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Abstract

Recent work of Klivans, Stavropoulos, and Vasilyan initiated the study of testable learning with
distribution shift (TDS learning), where a learner is given labeled samples from training distribution
D, unlabeled samples from test distribution D’, and the goal is to output a classifier with low error
on D’ whenever the training samples pass a corresponding test. Their model deviates from all prior
work in that no assumptions are made on D’. Instead, the test must accept (with high probability)
when the marginals of the training and test distributions are equal.

Here we focus on the fundamental case of intersections of halfspaces with respect to Gaussian
training distributions and prove a variety of new upper bounds including a 2(%/ DOl poly(d)-time
algorithm for TDS learning intersections of k£ homogeneous halfspaces to accuracy e (prior work
achieved d(*/ e)O(l)). We work under the mild assumption that the Gaussian training distribution
contains at least an € fraction of both positive and negative examples (e-balanced). We also prove the
first set of SQ lower-bounds for any TDS learning problem and show (1) the e-balanced assumption
is necessary for poly(d, 1/¢)-time TDS learning for a single halfspace and (2) a d?(og1/) Jower
bound for the intersection of two general halfspaces, even with the e-balanced assumption.

Our techniques significantly expand the toolkit for TDS learning. We use dimension reduction
and coverings to give efficient algorithms for computing a localized version of discrepancy distance,
a key metric from the domain adaptation literature.

Keywords: testable learning, intersections of halfspaces, PAC learning, distribution shift, domain
adaptation

1. Introduction

Distribution shift continues to be a major barrier for deploying Al models, especially in the health
and bioscience domains. By far the most common approach to modeling distribution shift (or do-
main adaptation) is to bound the performance of a classifier in terms of some notion of distance
between the training and test distributions (Ben-David et al., 2006; Mansour et al., 2009). These
distances, however, are computationally intractable to estimate, as they are defined in terms of an
enumeration over all classifiers from some class. As such, learners constrained to run in polynomial-
time obtain no guarantees on the performance of a classifier (without making strong assumptions
on the test distribution).
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A recent work of Klivans, Stavropoulos, and Vasilyan (Klivans et al., 2023) departs from this
paradigm and defines a model of testable learning with distribution shift (TDS learning). In this
model, a learner first runs a test on labeled samples drawn from training distribution D and unlabeled
samples drawn from test distribution D’. No assumptions are made on D’. If the test accepts, the
learner outputs a classifier that is guaranteed to have low error with respect to D’. Further, the test
must accept (with high probability) whenever the marginal of D equals the marginal of D’. It is
clear that this model generalizes the traditional PAC model of learning (where D always equals D’),
and, as described in Klivans et al. (2023), obtaining efficient algorithms seems considerably more
challenging. Giving positive results for TDS learning with running times that match known results
in the traditional PAC model is therefore a best-case scenario.

1.1. Our Results

Here we focus on the intensely studied problem of learning intersections of halfspaces (or halfspace
intersections) with respect to Gaussian distributions, where large gaps exist between the best known
algorithms for TDS learning versus ordinary PAC learning. Our main contribution is a set of new
positive results all of which greatly improve on prior work in TDS learning and in some cases match
the best known bounds for PAC learning (see Tables 1 and 2 for precise statements of bounds). Our
algorithm assumes that the training distribution contains at least an ¢ fraction of both positive and
negative examples (e-balanced), which turns out to be necessary, as we describe below.

Indeed, we provide the first set of SQ lower bounds for any problem in TDS learning (that
was not already known in the traditional PAC model of learning). We show that no polynomial-
time SQ algorithm can TDS learn a single halfspace unless the training distribution is e-balanced.
Further, we prove that no polynomial-time SQ algorithm can TDS learn the intersection of two
general halfspaces, even if we assume the training distribution is e-balanced. Taken together, these
results considerably narrow the gap between efficient TDS learnability and PAC learnability for
halfspace-based learning.

1.2. Techniques

TDS Learning through Covering the Solution Space. Our upper bounds are based on the idea of
constructing a set of candidate output hypotheses that has three properties: (1) it has small size, (2) it
contains one hypothesis with low test error and (3) all of the hypotheses in the set have low training
error. Once such a cover is constructed, a small set of unlabeled data from the test distribution is
sufficient to ensure that all of the members of the cover have low training error. This is possible
by estimating the discrepancy distance between the test marginal and the Gaussian, but only with
respect to the members of the cover, i.e., estimating the maximum probability of disagreement
between pairs of elements of the cover under the test marginal. Since the cover is small (by (1)),
this can be done efficiently and since all of the hypotheses have low training error (by (3)), the test
should accept in the absence of distribution shift. If the test accepts, then all of the members have
low disagreement with one hypothesis with low test error (by (2)) and they, hence, have low test
error as well. The learner may then output any member of the cover.

Constructing Covers for Halfspace Intersections. Our method for covering the solution space
for TDS learning halfspace intersections is based on two main ingredients. The first ingredient
is access to an algorithm that uses training data and retrieves a low-dimensional subspace that is
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Type of Intersection Run-time Test Set Size Reference
1 Homogeneous poly(d)QPOIY(é) poly(dk/e) Corollary 3
2 Homogeneous (4k)Ok) 1 d(f)o<k2) poly(dk/e) Corollary 3
3 General droly(k/e) dpoly(k/€) Klivans et al. (2023)
d32poly(k/e)+ o R
(log())
4 General JOlog()) (k) O(k?) d Corollary 6
€
Homogeneous k\O(k2)
Non-Degenerate poly(d)(%) poly(dk/e) Corollary 30
Table 1: Upper Bounds for TDS Learning e-Balanced Intersections of k& Halfspaces under Ay, All
bounds here improve on the best previous bound in row three. For noise-free PAC learning
intersections of k halfspaces can be learned in time (dk/ e)o(k) (Vempala, 2010b) and is the
best known bound for small k. We nearly match this bound in row two above and provide
an incomparable result in row four. In row five, we improve on all of these bounds under a
non-degeneracy assumption on the intersection of halfspaces; see the Related Work section
for a discussion.
Halfspace Type Assumption on Intersection SQ Complexity
1  Homogeneous Arbitrary poly(d/e), for k =1
2 Homogeneous Arbitrary dw<M for k > 2
3 Homogeneous e-Balanced poly(d/e), for k = ©(1)
4 General Arbitrary @O log(1/ ), fork =1
e-Balanced & O (log(L))
€ > =
5 General ©/(1)-non-degenerate d Jfork > 2, k=0(1)
Table 2: Statistical Query complexity (upper and lower) bounds for TDS Learning k-Halfspace In-

tersections under Ny. No prior SQ lower bounds for any TDS learning problem were
known. For the balance assumption, see Definition 17. For the non-degeneracy assump-
tion, see Definition 26. Row 1 and the upper bound of row 4 are from Klivans et al. (2023).
All other results are from this work: Theorem 12 (row 2), Corollary 30 (row 3), Theorem 8
(row 4), Theorem 15 (row 5, lower bound), Corollary 32 (row 5, upper bound). The lower
bounds of rows 4, 5 hold for d = O(e~1/4).
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guaranteed to approximately contain (in terms of angular distance) each of the normal vectors that
define the ground truth intersection. See the Related Work section for a more detailed discussion
on subspace recovery algorithms. The second ingredient is a local halfspace disagreement tester,
namely, a tester that takes as input a vector (and unlabelled test data) and certifies that all of the
vectors that are geometrically close to the input define halfspaces with low disagreement to the one
defined by the input under the test distribution. Such testers have been proposed in the literature of
testable learning Gollakota et al. (2023a,b) and TDS learning Klivans et al. (2023), but, we provide
an additional one for the case of general halfspaces. Equipped with both of these ingredients, we use
a Euclidean cover for the sphere in the low-dimensional subspace retrieved and run the disagreement
tester on each vector in the cover. We form a cover of the solution space with the desired properties
by forming all possible intersections of halfspaces with normals in the Euclidean cover and keeping
only those with low training error.

For general halfspaces, we also use an additional moment-matching tester which ensures that
halfspaces with very high bias can be safely omitted from the output hypothesis, because the test
distribution is certified to be sufficiently concentrated in every direction. This is important, be-
cause the training data does not reveal enough information for such halfspaces and, hence, it is not
guaranteed that their normals will be approximately contained in the retrieved subspace.

SQ Lower Bounds for TDS Learning from Lower Bounds for NGCA. We prove our statistical
query (SQ) lower bounds by reducing appropriate distribution testing problems to TDS learning.
The distribution testing problems we consider fall in the category of Non-Gaussian Component
Analysis (NGCA) where a distinguisher has access to an unknown distribution and is asked to
distringuish whether the distribution is Gaussian or it is Gaussian in all but one hidden direction
where the marginal satisfies certain problem-specific conditions. Diakonikolas et al. (2023a) provide
SQ lower bounds for various instantiations of the problem.

We show that a TDS learner for general halfspaces can distinguish the Gaussian from any distri-
bution that has some non-negligible mass far from the origin along some hidden direction. We then
construct a distribution that is Gaussian in all but one direction along which the marginal (1) exactly
matches moments with the standard Gaussian up to some degree and (2) assigns non-negligible mass
far from the origin. To show approximate moment matching, we use a mass transportation argument
and for exact moment matching, we use an argument based on the theory of Linear Programming
from Diakonikolas et al. (2023b). Under these conditions, a generic tool from Diakonikolas et al.
(2023a) implies an SQ lower bound for the distinguishing problem we constructed and hence an
SQ lower bound for TDS learning. A similar construction gives a lower bound for intersections of
two general halfspaces. For intersections of two homogeneous halfspaces, we reduce the problem
of anti-concentration detection (whose SQ lower bound is given in Diakonikolas et al. (2023a)) to
the corresponding TDS learning problem.

1.3. Related Work

Intersections of Halfspaces Learning intersections of halfspaces continues to be an important
benchmark for algorithm design in learning theory with a long history of prior work (Long and
Warmuth, 1994; Blum and Kannan, 1997; Klivans et al., 2004; Klivans and Sherstov, 2009; Klivans
et al., 2009, 2008; Vempala, 2010b,a; Gopalan et al., 2012; Kane et al., 2013; Diakonikolas et al.,
2018). Finding a fully polynomial-time algorithm for learning the intersection of &k halfspaces in
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d dimensions to accuracy e remains a notorious open problem, even in the case of noise-free PAC
learning with respect to Gaussian marginals.

The most relevant works here are Vempala (2010b) and Vempala (2010a) which both attempt
to recover the subspace spanned by the £ normals of the relevant halfspaces. This type of subspace
recovery is a crucial ingredient for our work here, as we describe in the Techniques subsection
above. In Vempala (2010b), an algorithm with running time and sample complexity (dk/ e)o(k)
is given for noise-free PAC learning with respect to log-concave marginals. In a follow-up work
Vempala (2010a) claims an improved bound of (k/€)®*)poly(d). Unfortunately, this proof has a
gap. In Appendix C.1 we provide a complete proof of a weaker result using the approach of Vempala
(2010a), namely we obtain a 20(k?/ 62)poly(d, k) time algorithm for intersections of homogeneous
halfspaces. If we take a non-degeneracy assumption on the ground truth intersection (see Appendix
C.2), we prove that the gap can be fixed and we recover the (k/€)°*)poly(d) bound.

For large values of k, the best known bound of @O k/<) for PAC or agnostic learning is due
to Klivans et al. (2008), obtained using the Gaussian surface area/Hermite analysis approach. For
TDS learning, Klivans et al. (2023) gave an algorithm with running time dOK°/€) that is improper
and outputs a polynomial threshold function as the final hypothesis. In addition to improving their
bounds on run-time (as described in Table 1), the algorithm we present here is proper: our learner
gives an intersection of & halfspaces as its output hypothesis.

Distribution Shift/Domain Adaptation The field of domain adaptation considers problems very
similar to the model introduced here. A learner is presented with labeled training samples, unlabeled
test samples, and is required to output a classifier with low test error. The learner in traditional
domain adaptation, however, is not allowed to reject. The area is too broad for us to survey here,
and we refer the reader to Redko et al. (2020) and references therein. We highlight the works of
Ben-David et al. (2006) and Mansour et al. (2009), which provide sample complexity upper bounds
for domain adaptation in terms of discrepancy distance. It is proved in Klivans et al. (2023) that the
notion of discrepancy distance also provides sample complexity guarantees for TDS learning. The
first set of efficient algorithms for domain adaptation without taking strong assumptions on the test
distribution were given by Klivans et al. (2023). We also note related work due to Goldwasser et al.
(2020); Kalai and Kanade (2021); Goel et al. (2023) on PQ learning, a model formally shown to be
harder than TDS learning in Klivans et al. (2023).

Testable Learning Although both the Testable Learning framework due to Rubinfeld and Vasilyan
(2023) and TDS learning allow a learner to reject unless a training set passes a test, the models ad-
dress very different issues and are formally incomparable. In testable learning, the goal is to certify
that an agnostic learner has succeeded (or reject). In particular, (1) testable learning is trivial in the
realizable (noise-free) framework (recall in this paper we work exclusively in a noise-free setting)
and (2) testable learning does not allow for distribution shift. For a further comparison of the models
see Klivans et al. (2023). We do make use of some general techniques from testable learning, as we
describe in the Techniques section.

1.4. Preliminaries

For v € R% 7 € R, we call a function of the form x ~ sign(v - x) a homogeneous halfspace and a
function of the form x + sign(v - x -+ 7) a general halfspace over R?. An intersection of halfspaces
is a function from R? to {£1} of the form x > 2 Ajep) 1{w’ - x + 7" > 0} — 1, where w' are
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called the normals of the intersection and 7! the corresponding thresholds. Let Ay be the standard
Gaussian in d dimensions. For a subspace U, let proj,,(w) be the orthogonal projection of a vector
w on the subspace U.

Learning Setup. We focus on the framework of testable learning with distribution shift (TDS
learning) defined by Klivans et al. (2023). In particular, for a concept class C C {R¢ — {£1}},
the learner A is given €,6 € (0, 1), a set Sgain Of labelled examples of the form (x, f*(x)), where
x ~ D = Nyand f* € C, as well a set X0t of unlabelled examples from an arbitrary test
distribution D’ and is asked to output a hypothesis  : RY — {41} with the following guarantees.

(a) (Soundness.) With probability at least 1 — § over the samples Strain, Xtest W have:
If A accepts, then the output h satisfies Py p/ [ f*(x) # h(x)] < e.

(b) (Completeness.) Whenever D' = Ny, A accepts w.p. at least 1 — § over Strain, Xtest-

If the learner A enjoys the above guarantees, then A is called an (¢,6)-TDS learner for C w.r.t.
Nj. Since the probability of success can be amplified through repetition (see (Klivans et al., 2023,
Proposition C.1)), in what follows, we will provide algorithms with constant failure probability.

2. Proper TDS learners for Halfspace Intersections

2.1. Warm-up: Intersections of Homogeneous Halfspaces

Our first main result concerns the problem of TDS learning intersections of homogeneous halfspaces
with respect to the Gaussian distribution. For a single homogeneous halfspace Klivans et al. (2023)
showed that there is a fully polynomial-time TDS learner under Gaussian marginals. The learner
crucially relied on the approximate recovery of the normal vector corresponding to the ground truth
halfspace in terms of angular distance using training data. After obtaining a vector that is geomet-
rically close to the ground truth, the learner used unlabelled test data to certify that any halfspace
near the recovered one (and, hence, also the ground truth) does not significantly disagree with the
recovered halfspace on the test distribution. Such a certificate can be obtained through appropri-
ate localized testers that rely on low-degree moment estimation (introduced in the testable learning
literature, see Gollakota et al. (2023a,b)).

We significantly generalize this approach beyond the case of a single halfspace and obtain im-
proved TDS learners for intersections of any number of homogeneous halfspaces (as well as general
halfspaces in Section 2.2). Our approach is once more to recover some information about the ground
truth that can be measured in geometric terms. In particular, the appropriate notion of geometric
recovery for the case of halfspace intersections is approximate subspace retrieval, namely, recov-
ering a subspace that approximately contains all of the normals to the ground truth intersection, as
defined below.

Definition 1 (Approximate Subspace Retrieval for Homogeneous Halfspaces) We say that al-
gorithm A (e, §)-retrieves the relevant subspace for C (whose elements are homogeneous halfspace
intersections) under Ny if A, upon receiving at least m 4 examples of the form (x, f*(x)), where
x ~ Ny and f* € C, outputs, w.p. at least 1 — § a subspace U such that for any normal w of f* we
have || proj, wll2 > 1 —e.
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It turns out that the idea of approximate subspace retrieval has been explored in the literature of
standard PAC learning, as it can be used to provide strong PAC learning guarantees and proper algo-
rithms. We may, therefore, use existing results on approximate subspace retrieval (see Appendix C)
as a first step of our TDS learning algorithm. Once we have obtained a low-dimensional subspace
that approximately contains all the normals, we (1) generate a small cover of the candidate solution
space, (2) acquire (using unlabeled test examples) a certificate that the cover contains a hypothesis
with low test error and (3) bound the discrepancy distance (notion from domain adaptation) of the
test marginal with the Gaussian, but only with respect to the candidate solution space. We obtain
the following result, whose full proof can be found in Section D.1.

Theorem 2 (TDS Learning Intersections of Homogeneous Halfspaces) Ler C be a class whose
elements are intersections of k homogeneous halfspaces on R, € € (0,1) and C > 1 a sufficiently

large constant. Assume that A ( CZ?’ ,0.01)-retrieves the relevant subspace for C under Ny with
sample complexity m 4. Then, there is an algorithm (Algorithm 3) that (¢,§ = 0.02)-TDS learns
the class C, using m 4 + O~(d€i22) labeled training examples and O~(d6—k22) unlabelled test examples,

calls A once, and uses additional time O(di§2) + d(k/e)OF).

Algorithm 1: Proper TDS Learner for Homogeneous Halfspace Intersections
Input: Labelled set St ain, unlabelled set Xtest, parameter €

Sete' = Cké/Q and ¢’ Ck7
Run algorithm A on the set Styain and let (vi,... ) be its output.
Let U be the subspace spanned by (vt ) an d consider the following sparse cover of U:
Uer = {HuHQ u= GIZ’L 1 Jiv's Ji E Zﬂ l %7 %l [ull2 # 0}
Reject and terminate if || Varxx (x)[]2 > 2.
for u € U do
| Reject and terminate if Py x [Ju - x| < 2€’/3] > 5¢/2/3,
end

Let F contain the concepts f : R? — {#+1} of the form f(x) = 2 /\f:1 1{u*-x >0} -1,
where u',...,u* € U and P(x y)~Spain [V 7 f(X)] < €/5.

Reject and terminate if maxy, f,er Py~ Xyoy [f1(X) # f2(X)] > €/2.

Otherwise, output ]/‘\: RY — {41} for some fe F.

Before proving Theorem 2, we first describe how we can obtain the above algorithm 4.

Approximate Subspace Retrieval. To approximately recover the relevant subspace, we apply
results from PAC learning (see Vempala (2010a,b)), which we state in Appendix C. For example,
Vempala (2010a) uses a Gaussian variance reduction lemma (see Lemma 18) which states that if
we truncate the Gaussian distribution on the positive region of some intersection of homogeneous
halfspaces, then the variance of the resulting distribution along the directions that define the normals
of the intersection is bounded away below 1 (for directions orthogonal to the span of the normals,
the variance is 1). Unfortunately, in the original proof of Vempala (2010a), a (crucial) approximate
version of the variance reduction lemma (similar to the last part of Lemma 18) is missing and hence
it is not clear whether the claimed approximate subspace retrieval result is true. We provide in Sec-
tions C.1 and C.2 a full proof of the subspace retrieval lemma, but with the following caveat: we
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either (1) incur complexity that is exponential in poly(k/e€) (see Section C.1) or (2) require some
non-degeneracy assumption (see Section C.2).

We now give an overview of the proof of Theorem 2.

Stage I: Acquiring a Good Cover. A good cover is a list F of candidate hypotheses (i.e., half-
space intersections) that is guaranteed to contain some intersection with low test error and only
contains intersections with low training error. We construct such a cover as follows.

1. Once we have obtained a(n orthonormal basis for a) subspace U/ such that every normal to the
ground truth intersection is geometrically close to some vector in U, we exhaustively cover
the unit sphere in I/ (see Lemma 20) to obtain a list 4’ of ((%)O(k)) candidate unit vectors that
is guaranteed to contain, for each normal w of the ground truth intersection, some element u,
such that the angle between w and u is small.

2. We then certify that for each element u of ¢/, all of the halfspaces whose normals are ge-
ometrically close to u have low disagreement with the halfspace defined by u on the fest
distribution. Such a certificate can be obtained by using tools (Lemma 21) from the literature
of testable learning (see Gollakota et al. (2023a,b)); in fact we may use, here, the same tools
that Klivans et al. (2023) utilized to obtain TDS learners for single homogeneous halfspaces.

3. We construct F by including all possible intersections, of at most k elements from Z{’, that
have low training error. Note that there is one element f in F such that its normals are
(one-by-one) geometrically close to the normals of the ground truth. The previous test has
ensured that f has low test error, since the probability that any halfspace in f disagrees with
the corresponding true one is small.

Stage I1: Estimating Discrepancy Distance. It remains to pick an element from F with low test
error. However, we have only shown that there is one (unknown) element f in F with low test error.
Note that since all of the elements of F have low training error, then the disagreement between each
pair of elements in F should be small under the training marginal (and the test marginal as well if
there was no distribution shift). Therefore, as a last step, we test that the disagreement between any
pair of hypotheses in F is small under test data; otherwise, it is safe to reject. If the test accepts,
all of the elements in F should also have low test error (since they mostly agree with f under test
data). We stress that this last test corresponds to estimating the discrepancy distance between the
test marginal D’ and the Gaussian with respect to F, i.e., the quantity

danc DN F) = sup | B [A(X) # f20)) = B _[fi(x) # fo(x)
f1,facF| x~D! x~Ny

The discrepancy distance is a standard notion in domain adaptation (see, e.g., Mansour et al. (2009)),

but involves an enumeration and it can be hard to compute. Since we only compute it with respect to

a small set of candidate hypotheses, we can afford to brute force search over all pairs of functions.

Combining our Theorem 2 with tools for approximate subspace retrieval (see Appendix C), we

obtain the following upper bounds. For a more detailed version of the bounds, see Corollary 30.

Corollary 3 The class of e-balanced intersections of k homogeneous halfspaces on R can be e-
TDS learned in time poly(d)2P°Y(/€) ysing poly(d)2P°Y(¥/€) training examples and poly(dk/€)
test examples. Moreover, it can be e-TDS learned in time (%)O(’“) + d(%)o(k2) using O(d)(%)o(k)
training examples and poly(dk/e) test examples.
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2.2. Intersections of General Halfspaces

In the case of intersections of general halfspaces, we use a similar approach. However, the notion of
approximate subspace retrieval of Definition 1 is too strong in this case, as there might be halfspaces
that have very high bias and, therefore, it is not possible to obtain enough information about them
unless we use a vast amount of training data. We, therefore, define the following relaxed version of
approximate subspace retrieval, also used for PAC learning (see Vempala (2010a)).

Definition 4 (Approximate Subspace Retrieval for General Halfspaces) We say that the algo-
rithm A (e, 0, T')-retrieves the relevant subspace for C (whose elements are halfspace intersections)
under Ny if A, upon receiving at least m 4 examples of the form (x, f*(x)), where x ~ Ny and
f* € C, outputs, w.p. at least 1 — § a subspace U such that for any normal w corresponding to a
halfspace {x : w - x + 7 > 0} of f* such that 7 < T, we have || proj,; wlj2 > 1 — e

The notion of approximate subspace retrieval of Definition 4 is sufficient to design efficient PAC
learners, since the halfspaces with large thresholds can be omitted without incurring a significant
increase on the error under the training distribution (which, for PAC learning, is the same as the test
distribution). In TDS learning, however, the test marginal is allowed to assign non-negligible mass
to the unseen region of a hidden halfspace. In fact, this is a source of lower bounds for TDS learning
as we show in Theorems 8 and 15.

Prior work on TDS learning (Klivans et al., 2023) focusing on the case of a single general half-
space, used a moment matching tester to ensure that the test marginal does not assign considerable
mass to the unseen region of significantly biased halfspaces (as is the case under the Gaussian).
Such tests incur a complexity of d@(log(%)), which is essentially unavoidable (see Theorem 8). Note
that by assuming that the ground truth is balanced (Definition 17), one can bypass the lower bound
of Theorem 8 for TDS learning a single general halfspace. This is not the case, however, for in-
tersections of even 2 general halfspaces (see Theorem 15), where the lower bound of df2log(1/¢)
persists even under the balanced concepts assumption.

For TDS learning general halfspaces, we adopt a similar moment matching approach as the
one used for a single general halfspace (see Klivans et al. (2023)) to ensure that the normals of
the ground truth that are not represented by any element of the retrieved subspace (due to high
bias) are not important even under the test distribution. Moreover, in order to acquire a certificate
that we have a good cover (as per the previous section), we design a local halfspace disagreement
tester that works even for general halfspaces (see Lemma 22). We obtain the following result (see
Section D.2).

Theorem 5 (TDS Learning Intersections of General Halfspaces) Ler C be a class whose ele-
ments are intersections of k general halfspaces on RY, € € (0,1) and C > 1 a sufficiently large
constant. Assume that A (CE—ZS, 0.01, 3log!/ 2(%))-r€trieves the relevant subspace for C under Ny
with sample complexity m 4. Then, there is an algorithm (Algorithm 4) that (e, = 0.02)-TDS
learns the class C, using m 4 + O(de—k;) labelled training examples and d°(°8*/9) ynlabelled test

examples, calls A once and uses additional time d°(1°8(%/€) (k/e)o(kQ).

We once more combine our Theorem 5 with results on approximate subspace retrieval (see
Appendix C), to obtain the following upper bounds (see also Corollary 32).
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Corollary 6 The class of e-balanced intersections of k general halfspaces on R? can be e-TDS
learned in time d32P°W(k/€) 4 qOUos(k/€) (k /e)OK?) ysing O(d)2P°Y K/ training examples and
dOUoe(k/) test examples.

3. Statistical Query Lower Bounds

We will now provide a number of lower bounds for TDS learning in the statistical query model
originally defined by Kearns (1998), which has been a standard framework for proving computa-
tional lower bounds in machine learning, and is known to capture most commonly used algorithmic
techniques like gradient descent, moment methods, etc. (see, for example, Feldman et al. (2017a,b).

Definition 7 (Statistical Query Model) Ler © > 0 and D be a distribution over R%. We say that
an algorithm A is a statistical query algorithm (SQ algorithm) with tolerance  if A only has access
to D through making a number of (adaptive) bounded queries of the form q : R* — [~1,1], for
each of which it receives a value v € R with |v — Ex.p[q(x)]| < ¢.

Our approach is to reduce appropriate distribution testing problems to TDS learning and then
show that these problems cannot be efficiently solved in the SQ framework, by applying recent
results from Diakonikolas et al. (2023a) on Non-Gaussian Component Analysis.

3.1. General Halfspaces: A Tight Lower Bound

We prove the following theorem which gives a tight lower bound for TDS learning general halfs-
paces with respect to the Gaussian distribution in the SQ framework, since the lower bound matches
the recent corresponding upper bound of Klivans et al. (2023).

Theorem 8 (SQ Lower Bound for TDS Learning a Single Halfspace) Fore > 0, serd = ¢~ /%,
Then, for all sufficiently small ¢, the following is true. Let A be a TDS learning algorithm for

general halfspaces over R% w.r.t. Ny, with accuracy parameter € and success probability at least
log1/e
0.95. Further, suppose that A obtains at most dleslesl/c samples from the training distribution
. . s . . o(1 . . . ,
and accesses the testing distribution via 2¢ @ SQ queries of precision ¢ > 0 (the SQ queries are
_ log1/e
allowed to depend on the training samples). Then, the tolerance ¢ has to be at most d Urogtog17¢),

We first define an appropriate distribution testing problem which can be reduced to TDS learning
general halfspaces. In particular, the distribution testing problem we define amounts to testing
whether a distribution to which we have sample access assigns too much mass to some halfspace
compare to the mass assigned by the Gaussian.

Definition 9 (Biased Halfspace Detection Problem) Ler 0 < o < § < 1 The («, 3)-biased
halfspace detection problem is the task of distinguishing the d-dimensional standard Gaussian dis-
tribution from any distribution D over R® for which there exist v in R and T in R satisfying

Px-v>7|>p and P [x-v>7]<a«
x~D x~Ny

The idea is that if one has a TDS learner for general halfspaces, then the TDS learner must also
work when the training examples are drawn from a Gaussian and labelled by the constant hypothesis

10
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—1. In this case, the learner cannot extract any information about the training data, except from the
fact that they correspond to a halfspace with very high bias (but the direction remains completely
unspecified). If the test distribution assigns a lot of mass on the positive region of the halfspace, then
the error would be large and the TDS learner will reject. On the other hand, if the test distribution is
the Gaussian, the TDS learner will accept. Hence, the TDS learner would solve the biased halfspace
detection problem. We obtain the following quantitative result, whose formal proof can be found in
Section E.1.

Proposition 10 (Biased Halfspace Detection via TDS Learning) Ler A be a TDS learning algo-

rithm for general halfspaces over R® w.r.t. Ny with accuracy parameter € and success probability

at least 0.95. Suppose A obtains at most m samples from the training distribution and accesses

the test distribution via N SQ queries of tolerance o (the SQ queries are allowed to depend on the
1

training samples). Then, there exists an algorithm (1yg,.. , 10¢)-biased halfspace detection that uses

N + 1 SQ queries of tolerance min (¢, €) and has success probability at least 0.8.

In order to complete the proof of Theorem 8, it remains to show that the biased halfspace detec-
tion problem is hard in the SQ framework. To this end, we use a powerful tool from recent work on
Non-Gaussian Component Analysis by Diakonikolas et al. (2023a), which states that distinguishing
the Gaussian from a distribution which is Gaussian in all but one hidden direction is hard for SQ al-
gorithms, whenever the marginal in this direction is guaranteed to match the low degree moments of
the Gaussian (see Theorem 37). For our purposes, it is sufficient to construct a one-dimensional dis-
tribution that matches low degree moments with the standard Gaussian, but assigns non negligible
mass far from the origin. We obtain the following result whose proof can be found in Section E.1.

Proposition 11 (SQ Lower Bound for Biased Halfspace Detection) For ¢ > 0, set d = 51%

Then, for all sufficiently small €, the following is true. Suppose that A is an SQ algorithm for
(d~ In(1/e), 10€)-biased halfspace detection problem over RY, and A has a success probability of at

_ log1/e
least 2/3. Then, A either has to use SQ tolerance of d U rog o 1/6), or make QdQ(1> SO queries.

3.2. Intersections of Two Homogeneous Halfspaces

The following theorem demonstrates that, although TDS learning a single homogeneous halfspace
with respect to the Gaussian distribution admits fully polynomial time algorithms (see Klivans et al.
(2023)), for intersections of two homogeneous halfspaces, there is no polynomial-time SQ algo-
rithm. Notably, the construction corresponds to a highly unbalanced intersection, so the lower
bound does not hold for the problem of TDS learning balanced intersections.

Theorem 12 (SQ Lower Bound for TDS Learning Two Homogeneous Halfspaces) Let ¢ > 0
with € € (0,1/10) and let A be a TDS learning algorithm for learning intersections of 2 homoge-
neous halfspaces over R w.rt. Ny with accuracy € and success probability at least 0.95. Then A
either makes some query of tolerance ¢ = d—*<() 1o the test distribution or runs in time d*<™),

To prove our result, we use an SQ lower bound for detecting anti-concentration (AC) from
Diakonikolas et al. (2023a).

11
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Theorem 13 (SQ Lower Bound for Detecting AC, Theorem 1.10 in Diakonikolas et al. (2023a))

Let € € (0,1/2). Any SQ algorithm with SQ access to either (1) Ny or (2) some distribution D’

that assigns mass at least € on some subspace of dimension d — 1 and distinguishes the two cases
. 42 . . —we(1)

w.p. at least 2/3, either uses 2 queries, or uses a query with tolerance at most d .

It remains to reduce the AC detection problem to the problem of TDS learning intersections of
two homogeneous halfspaces. The idea is to use an intersection of two almost opposite halfspaces,
whose positive region effectively coincides with half of the subspace where D’ has non negligible
mass. Therefore, upon acceptance, the output function should take the value 1 with non-negligible
probability only if the unknown distribution is D’, which implies that we have solved the distin-
guishing problem. See Section E.2 for a proof.

Remark 14 Under the balance assumption, our algorithms achieve polynomial-time performance
for learning intersections of k = O(1) homogeneous halfspaces (see Corollary 30). This demon-
strates the importance of the balance condition on the training data.

3.3. Balanced Intersections of Two General Halfspaces

We now provide an SQ lower bound for TDS learning balanced (see Definition 17) intersections
of two general halfspaces. The lower bound demonstrates that the balance condition cannot always
mitigate the obstacles of TDS learning due to hard examples that are trivial for PAC learning. In
particular, the hard example here is an intersection of two halfspaces, where one of them is known
and the other one is orthogonal to the first and is effectively irrelevant for the intersection under the
Gaussian measure. For PAC learning, this implies that the second halfspace can be safely ignored,
but for TDS learning, the hidden halfspace is a source of SQ lower bounds as demonstrated below.

Theorem 15 (SQ Lower bound for TDS Learning Halfspace Intersections) For ¢ > 0, set d =
e Y4, Then, for all sufficiently small €, the following is true. Let A be a TDS learning algorithm

for %-balanced intersections of 2 general halfspaces over R w.r.t. Ny, with accuracy parameter €
log1/e
and success probability at least 0.95. Further, suppose that A obtains at most dsloe1/< samples

from the training distribution and accesses the testing distribution via 9d° SO queries of precision

i > 0 (the SQ queries are allowed to depend on the training samples). Then, the tolerance p has
_ log1/e
to be at most d~ N ioglog 17,

The idea is similar to the one used for the proof of Theorem 8. We once more prove a general
reduction of the biased halfspace detection problem to TDS learning. The hard instance corresponds
once more (as for the proof of Theorem 8) to the detection problem where the unknown distribution
is either (1) the standard Gaussian or (2) some distribution D’ that assigns non-trivial mass in the
negative region of a halfspace H; = {x : v - x + 7 > 0} for some appropriately large 7.

The reduction of the hard instance to TDS learning follows closely the proof of Proposition 10
(see Appendix E.1.1), but we run the TDS algorithm twice, once using training data of the form
(x,sign(u - x)) with x ~ Az and u some random vector in S%~! and another one with training data
of the form (x, sign(—u - x)), x ~ Nj.

For each of the executions of the TDS algorithm, the training data are consistent (w.h.p.) with the
unknown intersection defined by the halfspaces H; = {x : v-x+7 > 0} and Hy = {x : u-x > 0}
(or Hy = {x : —u-x > 0}). If the TDS algorithm rejects, then we have a certificate that the

12
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marginal was not the Gaussian. If the TDS algorithm accepts, then we may use one SQ query for
the probability that the output function is positive. If D’ was the Gaussian, then this probability
should be very close to 1/2. Otherwise, it should be bounded away from 1/2 for at least one of the
executions (D’ assigns non-trivial mass in the negative region of Hy, so it must assign non-trivial
mass to either Hy \ Hy or H, \ H1). Hence, the pair of our SQ queries (one for each execution) will
indicate the answer to the biased halfspace detection problem.

Remark 16 Note that the lower bound of Theorem 15 holds even for the problem of TDS learning
2-non-degenerate intersections of two halfspaces (according to Definition 26). Under the non-
degeneracy assumption, our algorithms achieve improved performance (see Corollary 32) and, in
particular, the lower bound of Theorem 15 is essentially tight (d°(°8(1/9)) for TDS learning O(1)-
non-degenerate, poly (€)-balanced intersections of k = O(1) halfspaces.
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Appendix A. Notation and Basic Definitions

We let R? be the d-dimensional Euclidean space. For a distribution D over R?, we use Ep (or
Exp) to refer to the expectation over distribution D and for a given (multi)set X, we use Ex
(or Ex~x) to refer to the expectation over the uniform distribution on X (i.e., Ex.x[g(x)] =
ﬁ > xex 9(x), counting possible duplicates separately). For x € R? where x = (x1,X2,...,Xq)
and for € N? we denote with x* the product Hz‘e[d] x;". We denote with S%1 the d — 1
dimensional sphere on R<. For any vi,vg € R4, we denote with v; - vo the inner product between
vy and vy and we let (v, va) be the angle between the two vectors, i.e., the quantity 6 € [0, 7]
such that ||vy||2]|va|2 cos(f) = v1 - va. Let Varg(v - x) denotes the variance of random variable
v - x, for some vector v € R?. For v € R 7 € R, we call a function of the form x + sign(v - x) a
homogeneous halfspace and a function of the form x — sign(v-x+7) a general halfspace over R?.
An intersection of halfspaces is a function from R to {£1} of the form x 2Nie[k) H{wix+78 >
0} — 1, where w' are called the normals of the intersection and 7* the corresponding thresholds.

Learning Setup. We focus on the framework of testable learning with distribution shift (TDS
learning) defined by Klivans et al. (2023). In particular, for a concept class C C {R? — {£1}},
the learner A is given €,6 € (0, 1), a set Sgrain Of labelled examples of the form (x, f*(x)), where
x ~ D = Nyand f* € C, as well a set Xt of unlabelled examples from an arbitrary test
distribution D’ and is asked to output a hypothesis  : RY — {41} with the following guarantees.

(a) (Soundness.) With probability at least 1 — § over the samples Styain, Xtest We have:

If A accepts, then the output h satisfies Px.p/ [ f*(x) # h(x)] < e.
(b) (Completeness.) Whenever D' = Ny, A accepts w.p. at least 1 — § over Sirain, Xtest-

If the learner A enjoys the above guarantees, then A is called an (¢, 6)-TDS learner for C w.r.t.
Nj. Since the probability of success can be amplified through repetition (see (Klivans et al., 2023,
Proposition C.1)), in what follows, we will provide algorithms with constant failure probability.

For our upper bounds, we will make use of a balanced concepts condition, whose importance we
justify through appropriate lower bounds (see Sections 3.1 and 3.2). In particular, we will assume
that the ground truth (D, f*) is sufficiently balanced, meaning that positive and negative examples
from the training data both have sufficiently large frequency.

Definition 17 (Balance Condition) Let D be a distribution over R? and f : R* — {+1}. For
n € (0,1/2], we say that f is n-balanced with respect to D if

Pl =11 -]

For a concept class C C {R% — {£1}}, we denote with C,, the n-balanced version of C, i.e., the
subset of C that contains the elements that are n-balanced.

Note that the algorithm can check whether the ground truth is balanced using training data and,
therefore, detect possible failure due to imbalance (i.e., the condition is testable).
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Appendix B. Additional Tools

Our positive results build on the dimension reduction technique of Vempala (2010a) for PAC learn-
ing intersections of halfspaces and low-dimensional convex sets through principal component anal-
ysis (PCA), which is based on the following Gaussian variance reduction lemma. Note that although
the first two parts of the lemma were known (see e.g., Vempala (2010a)), the last part (which gives
variance reduction for any vector that has some correlation with a normal) is proven here. In fact,
this more general form of the lemma is important even for the results in Vempala (2010a) (although
it is missing from the original paper).

Lemma 18 (Variance Reduction, variant of Lemma 4.7 in Vempala (2010a)) Ler K C R? be
an intersection of halfspaces and let Ny|ic be the truncation of the standard Gaussian distribution
in d dimensions Ny to K. For any u € S*1, we have Vary | (0 - x) < 1. Moreover, if for
some T € R the halfspace {x : u-x+ T > 0} is one of the defining halfspaces of the intersection
then, we have variance reduction along u, i.e., VarXNNd|K(u cx) < 1-— %e‘é(maX{O’T})z for a
sufficiently large universal constant C' > 0. Furthermore, for any € € (0, %) and any v’ € S
withu - u' > ¢, for a sufficiently large constant C' > 0, if n = Py, [x € K] we have

Cl
Var (u'-x) < 1—(17@7T2/2)72

x~Nglx

Proof The first two parts follow from Cafarelli’s theorem, see e.g. Theorem 3.1 in Funaki and
Toukairin (2007) where one may set the function v to be a quadratic function within the interval
(—T, o0) and either 0 outside it when T < 0 or a linear function tangent to the graph of y = 22 at
the point z = T'if T' > 0.

For the last part, we will introduce an artificial halfspace in the direction of u’ and we will link
the variance in the direction of u’ under the truncation of the Gaussian on the initial intersection to
the variance under the new (artificial) truncation. In particular, let X’ be the set CN{u'-x+6 > 0},
where 0 > 0 is a parameter of our choice. We then have Vary |, (x) <1 — & exp(—62/2), by
the previous part of the lemma. However, we are interested in the quantity Vary 7|, (x). We have
the following

Var (x)= E [(W-x)?}- E [ x?

x~Nglx x~Nglx x~Nalx

= E [0 -x?{xek}+ E [ -x)?1{x¢gK}]

x~Nglx x~Naglx

S1 52

—(E [Wx)l{xe}+ E [ x)I{x¢K}])

x~Nylk x~Nglx

M1 K2

1. This choice of 1 is due to Raghu Meka (Meka, 2010).

17



KLIVANS STAVROPOULOS VASILYAN

For the first term s1, we have 51 < E, ay), [(0' x)2]. For the second term sz, we have

Exny[(0-%)? 1{x € K\ £'}]

S9 =

Py, [x ~ K]
<——— E [(u’-x)2]l{u/-x+9<0v-x> f - L H
T Pron[x € K] x~Ny ’ tancos—le sincos~lell’

b
where the inequality follows from the fact that for any x € I we have u - x + 7T > 0 and for any
x & K' wehave u’-x+6 < 0, where v = % Hence, by bounding the Gaussian integral
of the above inequality (note that u’ L v), we obtain that for some sufficiently large constant C’ > 0

_lp2_1.2
we have s2 < C'6%¢=3%"~27" For the term (1 we have

1
XNNd [XEIC]

p= E [ -x-(1- P [x¢gK'])

Nalier Nalk
Py, [x € K\ K]
— ]E /' . 1 _ d
Ndl)cl[u X] ( ]P)Nd[x S ’C] )

3

Therefore, we have that ui > Ey;, [0 - x]* — 26 By, [0’ - x]. Additionally, we have that
B 0] = g oo B (03) 1(x € K}] < =gy (B [(o )2 1x € K'}))12
which implies that 2 > E Nl [0 - x]? — W. Note that the quantity Ppr,[x € £\ K’
is bounded by Py, [u’ - x +6 < 0,v-x > 7] < em20" 27",

The term 27 p12 can be bounded similarly (observe that py < Sé/ 2). Hence, overall, we have

C'e? o 1 g2 1.
Var (u'-x) < Var (u'-x +( + ) e 20—
xNNdI’C( ) XNNdhC’( ) Pxny [x € K] Py [x € ’C]Q

Lo /
Recall that Vary. x|, (0" -x) < 1— ée‘ééﬂ and hence by picking 6 = C”M, where
n = Pyylx € K] and C” > 1 some sufficiently large constant, we have Vary ;| (0’ - x) <

1-— %6_%02. This concludes the proof of Lemma 18. |

We will also make use of the following lemma regarding the sample complexity of estimating
the expectation and covariance matrix of a log-concave distribution. Note that the truncation of the
standard Gaussian on any convex set is log-concave and has variance at most 1 in every direction.

Lemma 19 (Mean and Covariance Estimation, see Lemma 4.2 in Vempala (2010a)) Let C' >
0 be a sufficiently large universal constant, let v > 0,0 € (0,1), let D be some log-concave
distribution over R? such that the variance in every direction is bounded by 1 and let X be a set of
i.i.d. samples from D of size | X| > C' - A;% log®(d/6). Then, with probability at least 1 — 6, we have

B b = Bl < v and || Yor 00— Vgl < v

The following lemma is a standard argument that provides a sparse cover of the k-dimensional
sphere and will be useful in order to exhaustively search in the low-dimensional subspace.
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Lemma 20 (Sparse Cover w.r.t. Angular Distance) Let U be a linear subspace spanned by the
k. .

vectors (v',v2 ... ,vF). Fore € (0,1), let U. = {m ru=ed i qvi g€ Zn[-1 1}

Then, for any v € U, there is u € U, such that £(v,u) < 6(ke)'/* and |U.| < (2)k.

Proof of Lemma 20, see Vempala (2010b). Let v & U, which we assume w.l.0.g. to have unit
norm (since we only focus on angular distance). We have v = 3,1 vt with D iclk] No=1
and \; € [—1,1]. For each 4, there exists j; € Z N [—%,1] such that |\; — €j;| < e. Therefore,
ifu =3 cn €jiv', then we have v - u > 1 — ke and |uls < 1 + 3+v/ke, which implies that

cos(u,v) > 1}5\’“/%6 > 1 — 4v/ke and therefore £ (u,v) < 6(ke)/4, [

We will need the following result from Gollakota et al. (2023a) which provides a tester which
ensures that any homogeneous halfspace with normal that is geometrically close to some given
vector w has low disagreement with the halfspace corresponding to w under the tested marginal.

Lemma 21 (Tester for Local Halfspace Disagreement, see Gollakota et al. (2023a)) LetC > 0
be a sufficiently large universal constant. There is a tester that for any €, € (0, %), any w € S41
and any (multi)set X of points in R%, runs in time O(d® + d?| X|) and satisfies the following.

(a) (Soundness.) If the tester accepts, then for any w € S with L(w,w) < e we have

IF’X[sign(w -x) # sign(w - x)] < C - €5

X~

(b) (Completeness.) Whenever X consists of m > C( 54% log(1/6) + dlog?(d/d)) independent
samples from Ny, the tester accepts w.p. at least 1 — 6.

Proof of Lemma 21, combination of Propositions 3.2, 3.3 and 4.5 in Gollakota et al. (2023a). The

tester does the following.
1. Compute Py x[|W - x| < 2¢%/%] and reject if its value is greater than 5¢/3.

2. Compute the largest eigenvalue of the covariance matrix Vary. x (x) and reject if its value is
greater than 2.

3. Otherwise, accept.

Soundness. If the tester accepts, then we have the following. Suppose that w # w (otherwise,

the proof is trivial). Let v = ||X:(g%)€iv||2 (so v orthogonal to w). Observe that for any x with
sign(w - x) # sign(W - x) and |W - x| > 2€2/3, it holds that |v - x| > %ffn/:, since we have

v - x| = % where w - x > 0, w - W > cose and |[w — (w - w)W|]2 < sine.

Therefore, we obtain the following by additionally using Chebyshev’s inequality.
P [sign(w - x) # sign(w - x)] < P [|w-x| < 2623 + IP’XHV -x| > 2¢%/3 Jtan €]
X~

x~X x~X

(tan €)? Exox[(V - x)?]
4€4/3

< 5e2/3 4 2627% = 7¢2/3

< 562/3+
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Completeness. For completeness, assume that X consists of m i.i.d. Gaussian examples. We
have that Ex [Pxx[|W - x| < 26*/3]] = Peop,[|W - x| < 26%/3] < 4¢%/3. By using a standard
Hoeffding bound, we have that the first test will accept with probability at least 1 —29 as long as m >
54% log(1/6) and C is sufficiently large. Moreover, by Lemma 19, as long as m > C'-d-log?(d/9),
we have that the largest eigenvalue of Var. x (x) is at most 2 (since || Varxn;, (x)|l2 = 1). [

We also prove the following generalization of Lemma 21 for general halfspaces.

Lemma 22 (Tester for Local Halfspace Disagreement: General Halfspaces) Ler C' > 0 be a
sufficiently large universal constant. There is a tester that for any €, € (0, %) and T > 0, any
w € S 7 € [T, T] and any (multi)set X of points in RY, runs in time O(d° + d?|X|) and
(a) (Soundness.) If the tester accepts, then for any w € S%~', 7 € R, with £(w,w) < € and
|7 — 7| < € we have

PX[sign(w x4+ 7) #sign(w-x+7)] < Cel + Ces

X~

(b) (Completeness.) Whenever X consists of m > C((ﬁ + ﬁ)log(l/é) + dlog?(d/s))
independent samples from Ny, the tester accepts w.p. at least 1 — 4.

Proof of Lemma 22. The tester does the following for v = 10(eT" + €%/3).
1. Compute Py x[|[W - x + 7| < 7] and reject if its value is greater than 5.

2. Compute the largest eigenvalue of the covariance matrix Vary. x (x) and reject if its value is
greater than 2.

3. Otherwise, accept.

Soundness. If the tester accepts, then we have the following. Suppose that w # w (otherwise,
the proof is trivial). Let v = - (WWW _
[w—(w-w)w||2

sign(w - x + 7) # sign(w - x + 7) and |w - x + 7| > -y, we have the following.

(so v orthogonal to w). Observe that for any x with

|lw-x — (W-W)W - X|

v x| = =
[w —(w - w)w

o wex+ T T+ T(WW) — (W-W)(W-x 4T

[w = (w-w)w|

lw-x+7|+|(w-w)(W-x+7)|—|7—T(w-w)|

)

B lw = (w - W)Wl
where for the first equality we add and subtract the terms 7 and 7(w - W) and for the inequality we
use the fact that the signs of the halfspaces are opposite. Moreover, since we have |w - x + 7| > 0,
|w - w| > cose, |[W-x+7| >vand |T — 7| <€ |T| < T, we obtain the following.

: : > !
Sln € sin € tane

cose —T|1 —cose| — cose —e(T'+1
yeose—T|L—cose| —¢ _ qeose— (T + 1) g

lv-x| >
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Therefore, we obtain the following by additionally using Chebyshev’s inequality.

P fsign(w x+7) £ sign(¥ x+7)] < P [%x+7] <]+ P [vox|> ]

Esex[(v - x)%]

52
2 /

<3v+

for a sufficiently large constant C’ > 0, due to the choice of .

Completeness. For completeness, assume that X consists of m i.i.d. Gaussian examples. We have
that Ex [Py x[|W - x + 7| < 7]] = Py, [|[W - x4+ 7| < 7] < 24. By using a standard Hoeffding
bound, we have that the first test will accept with probability at least 1 — 2§ as long as m >
702 log(1/6) and C'is sufficiently large. Moreover, by Lemma 19, as long as m > C - d - log?(d/6),
we have that the largest eigenvalue of Vary. x (x) is at most 2 (since || Varxn;, (x)|l2 = 1). [

Finally, we state the following result from Klivans et al. (2023), which demonstrates that any
high bias halfspace behaves as a constant function with respect to any distribution that matches
sufficiently many moments up to sufficiently small accuracy with the Gaussian distribution.

Lemma 23 (Concentration via Moment Matching, see Lemma 5.6 in Klivans et al. (2023)) Ler
€ > 0. Suppose that X is a set of points in R? such that the empirical moments of bounded degree

the uniform distribution over X approximately match the corresponding moments of the standard

Gaussian, i.e., | Exox[x%] — Exon, [x¥]| < d7198079) for any o € N s.t. |||y < log(1/e€). Then,

forany w € S and T € R, with || > 3\/log(1/¢) we have that

P [sign(w-x+7) #sign(r)] < e

X~ Xtest

Appendix C. Approximate Subspace Retrieval

In this section we provide a number of subspace retrieval lemmas, originally from Vempala (2010a)
(see Sections C.1 and C.2) and Vempala (2010b) (see Section C.3). For the subspace retrieval lemma
from Vempala (2010a), we provide a detailed proof here, but we incur an exponential dependence
on 1/€2. In fact, it is not clear whether our analysis can be improved, since the original proof by
Vempala (2010a) has a gap and, unless a stronger version of Lemma 18 is proven, the complexity
of the algorithm in Vempala (2010a) should involve a term of 2P°Y(¥/€) ag well. To circumvent this
obstacle, we also provide a fully polynomial upper bound, under some non-degeneracy assumption
(see Section C.2).

C.1. Subspace Retrieval through PCA for Balanced Intersections

In this section, we will present a proof of Lemma 24, which was originally proven by Vempala
(2010a). The idea of the proof is not novel, but we provide a detailed and complete version of it for
concreteness. We restate the lemma here for convenience.
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Lemma 24 (Subspace Retrieval, modification from Vempala (2010a)) Letr C > 1 be a suffi-
ciently large universal constant. Let C be the class of intersections of k general halfspaces on
RY, e € (0,1), T > 0andn € (0,1/2]. Let S be a set of at least dk*(1/n)C/< 20T/ 1062 (d/5)
labelled examples of the form (x, f*(x)), where x ~ Ny and f* € C, is an n-unbiased inter-
section which is defined by the normal vectors (w',...,w") and the corresponding thresholds
(..., Tk). Then, with probability at least 1 — 6, the subspace U spanned by the k-smallest
variance orthogonal components of the positive examples ST = {x : (x,1) € S} approximately
includes all of the normal vectors corresponding to bounded thresholds, i.e., for any i € [k] if
7 < T, then || proj, will2 > 1 — e

Algorithm 2: Subspace Retrieval through PCA
Input: Labelled set Siyain, parameter k&
Output: Orthonormal basis (v!,. .. v¥)

Let S:;am be the subset of Sirain corresponding to positive examples.
Run Principal Component Analysis on S tram = {x:(x,1) € Syain} and let v', ..., v* be the
k smallest-variance orthogonal components (i.e., the right singular vectors corresponding to

the k smallest s1ngu1ar values of the ( | X d)-dimensional sample matrix).

Output (v', ..., v") and terminate.

| train

For the proof, we will use the following strong theorem which ensures that the subspace re-
trieved by PCA on the empirical distribution will be geometrically close to the true corresponding
subspace, as long as there is a spectral gap in the covariance matrix of the true distribution.

Prop/o\sition 25 (Davis-Kahan, modification of Theorem 2 in Yu et al. (2015)) Ler M < Ré*d
and M € R¥*? be symmetric matrices such that for some k € [d], the gap between the k-th smallest
eigenvalue of M and the (k + 1)-th smallest eigenvalue of M is positive, i.e., A\p11 — A\ > 0. Let

vi,. V be the eigenvectors of M corresponding to the k smallest eigenvalues and, similarly,

ul, .. k the k smallest eigenvectors of M. Then we have that

: iy o AKIIM - M3
2 A 2
g sin“(£(v',u")) <

(«( ) (Mer1 — Ak)?

Let W be the span of (w', ..., w") and note that every direction orthogonal to W has variance
1 under Ny|x. Let v = (1/n)¢/ <9CT?/€* and let W,, be the subspace of W such that for every
direction u orthogonal to Wy, we have Var,. Nd| ,C(u x) > 1 — ~ and W, is spanned by an
orthonormal basis (z!, z') with Var,., Nl (2" - x) <1 — . In other words, W, is the span of
the eigenvectors of the covariance matrix M of Nd] x whose corresponding eigenvalues are at most
1 — ~. Note that since dim(W) < kand W, C W, wehave £ < k. Let 0 < A\ < --- < )\ <
1—7v < App1 <o < Ap <1 = Mgy be the k+ 1 smallest eigenvalues of the covariance matrix of
Nlic- Since there is a y gap between A, and \j. 1, there is some j € [/, k| such that Xj 1 — X; > 7.

Let U be the subspace corresponding to the &k smallest eigenvectors of the empirical covariance
matrix M of the set of positive examples S*. Since |S| > 1 5 log(1/6), due to a Hoeffding bound,

we have that with probability at least 1—45/10, |ST| > Z|S| 2 dkA(1/n)C/<* 20T/ 10g%(d /5). We
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can therefore apply Lemma 19 to Ny|x (which is log-concave) to obtain that | M — M l2 < 5@z
Let U, be the subspace of U corresponding to the ¢ smallest eigenvalues of M ,and let (v!,... v
be the corresponding eigenvectors. By Proposition 25, we have that

D sin®(L(v',2)) < ¢/ (C'Vk) (1)

1€[(]

Let i € [k] such that 7% < T. We analyze w' in two orthogonal components, w and w’, where
w is the normalized projection of w’ on W, and w' is therefore orthogonal to JV,. Since w’ is
orthogonal to WV,, by the definition of W,, we have Varxy;, (W' - x) > 1 —~. By Lemma 24, this

) ) ) 1/2 . 1/2
implies that w* - w’ < C"” 1+ T+log “(1/n) Therefore, L(w',w) < 20" 1+ THlog 72(1/m) Noreover,

log!/2(1/7) log!/2(1/7)
1/2
by Equation (1), we have that £(w, proj,, w) < ¢/10. Since 20"%@1{”) < ¢/10 by the

choice of v, we obtain the desired result.

C.2. Subspace Retrieval through PCA under a Non-Degeneracy Assumption

In the previous subsection we provided a detailed proof of the subspace retrieval lemma which
was originally proven in Vempala (2010a), incurring, however, an exponential dependence on 1/¢2.
Here, we define a technical assumption on the concept class considered which is sufficient to pro-
vide a fully polynomial result for subspace retrieval. Despite its technicality, the non-degeneracy
condition is satisfied by the constructions we use for our lower bounds, which implies that under the
non-degeneracy condition, our upper and lower bounds are directly comparable (and tight in some
regimes).

Definition 26 (Non-Degeneracy Condition) Let IC be an intersection of halfspaces in R¢ and
Nk be the truncation of the standard Gaussian to K. For 3 > 1, we say that K is 3-non-
degenerate if the following is true. For every subspace VW spanned by some of the normals of K and
for every vector w € S*! that is a normal to K with non-zero projection w' € R? \ {0} onto the
subspace orthogonal to VYV we have

Var (W -x)— Var (W .x)>( Var (w-x)— Var (w-x B,wherevAv/:w' w
Var (%) = Var (&%) 2( Vo (we )~ Var (wx) /Il

For any class C of halfspace intersections on R?, we denote with C® the 3-non-degenerate version
of C, i.e., the subset of C that contains the elements that are 3-non-degenerate.

The condition defined above states that each normal w of the intersection has either zero or non-
trivial relative influence on subspaces orthogonal to the span V' of any subset of the normals. The
influence is measured in terms of the variance reduction along the residual direction w—projy, (w).
In particular, in light of the third part of Lemma 18, for intersections of two halfspaces, the non-
degeneracy condition is satisfied whenever the two halfspaces of the intersection have normals either
pointing to the exact same direction or have sufficiently large angular distance (but nothing in be-
tween). This enables one to circumvent the need for a strong quantitative statement relating (1) the
angle between some vector u and a normal with (2) the variance reduction along u, which is the
source of the exponential dependence of 21/ <. With an analysis similar to the one of Section C.1,
we obtain the following subspace retrieval result.
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Lemma 27 (Subspace Retrieval under Non-Degeneracy, see Vempala (2010a)) Let C > 1 be
a sufficiently large universal constant. Let C be the class of intersections of k general halfspaces
onRY e € (0,1), T >0and B > 1, € (0,1/2]. Let S be a set of at least %eﬁﬂ log?(d/é)
labelled examples of the form (x, f*(x)), where x ~ Ny and f* € Cg is an n-unbiased and [-non-
degenerate intersection which is defined by the normal vectors (w', . .., w") and the corresponding
thresholds (11, ... ,Tk). Then, with probability at least 1 — 6, the subspace U spanned by the
k-smallest variance orthogonal components of the positive examples ST = {x : (x,1) € S}
approximately includes all of the normal vectors corresponding to bounded thresholds, i.e., for any
i € [k]if r° < T, then || proj, w'|2 > 1 — e

C.3. Subspace Retrieval through Polar Planes algorithm

We now present the following lemma from Vempala (2010b) which provides another algorithm for
approximately retrieving the relevant subspace for homogeneous intersections whose runtime is not
exponential in 1/€, even without making a non-degeneracy assumption. The lemma follows from
combining Theorem 4 and Lemma 3 from Vempala (2010b).

Lemma 28 (Subspace Retrieval through Polar Planes, from Vempala (2010b)) Consider C to
be the class of intersections of k homogeneous halfspaces on R?, ¢ € (0,1) andn € (0,1/2]. Let S
be a set of at least m = d(%)o(k) log(1/6) labelled examples of the form (x, f*(x)), where x ~ Ny

and f* € C, is an n-balanced intersection which is defined by the normal vectors (wl, ..., wh).

There is an algorithm (Polar Planes from Vempala (2010b)) that on input S, returns, w.p. at least
1 — 9, an orthonormal basis for a subspace U of dimension k that approximately includes all of the
normal vectors, i.e., for any i € k], we have || proj,; w'||2 > 1 — €, in time (%)O(k).

Appendix D. TDS Learning Intersections of Halfspaces

We now provide full proofs for all of our upper bounds, assuming the balanced concepts condition
(Definition 17), both with and without assuming the non-degeneracy condition (Definition 26).

D.1. Homogeneous Halfspace Intersections

We prove our result on learning intersections of homogeneous halfspaces, which we restate here for
convenience.

Theorem 29 (TDS Learning Intersections of Homogeneous Halfspaces) Let C be a class whose
elements are intersections of k homogeneous halfspaces on RY, € € (0,1) and C > 1 a sufficiently
large constant.

* Assume that there is an algorithm A that upon receiving at least m_4 examples from a training
distribution of the form (x, f*(x)), where x ~ Ny and * € C, outputs, with probability at
least 0.99 an orthonormal basis for a subspace U such that for any normal w of f* we have
Iprojy w2 > 1 — ()%

Then, there is an algorithm (Algorithm 3) that (e, = 0.02)-TDS learns the class C, using

ma + O(%Q) labelled training examples and ON(“LL;) unlabelled test examples, calls A once and

uses additional time O(di§2) + d(k/g)o(kQ)_
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Algorithm 3: Proper TDS Learner for Homogeneous Halfspace Intersections

Input: Labelled set St ain, unlabelled set X tests parameter €

Set € = Cké/Q and €’ = Ck7

Run algorithm 4 on the set Siyain and let (v, ..., v¥) be its output.

Let U be the subspace spanned by (vt ) an d consider the following sparse cover of I/:
Uer = {m ‘u = 5NZ§:1JZ V', Ji G Zﬂ l % %l [ull2 # 0}

Reject and terminate if || Varxx (x)[]2 > 2.

for u € U.» do
| Reject and terminate if Py x [Ju - x| < 2€’/3] > 5¢/2/3,

end

Let F contain the concepts f : R? — {#1} of the form f(x) = 2 /\f:1 1{u'-x >0} -1,
where u',...,u* € U and P (k) ~Strain [V 7 [(X)] < €/5.

Reject and terminate if maxy, f,cr Py~ Xioy [f1(X) # f2(X)] > €/2.

Otherwise, output f : R? — {z1} for some ferF.

Proof of Theorem 2. Let Siain be a set of myai, samples from the training distribution, i.e., of
the form (x, f*(x)), where x ~ D = Nj and let Xiest be a set of myes; samples from the test
distribution D’. Let C' > 0 be a sufficiently large universal constant. Let f* : R? — {41} denote
the ground truth, i.e., the intersection of k£ homogeneous halfspaces

(%) =2 Nigpy 1{w'-x >0} -1, forsome w!,..., whe si?

In the following, we will say that an event holds with high probability if it holds with probability
sufficiently close to 1 so that union bounding over all the bad events gives a probability of failure of
at most 0.01. This is possible by choosing C' to be a sufficiently large constant.

Soundness. To prove soundness, suppose that the tests have accepted. We first use the approach
of Vempala (2010a) to show that using training data, we can retrieve a subspace that is geometrically
close to the normal subspace of the ground truth. Let C’, C" be sufficiently large universal constants.

In particular, the guarantee for algorithm A implies that the retrieved subspace U/ has the prop-
erty that for any i € [k] we have || proj, w'[|2 > 1 — (57)® with high probability, as long as

projy w*
| projy will2*

there is a vector u* € U.» with K(ui,wzi,{) <

Then, we have £(w', w},) < éfks 3. Due to Lemma 20,
3/2
Grora Whenever ¢ < i,

4 7 . ;. .
U | < (%)k . Therefore, for any i € [k] we have some vector u” in the cover U, that is close

Myrain > MA. Let Wz{ =

in which case,

to the normal w', i.e., £ (u’, w?) < (C‘:’fk)3/2.

Consider now the hypothesis f(x) = 2\ 1{u’-x > 0}—1. If suffices to show that f belongs
in the set F of candidate concepts and that f has small test error Py x, .. [f(x) # f*(x)] < €/4,
because then for any other candidate concept f € F, we know that it disagrees with f only on a
small fraction of test points and, hence, we will have Px.x,.., [f'(x) # f*(x)] < 3¢/4. By standard
VC dimension arguments, this would imply that, whenever myest > C dklogk " with high probability,
the test error of any element of F satisfies Pxp/[f'(x) # f*(x)] < €
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We appeal to the tester for local halfspace disagreement of Lemma 21 in order to demonstrate
that Py x,... [f(X) # f*(x)] < €/4. In particular, we have that

P fx) £/ () <k P [sign(u’-x) # sign(w' - )]

x~ Xtest X~ Xtest

< C"E(L(ul, wh))?3 < e/4

Finally, we show that the hypothesis f lies within F. In particular, Pxp[f(x) # f*(x)] <
kPxon,[sign(u’ - x) # sign(w' - x)] = O(k£(u’,w")), which is bounded by ¢/10 by choos-
ing the constant C’ appropriately. By standard VC dimension arguments, we therefore have that
Py Sy Lf (X) # f*(x)] < €/5 as long as Miyain > Cdkeéogk.

Completeness. To prove completeness, suppose that D' = Ny. Since U, F do not depend on
Xiest, We can use Hoeffding bounds to bound the probability of rejection, as well as union bounds
over F x JF accordingly. In particular, the tester of Lemma 21 will accept with high probability
as long as myesy > C 6,4% + Cdlog?d = O(]:—g2 + dlog? d) and the tester of the disagreement
probabilities of pairs in F will accept (due to standard Hoeffding and union bounds) with high
probability whenever myeg > Ce% log | F| = O(lj—; log(f)) (since | F| = (k/€)°**) as we need to
choose k normals from ). |

By combining Theorem 29 with Lemmas 24, 27 and 28 we obtain the following bounds for TDS
learning homogeneous halfspace intersections.

Corollary 30 (TDS Learning Bounds for Homogeneous Halfspace Intersections) Letn € (0, %)
€ >0, B> 1and let C be the class of intersections of k homogeneous halfspaces on R?.
(a) There is an (e,0 = 0.02)-TDS learner for the class C,, of n-balanced intersections that uses

O(d)(%)o(%) labelled training examples, O(de—]f) unlabelled test examples and runs in time

O£,

€n

(b) There is an (¢,6 = 0.02)-TDS learner for the class C,'? of n-balanced and [5-non-degenerate
intersections that uses O(d) - 71% . (%)O(ﬁ) labelled training examples, O(de—’ﬁ) unlabelled test

examples and runs in time O(d?) - 77% (501 4 d(k/e)O*).

(c) There is an (€,6 = 0.02)-TDS learner for the class C,, of n-balanced intersections that uses
O(d)(%)o(k) labelled training examples, O(‘%Q) unlabelled test examples and runs in time

(870 + d(k/e)00.

D.2. General Halfspace Intersections
We now prove our positive results on learning intersections of general halfspaces.
Theorem 31 (TDS Learning Intersections of General Halfspaces) Letr C be a class whose ele-

ments are intersections of k general halfspaces on R?, €, T € (0,1) and C > 1 a sufficiently large
constant.
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» Assume that there is an algorithm A that upon receiving at least m 4 examples of the form
(x, f*(x)), where x ~ Ny and f* € C, outputs, with probability at least 0.99 an orthonormal
basis for a subspace U such that for any normal w € S~ that corresponds to some halfspace

{x:w-x+7 >0} of f* with threshold T < T we have || proj, wlj2 > 1 — (&)3

Then, there is an algorithm (Algorithm 4) that (e, = 0.02)-TDS learns the class C, using
my + O(dei;) labelled training examples and dOUoe(k/€) ynlabelled test examples, calls A once
and uses additional time d°(1°8(k/€)) (; /)0

Algorithm 4: Proper TDS Learner for General Halfspace Intersections

Input: Labelled set Sy ain, unlabelled set Xiqst, parameter e

Set T = 3log!/2(A%), r > log(10k/e), A = d™", ¢ = £ and ¢’
a sufficiently large constant.

Reject and terminate if for some o € N¢ with ||a||; < r it holds
| EX’\‘Xtest [xa] - EX’\’N[XO{” > A

CkB/Q, where C' > 11is

Run algorithm A on set Si;ain and let (vl, . ,vk ) be its output.
Let U be the subspace spanned by (vt vF) and consider the following sparse cover of I/:
k.
Uer = {H&JH ‘u = 6//22 1]z '\ Ji E Zﬂ [ ena Eu] lull2 # 0}

Let 7o = {je' : j € ZN[-Z, L]} be a cover of the candidate halfspace biases.
Reject and terminate if || Varxx (x)[[2 > 2.
for (u, 9) €U X T do
| Reject and terminate if Py x [|u - x + 6] < 2€’/3] > 5¢//3,
end
Let F contain the concepts f : RY — {£1} of the form f(x)
where (u',0), ..., (u*,0%) € U x To and P (x5, [Y
Reject and terminate if max s, f,c 7 Py~ Xiou | f1( ) # fa(x)]
Otherwise, output f : R? — {£1} for some feF

2AF 1{ui - x+6" >0} -1,

# Fa0] < /5.
> €/2.

Proof of Theorem 5. The proof is similar to the one of Theorem 2, but since the intersections are
general, there are some additional complications. Let once more Siyain be a set of myrain samples
from the training distribution, i.e., of the form (x, f*(x)), where x ~ D = N and let Xyt be a set
of myest, samples from the test distribution D’. Let C' > 0 be a sufficiently large universal constant.
Let f* : RY — {41} denote the ground truth, i.e., the intersection of k halfspaces

FH(%) = 2 Niepg Hw' - x4+7>0} -1, forw!,...,w* eSS andr!,... . 7" € R

In the following, we will say that an event holds with high probability if it holds with probability
sufficiently close to 1 so that union bounding over all the bad events gives a probability of failure of
at most 0.01. This is possible by choosing C' to be a sufficiently large constant.

Soundness. Suppose that the tests have accepted. We will once more use the subspace retrieval
lemma from Vempala (2010a), but this time we will use a version (Lemma 24) that works for
arbitrary halfspace intersections. We pick T = 34/log(10k/¢), r > log(10k/¢) and C',C" > 0
sufficiently large universal constants.
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Due to Lemma 24, the retrieved subspace U/ has the property that, with high probability, for any
i € [k] with 7 < T we have | proj,; w'llz > 1 — (57%)®, as long as Mmgain > ma. Consider

i _ _Dprojyw' i i 4¢3/2 i
once more wy, :/leproju i We have :{(w 7Wu) < T and for sczme 7u € U, we have
i i € " b C g : 2:6*C"k" \k
£(u',wy) < 37z, Whenever € < &7 (which implies [Uer| < (555)"). Therefore, for

any i € [k] that corresponds to a halfspace with bounded bias ¢ < T, we have £(u’, w?) <
(%)3/ 2. Moreover, for any such i, there is some §° € T that is either close to the i-th threshold
(|67 — 7¢| < €) or they are both large enough (7° < —T and §* = —T). Assume without loss of
generality that {i € [k] : 78 < T'} = [{] for some £ < k.

Consider now the hypothesis f(x) = 2 A 1{u’ - x + 6" > 0} — 1. Once more, it suf-
fices to show that f belongs in the set F of candidate concepts and that f has small test error
Px~Xioo [f(X) # f*(x)] < €/4, because then for any other candidate concept f' € F, we
know that it disagrees with f only on a small fraction of test points and, hence, we will have
Pyxioi [f (x) # f*(x)] < 3¢/4. By standard VC dimension arguments, this would imply that,

k the test error of any element of F satisfies

- 2 ’

Prr[F/(x) # f*(x)] < €

As a first step, we will show that the ground truth is close to the intersection corresponding
to the bounded bias halfspaces with respect to both the training and the test examples, i.e., that
for f*(x) = 2 Niejg {w" - x + 7° > 0} — 1 we have Pyox,., [[*(x) # f*(x)] < €/8 and
Pyrs,o [f* (%) # f*(x)] < €/10. This is important, because we can then relate f, f* through
f *. Since the moment-matching test has accepted, by Lemma 23, as long as r» > log(lOk /€) and
T > 3y/log(10k/e), for any i > ¢, we have that Py x,.,, [sign(w" - x+7%) # 1] < 15 Therefore,
P Xoo [F (%) # F¥(%)] € 3o PreoXiow [sigR(W' - X + 77) # 1] < ¢/8, due to a union bound
(and the fact that the only possibility that f* and f * differ is if some of the omitted halfspaces in
f * becomes negative). Similarly, for Sirain, the claim follows with high probability by a standard
Hoeffding bound (f* and f * do not depend on Si;ain), as long as | Styain| > C k2

We will now bound the quantity Py x,...[f(X) # f*(x)] by ¢/8. Observe that in the case
that |7¢| > T, then, by Lemma 23 (as argued above), the corresponding halfspace is constant with
probability at least 1 — ¢/(10k) and the same is true for §° = T. Therefore, we may safely omit
these terms from f and f* by only incurring an error of at most €/10. For the remaining terms, we
appeal to the tester for local (general) halfspace disagreement of Lemma 22 in order to show that
Py oo Lf (X) # f*(x)] < €/8. In particular, we have that

P[0 # )<k P [sign(u'-x+6) #sign(wi - x + 7]

x~ Xtest X~ Xtest
< C"E(L(ut, wh)?3 + C"E(L(u?, w')) log'/2(1/€)
<e€/8

Finally, we show that the hypothesis f lies within F. In particular, Py_p[f(x) # f*(x)] <
k Pyon,[sign(u’ - x + 6%) # sign(w’ - x + 7)] = O(kT £(u’, w")), which is bounded by /20 by
choosing the constant C’ appropriately. By standard VC dimension arguments, we therefore have
that Pyg, ... [f(x) # f*(x)] < €/5 as long as myrain > %.

Completeness. To prove completeness, suppose that D’ = Ay. Since U, F do not depend on
Xiest, we can use Hoeffding bounds to bound the probability of rejection, as well as union bounds
over F x F accordingly. In particular, the tester of Lemma 22 will accept with high probability
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as long as myest > C 5'4% + Cdlog?d = O(’;—; + dlog? d) and the tester of the disagreement
probabilities of pairs in F will accept (due to standard Hoeffding and union bounds) with high
probability whenever myegy > CE% log | F| = O(’:—; log(f)) (since | F| = (k:/e)oW) as we need to
choose k normals from U/~ and k elements from 7./). For the moment matching tester, we require
that myest > Cd* log(k/€) since the tester would then have to accept with high probability (see also
Lemma D.1 in Klivans et al. (2023)). |

By combining Theorem 31 with Lemmas 24, 27 and 28 we obtain the following bounds for TDS
learning general halfspace intersections.

Corollary 32 (TDS Learning Bounds for General Halfspace Intersections) Lern € (0, %) €>
0, B > 1 and let C be the class of intersections of k general halfspaces on R%.
(a) There is an (e,0 = 0.02)-TDS learner for the class C,, of n-balanced intersections that uses

- 6
O(d)(%)o(%) lab?lled training examples, d°0°e /) ynlabelled test examples and runs in

time O(d) (1)U 1 g0 (4/) (s /) O,

(b) There is an (e,0 = 0.02)-TDS learner for the class Cﬁ of n-balanced and [3-non-degenerate

intersections that uses O(d) - 77% . (%)0(5) labelled training examples, d°1°8*/<) ynlabelled

test examples and runs in time O(d?) - 77% : (%)O('B) + do(log(l/e))(k/e)o(’“Q).

Appendix E. SQ Lower Bounds for TDS Learning
E.1. SQ Lower Bounds for TDS Learning General Halfspaces

In this section, we provide the proof of the SQ lower bound for TDS learning general halfspaces.
Recall that the proof consists of two main steps. First, we reduce the problem of biased halfspace
detection of Definition 9 to TDS learning halfspaces and then we show that the bias halfspace
detection problem is hard in the SQ framework.

E.1.1. DETECTING BIASED HALFSPACES THROUGH TDS LEARNING

For the first ingredient we use the following proposition which we restate here for convenience.
Proposition 33 (Biased Halfspace Detection via TDS Learning) Let A be a TDS learning algo-
rithm for general halfspaces over R% w.r.t. Ny with accuracy parameter ¢ and success probability
at least 0.95. Suppose A obtains at most m samples from the training distribution and accesses
the test distribution via N SQ queries of tolerance ¢ (the SQ queries are allowed to depend on the

training samples). Then, there exists an algorithm (ﬁ, 10€)-biased halfspace detection that uses
N + 1 8O queries of tolerance min (¢, €) and has success probability at least 0.8.

Proof Without loss of generality, suppose that the algorithm A uses exactly m samples from the
training distribution. We use the following algorithm that uses the TDS learning algorithm .A.

« Given: Statistical query access to distribution D over R? with tolerance min (¢, €).

* Qutput: “Accept” or “Reject”.
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1. Generate Syain C R? x {#£1}, of pairs (x?,-1), where each x? is sampled from N;.

2. Run the TDS learning algorithm A on the training set Si,in. Every time .4 makes an SQ query
to the test distribution, make the same SQ query to D, and return A the result.

3. If A returns “Reject”, then our algorithm also returns “Reject” and terminates.

4. Otherwise, A outputs “Accept” and a classifier f : R% — {1}

5. Using an SQ query, let A be an estimate up to additive error min (p,€) of Pxop [A(x) = 1} )

6. If A > 4e, then output “Reject” and terminate.
7. Otherwise, output “Accept” and terminate.

First, we argue that if D is Ny, then the algorithm above will output “Accept” with probability at
least 0.8. For arbitrarily chosen unit vector w, as a parameter 7 grows to infinity, the statistical
distance between Syain = {(x%,—1)} and the set S}, = {(x’,sign (w-x'— 7))} goes to zero.
If Ais given S}, and D = N, then the definition of TDS learning requires .4 with probability
at least 0.95 to accept and output a hypothesis fsatisfying Py, [f(x) # sign (w - x — T)} <e

rain
Taking the parameter 7 to be sufficiently large, we see that if A is given Syn = { 1) } and
D = N, then with probability at least 0.94 the algorithm A accepts and outputs a hypothesis f
satisfying Py, { f(x) # 1} < 2e¢. Therefore, the estimate X will be at most 3¢, and we will thus
output “Accept”.

Now, suppose D is such that for some unit vector v and 7 € R we have Py .p[x-v > 7] > 10e
and Py [x - v > 7] < ﬁ. Besed on the set Siyain = {(xi, —1) } define the set Sy, as
Sllin = {(x",sign (v -x* — 7)) }. If the algorithm A were given the set Sy; instead of Siin as
the training set, then the definition of TDS learning would require .A with probability at least 0.95
either to output “Reject” or give a hypothesis f satisfying Pxp [f(x) #sign(v-x—7)| < e
and |Siain| = |Spa,| = ™M, We see via a union bound that that
is at most 0.01. Thus, in the algorithm above, the

Since Py, [x - v > 7] < 100
the statistical distance between Siqin and Sy,

algorithm A with probability at least 0.94 indeed either outputs “Reject” or gives a hypothesis f

satisfying Pyp f(x) # sign (v -x — 7')] < e. In the former case, our algorithm will also output

“Reject”. In the latter case we will have x> 9¢, since D is such that Pxup[x - v > 7] > 10e.
Therefore, in this case too our algoirthm outputs “Reject”, which completes the proof. |

E.1.2. LOWER BOUNDS FOR DETECTING BIASED HALFSPACES

We now provide a proof for the second ingredient, namely, that no efficient SQ algorithm can
solve the problem of detecting biased halfspaces, i.e., the following proposition (restated here for
convenience).

Proposition 34 (SQ Lower Bounds for Biased Halfspace Detection) For ¢ > 0, set d = 511/ I

Then, for all sufficiently small €, the following is true. Suppose A is an SQ algorithm for (d~ In(1/e) 10¢)-
biased halfspace detection problem over R?, and A has a success probability of at least 2 /3. Then,

log1/e
(Tglog 1/f), or make 24"

A either has to use SQ tolerance of d SO queries.
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To prove the above claim, we first construct a one-dimensional distribution D; that approxi-
mately matches the low-degree moments of Ny, while having a lot of probability mass above a
certain threshold.

Proposition 35 For e > 0, let kg be defined as ky = 10&&711{161/5' If € is sufficiently small, then there

exists a distribution Dy supported on a finite subset of R, satisfying
1

E [z - E [z < —
x~Dy [l’ ] z~N1 [x ] o k‘(l)OkO’
for every i € {0,--- 10k} while also satisfying Py.p,[x > t] > 12¢, for some t for which

Py, [z > 1] < eanl/e,

Proof We will first construct a distribution D] that satisfies the conditions above, but does not have
finite support. Afterwards, we will discretize Dj.
We take ¢ := In 1 /¢ and observe that

1 oo ) 6—(1n1/5)2/2 oo
Plx>t]=— ex/Qdar</ e—rnl/e gy
INM[ > V2m /lnl/e - V2r 0

e—(In1/e)?/2

B V2mlnl/e

For e sufficiently small.

< eilnl/e. )

Let 7 be the real number for which P, [z € [0, 7]] = 13e. From Equation 2, we see that for all
sufficiently small € it is the case that 7 < e. We define D] the following way: to sample z ~ D] (i)
sample = ~ N (ii) if z € [0, 7], then z = ¢ (iii) otherwise, z = x. Since P, n; [z € [0, 7]] = 13,

we see that P, p; [v > ?] > 13e. Furthermore, we see that for every i € {0, -+, 10k}
. . Inl/e
E ZL'Z — E xl < tko IP) €T € 0’7‘ — 126 . lnl € 100lnlnl/e —
B - B[] < R el =126 (n1/o)

9Kk

_Inl/e
w9 L (100Inln1/e) TR 1
2 Inl/e

For e sufficiently small.

Eypy [2'] = Eony [27]
W, but D] is not supported on a finite subset of R. We will now construct a finitely-supported

Overall, we have so far shown that IF’zND/I [x > t] > 13e and <

dié)tribution D; via the probabilistic method. Obtain D; as the empirical distribution over K

i.i.d. samples from D]. Since all moments of D] are bounded, as K grows to infinity, for all

i € {0,--- ,10ko} the quantity E,.p, [2'] converges in probability to E,_p; [+'], and the quan-

tity Pyp, [v > t] converges in probility to P, .p/ [z > t]. Thus, for a sufficiently large K, we have

Pyup, [z > 1] > 12¢ and |Egup, [27] — Epeny [27]] < kl%ko with non-zero probability over the
0

choice of D;, which completes the proof. |

We now apply the following theorem which is implicit in Diakonikolas et al. (2023b) to obtain
a distribution D over R that has a lot of probability mass above a certain threshold and whose
moments match N exactly.
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Theorem 36 (Implicit in Diakonikolas et al. (2023b)) Let k be a sufficiently large positive integer
and let Dy be a distribution supported on a finite subset of R, and suppose that for every i €
{0,--- , 10k} we have

1

E [«]- E [+ < 1 3)

x~Dg B T
then there exists a distribution Dy with the same support as Do with E,p, [z'] = Eyn, [27] for
every i € {0,--- ,k}, and also satisfying

P [z =120] >0.9 P [z =0

x~D1 x~Dg

for every xq in the support of Dy.

The proof is equivalent to the proof given by Diakonikolas et al. (2023b), but is provided here
with slight modifications for completeness. We will need the following fact.

Fact 1 Let p be a polynomial over R of degree at most k, and let E, p, [(p(:c)) 2] < 1. Then, each
coefficient of p has absolute value of at most 251,

Proof We will use the Hermite polynomials. Recall that for ¢ = 0,1,2,- Hermite polynomials
{H;} are the unique collection of polynomials over R that are orthogonal with respect to Gaussian
distribution. In other words E,cn;, [H;(x)H;(z)] = 0 whenever ¢ # j. In this work, we normalize
the Hermite polynomials to further satisfy Ecn;, [H;(z)H;(z)] = 1. It is a standard fact from
theory of orthogonal polynomials that Hy(z) = 1, H;(z) = x and for ¢ > 2 Hermite polynomials
satisfy the following recursive identity:

Hiq(z) /(i + D) =zH;j(z) Vil —i- Hi_1(z) - /(i — 1)

It follows immediately from the recursion relation that Each coefficient of H; is bounded by 2 in
absolute value. We expand P(z) as a sum of Hermite polynomials?:

p(z) = Z i H;(x) )

Due to orthogonality of Hermite polynomials, we have:

k
iz;a% - wGA%o,l)[(p(x))2] <1

In particular, this implies that each coefficient «; is bounded by 1 in absolute value. Combining this
with Equation 4, the fact that each coefficient of H; is bounded by 2¢ in absolute value, we see that
each coefficient of p is bounded by Z?:o 2¢ < 2%+1 in absolute value. |

Proof of Theorem 36, implicit in Diakonikolas et al. (2023b). Provided here for completeness.

2. Note that the expansion below is always possible for a degree k polynomial because polynomials of the form H; have
degree at most k and are linearly independent, because they are orthonormal with respect to the standard Gaussian
distribution.
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We first restate the setting of the theorem. Let k be a sufficiently large positive integer and let

Dy be a distribution supported on a finite subset of R, and suppose that for every i € {0,--- , 10k}
we have .
JE [+'] - E, [2']| < RIS (5)

then we would like to show that there exists a distribution D; with the same support as Dy satisfying
Eunpy [2°] = Egany [27] forevery i € {0,- -+, k}, and also satisfying
Pr [z =2] > 0.9 Pr [z = (]

x~D1 x~Dg
for every x in the support of Dy.

Let N denote the number of elements in the support of Dy and let {z1, - - - , 2 } be the elements
in the support of Dy. Consider the following linear program:

Flnd ,U/mlu e NIN
s.t. E [up(x)]= E [p(z)] for every polynomial p of degree at most k
xz~Dy x~N7
pz; > 0.9 forallj € {1,--- N}

If the linear program above is feasible, then the proposition will be satisfied by a distribution D;
supported on x1,- -2 that has probability yi,; Prpowp, [t = x;] on each x; (note that Dy is in-
deed a probability distribution because the equality > ; yiz; Proop, [z = ;] = 1 follows by the
constraint in the linear program when p is identically equal to 1).

The linear program above is feasible if and only if its dual linear program is infeasible. The dual
linear program is as follows:

Find polynomial p of degree at most k, 6)
s.t. p(z;) >0 forallj € {1,--- ,N},
LB )] <09 B [p()].
It is now shown that the above is indeed infeasible if Dy is such that for every i € {0,--- , 10k}

we have‘Eszo [x’] —Ezon [x’] ] < kl% For the sake of contradiction, suppose that the linear
program above is feasible and is satisfied by some polynomial p. Without loss of generality, assume

that E,. [(p(:c))ﬂ = 1, because otherwise one could rescale p while still satisfying the dual

linear program above. By Fact 1 each coefficient of p has absolute value of at most 281, This
implies that each coefficient of p? has an absolute value of at most 81 and each coefficient of p*
has an absolute value of at most 32+, Combining these coefficient bounds with Equation 5, and
applying the triangle inequality, we see that

k41 2k+1
LB @] = B ip()]] < (Jrklgk, 7)
k+1
N (I (e Lkt L ®)
k+1
. [(p(fc))ﬂ - B [(p(x))ﬂ < W. )
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This allows us to upper-bound E,.p, [|p(x)|] as follows, where the first inequality follows by Equa-
tion 7, the second by the fact that p satisfies the Linear Program 6 and the equality because p is
positive on the support of Dy due satisfying the Linear Program 6.

(k‘ 4 1)2k+1

ST > x~ED0 p(z)] — a:NEJ\/l [p(z)]> 0.1 IAIJEDO [p(z)]= 0.1 zEEDO [lp(2)]] (10)

However, we can also lower-bound E,..p, [|p(z)|] in the following way

By generalized Holder inequality. By Equations 8 and 9.
g 3/2 k1 3/2
e s e 0E]) T (B [0@)7] — )
iy pir)l = = k+1 =
oo Ev~no |((2))*] Eoi |(p(2)!] + SR
(1 (2k+1)8k+1>3/2
T EIOR

1
>
T (4k 4 1)32kF1g1 4 GRS R

10k

for sufficiently large k. (1n

where the prior to last inequality follows form the fact that E, x;, [(p(x))ﬂ < (4k + 1)32k+1E1,

as each coefficient of p is at most 32¥*1 in absolute value. Overall, we see that Equations 11 and
10 cannot hold simultaneously for a sufficiently large % , contradiction. |

In order to conclude the proof of Proposition 34, we a tool from Diakonikolas et al. (2023a).

Theorem 37 (Special case of Diakonikolas et al. (2023a)) Let D be a distribution over R such
that for every i € {0,--- ,k} we have E,.p [a:l] = Ezong [a:z] For a unit vector v, let Dy
denote the distribution over R% such that for x ~ Dy, (i) the projection x - v is distributed as D (ii)
the projection of x onto the subspace orthogonal to v is distributed as Ny_1 independently from
x - v. Suppose A is an SQ algorithm that distinguishes with success probability at least 2/3 the
distribution Ny from Dy, with v a uniformly random unit vector. Then, A either needs to use SQ
tolerance of k'%%d=01% or make 2d®® SQ queries.

E.1.3. TDS LEARNING GENERAL HALFSPACES IS HARD FOR SQ ALGORITHMS

Finally, we prove Theorem 8 by combining the reduction of Proposition 10 with the SQ lower bound

of Proposition 11 to obtain an SQ lower bound for TDS learning of general halfspaces.
Recall that in the setting of Theorem 8 for ¢ > 0, we let d be chosen as d = ﬁ Suppose
Theorem 8 is false. Then for a sequence of e approaching 0O there is a TDS learning algorithm

A for general halfspaces over R¢ with accuracy parameter € and success probability at least 0.95.
log1/e
The algorithm A obtains at most d™elos1/< samples from the training distribution and accesses the
o . _ (- togl/e
testing distribution via 2¢ @ SQ querries of tolerance at least d Togtogi/e)

Combining this with Proposition 10, we see that for an infinite sequence of values of positive

_ _logl/e .
e that approaches zero, there exists an algorithm for ( ﬁd loglog 17¢ ]1(¢)-biased halfspace detec-
_ logl/e _ log1/e
tion that uses SQ querries of tolerance min(d (g 1oz 1/e)7 €)=d *(g10¢17) and has success

probability at least 0.8. However, for sufficiently small values of ¢, this directly contradicts Propo-
sition 11. This finishes the proof of Theorem 8.

2d0(1)
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E.2. SQ Lower Bounds for Intersections of two Homogeneous Halfspaces

In order to prove Theorem 12, it suffices to reduce the anti-concentration detection problem of
Theorem 13 to TDS learning of two homogeneous halfspaces.

The reduction follows the template of the proof of Proposition 10. In this case, we construct a
distringuisher for the AC detection problem (between the two options (1) Ny and (2) D’ described
in Theorem 13) by providing training examples of the form (x,—1), x ~ N to the input of the
TDS algorithm and the SQ oracle for the unknown distribution as an oracle to the test marginal.

The training data are with high probability consistent with the intersection of the halfspaces
H ={x:(yau++V1—av) -x >0}and Hy = {x: (yJou — /1 —av) -x > 0}, where
v,u € S,V = {x : v-x = 0} is the subspace where D’ assigns non-negligible mass, u L v
and a € (0, 1/2) is arbitrarily small (even exponentially in d, %). Assume, also, that the mass, under
D', of VN {x :u-x > 0} is greater than the mass of V N {x : u-x < 0} (otherwise, note that
the training data are also consistent w.h.p. with the intersection of the complement of H; with the
complement of H>).

Suppose that the TDS algorithm rejects. Then, we have a certificate that the test data are not
Gaussian and therefore we are in the case (2) of the distinguishing problem (w.h.p.). If the TDS
algorithm accepts and outputs some hypothesis f, then we query P[f(x) = 1] to the SQ oracle
for the test marginal. If the test marginal was the Gaussian, then the value of the query should be
very close to 0 (because, upon acceptance, fachieves low error). If the test marginal was D', then
the value of the query should be bounded away from 0, because D’ assigns non-negligible mass to
the positive region of the intersection and fmust achieve low error. Hence, the value of the query
indicates the answer to the distinguishing problem.

E.3. SQ Lower Bounds under Non-Degeneracy Condition

In Section C.2 we define a non-degeneracy condition (Definition 26) which is sufficient to obtain
an exponential improvement for the problem of approximately retrieving the relevant subspace (see
Lemma 27). This implies improved performance for our TDS learners for halfspace intersections.
Importantly, our SQ lower bounds (Theorems 12 and 15) hold even for under the non-degeneracy
condition and this enables us to compare our upper and lower bounds under this condition.

For Theorem 12, the unknown intersection of the hard construction is non-degenerate, because it
corresponds to an intersection of two halfspaces with normals w1, wo such that w;, wo are pointing
almost in opposite directions. This implies that after projecting wo on the subspace orthogonal to
w1, we obtain a direction w’ such that the halfspace {x : w’ - x > 0} is consistent with all of the
points in the interior of the unknown intersection and therefore, by Lemma 18, there is significant
variance reduction in the direction of w’. Overall, the constructed intersection is 2-non-degenerate.

For Theorem 15, the construction corresponds to an intersection of two halfspaces with normals
w1, wo such that wy, wo are pointing (w.h.p. as d increases) in almost orthogonal directions. In
this case, we do not apply Lemma 18 directly, because the statement is not tight when the residual

W2 —PIOjy,, W2
vectoru = ————4——
[w2—projy,, wall2
implies that, if u - wq is sufficiently close to 1, then we have variance reduction along u that indeed
scales proportionally to the variance reduction along ws and, hence, the corresponding intersection

is 2-non-degenerate.

is very close to wy. Instead, we refer to the proof of Lemma 18, which
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