i] uniformly at random from {0, 1}% and then A[i]
uniformly at random from {y : |y — A’[¢]| = r — b} yields the same distribution. Thus, the distribution of anchor
points is the same under Db as under Dy, for each b € {0,1}. Now, conditioned on Bj, the set ST contains exactly
one anchor point from each corresponding pair. By the preceding remarks, we can assume the anchor point in
S+ was sampled uniformly at random from {0,1}%, and the corresponding anchor point was sampled uniformly
from the set of points at distance r —b. Thus, conditioned on By, the distribution over St and S~ is the same as
the distribution over S;' and S, . Since (U, f) and (U, fs) are (respectively), uniquely determined by (ST, S57)
and (5,7, 5,), the distribution of (U, f,S*) is the same as the distribution of (Us, f3, S;"). o

4.2.3 The Bad Query Event and the Proof that Adaptivity Doesn’t Help Observation 4.1 assures
us that distributions of {(x, f(z)) : # € St} are the same (conditioned on Bj) for both hard distributions.
The function values f(y) for y € U,cg+ BALLz () are determined by {(z, f(x)) : € S*}. Moreover, the
function values f(y) are set to r/2 for all y ¢ \J,c(g+us-) BALLz (). So, intuitively, the tester can distinguish
the distributions only if it queries a point in BALLz (x) for some z € S™. Our last bad event, introduced next,
captures this possibility.

Copyright (© 2025

2898 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DEFINITION 4.5. (REVEALING POINT, BAD QUERY EVENT By) Fiz b € {0,1} and sample (f,U) ~ Dy. A point
x is revealing if * € BALLz (y) for some y € S™. Let By be the event that T queries a revealing point.

To bound the probability of By, we first introduce the nonadaptive tester 7,, that simulates 7 to decide
on all of its queries. Tester T,, gets query access to a function f sampled from Dy, a sample S ~ U and
{(z, f(x)) : x € ST}. Subsequently, in Claim 4.1, we argue that if 7 queries a revealing point then 7,, queries
such a point as well. This implies that Prp, s[B7] < Prp, s[B7,,], where By, is defined analogously to Br,
but for the tester 7,,. Finally, in Lemma 4.3, we upper bound the probability of By, 6 by first arguing that,
conditioned on Bj, the probability that 7,, queries a revealing point is small. Combining this fact with the
bound on Bj yields an upper bound on By, and, consequently, Br.

DEFINITION 4.6. (Tpa) Let Tha be a nonadaptive deterministic algorithm that gets query access to f sampled
from Dy, sets S ~ U and {(z, f(z)) : x € ST}, and selects its queries by simulating T as follows:

1. Provide S as the sample and answer each query x € {0,1}¢ with g(z) defined by

|z — v if v € BALLz (y) for some y € St satisfying f(y) = 0;
g(z)=qr—lr—y|l elseifr € BALLL(y) for somey € ST satisfying f(y) =r;
r/2 otherwise.
2. Let z1,...,x4 be the queries made by T in the simulation. Query f on x1,...,x,.

CrLAmM 4.1. (ADAPTIVITY DOES NOT HELP) If T queries a revealing point then T, queries a revealing point.

Proof. Let x1,...,x4 be the queries made by 7 and y1, . ..,y be the queries made by 7,,4. Since T is deterministic
and the sample set S is the same in both 7, and in T, we have ;1 = y;. Assume 7 queries a revealing point.
Let m € [g] be the smallest index such that ., is revealing. By definition of g and revealing point, g(x;) = f(x;)
for all i € [m — 1]. Consequently, y,, = &, and T, queries a revealing point. 0

LEMMA 4.3. (B BOUND) Fiz b € {0,1}. There exists a constant o > 0 such that, for all sufficiently large d, if
T makes ¢ = 2071°8(d/™) queries then Prp,.s[Br] < 3—20.

Proof. By Claim 4.1, Prp, s[Br] < Prp,s[B7,,]. Applying the law of total probability we obtain the
inequality Prp, s[B7,,] < Prp,.s[Br,.|B1] + Prp,.s[B1]. Next, we compute Prp, s[Br,,|B1], which is equal
to Prp, [Br,,|Bi1], since by Observation 4.1, the simulator faithfully simulates sampling (f,U) ~ Dy and then

obtaining S ~ U, conditioned on B;. By the principle of deferred decisions, we can stop the simulator after Step 3,
then consider queries from 7,,, and only then run the rest of the simulator. Since 7,, is a nonadaptive g-query
algorithm, it is determined by the collection (z1,...,x4) of query points that it chooses as a function of its input
(sets S and {(z, f(x)) : x € ST}). We will argue that the probability (over the randomness of the simulator) that
the set {z1,...,x4} contains a revealing point (i.e., a point on which f and g disagree) is small. Consider some
query x made by 7,,. By Definition 4.5, a point z is revealing if x € BALLz (S7[i]) for some i € [24/64]. Recall
that each S~[i] satisfies |ST[i] — S™[i]| = r — b, and thus each revealing point is in BALLg, /5(ST[i]) for some
i € [24/64]. All such balls around anchor points in S* are disjoint, because 7 < 2716 . d and we are conditioning
on B (the event that all pairs of points in ST are at distance greater than d/5).

Suppose z € BALLg,/2(ST[i]) for some i € [24/64]. (If not, cannot be a revealing point.) For z to be
revealing, it must be in BALLz (S™[4]) or equivalently, S~[i] must be in BALLz (x). The simulator chooses S~ [i]
uniformly and independently from {y € {0,1}¢: |ST[i]—y| = r—b}. The number of points at distance r—b > r—1
from ST[i] is at least (Tﬁb) > (&)=t > (2)3/1 where the last inequality holds because r > 4. Out of these
choices, only those that are in BALL: (z) will make = a revealing point. The number of points in BALL: () is

S5 (4) <r(,f,) < 7(22)7/2. Then

— 2de\7/? 3r/4 /4 r
Prp [z is revealing | B1] < T<f6) (S) < T(?e)r/Q(g) = 2log(r)+3 log(2e)— 7 log(d/r)
r

< 227“7% log(d/T) < 27% log(d/T) < i .g—ar log(d/r)
— f— 30)

Copyright (© 2025

2899 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where the first inequality in the second line holds because r > 4, the next inequality holds since r < 27164 and,
for the last inequality, we set o = - and use both bounds on 7. By a union bound over the g = 27" los(d/)
queries, Prp, s[Br,,|B1] = Prp, [Br,,|B1] < 55. Using the bound from Lemma 4.2 on the probability of By, we
obtain

2

Prp, s[Br,.] < Prp, s[B7,.|B1] + Prp, s[Bi1] < 30"

completing the proof of Lemma 4.2. 0

4.2.4 Proof of Distribution-Free Testing Lower Bound Before proving Theorem 4.2, we argue that
conditioned on By U By, the distribution of samples and query answers seen by 7 is the same whether (f,U) ~ Dy
or (f,U) ~ D;.

DEFINITION 4.7. (D-VIEW) For all distributions D over instances of distribution-free testing, and all t-sample, q-
query deterministic algorithms, let D-view be the distribution over samples s1,...,s; and query answers ai, ..., aq
seen by the algorithm on input (f,U) when (f,U) ~ D.

LEMMA 4.4. (EQUAL CONDITIONAL DISTRIBUTIONS) Dy-view| g 55 = D1-view|g 55+

Proof. Conditioned on B; and B, every query answer f(z) given to 7 is determined by the function g in
Definition 4.6. In particular, every query answer is a deterministic function of the points in ST, the restricted
function f(ST), and (possibly) previous query answers. By Observation 4.1, the distribution of (ST, f(ST)) is
the same under both Dol and D1|5-. Hence, the distribution of query answers f(z1), ..., f(x4) is identical. The
lemma follows. O

Next, we recall some standard definitions and facts that are useful for proving query lower bounds.

DEFINITION 4.8. (NOTATION FOR STATISTICAL DISTANCE) For two distributions Dy and Do and a constant 0,
let D1 ~s Do denote that the statistical distance between D1 and Do is at most 9.

FacT 4.1. (CLAIM 4 [RS06]) Let E be an event that happens with probability at least 1 —§ under the distribution

D and let B denote the conditional distribution D|g. Then B =5 D where §' = ﬁ —1.

We use the version of Yao’s principle with two distributions from [RS06].

FacT 4.2. (CLAaM 5 [RS06]) To prove a lower bound q on the worst-case query complexity of a randomized
property testing algorithm, it is enough to give two distributions on inputs: P on positive instances, and N on
negative instances, such that P-view ~s N -view for some § < %

We now complete the proof of Theorem 4.2, the main theorem on distribution-free testing.
Proof of Theorem 4.2. We apply Fact 4.2 (Yao’s principle) with P = Dy|5; and N = D1|5;. By Lemma 4.1,
D0|BT) is over positive instances and D1|Bf0 is over negative instances of distribution-free Lipschitz %—testing. Let
do = Pr[By] and 61 = Pr[B; U B7]. Set &) = ﬁ —1land 0] = ﬁ — 1. By Fact 4.1, we have the following chain
of equivalences:

Do—VleW|B70 %56 Do—VleW %51 Do—V1€W|m = Dl—VleW|m %5/1 Dl—VIGW %6(’) Dl—v1ew|§,

where the equality follows from Lemma 4.4. By Lemmas 4.1, 4.2 and 4.3 (that upper bound the probabilities
of bad events), for sufficiently large d, we have &) < 3=, and &{ < 5. Hence, 2(5, + 6]) < 3. Theorem 4.2 now
follows from Yao’s principle (as stated in Fact 4.2). 0

5 Application to Differential Privacy

In this section, we show how to use a local Lipschitz filter for bounded-range functions to construct a mechanism
(Theorem 5.1) for privately releasing outputs of bounded-range functions even when the client is malicious (i.e.,
lies about the range or Lipschitz constant of the function). Then, we show how the mechanism can be extended
to privately release outputs of unbounded-range functions (Theorem 5.2).

Copyright (© 2025

2500 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

5.1 Preliminaries on Differentially Private Mechanisms We start by defining the Laplace mechanism,
used in the proofs of Theorems 5.1 and 5.2. It is based on the Laplace distribution, denoted Laplace()\), that has
probability density function f(z) = %e’“'/ A, We use abbreviation (g,0)-DP for “(e,d)-differentially private”
(see Definition 1.1).

LEMMA 5.1. (LAPLACE MECHANISM [DMNS06]) Fiz ¢ > 0 and ¢ > 1. Let f : [n]* — R be a c-Lipschitz
function. Then the mechanism that gets a query = € [n]¢ as input, samples N ~ Laplace(£), and outputs
L(z) = f(z) + N, is (,0)-DP. Furthermore, for all a € (0,1), the mechanism satisfies |L(z) — f(z)] < ¢ +In L
with probability at least 1 — a.

In addition to the Laplace mechanism (Lemma 5.1), the proof of Theorem 5.2 uses the following well known
facts about differentially private algorithms. These can be found in [CD14].

FactT 5.1. (COMPOSITION) Fiz e1,e9 > 0 and 01,02 € (0,1). Suppose My and My are (respectively) (e1,061)-DP
and (e2,02)-DP. Then, the mechanism that, on input x, outputs (M (z), Ma(z)) is (e1 + €2,01 + d2)-DP.

FAcT 5.2. (POST-PROCESSING) Fize >0 and ¢ € (0,1). Suppose M : D — R is an (g,9)-DP mechanism. If A
is an algorithm with input space R then the algorithm given by Ao M is (g,8)-DP.

FAcT 5.3. If X ~ Laplace(\) then Pr[|X| > t\] < e ! for allt > 0.

In particular, if A = °2” and ¢ = log(200logr) then Pr[|X| > log(r) logé20010gr)] < 200%0gr.

5.2 Mechanism for Bounded-Range Functions The filter mechanism can be instantiated with either one
of our filters (from Theorem 2.1 or from Theorem 3.1), providing slightly different accuracy guarantees. In
Theorem 5.1, we state the guarantees for the mechanism based on the [;-respecting filter. Next, we establish
the terminology used in the theorem. Recall that BALLg(z) denotes the set {y : |z — y| < R}. We say a vertex
z € {0,1}% is dangerous w.r.t. f if there exists a vertex y € {0,1}¢ such that |f(z) — f(y)| > distg(z,y). A client
that submits a Lipschitz function is called honest; a client that submits a non-Lipschitz function that is close
to Lipschitz is called clumsy (the distance measure could be ¢; or ¢y, depending on the filter used). Finally, we
assume that sampling from the Laplace distribution requires unit time.

THEOREM 5.1. (FILTER MECHANISM) For all ¢ > 0 and § € (0,1), there exists an (g,9)-differentially private
mechanism M that, given a query x € [n]¢, lookup access to a function f : [n]* — [0,7], and range diameter
r € R, outputs a value h(z) € R, and has the following properties.

e Efficiency: The lookup and time complexity of M are (d” - polylog(n/§))°os™),
e Accuracy for an honest client: If f is Lipschitz then for all x € [n]? we have h(z) ~ f(x)+ Laplace(2).

e Accuracy for a clumsy client: For all x € [n]? such that BALL; 1og, ,, (r) (z) does not contain any
dangerous vertices, the “accuracy for an honest client” guarantee holds. Moreover, with probability at least

1 — 26, the mechanism satisfies B, a[|h(z) — f(2)]] < 261(f, Lip(HL)) + O(L).

We stress that the differential privacy guarantee in Theorem 5.1 holds whether or not the client is honest.
Proof of Theorem 5.1. Fix e > 0 and ¢ € (0,1). Let A denote LOCALFILTER; (Algorithm 3) run with iteration
parameter ¢ = logg5(r/2) + 1. Recall that by Theorem 2.1 instantiated with v = 1 and failure probability 4, the
algorithm A is an £;-respecting local (2, §)-Lipschitz filter with blowup 2 over the d-dimensional hypergrid H%.
The “efficiency” and “accuracy for honest client” guarantees hold for any local Lipschitz filter of the type stated
in Theorem 2.1. However, the first guarantee of “accuracy for a clumsy client” requires properties specific to the
construction of LOCALFITLER;.

Let M be the following mechanism: Sample a random seed p of length specified in Theorem 2.1, run A(x, p)
to obtain g,(x), sample N ~ Laplace(2), and output g,(x) + N.

First, we prove that M is (e, 0)-differentially private. If the function g, is 2-Lipschitz, then, by Lemma 5.1
instantiated with ¢ = 2 and privacy parameter €, the mechanism M is (g,0)-DP. Conditioned on the event that
gp is 2-Lipschitz, we obtain that for all measurable sets Y C IR,

Copyright (© 2025

2501 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Pr[M(z,p) € Y | g, is 2-Lipschitz] < e* Pr[M(z',p) € Y | g, is 2-Lipschitz].
By Theorem 2.1, A fails to output a 2-Lipschitz function with probability at most ¢. By the law of total probability,

Pr[M(z,p) € Y] < e® Pr[M(a’,p) € Y | g, is 2-Lipschitz] Pr[g, is 2-Lipschitz] + &
< e PriM(a’,p) € Y]+ 4.

The efficiency guarantee follows directly from Theorem 2.1. The accuracy guarantee for an honest client
holds since Theorem 2.1 guarantees that if f is Lipschitz, then A(z,p) = f(z) for all © and p. The average
accuracy guarantee for the clumsy client follows from the ¢;-respecting, 2-blowup guarantee of Theorem 2.1 and
the fact that E[|Laplace(2)[] < O(1). To demonstrate that the stronger accuracy guarantee holds when no
dangerous vertices are in BALL,. logg/z(r)(x)7 we make the following observation: if no vertex y € BALL, 1ogs /2 () (z)
is dangerous, then A(xz,p) = f(z). We prove this claim as follows. Recall that ¢ = logs5(7/2) + 1 and, for
each ¢ € [t], let A(z,1,p) denote the output after iteration ¢ of Algorithm 3. By construction, A(z,1,p) = f(z).
Suppose no vertex y € BALL,.;_1)(7) is dangerous. Then, since the range of f is [0,7], every dangerous vertex v
can, in a single iteration, only create new dangerous vertices in BALL,.(v). Thus, in ¢ — 1 iterations, no dangerous
vertices can be introduced in BALL,(z). Since A(z,1,p) = f(z), and in every subsequent iteration 1 < i < ¢,
no dangerous vertices are in BALL,;_1)(x), we obtain A(xz,t,p) = A(xz,1,p) = f(x) for each i € [t]. Thus, if
no dangerous vertex is in BALL,1og, () (2) then A(z,p) = f(z), and hence, the “accuracy for an honest client”
guarantee holds.]

5.3 Mechanism for Unbounded Range Functions In this section, we use the mechanism for bounded-range
functions to construct a mechanism for arbitrary-range functions.

THEOREM 5.2. (BINARY SEARCH FILTER MECHANISM) For all € > 0 and 6 € (0, 555), there exists an (g,6)-
differentially private mechanism M that, given a query x € [n]¢, lookup access to a function f : [n]* — [0,00)
and an optional range parameter r € R, outputs value h(x) € R and has the following properties.

Let k = log min(r, nd), where the optional parameter r is set to oo by default.

o Efficiency: The lookup and time complexity of M are dO(Erlogr) polylog(%).

e Accuracy for an honest client: If f is Lipschitz then, for all x € [n]¢, we have h(z) ~ f(x)+ Laplace(Z)
with probability at least 0.99.

e Accuracy for a clumsy client: There exists a constant ¢ > 0 such that for all z € [n]?, if f(x) < nd and
|f(z) = f(y)| < |z —yl| for all y € BALLe c 106« (), then the “accuracy for an honest client” guarantee holds.

As in Theorem 5.1, we emphasize that the differential privacy guarantee holds whether or not the client is
honest. Note that the accuracy guarantee for an honest client is subsumed by the guaranty for a clumsy client,
but we state the former guarantee separately for clarity.

Proof of Theorem 5.2. Our private mechanism is presented in Algorithm 6. It uses the following “clipping”
operation to truncate the range of a function.

DEFINITION 5.1. (CLIPPED FUNCTION) For any f :V — R and interval [¢,u] C R, the clipped function f[¢, u]
1s defined by

f(x) f(z) e[t ul;
flt,ul(z) = 4 ¢ flz) <4
u f(z) > u.

Copyright (© 2025

2502 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 6 Binary search filter mechanism M(z, f, ¢)

Input: Dataset = € [n]?, lookup access to f : [n]¢ — [0,c), range diameter r € R, adjacency lists access to the
hypercube H?, ¢ > 0, and § € (0, 1)
Subroutines: Local (1, loigr)—Lipschitz filter A obtained in Theorem 3.1
Output: Noisy value h(x) satisfying the guarantees of Theorem 5.2
1. set 7 < min(r,nd) and f + f[0,r] > If the client is honest then f[0,7] = f.
2: set t < r/2 and o < 1 log(r)log(2001logr)
3: for i =2 to [logr]| do
4 let h(z) < A(z, f[t — 2a,t + 2a]) + Laplace(%)
5: if h(z) € [t — a,t + a] then
6: return h(z)
7 else t « t + sign(h(x) —t) - [r/2%]
8

: return h(x)

Next, we complete the analysis of the binary search filter mechanism. We first argue that M (Algorithm 6)
is (g,9)-DP. In every iteration of the for-loop, M uses Laplace mechanism on a function that is 1-Lipschitz with
probability at least 1 — 10‘; —. By Lemma 5.1 and an argument similar to the proof of Theorem 5.1, each iteration

(a7 %)—DP. It follows by Facts 5.1 and 5.2 that Algorithm 6 is (e, d)-DP.

Next, we prove the accuracy guarantee for the clumsy client. Observe that it subsumes the accuracy guarantee
for the honest client. Suppose f : [n]¢ — [0,7] and that = satisfies | f(x) — f(y)| < |z —y] for all y € BALL, () (the
a in line 2 of Algorithm 6). Then, for all intervals Z of diameter «, the point z satisfies | f[Z](x) — f[Z](y)| < |z —y]
for all y € [n]¢. By Theorem 3.1, A(z, f[Z]) = f|Z](x), which is equal to f(x) whenever f(z) € T.

Condition on the event that A4 does not fail and that the Laplace noise added is strictly less than « in every
iteration of M. Then, if h(z) € [t — o, t + o], we must have f[t — 2a, ¢ + 2a](x) € (t — 2a,t + 2«), and therefore
flt—2a,t4+2a](x) = f(x). Next, suppose h(z) & [t—a,t+a]. If f(z) < t then h(z) < t+« and thus h(z) < t—a.
Similarly, if f(x) > ¢ then h(z) > t—a and thus h(z) > t+«a. It follows that in every iteration M either continues
the binary search in the correct direction, or halts and outputs h(x) such that |h(z) — f(x)| < @. By the union
bound and the guarantee obtained in Theorem 3.1, the algorithm A fails in some iteration of M with probability
at most . Moreover, by Fact 5.3 and the union bound, the Laplace noise added is at least a in some iteration
of M with probability at most W%O' It follows that for sufficiently small §, the mechanism M outputs h(z) such

that h(z) ~ f(z) + Laplace(w) with probability at least . O

6 Application to Tolerant Testing

In this section, we give an efficient algorithm for tolerant Lipschitz testing of real-valued functions over the
d-dimensional hypercube H? and prove Theorem 6.1, which we restate here for convenience.

THEOREM 6.1. For all € € (0, %) and all sufficiently large d € IN, there exists an (e,2.01e)-tolerant tester for the
Lipschitz property of functions on the hypercube H®. The tester has query and time complexity E%do(\/ dlog(d/e))

Our tester utilizes the fact that the image of a function which is close to Lipschitz exhibits a strong
concentration about its mean on most of the points in the domain. Hence, if a function is close to Lipschitz, it can
be truncated to a small interval around its mean without modifying too many points. This truncation guarantees
that the the local filter in Theorem 3.1 runs in time subexponential in d. A key idea in the truncation procedure
is that if a function f is e-close to Lipschitz then either not very many values are truncated, or the truncated
function is close to Lipschitz.

To prove Theorem 6.1, we design an algorithm (Algorithm 7) that, for functions f : {0,1}¢ — R, accepts
if f is e-close to Lipschitz, rejects if f is 2.01e-far from Lipschitz and fails with probability at most %. The
success probability can then be amplified to at least % by repeating the algorithm ©(1) times and taking the
majority answer. Before presenting Algorithm 7, we introduce some additional notation. For all functions f and
intervals Z C R, the partial function fz is defined by fz(z) = f(x) whenever f(z) € Z and fz(x) =? otherwise.
Additionally, for all events F, let 15 denote the indicator for the event E. Algorithm 7 runs the {y-filter given by

Copyright (© 2025

2503 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 5 with lookup access to a partial function fz. Our analysis of Algorithm 5 presented in Theorem 3.1
is for total functions. In Observation 6.1, we extend it to partial functions.

OBSERVATION 6.1. Let h: [n]¢ — R U {?} be a partial function with {y-distance to the nearest Lipschitz partial
function equal to ;. Let A denote Algorithm 5. Then, for all § € (0,1), the algorithm A" provides query access
to a Lipschitz partial function g such that g(z) =7 if and only if h(z) =7, and ||g — hllo < 2e. The runtime and
failure probability guarantees are as in Theorem 3.1.

Proof. Consider x € h=%(?). By Definition 1.4, VS, (x,y) = 0 for all y € [n]?, and hence the vertex x is not
incident to any edge of the violation graph of h. By construction, A"(x) = h(x) =?. Next, consider the induced
subgraph G of H? with vertex set V = {x : h(z) #7?}. By Claim 3.2, the size of the minimum vertex cover of the
violation graph of h is at most |V |e,. It follows that A" provides query access to a Lipschitz partial function g
such that ||g — h|lo < &. The runtime and failure probability are the same as for total functions by definition of
the algorithm. |

Algorithm 7 Tolerant Lipschitz tester 7 (f,¢)

Input: Query access to f : {0,1}? — R, adjacency lists access to H¢, and ¢ € (0, %)
Subroutines: Local (1, 15)-Lipschitz filter A given by Algorithm 5
Output: accept or reject

sample a point p ~ {0, 1}d uniformly at random and a random seed p of length specified in Theorem 3.1

set t + 2¢/dlog(d/e) and Z < [f(p) — t, f(p) + 1]

sample a set S of (ﬁﬁ)z points uniformly and independently from {0, 1}¢
for all z; € S do
if fz(z;) =7 then set y; <7
else set y; < A(x;, p), where A is run with lookup access to fr and adjacency lists access to H?
if ﬁ > e,es L@y, < 2.005¢ then accept
else reject

We use McDiarmid’s inequality [McD89], stated here for the special case of the {0,1}¢ domain.

FAaCT 6.1. (MCDIARMID’S INEQUALITY[McDS89]) Fiz d > 2 and let g : {0,1}? — R be a Lipschitz function
w.r.t. HE. Let pg = B, go1y2[g(2)]. Then, for all v € (0,1),

Proqo1yell9(x) — pigl = v/ dlog(d/7)] < g_

Next, we introduced a definition which, for each function f, attributes some part of its £y-distance to Lipschitz
to a particular interval Z in the range of f.

DEFINITION 6.1. Let f : {0,1}¥ — R and C be a minimum verter cover of the wviolation graph of f. (If
there are multiple vertex covers, use any rule to pick a canonical one.) For an interval T C R define €[Z] as

e eC: flx) e TY)/2¢

For a function f, let ¢4 denote the {o-distance from f to Lipschitz. Then ey = ¢[Z] 4 ¢[Z] for all intervals 7.
Moreover, since fr is a partial function defined only on points x such that f(x) € Z, the distance from f7 to the
nearest Lipschitz partial function is at most ¢[Z]. Using Definition 6.1, we argue that if ¢y < e, then with high
probability the interval Z chosen in Algorithm 7 satisfies || fz — fllo < €[Z] + &. Since €[Z] + £[Z] < €, Lemma 6.1
implies that if || fz — fllo is very close to ¢, then the distance of fz to Lipschitz, which is at most [Z], must be
small. Leveraging this fact, we can approximate the £y-distance from f to Lipschitz using the distance from f to

fz and the distance from f7 to Lipschitz.

LEMMA 6.1. Fize € (0,3) and d > 4. Let f: {0,1}* — R be e-close to Lipschitz over H®. Choose p € {0,1}¢

uniformly at random. Set t < 2y/dlog(d/e) and T « [f(p) —t, f(p) +t]. Then ||f — fzlo > e[Z] + § with
probability at most %

Copyright (© 2025

2504 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. Let C' be a minimum vertex cover of the violation graph By s (see Definition 1.5). Let g be a Lipschitz
function obtained by extending f from {0,1}%\ C to {0,1}? (such an extension exists by Claim 3.1). By Fact 6.1,
Pr, (o13allg(x) — pgl > 5] < 5. Notice that if | f(p) — pg| < & then [ug — &,y + 5] € Z. Conditioned on this
occurring,

Pr,[f(x) £ 7] < [T] + Prlg(e) ¢ 7] < <[T] + -

Since Pr,(o,13a[x € C] <, we have |f(p) — p1y| < & with probability at most € + § < . O
Next, we argue that, after boosting the success probability via standard amplification techniques, we obtain
a (g,2.01¢)-tolerant Lipschitz tester.
Proof of Theorem 6.1. Fix € € (0,1) and let f:{0,1}* — R and let 7 denote Algorithm 7. Deﬁne the following
events: Let E; be the event that local filter A fails. Set w = Pr,[f(z) # A(z,p)] and & = ‘S‘ Y eies L@ A
and let E5 be the event that |w — @] > 355.

Suppose f is e-close to Lipschitz, and let E3 be the event that the interval Z chosen in 7T satisfies
|f — fzll > €[Z] + §. Condition on the event that none of Ey, Es, and E3 occur. Then fz is at distance at
most e[Z] from some Lipschitz partial function and, by Observation 6.1, A provides query access to a Lipschitz
partial function g such that ||f — g|lo < 2¢[Z]. Using the fact that £[Z] + ¢[Z] < & we obtain

w<2[I]+e[Z — < 2.005¢
< 2[I] + 7] + d + 300
for sufficiently large d. Hence T accepts.
Now consider the case that f is 2.0le-far from Lipschitz and suppose neither of the events F; and Es occur.
Since A provides query access to a Lipschitz function, and the nearest Lipschitz function is at distance at least

2.01e, we must have & > 2.01e — 555 > 2.005¢. Hence T rejects.
Next, we show that the events FEi,Fs; and E3 all occur with small probability. By Observation 6.1,
Pr[E;] < 155. To bound Pr[E»], notice that E[&] = w and Var[i] < ﬁ. By Chebyshev’s inequality and our

choice of |S| we have, Prg[lw—w| > 555] < 4?2?; < 1i5. Moreover, if f is e-close to Lipschitz, then by Lemma 6.1,

Pr[Es] < % Thus, the failure probability of 7 can be bounded above by Pr[F; U Fy U E3] < 100 + ﬁ < 14050
The success probability can the be boosted to % by running the algorithm O(1) times and taking the majority
answer. Finally, we bound the query and time complexity of tester by bounding the query and time complexity
of 7. The algorithm 7 runs the local filter A with lookup access to fr, a function with range 7 of diameter

O(y/dlog(d/e)), and sets A’s failure probability to § = 15. Consequently, Observation 6.1 implies 7 has query
and time complexity bound of E%do(Vdlog(d/e)), 0

Acknowledgement We thank Adam Smith for comments on the initial version of this paper.

References

[ACCLOT7] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a monotone
function. Random Structures and Algorithms, 31(3):371-383, 2007.

[AJMRI15] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Limitations of local filters of
Lipschitz and monotone functions. ACM Trans. Comput. Theory, 7(1), Jan 2015.

[AJMR16] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Testing Lipschitz functions on
hypergrid domains. Algorithmica, 74(3):1055-1081, 2016.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation algorithms. In Yuval
Rabani, editor, SODA, pages 1132-1139. STAM, 2012.

[BCET19] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing and the
connection to submodular optimization and function isomorphism. ACM Trans. Comput. Theory, 11(4):24:1-24:33,
2019.

[BGJT12] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Lower bounds for local monotonicity reconstruction from transitive-closure spanners. SIAM J. Discrete
Math., 26(2):618-646, 2012.

Copyright (© 2025

2905 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[BGS™21] Gavin Brown, Marco Gaboardi, Adam D. Smith, Jonathan R. Ullman, and Lydia Zakynthinou. Covariance-
aware private mean estimation without private covariance estimation. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 7950-7964, 2021.

[BKR23] Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric inequalities for real-valued functions
with applications to monotonicity testing. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloguium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2028, Paderborn,
Germany, volume 261 of LIPIcs, pages 25:1-25:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.

[BLOO] Yoav Benyamini and Joram Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of
Colloquium Publications. Amer. Math. Soc., 2000.

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Ly-testing. In Proceedings, ACM Symposium on
Theory of Computing (STOC), pages 164-173, 2014.

[CD14] Aaron Roth Cynthia Dwork. The Algorithmic Foundations of Differential Privacy. NOW, 2014.

[CDJS17] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing on product
distributions: Optimal testers for bounded derivative properties. ACM Transactions on Algorithms (TALG),
13(2):20:1-20:30, 2017.

[CDL*24] Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Mildly exponential lower bounds
on tolerant testers for monotonicity, unateness, and juntas. In David P. Woodruff, editor, Proceedings of the 2024
ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages
4321-4337. STAM, 2024.

[CGGT19] Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wimmer. Testing k-monotonicity:
The rise and fall of Boolean functions. Theory Comput., 15:1-55, 2019.

[CGR13] Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant testers for connectivity
and diameter. In Approzimation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 16th
International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA,
August 21-23, 2018. Proceedings, volume 8096 of Lecture Notes in Computer Science, pages 411-424. Springer, 2013.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing over hypercubes
and hypergrids. In Proceedings, ACM Symposium on Theory of Computing (STOC), pages 419-428, 2013.

[CSVW22] Silvia Casacuberta, Michael Shoemate, Salil P. Vadhan, and Connor Wagaman. Widespread underestimation
of sensitivity in differentially private libraries and how to fix it. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 471-484. ACM, 2022.

[DGL'99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex Samorodnitsky.
Improved testing algorithms for monotonicity. In Proceedings of Approzimation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 97-108, 1999.

[DJRT13] Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Testing the Lipschitz property
over product distributions with applications to data privacy. In Theory of Cryptography Conference (TCC), pages
418436, 2013.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
81 - June 2, 2009, pages 371-380. ACM, 2009.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In T'CC, pages 265-284, 2006.

[DRTV18] Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin Varma. Erasure-resilient property
testing. SIAM Journal on Computing (SICOMP), 47(2):295-329, 2018.

[FFO05] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for Boolean properties. In 20th Annual IEEE
Conference on Computational Complezity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages 135-140. IEEE
Computer Society, 2005.

[FLN'02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorodnitsky.
Monotonicity testing over general poset domains. In John H. Reif, editor, Proceedings on 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 474-483. ACM, 2002.

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions. ACM Transactions
on Algorithms (TALG), 6(3):52:1-52:37, 2010.

[Gha22] Mohsen Ghaffari. Local computation of maximal independent set. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 438-449.
IEEE, 2022.

[GHK*16] Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan R. Ullman, and Salil P. Vadhan. PSI

Copyright (© 2025

2506 Copyright for this paper is retained by authors

Downloaded 03/13/25 to 128.30.48.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(U): a private data sharing interface. CoRR, abs/1609.04340, 2016.

[HKO05] Shirley Halevy and Eyal Kushilevitz. A lower bound for distribution-free monotonicity testing. In APPROX-
RANDOM, pages 330-341, 2005.

[HK07] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput., 37(4):1107-1138, 2007.

[HPN11] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Differential privacy under fire. In 20th USENIX
Security Symposium (USENIX Security 11), San Francisco, CA, August 2011. USENIX Association.

[JR13] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to data
privacy. SIAM Journal on Computing (SICOMP), 42(2):700-731, 2013.

[KL23] Nitin Kohli and Paul Laskowski. Differential privacy for black-box statistical analyses. Proc. Priv. Enhancing
Technol., 2023(3):418-431, 2023.

[KRV23] Iden Kalemaj, Sofya Raskhodnikova, and Nithin Varma. Sublinear-time computation in the presence of online
erasures. Theory of Computing, 19(1):1-48, 2023.

[LRV22] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone functions via local correction.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 75-86. IEEE, 2022.

[LV23] Jane Lange and Arsen Vasilyan. Agnostic proper learning of monotone functions: beyond the black-box correction
barrier. In in 64rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023 (to appear). IEEE,
2023.

[LW19] Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness testing via rejection sampling
of graphs. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San
Diego, California, USA, volume 124 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[McD89] Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics. London Math. Soc.
Lecture Notes 141, 1989.

[McS10] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis.
Commun. ACM, 53(9):89-97, 2010.

[PRRO6] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation. J.
Comput. Syst. Sci., 72(6):1012-1042, 2006.

[PRW22] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating the distance to
monotonicity of Boolean functions. Random Struct. Algorithms, 60(2):233-260, 2022.

[RS06] Sofya Raskhodnikova and Adam D. Smith. A note on adaptivity in testing properties of bounded degree graphs.
Electron. Colloquium Computational Complezity, 13(089), 2006.

[RSKT10] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel. Airavat: Security and
privacy for mapreduce. In NSDI, pages 297-312, 2010.

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In ICS, pages
223-238, 2011.

[SS10] Michael E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J. Comput., 39(7):2897-2926, 2010.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended abstract).
In Proceedings, IEEE Symposium on Foundations of Computer Science (FOCS), pages 222-227, 1977.

Copyright (© 2025

2907 Copyright for this paper is retained by authors

	Introduction
	Our Contributions
	Local Lipschitz Filters
	Applications

	Our Techniques
	Preliminaries on Lipschitz Functions
	Preliminaries on Local Computation Algorithms

	1-respecting Local Lipschitz Filter
	Analysis of the Global Filter
	Analysis of the Local Filter

	0-respecting Local Lipschitz Filter
	Analysis of the Global Filter
	Analysis of the Local Filter

	Lower Bounds
	Testing Definitions and the Lower Bound for Local Lipschitz Filters
	Distribution-Free Testing Lower Bound
	Indistinguishability of the Hard Distributions by a Deterministic Algorithm
	The Simulator
	The Bad Query Event and the Proof that Adaptivity Doesn't Help
	Proof of Distribution-Free Testing Lower Bound

	Application to Differential Privacy
	Preliminaries on Differentially Private Mechanisms
	Mechanism for Bounded-Range Functions
	Mechanism for Unbounded Range Functions

	Application to Tolerant Testing

