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ABSTRACT

We give the first efficient algorithm for learning halfspaces in the testable learn-
ing model recently defined by Rubinfeld and Vasilyan (RV23). In this model, a
learner certifies that the accuracy of its output hypothesis is near optimal when-
ever the training set passes an associated test, and training sets drawn from
some target distribution must pass the test. This model is more challenging than
distribution-specific agnostic or Massart noise models where the learner is al-
lowed to fail arbitrarily if the distributional assumption does not hold. We con-
sider the setting where the target distribution is the standard Gaussian in d dimen-
sions and the label noise is either Massart or adversarial (agnostic). For Massart
noise, our tester-learner runs in polynomial time and outputs a hypothesis with
(information-theoretically optimal) error opt+ϵ (and extends to any fixed strongly
log-concave target distribution). For adversarial noise, our tester-learner obtains
error O(opt) + ϵ in polynomial time. Prior work on testable learning ignores the
labels in the training set and checks that the empirical moments of the covariates
are close to the moments of the base distribution. Here we develop new tests of
independent interest that make critical use of the labels and combine them with the
moment-matching approach of (GKK23). This enables us to implement a testable
variant of the algorithm of (DKTZ20a; DKTZ20b) for learning noisy halfspaces
using nonconvex SGD.

1 INTRODUCTION

Learning halfspaces in the presence of noise is one of the most basic and well-studied problems in
computational learning theory. A large body of work has obtained results for this problem under a
variety of different noise models and distributional assumptions (see e.g. (BH21) for a survey). A
major issue with common distributional assumptions such as Gaussianity, however, is that they can
be hard or impossible to verify in the absence of any prior information.

The recently defined model of testable learning (RV23) addresses this issue by replacing such as-
sumptions with efficiently testable ones. In this model, the learner is required to work with an
arbitrary input distribution DXY and verify any assumptions it needs to succeed. It may choose to
reject a given training set, but if it accepts, it is required to output a hypothesis with error close to
opt(C, DXY), the optimal error achievable over DXY by any function in a concept class C. Further,
whenever the training set is drawn from a distribution DXY whose marginal is truly a well-behaved
target distribution D∗ (such as the standard Gaussian), the algorithm is required to accept with high
probability. Such an algorithm, or tester-learner, is then said to testably learn C with respect to target
marginal D∗. (See Definition 2.1.) Note that unlike ordinary distribution-specific agnostic learners,
a tester-learner must take some nontrivial action regardless of the input distribution.

The work of (RV23; GKK23) established foundational algorithmic and statistical results for this
model and showed that testable learning is in general provably harder than ordinary distribution-
specific agnostic learning. As one of their main algorithmic results, they showed tester-learners
for the class of halfspaces over Rd that succeed whenever the target marginal is Gaussian (or one
of a more general class of distributions), achieving error opt + ϵ in time and sample complexity
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dÕ(1/ϵ2). This matches the running time of ordinary distribution-specific agnostic learning of half-
spaces over the Gaussian using the standard approach of (KKMS08). Their testers are simple and
label-oblivious, and are based on checking whether the low-degree empirical moments of the un-
known marginal match those of the target D∗.

These works essentially resolve the question of designing tester-learners achieving error opt + ϵ
for halfspaces, matching known hardness results for (ordinary) agnostic learning (GGK20; DKZ20;
DKPZ21). Their running time, however, necessarily scales exponentially in 1/ϵ.

A long line of research has sought to obtain more efficient algorithms at the cost of relaxing the
optimality guarantee (ABL17; DKS18; DKTZ20a; DKTZ20b). These works give polynomial-time
algorithms achieving bounds of the form opt+ϵ andO(opt)+ϵ for the Massart and agnostic setting
respectively under structured distributions (see Section 1.1 for more discussion). The main question
we consider here is whether such guarantees can be obtained in the testable learning framework.

Our contributions. In this work we design the first tester-learners for halfspaces that run in fully
polynomial time in all parameters. We match the optimality guarantees of fully polynomial-time
learning algorithms under Gaussian marginals for the Massart noise model (where the labels arise
from a halfspace but are flipped by an adversary with probability at most η) as well as for the agnostic
model (where the labels can be completely arbitrary). In fact, for the Massart setting our guarantee
holds with respect to any chosen target marginal D∗ that is isotropic and strongly log-concave, and
the same is true of the agnostic setting albeit with a slightly weaker guarantee.
Theorem 1.1 (Formally stated as Theorem 4.1). Let C be the class of origin-centered halfspaces
over Rd, and let D∗ be any isotropic strongly log-concave distribution. In the setting where the
labels are corrupted with Massart noise at rate at most η < 1

2 , C can be testably learned w.r.t. D∗

up to error opt+ ϵ using poly(d, 1ϵ ,
1

1−2η ) time and sample complexity.
Theorem 1.2 (Formally stated as Theorem 5.1). Let C be as above. In the adversarial noise or
agnostic setting where the labels are completely arbitrary, C can be testably learned w.r.t. N (0, Id)
up to error O(opt) + ϵ using poly(d, 1ϵ ) time and sample complexity.

Our techniques. The tester-learners we develop are significantly more involved than prior work on
testable learning. We build on the nonconvex optimization approach to learning noisy halfspaces due
to (DKTZ20a; DKTZ20b) as well as the structural results on fooling functions of halfspaces using
moment matching due to (GKK23). Unlike the label-oblivious, global moment tests of (RV23;
GKK23), our tests make crucial use of the labels and check local properties of the distribution in
regions described by certain candidate vectors. These candidates are approximate stationary points
of a natural nonconvex surrogate of the 0-1 loss, obtained by running gradient descent. When the
distribution is known to be well-behaved, (DKTZ20a; DKTZ20b) showed that any such stationary
point is in fact a good solution (for technical reasons we must use a slightly different surrogate
loss). Their proof relies crucially on structural geometric properties that hold for these well-behaved
distributions, an important one being that the probability mass of any region close to the origin is
proportional to its geometric measure.

In the testable learning setting, we must efficiently check this property for candidate solutions. Since
these regions may be described as intersections of halfspaces, we may hope to apply the moment-
matching framework of (GKK23). Naı̈vely, however, they only allow us to check in polynomial time
that the probability masses of such regions are within an additive constant of what they should be
under the target marginal. But we can view these regions as sub-regions of a known band described
by our candidate vector. By running moment tests on the distribution conditioned on this band and
exploiting the full strength of the moment-matching framework, we are able to effectively convert
our weak additive approximations to good multiplicative ones. This allows us to argue that our
stationary points are indeed good solutions.

Independent and Subsequent Works. In this paper we provide the first efficient tester-learners for
halfspaces when the noise is either adversarial or Massart. In independent and concurrent work by
(DKK+23), an efficient tester-learner for homogeneous halfspaces achieving error O(opt) + ϵ for
Gaussian target marginals is also provided, but they do not provide any results for arbitrary strongly
log-concave target marginals (see Theorem 5.1) or a guarantee of opt + ϵ for Massart noise. In
subsequent work by (GKSV23), our techniques were used to provide tester-learners that are not
tailored to a single target distribution, but are guaranteed to accept any member of a large family
of distributions. Although their main results are more general, their approach crucially extends our
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approach here. Moreover, on the technical side, the proof we give here shows how to make use of the
moment-matching approach of (GKK23) to provide fully polynomial-time efficient tester-learners,
which might be of independent interest.

1.1 RELATED WORK

We provide a partial summary of some of the most relevant prior and related work on efficient
algorithms for learning halfspaces in the presence of adversarial label or Massart noise, and refer
the reader to (BH21) for a survey.

In the distribution-specific agnostic setting where the marginal is assumed to be isotropic and log-
concave, (KLS09) showed an algorithm achieving errorO(opt1/3)+ϵ for the class of origin-centered
halfspaces. (ABL17) later obtainedO(opt)+ ϵ using an approach that introduced the principle of it-
erative localization, where the learner focuses attention on a band around a candidate halfspace in or-
der to produce an improved candidate. (Dan15) used this principle to obtain a PTAS for agnostically
learning halfspaces under the uniform distribution on the sphere, and (BZ17) extended it to more
general s-concave distributions. Further works in this line include (YZ17; Zha18; ZSA20; ZL21).
(DKTZ20b) introduced the simplest approach yet, based entirely on nonconvex SGD, and showed
that it achievesO(opt)+ϵ for origin-centered halfspaces over a wide class of structured distributions.
Other related works include (DKS18; DKTZ22).

In the Massart noise setting with noise rate bounded by η, work of (DGT19) gave the first effi-
cient distribution-free algorithm achieving error η + ϵ; further improvements and followups include
(DKT21; DTK22). However, the optimal error opt achievable by a halfspace may be much smaller
than η, and it has been shown that there are distributions where achieving error competitive with opt
as opposed to η is computationally hard (DK22; DKMR22). As a result, the distribution-specific
setting remains well-motivated for Massart noise. Early distribution-specific algorithms were given
by (ABHU15; ABHZ16), but a key breakthrough was the nonconvex SGD approach introduced by
(DKTZ20a), which achieved error opt + ϵ for origin-centered halfspaces efficiently over a wide
range of distributions. This was later generalized by (DKK+22).

1.2 TECHNICAL OVERVIEW

Our starting point is the nonconvex optimization approach to learning noisy halfspaces due to
(DKTZ20a; DKTZ20b). The algorithms in these works consist of running SGD on a natural non-
convex surrogate Lσ for the 0-1 loss, namely a smooth version of the ramp loss. The key structural
property shown is that if the marginal distribution is structured (e.g. log-concave) and the slope of
the ramp is picked appropriately, then any w that has large angle with an optimal w∗ cannot be an
approximate stationary point of the surrogate loss Lσ , i.e. that ∥∇Lσ(w)∥ must be large. This is
proven by carefully analyzing the contributions to the gradient norm from certain critical regions of
span(w,w∗), and crucially using the distributional assumption that the probability masses of these
regions are proportional to their geometric measures. (See Fig. 3.) In the testable learning setting,
the main challenge we face in adapting this approach is checking such a property for the unknown
distribution we have access to.

A preliminary observation is that the critical regions of span(w,w∗) that we need to analyze are
rectangles, and are hence functions of a small number of halfspaces. Encouragingly, one of the key
structural results of the prior work of (GKK23) pertains to “fooling” such functions. Concretely, they
show that whenever the true marginalDX matches moments of degree at most Õ(1/τ2) with a target
D∗ that satisfies suitable concentration and anticoncentration properties, then |EDX [f ]−ED∗ [f ]| ≤
τ for any f that is a function of a small number of halfspaces. If we could run such a test and ensure
that the probabilities of the critical regions over our empirical marginal are also related to their areas,
then we would have a similar stationary point property. However, the difficulty is that since we wish
to run in fully polynomial time, we can only hope to fool such functions up to τ that is a constant.
Unfortunately, this is not sufficient to analyze the probability masses of the critical regions we care
about as they may be very small.

The chief insight that lets us get around this issue is that each critical regionR is in fact of a very spe-
cific form, namely a rectangle that is axis-aligned with w: R = {x : ⟨w,x⟩ ∈ [−σ, σ] and ⟨v,x⟩ ∈
[α, β]} for some values α, β, σ and some v orthogonal to w. Moreover, we know w, meaning
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we can efficiently estimate the probability PDX [⟨w,x⟩ ∈ [−σ, σ]] up to constant multiplicative
factors without needing moment tests. Denoting the band {x : ⟨w,x⟩ ∈ [−σ, σ]} by T and
writing PDX [R] = PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ]PDX [T ], it turns out that we should expect
PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] = Θ(1), as this is what would occur under the structured target distri-
bution D∗. (Such a “localization” property is also at the heart of the algorithms for approximately
learning halfspaces of, e.g., (ABL17; Dan15).) To check this, it suffices to run tests that ensure that
PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] is within an additive constant of this probability under D∗.

We can now describe the core of our algorithm (omitting some details such as the selection of
the slope of the ramp). First, we run SGD on the surrogate loss L to arrive at an approximate
stationary point and candidate vector w (technically a list of such candidates). Then, we define the
band T based on w, and run tests on the empirical distribution conditioned on T . Specifically, we
check that the low-degree empirical moments conditioned on T match those of D∗ conditioned on
T , and then apply the structural result of (GKK23) to ensure conditional probabilities of the form
PDX [⟨v,x⟩ ∈ [α, β] | x ∈ T ] match PD∗ [⟨v,x⟩ ∈ [α, β] | x ∈ T ] up to a suitable additive constant.
This suffices to ensure that even over our empirical marginal, the particular stationary point w we
have is indeed close in angular distance to an optimal w∗.

A final hurdle that remains, often taken for granted under structured distributions, is that closeness
in angular distance ∡(w,w∗) does not immediately translate to closeness in terms of agreement,
P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)], over our unknown marginal. Nevertheless, we show that when
the target distribution is Gaussian, we can run polynomial-time tests that ensure that an angle of
θ = ∡(w,w∗) translates to disagreement of at most O(θ). When the target distribution is a general
strongly log-concave distribution, we show a slightly weaker relationship: for any k ∈ N, we can
run tests requiring time dÕ(k) that ensure that an angle of θ translates to disagreement of at most
O(
√
k · θ1−1/k). In the Massart noise setting, we can make ∡(w,w∗) arbitrarily small, and so

obtain our opt+ ϵ guarantee for any target strongly log-concave distribution in polynomial time. In
the adversarial noise setting, we face a more delicate tradeoff and can only make ∡(w,w∗) as small
as Θ(opt). When the target distribution is Gaussian, this is enough to obtain final error O(opt) + ϵ
in polynomial time. When the target distribution is a general strongly log-concave distribution, we
instead obtain Õ(opt) + ϵ in quasipolynomial time.

2 PRELIMINARIES

Notation and setup Throughout, the domain will be X = Rd, and labels will lie in Y = {±1}.
The unknown joint distribution over X × Y that we have access to will be denoted by DXY , and its
marginal on X will be denoted by DX . The target marginal on X will be denoted by D∗. We use
the following convention for monomials: for a multi-index α = (α1, . . . , αd) ∈ Zd

≥0, xα denotes∏
i x

αi
i , and |α| =

∑
i αi denotes its total degree. We use C to denote a concept class mapping

Rd to {±1}, which throughout this paper will be the class of halfspaces or functions of halfspaces
over Rd. We use opt(C, DXY) to denote the optimal error inff∈C P(x,y)∼DXY [f(x) ̸= y], or just
opt when C and DXY are clear from context. We recall the definitions of the noise models we
consider. In the Massart noise model, the labels satisfy Py∼DXY |x[y ̸= sign(⟨w∗,x⟩) | x] = η(x),
where η(x) ≤ η < 1

2 for all x. In the adversarial label noise or agnostic model, the labels may
be completely arbitrary. In both cases, the learner’s goal is to produce a hypothesis with error
competitive with opt. We now formally define testable learning. The following definition is an
equivalent reframing of the original definition (RV23, Def 4), folding the (label-aware) tester and
learner into a single tester-learner.
Definition 2.1 (Testable learning, (RV23)). Let C be a concept class mapping Rd to {±1}. Let D∗

be a certain target marginal on Rd. Let ϵ, δ > 0 be parameters, and let ψ : [0, 1] → [0, 1] be some
function. We say C can be testably learned w.r.t. D∗ up to error ψ(opt) + ϵ with failure probability
δ if there exists a tester-learner A meeting the following specification. For any distribution DXY
on Rd × {±1}, A takes in a large sample S drawn from DXY , and either rejects S or accepts and
produces a hypothesis h : Rd → {±1}. Further, the following conditions must be met:

(a) (Soundness.) Whenever A accepts and produces a hypothesis h, with probability at least
1 − δ (over the randomness of S and A), h must satisfy P(x,y)∼DXY [h(x) ̸= y] ≤
ψ(opt(C, DXY)) + ϵ.
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(b) (Completeness.) Whenever DXY truly has marginal D∗, A must accept with probability at
least 1− δ (over the randomness of S and A).

3 TESTING PROPERTIES OF STRONGLY LOG-CONCAVE DISTRIBUTIONS

In this section we define the testers that we will need for our algorithm. All the proofs from this
section can be found in Appendix B. We begin with a structural lemma that strengthens the key
structural result of (GKK23), stated here as Proposition A.3. It states that even when we restrict an
isotropic strongly log-concave D∗ to a band around the origin, moment matching suffices to fool
functions of halfspaces whose weights are orthogonal to the normal of the band.
Proposition 3.1. Let D∗ be an isotropic strongly log-concave distribution. Let w ∈ Sd−1 be any
fixed direction. Let p be a constant. Let f : Rd → R be a function of p halfspaces of the form in
Eq. (A.2), with the additional restriction that its weights vi ∈ Sd−1 satisfy ⟨vi,w⟩ = 0 for all i.
For some σ ∈ [0, 1], let T denote the band {x : |⟨w,x⟩| ≤ σ}. Let D be any distribution such that
D|T matches moments of degree at most k = Õ(1/τ2) with D∗

|T up to an additive slack of d−Õ(k).
Then |ED∗ [f | T ]− ED[f | T ]| ≤ τ.

We now describe some of the testers that we use. First, we need a tester that ensures that the
distribution is concentrated in every single direction. More formally, the tester checks that the
moments of the distribution along any direction are small.
Proposition 3.2. For any isotropic strongly log-concave D∗, there exists some constants C1 and a
tester T1 that takes a set S ⊆ Rd × {±1}, an even k ∈ N, a parameter δ ∈ (0, 1) and runs and in
time poly

(
dk, |S|, log 1

δ

)
. Let D denote the uniform distribution over S. If T1 accepts, then for any

v ∈ Sd−1

E
(x,y)∼D

[(⟨v,x⟩)k] ≤ (C1k)
k/2. (3.1)

Moreover, if S is obtained by taking at least
(
dk,
(
log 1

δ

)k)C1

i.i.d. samples from a distribution

whose Rd-marginal is D∗, the test T1 passes with probability at least 1− δ.

Secondly, we will use a tester that makes sure the distribution is not concentrated too close to a spe-
cific hyperplane. This is one of the properties we will need to use in order to employ the localization
technique of (ABL17).
Proposition 3.3. For any isotropic strongly log-concave D∗, there exist some constants C2, C3 and
a tester T2 that takes a set S ⊆ Rd × {±1} a vector w ∈ Sd−1, parameters σ, δ ∈ (0, 1) and runs
in time poly

(
d, |S|, log 1

δ

)
. Let D denote the uniform distribution over S. If T2 accepts, then

P
(x,y)∼D

[|⟨w,x⟩| ≤ σ] ∈ (C2σ,C3σ). (3.2)

Moreover, if S is obtained by taking at least 100
K1σ2 log

(
1
δ

)
i.i.d. samples from a distribution whose

Rd-marginal is D∗, the test T2 passes with probability at least 1− δ.

Finally, in order to use the localization idea of (ABL17) in a manner similar to (DKTZ20b), we
need to make sure that the distribution is well-behaved also within a band around to a certain hyper-
plane. The main property of the distribution that we establish is that functions of constantly many
halfspaces have expectations very close to what they would be under our distributional assumption.
As we show later in this work, having the aforementioned property allows us to derive many other
properties that strongly log-concave distributions have, including many of the key properties that
make the localization technique successful.
Proposition 3.4. For any isotropic strongly log-concave D∗ and a constant C4, there exists a
constant C5 and a tester T3 that takes a set S ⊆ Rd × {±1} a vector w ∈ Sd−1, parameters

σ, τ δ ∈ (0, 1) and runs in time poly
(
dÕ(

1
τ2 ), 1

σ , |S|, log
1
δ

)
. Let D denote the uniform distribution

over S, let T denote the band {x : |⟨w,x⟩| ≤ σ} and let Fw denote the set {±1}-valued functions
of C4 halfspaces whose weight vectors are orthogonal to w. If T3 accepts, then

max
f∈Fw

∣∣∣∣ E
x∼D∗

[f(x) | x ∈ T ]− E
(x,y)∼D

[f(x) | x ∈ T ]
∣∣∣∣ ≤ τ, (3.3)
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max
v∈Sd−1: ⟨v,w⟩=0

∣∣∣∣ E
x∼D∗

[(⟨v,x⟩)2 | x ∈ T ]− E
(x,y)∼D

[(⟨v,x⟩)2 | x ∈ T ]
∣∣∣∣ ≤ τ. (3.4)

Moreover, if S is obtained by taking at least
(

1
τ ·

1
σ · d

1
τ2 logC5( 1

τ ) ·
(
log 1

δ

) 1
τ2 logC5( 1

τ )
)C5

i.i.d.

samples from a distribution whose Rd-marginal is D∗, the test T3 passes w.p. at least 1− δ.

4 TESTABLY LEARNING HALFSPACES WITH MASSART NOISE

In this section we prove that we can testably learn halfspaces with Massart noise with respect to
isotropic strongly log-concave distributions (see Definition A.1).
Theorem 4.1 (Tester-Learner for Halfspaces with Massart Noise). Let DXY be a distribution over
Rd×{±1} and let D∗ be an isotropic strongly log-concave distribution over Rd. Let C be the class
of origin centered halfspaces in Rd. Then, for any η < 1/2, ϵ > 0 and δ ∈ (0, 1), there exists an
algorithm (Algorithm 1) that testably learns C w.r.t. D∗ up to excess error ϵ and error probability
at most δ in the Massart noise model with rate at most η, using time and a number of samples from
DXY that are polynomial in d, 1/ϵ, 1

1−2η and log(1/δ).

Algorithm 1: Tester-learner for halfspaces
Input: Training sets S1, S2, parameters σ, δ, α
Output: A near-optimal weight vector w, or rejection
Run PSGD on the empirical loss Lσ over S1 to get a list L of candidate vectors.
Test whether L contains an α-approximate stationary point w of the empirical loss Lσ over S2.
Reject if no such w exists.

for each candidate w′ in {w,−w} do
Let Bw′(σ) denote the band {x : |⟨w′,x⟩| ≤ σ}. Let Fw′ denote the class of functions of
at most two halfspaces with weights orthogonal to w′.

Let δ′ = Θ(δ).
Run T1(S2, k = 2, δ) to verify that the empirical marginal is approximately isotropic.
Reject if T1 rejects.

Run T2(S2,w
′, σ, δ′) to verify that PS [Bw′(σ)] = Θ(σ). Reject if T2 rejects.

Run T3(S2,w
′, σ = σ/6, τ, δ′) and T3(S,w′, σ = σ/2, τ, δ′) for a suitable constant τ to

verify that the empirical distribution conditioned on Bw′(σ/6) and Bw′(σ/2) fools Fw′

up to τ . Reject if T3 rejects.
Estimate the empirical error of w′ on S.

If all tests have accepted, output w′ ∈ {w,−w} with the best empirical error.

To show our result, we revisit the approach of (DKTZ20a) for learning halfspaces with Massart
noise under well-behaved distributions. Their result is based on the idea of minimizing a surrogate
loss that is non convex, but whose stationary points correspond to halfspaces with low error. They
also require that their surrogate loss is sufficiently smooth, so that one can find a stationary point
efficiently. While the distributional assumptions that are used to demonstrate that stationary points
of the surrogate loss can be discovered efficiently are mild, the main technical lemma, which de-
mostrates that any stationary point suffices, requires assumptions that are not necessarily testable.
We establish a label-dependent approach for testing, making use of tests that are applied during the
course of our algorithm.

We consider a slightly different surrogate loss than the one used in (DKTZ20a). In particular, for
σ > 0, we let

Lσ(w) = E
(x,y)∼DXY

[
ℓσ

(
− y ⟨w,x⟩
∥w∥2

)]
, (4.1)

where ℓσ : R→ [0, 1] is a smooth approximation to the ramp function with the properties described
in Proposition C.1 (see Appendix C), obtained using a piecewise polynomial of degree 3. Unlike
the standard logistic function, our loss function has derivative exactly 0 away from the origin (for
|t| > σ/2). This makes the analysis of the gradient of Lσ easier, since the contribution from points
lying outside a certain band is exactly 0.
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The smoothness allows us to run PSGD to obtain stationary points efficiently, and we now state the
convergence lemma we need.
Proposition 4.2 (PSGD Convergence, Lemmas 4.2 and B.2 in (DKTZ20a)). Let Lσ be as in Equa-
tion equation 4.1 with σ ∈ (0, 1], ℓσ as described in Proposition C.1 and DXY such that the
marginal DX on Rd satisfies Property equation 3.1 for k = 2. Then, for any ϵ > 0 and δ ∈ (0, 1),
there is an algorithm whose time and sample complexity is O( d

σ4 + log(1/δ)
ϵ4σ4 ), which, having access

to samples from DXY , outputs a list L of vectors w ∈ Sd−1 with |L| = O( d
σ4 + log(1/δ)

ϵ4σ4 ) so that
there exists w ∈ L with

∥∇wLσ(w)∥2 ≤ ϵ , with probability at least 1− δ .

In particular, the algorithm performs Stochastic Gradient Descent on Lσ Projected on Sd−1

(PSGD).

It now suffices to show that, upon performing PSGD on Lσ , for some appropriate choice of σ, we
acquire a list of vectors that testably contain a vector which is approximately optimal. We first prove
the following lemma, whose distributional assumptions are relaxed compared to the corresponding
structural Lemma 3.2 of (DKTZ20a). In particular, instead of requiring the marginal distribution
to be “well-behaved”, we assume that the quantities of interest (for the purposes of our proof) have
expected values under the true marginal distribution that are close, up to multiplicative factors,
to their expected values under some “well-behaved” (in fact, strongly log-concave) distribution.
While some of the quantities of interest have values that are miniscule and estimating them up
to multiplicative factors could be too costly, it turns out that the source of their vanishing scaling
can be completely attributed to factors of the form P[|⟨w,x⟩| ≤ σ] (where σ is small), which,
due to standard concentration arguments, can be approximated up to multiplicative factors, given
w ∈ Sd−1 and σ > 0 (see Proposition 3.3). As a result, we may estimate the remaining factors up
to sufficiently small additive constants (see Proposition 3.4) to get multiplicative overall closeness
to the “well behaved” baseline. We defer the proof of the following Lemma to Appendix C.1.
Lemma 4.3. Let Lσ be as in Equation equation 4.1 with σ ∈ (0, 1], ℓσ as described in Proposition
C.1, let w ∈ Sd−1 and consider DXY such that the marginal DX on Rd satisfies Properties equa-
tion 3.2 and equation 3.3 for C4 = 2 and accuracy τ . Let w∗ ∈ Sd−1 define an optimum halfspace
and let η < 1/2 be an upper bound on the rate of the Massart noise. Then, there are constants
c1, c2, c3 > 0 such that if ∥∇wLσ(w)∥2 < c1(1− 2η) and τ ≤ c2, then

∡(w,w∗) ≤ c3
1− 2η

· σ or ∡(−w,w∗) ≤ c3
1− 2η

· σ

Combining Proposition 4.2 and Lemma 4.3, we get that for any choice of the parameter σ ∈ (0, 1],
by running PSGD on Lσ , we can construct a list of vectors of polynomial size (in all relevant
parameters) that testably contains a vector that is close to the optimum weight vector. In order to
link the zero-one loss to the angular similarity between a weight vector and the optimum vector, we
use the following Proposition (for the proof, see Appendix C.2).
Proposition 4.4. Let DXY be a distribution over Rd × {±1}, w∗ ∈ argminw∈Sd−1 PDXY [y ̸=
sign(⟨w,x⟩)] and w ∈ Sd−1. Then, for any θ ≥ ∡(w,w∗), θ ∈ [0, π/4], if the marginal DX on Rd

satisfies Property equation 3.1 for C1 > 0 and some even k ∈ N and Property equation 3.2 with σ
set to (C1k)

k
2(k+1) · (tan θ)

k
k+1 , then, there exists a constant c > 0 such that the following is true.

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c · k1/2 · θ1−
1

k+1 .

Proof of Theorem 4.1. Throughout the proof we consider δ′ to be a sufficiently small polynomial
in all the relevant parameters. Each of the failure events will have probability at least δ′ and their
number will be polynomial in all the relevant parameters, so by the union bound, we may pick δ′ so
that the probability of failure is at most δ.

The algorithm we run is Algorithm 1, with appropriate selection of parameters and given samples
S1, S2, each of which are sufficiently large sets of independent samples from the true unknown
distribution DXY . For some σ ∈ (0, 1] to be defined later, we run PSGD on the empirical loss Lσ

over S1 as described in Proposition 4.2 with ϵ = c1(1 − 2η)σ/4, where c1 is given by Lemma 4.3.
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Figure 1: Critical regions in the proofs of main structural lemmas (Lemmas 4.3, 5.2). We analyze
the contributions of the regions labeled A1, A2 to the quantities A1, A2 in the proofs. Specifically,
the regions A1 (which have height σ/3 so that the value of ℓ′σ(xw) for any x in these regions is
exactly 1/σ, by Proposition C.1) form a subset of the region G, and their probability mass underDX
is (up to a multiplicative factor) a lower bound on the quantity A1 (see Eq equation C.3). Similarly,
the region A2 is a subset of the intersection of Gc with the band of height σ, and has probability
mass that is (up to a multiplicative factor) an upper bound on the quantity A2 (see Eq equation C.4).

By Proposition 4.2, we get a list L of vectors w ∈ Sd−1 with |L| = poly(d, 1/σ) such that there is
w ∈ L with ∥∇wLσ(w)∥2 < 1

2c1(1− 2η) under the true distribution, if the marginal is isotropic.

Having acquired the list L using sample S1, we use the independent samples in S2 to test whether
L contains an approximately stationary point of the empirical loss on S2. If this is not the case,
then we may safely reject: for large enough |S1|, if the distribution is indeed isotropic strongly
logconcave, there is an approximate stationary of the population loss in L and if |S2| is large enough,
the gradient of the empirical loss on S2 will be close to the gradient of the population loss on each
of the elements of L, due to appropriate concentration bounds for log-concave distributions as well
as the fact that the elements of L are independent from S2. For the following, let w be a point such
that ∥∇wLσ(w)∥2 < c1(1− 2η) under the empirical distribution over S2

In Lemma 4.3 and Proposition 4.4 we have identified certain properties of the marginal distribution
that are sufficient for our purposes, given that L contains an approximately stationary point of the
empirical (surrogate) loss on S2. Our testers T1, T2, T3 verify that these properties hold for the
empirical marginal over our sample S2, and it will be convenient to analyze the optimality of our
algorithm purely over S2. In particular, we will need to require that |S2| is sufficiently large, so
that when the true marginal is indeed the target D∗, our testers succeed with high probability (for
the corresponding sample complexity, see Propositions 3.2, 3.3 and 3.4). Moreover, by standard
generalization theory, since the VC dimension of halfspaces is only O(d) and for us |S2| is a large
poly(d, 1/ϵ), both the error of our final output and the optimal error over S2 will be close to that
over DXY . So in what follows, we will abuse notation and refer to the uniform distribution over S2

as DXY and the optimal error over S2 simply as opt.

We proceed with some basic tests. Throughout the rest of the algorithm, whenever a tester fails,
we reject, otherwise we proceed. First, we run testers T2 with inputs (w, σ/2, δ′) and (w, σ/6, δ′)
(Proposition 3.3) and T3 with inputs (w, σ/2, c2, δ′) and with (w, σ/6, c2, δ

′) (Proposition 3.4, c2
as defined in Lemma 4.3). This ensures that for the approximate stationary point w of the Lσ , the
probability within the band Bw(σ/2) = {x : |⟨w,x⟩| ≤ σ/2} is Θ(σ) (and similarly for Bw(σ/6))
and moreover that our marginal conditioned on each of the bands fools (up to an additive constant)
functions of halfspaces with weights orthogonal to w. As a result, we may apply Lemma 4.3 to w
and form a list of 2 vectors {w,−w} which contains some w′ with ∡(w′,w∗) ≤ c2σ/(1− 2η)
(where c3 is as defined in Lemma 4.3).
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We run T1 (Proposition 3.2) with k = 2 to verify that the marginals are approximately isotropic and
we use T2 once again, with appropriate parameters for each w and its negation, to apply Proposition
4.4 and get that {w,−w} contains a vector w′ with

P
DXY

[y ̸= sign(⟨w′,x⟩)] ≤ opt+ c · θ2/3, where ∡(w′,w∗) ≤ θ := c2σ/
√
1− 2η

By picking σ = Θ(ϵ3/2(1− 2η)) we have P
DXY

[y ̸= sign(⟨w′,x⟩)] ≤ opt+ ϵ .

However, we do not know which of the weight vectors in {w,−w} is the one guaranteed to achieve
small error. In order to discover this vector, we estimate the probability of error of each of the
corresponding halfspaces (which can be done efficiently, due to Hoeffding’s bound) and pick the
one with the smallest error. This final step does not require any distributional assumptions and we
do not need to perform any further tests.

5 TESTABLY LEARNING HALFSPACES IN THE AGNOSTIC SETTING

In this section, we provide our result on efficiently and testably learning halfspaces in the agnostic
setting with respect to isotropic strongly log-concave target marginals. We defer the proofs to Ap-
pendix D. The algorithm we use is once more Algorithm 1, but we call it multiple times for different
choices of the parameter σ, reject if any call rejects and output the vector that achieved the mini-
mum empirical error overall, otherwise. Also, the tester T1 is called for a general k (not necessarily
k = 2).

Theorem 5.1 (Efficient Tester-Learner for Halfspaces in the Agnostic Setting). Let DXY be a dis-
tribution over Rd × {±1} and let D∗ be a strongly log-concave distribution over Rd (Definition
A.1). Let C be the class of origin centered halfspaces in Rd. Then, for any even k ∈ N, any ϵ > 0
and δ ∈ (0, 1), there exists an algorithm that agnostically testably learns C w.r.t. D∗ up to error
O(k1/2 ·opt1−

1
k+1 )+ϵ, where opt = minw∈Sd−1 PDXY [y ̸= sign(⟨w,x⟩)], and error probability at

most δ, using time and a number of samples from DXY that are polynomial in dÕ(k), (1/ϵ)Õ(k) and
(log(1/δ))O(k). In particular, by picking some appropriate k ≤ log2 d, we obtain error Õ(opt) + ϵ
in quasipolynomial time and sample complexity, i.e. poly(2polylog d, ( 1ϵ )

polylog d).

To prove Theorem 5.1, we may follow a similar approach as the one we used for the case of Massart
noise. However, in this case, the main structural lemma regarding the quality of the stationary points
involves an additional requirement about the parameter σ. In particular, σ cannot be arbitrarily small
with respect to the error of the optimum halfspace, because, in this case, there is no upper bound
on the amount of noise that any specific point x might be associated with. As a result, picking σ
to be arbitrarily small would imply that our algorithm only considers points that lie within a region
that has arbitrarily small probability and can hence be completely corrupted with the adversarial
opt budget. On the other hand, the polynomial slackness that the testability requirement introduces
(through Proposition 4.4) between the error we achieve and the angular distance guarantee we can
get via finding a stationary point of Lσ (which is now coupled with opt), appears to the exponent of
the guarantee we achieve in Theorem 5.1.

Lemma 5.2. Let Lσ be as in Equation equation 4.1 with σ ∈ (0, 1], ℓσ as described in Proposition
C.1, let w ∈ Sd−1 and consider DXY such that the marginal DX on Rd satisfies Properties equa-
tion 3.2, equation 3.3 and equation 3.4 for w with C4 = 2 and accuracy parameter τ . Let opt be the
minimum error achieved by some origin centered halfspace and let w∗ ∈ Sd−1 be a corresponding
vector. Then, there are constants c1, c2, c3, c4 > 0 such that if opt ≤ c1σ, ∥∇wLσ(w)∥2 < c2, and
τ ≤ c3 then either ∡(w,w∗) ≤ c4σ or ∡(−w,w∗) ≤ c4σ.

We obtain our main result for Gaussian target marginals by refining Proposition 4.4 for the specific
case when the target marginal distributionD∗ is the standard multivariate Gaussian distribution. The
algorithm for the Gaussian case is similar to the one of Theorem 5.1, but it runs different tests for
the improved version (see Proposition D.1) of Proposition 4.4.

Theorem 5.3. In Theorem 5.1, if D∗ is the standard Gaussian in d dimensions, we obtain error
O(opt) + ϵ in polynomial time and sample complexity, i.e. poly(d, 1/ϵ, log(1/δ)).
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A STRONGLY LOG-CONCAVE DISTRIBUTIONS

We also formally define the class of strongly log-concave distributions, which is the class that our
target marginal D∗ is allowed to belong to, and collect some useful properties of such distributions.
We will state the definition for isotropic D∗ (i.e. with mean 0 and covariance I) for simplicity.

Definition A.1 (Strongly log-concave distribution, see e.g. (SW14, Def 2.8)). We say an isotropic
distribution D∗ on Rd is strongly log-concave if the logarithm of its density q is a strongly concave
function. Equivalently, q can be written as

q(x) = r(x)γκ2I(x) (A.1)

for some log-concave function r and some constant κ > 0, where γκ2I denotes the density of the
spherical Gaussian N (0, κ2I).

Proposition A.2 (see e.g. (SW14)). Let D∗ be an isotropic strongly log-concave distribution on Rd

with density q.

(a) Any orthogonal projection of D∗ onto a subspace is also strongly log-concave.

(b) There exist constants U,R such that q(x) ≤ U for all x, and q(x) ≥ 1/U for all ∥x∥ ≤ R.

(c) There exist constants U ′ and κ such that q(x) ≤ U ′γκ2I(x) for all x.

(d) There exist constants K1,K2 such that for any σ ∈ [0, 1] and any v ∈ Sd−1, P[|⟨v,x⟩| ≤
σ] ∈ (K1σ,K2σ).

(e) There exists a constant K3 such that for any k ∈ N, E[|⟨v,x⟩|k] ≤ (K3k)
k/2.

(f) Let α = (α1, . . . , αd) ∈ Zd
≥0 be a multi-index with total degree |α| =

∑
i αi = k, and let

xα =
∏

i x
αi
i . There exists a constant K4 such that for any such α, E[|xα|] ≤ (K4k)

k/2.

For (a), see e.g. (SW14, Thm 3.7). The other properties follow readily from Eq. (A.1), which allows
us to treat the density as subgaussian.

A key structural fact that we will need about strongly log-concave distributions is that approximately
matching moments of degree at most Õ(1/τ2) with such a D∗ is sufficient to fool any function of a
constant number of halfspaces up to an additive τ .

Proposition A.3 (Variant of (GKK23, Thm 5.6)). Let p be a fixed constant, and let F be the class
of all functions of p halfspaces mapping Rd to {±1} of the form

f(x) = g
(
sign(⟨v1,x⟩+ θ1), . . . , sign(⟨vp,x⟩+ θp)

)
(A.2)

for some g : {±1}p → {±1} and weights vi ∈ Sd−1. Let D∗ be any target marginal such that
for every i, the projection ⟨vi,x⟩ has subgaussian tails and is anticoncentrated: (a) P[|⟨vi,x⟩| >
t] ≤ exp(−Θ(t2)), and (b) for any interval [a, b], P[⟨vi,x⟩ ∈ [a, b]] ≤ Θ(|b − a|). Let D be any
distribution such that for all monomials xα =

∏
i x

αi of total degree |α| =
∑

i αi ≤ k,∣∣∣ E
D∗

[xα]− E
D
[xα]

∣∣∣ ≤ ( c|α|
d
√
k

)|α|

for some sufficiently small constant c (in particular, it suffices to have d−Õ(k) moment closeness for
every α). Then

max
f∈F

∣∣∣ E
D∗

[f ]− E
D
[f ]
∣∣∣ ≤ Õ( 1√

k

)
.

Note that this is a variant of the original statement of (GKK23, Thm 5.6), which requires that the 1D
projection of D∗ along any direction satisfy suitable concentration and anticoncentration. Indeed,
an inspection of their proof reveals that it suffices to verify these properties for projections only
along the directions {vi}i∈[p] as opposed to all directions. This is because to fool a function f of the
form above, their proof only analyzes the projected distribution (⟨v1,x⟩, . . . , ⟨vp,x⟩) on Rp, and
requires only concentration and anticoncentration for each individual projection ⟨vi,x⟩.
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B PROOFS FOR SECTION 3

B.1 PROOF OF PROPOSITION 3.1

Our plan is to apply Proposition A.3. To do so, we must verify that D∗
|T satisfies the assumptions

required. In particular, it suffices to verify that the 1D projection along any direction orthogonal to
w has subgaussian tails and is anticoncentrated. Let v ∈ Sd−1 be any direction that is orthogonal to
w. By Proposition A.2(d), we may assume that PD∗ [T ] ≥ Ω(σ).

To verify subgaussian tails, we must show that for any t, PD∗
|T
[|⟨v,x⟩| > t] ≤ exp(−Ct2) for some

constant C. The main fact we use is Proposition A.2(c), i.e. that any strongly log-concave density is
pointwise upper bounded by a Gaussian density times a constant. Write

P
D∗

|T

[|⟨v,x⟩| > t] =
PD∗ [⟨v,x⟩ > t and ⟨w,x⟩ ∈ [−σ, σ]]

PD∗ [⟨w,x⟩ ∈ [−σ, σ]]
.

The claim now follows from the fact that the numerator is upper bounded by a constant times the
corresponding probability under a Gaussian density, which is at most O(exp(−C ′t2)σ) for some
constant C ′, and that the denominator is Ω(σ).

To check anticoncentration, for any interval [a, b], write

P
D∗

|T

[⟨v,x⟩ ∈ [a, b]] =
PD∗ [⟨v,x⟩ ∈ [a, b] and ⟨w,x⟩ ∈ [−σ, σ]]

PD∗ [⟨w,x⟩ ∈ [−σ, σ]]
.

After projecting onto span(v,w) (an operation that preserves logconcavity), the numerator is the
probability mass under a rectangle with side lengths |b − a| and 2σ, which is at most O(σ|b − a|)
as by Proposition A.2(b) the density is pointwise upper bounded by a constant. The claim follows
since the denominator is Ω(σ).

Now we are ready to apply Proposition A.3. We see that if D|T matches moments of degree at
most k with D∗

|T up to an additive slack of d−O(k), then |ED∗ [f | T ] − ED[f | T ]| ≤ Õ(1/
√
k).

Rewriting in terms of τ gives the theorem.

B.2 PROOF OF PROPOSITION 3.2

The tester T1 does the following:

1. For all α ∈ Zd
≥0 with |α| = k:

(a) Compute the corresponding moment E(x,y)∼D xα := 1
|S|
∑

x∈S xα.

(b) If
∣∣E(x,y)∼D[xα]− Ex∼D∗ [xα]

∣∣ > 1
dk then reject.

2. If all the checks above passed, accept.

First, we claim that for some absolute constant C1, if the tester above accepts, we have
E(x,y)∼D[(⟨v,x⟩)k] ≤ (C1k)

k/2 for any v ∈ Sd−1. To show this, we first recall that by Propo-
sition A.2(e) it is the case that E(x,y)∼D∗ [(⟨v,x⟩)k] ≤ (K3k)

k/2. But we have∣∣∣∣ E
(x,y)∼D

[(⟨v,x⟩)k]− E
(x,y)∼D∗

[(⟨v,x⟩)k]
∣∣∣∣ ≤ ∑

α:|α|=k

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣
≤ dk · max

α:|α|=k

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣ ≤ 1

Together with the bound E(x,y)∼D∗ [(⟨v,x⟩)k] ≤ (K3k)
k/2, the above implies that

E(x,y)∼D[(⟨v,x⟩)k] ≤ (C1k)
k/2 for some constant C1.

Now, we need to show that if the elements of S are chosen i.i.d. from D∗, and |S| ≥(
dk,
(
log 1

δ

)k)C1

then the tester above accepts with probability at least 1− δ. Consider any specific
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multi-index α ∈ Zd
≥0 with |α| = k. Now, by Proposition A.2(f) we have the following:

E
x∼D∗

[(
xα − E

z∼D∗
[zα]

)2 log(1/δ)
]
≤

2 log(1/δ)∑
ℓ=0

(
E

x∼D∗
(xα)

ℓ
)
·
(

E
z∼D∗

[zα]
)2 log(1/δ)−ℓ

≤
2 log(1/δ)∑

ℓ=0

(K4ℓk)
ℓk/2(K4k)

k(2 log(1/δ)−ℓ)/2

≤ 2 log(1/δ)(2K4 log(1/δ)k)
log(1/δ)k

This, together with Markov’s inequality implies that

P

[∣∣∣∣∣ 1|S|∑
x∈S

xα − E
x∼D∗

[xα]

∣∣∣∣∣ > 1

dk

]
≤
(
dk(3K4k log(1/δ))

k/2

|S|

)2 log(1/δ)

Since S is obtained by taking at least |S| ≥
(
dk,
(
log 1

δ

)k)C1

, for sufficiently large C1 we see that

the above is upper-bounded by 1
dk δ. Taking a union bound over all α ∈ Zd

≥0 with |α| = k, we see
that with probability at least 1− δ the tester T1 accepts, finishing the proof.

B.3 PROOF OF PROPOSITION 3.3

Let K1 be as in part (d) of Proposition A.2. The tester T2 computes the fraction of elements in S
that are in T . If this fraction is K1σ/2-close to Px∼D∗ [|⟨w,x⟩| ≤ σ], the algorithm accepts. The
algorithm rejects otherwise.

Now, from (d) of Proposition A.2 we have that Px∼D∗ [|⟨w,x⟩| ≤ σ] ∈ [K1σ,K2σ]. Therefore, if
the fraction of elements in S that belong in T is K1σ/100-close to Px∼D∗ [|⟨w,x⟩| ≤ σ], then this
quantity is in [K1σ/2, (K2 +K1/2)σ] as required.

Finally, if |S| ≥ 100
K1σ2 log

(
1
δ

)
by standard Hoeffding bound, with probability at least 1 − δ we

indeed have that the fraction of elements in S that are in T is K1σ/2-close to Px∼D∗ [|⟨w,x⟩| ≤ σ].

B.4 PROOF OF PROPOSITION 3.4

The tester T3 does the following:

1. Runs the tester T2 from Proposition 3.3. If T2 rejects, T3 rejects as well.
2. Let S|T be the set of elements in S for which x ∈ T .

3. Let k = Õ(1/τ2) be chosen as in Proposition 3.1.
4. For all α ∈ Zd

≥0 with |α| = k:

(a) Compute the corresponding moment E(x,y)∼D[xα | x ∈ T ] := 1
|S|T |

∑
x∈S|T

xα.

(b) If
∣∣E(x,y)∼D[xα | x ∈ T ]− Ex∼D∗ [xα | x ∈ T ]

∣∣ > τ
dk ·d−Õ(k) then reject, where the

polylogarithmic in d−Õ(k) is chosen to satisfy the additive slack condition in Proposi-
tion 3.1.

5. If all the checks above passed, accept.

First, we argue that if the checks above pass, then Equations 3.3 and 3.4 will hold. If the tester passes,
Equation 3.3 follows immediately from the guarantees in step (4b) of T3 together with Proposition
3.1. Equation 3.4, in turn, is proven as follows:∣∣∣∣ E

(x,y)∼D
[(⟨v,x⟩)2]− E

(x,y)∼D∗
[(⟨v,x⟩)2]

∣∣∣∣ ≤ ∑
α:|α|=2

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣
≤ d2 · max

α:|α|=2

∣∣∣∣ E
(x,y)∼D

[xα]− E
x∼D∗

[xα]

∣∣∣∣ ≤ τ
15
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Now, we need to show that if the elements of S are chosen i.i.d. from D∗, and |S| ≥ ... then the
tester above accepts with probability at least 1− δ. Consider any specific mult-index α ∈ Zd

≥0 with
|α| = k. Now, by Proposition A.2(f) we have for any positive integer ℓ the following:

E
x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣] ≤ (K4ℓk)

k/2

But by Proposition A.2(d) we have that Px∼D∗ [x ∈ T ] = Px∼D∗ [|⟨x,w⟩| ≤ σ] ≥ K1σ. Therefore,
the density of the distribution D∗

|T (which is defined as the distribution one obtains by taking D∗

and conditioning on x ∈ T ) is upper bounded by the product of the density of the distribution D∗

and 1
K1σ

. This allows us to bound

E
x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣ | x ∈ T] ≤ 1

K1σ
E

x∼D∗

[∣∣∣(xα)
ℓ
∣∣∣] ≤ (K4ℓk)

k/2

K1σ

This implies that

E
x∼D∗

[(
xα − E

z∼D∗
[zα | z ∈ T ]

)2 log(1/δ)

| x ∈ T
]

≤
2 log(1/δ)∑

ℓ=0

(
E

x∼D∗

[
(xα)

ℓ | x ∈ T
])
·
(

E
x∼D∗

[(xα | x ∈ T ])
)2 log(1/δ)−ℓ

≤ 1

(K1σ)2 log(1/δ)

2 log(1/δ)∑
ℓ=0

(K4ℓk)
ℓk/2(K4k)

k(2 log(1/δ)−ℓ)/2

≤ 1

(K1σ)2 log(1/δ)
2 log(1/δ)(2K4 log(1/δ)k)

log(1/δ)k

This, together with Markov’s inequality implies that

P

[∣∣∣∣∣ 1|S|∑
x∈S

xα − E
x∼D∗

[xα]

∣∣∣∣∣ > τ

dk
· d−Õ(k)

]
≤

(
dÕ(k)(3K4k log(1/δ))

k/2

K1σ|S|T |τ

)2 log(1/δ)

Now, recall that the tester T2 in step (1) accepted, we have |S|T | ≥ 1
C2σ
|S|. Since S is obtained

by taking at least |S| ≥
(

1
τ ·

1
σ · d

1
τ2 logC5( 1

τ ) ·
(
log 1

δ

) 1
τ2 logC5( 1

τ )
)C5

, for sufficiently large C5 we

see that the expression above is upper-bounded by 1
dk δ. Taking a union bound over all α ∈ Zd

≥0

with |α| = k, we see that with probability at least 1− δ the tester T3 accepts, finishing the proof.

C PROOFS FROM SECTION 4

We first present the following Proposition, which ensures that we can form a loss function with
certain desired properties.
Proposition C.1. There are constants c, c′ > 0, such that for any σ > 0, there exists a continuously
differentiable function ℓσ : R→ [0, 1] with the following properties.

1. For any t ∈ [−σ/6, σ/6], ℓσ(t) = 1
2 + t

σ .

2. For any t > σ/2, ℓσ(t) = 1 and for any t < −σ/2, ℓσ(t) = 0.

3. For any t ∈ R, ℓ′σ(t) ∈ [0, c/σ], ℓ′σ(t) = ℓ′σ(−t) and |ℓ′′σ(t)| ≤ c′/σ2.

Proof. We define ℓσ as follows.

ℓσ(t) =



t
σ + 1

2 , if |t| ≤ σ
6

1, if t > σ
2

0, if t < −σ
2

ℓ+(t), t ∈ (σ6 ,
σ
2 ]

ℓ−(t), t ∈ [−σ
2 ,−

σ
6 )

16



Published as a conference paper at ICLR 2024

Figure 2: The function ℓσ used to smoothly approximate the ramp.

for some appropriate functions ℓ+, ℓ−. It is sufficient that we pick ℓ+ satisfying the following
conditions (then ℓ− would be defined symmetrically, i.e., ℓ−(t) = 1− ℓ+(−t)).

• ℓ+(σ/2) = 1 and ℓ+′(σ/2) = 0.

• ℓ+(σ/6) = 2/3 and ℓ+′(σ/6) = 1/σ.

• ℓ+′′ is defined and bounded, except, possibly on σ/6 and/or σ/2.

We therefore need to satisfy four equations for ℓ+. So we set ℓ+ to be a degree 3 polynomial:
ℓ+(t) = a1t

3 + a2t
2 + a3t + a4. Whenever σ > 0, the system has a unique solution that satis-

fies the desired inequalities. In particular, we may solve the equation to get a1 = −9/σ3, a2 =
15/(2σ2), a3 = −3/(4σ) and a4 = 5/8. For the resulting function (see Figure 2 below and Fig-
ure 4 in the appendix) we have that there are constants c, c′ > 0 such that ℓ+′(t) ∈ [0, c/σ] and
|ℓ+′′(t)| ≤ c′/σ2 for any t ∈ [σ/6, σ/2].

C.1 PROOF OF LEMMA 4.3

We will prove the contrapositive of the claim, namely, that there are constants c1, c2, c3 > 0 such
that if ∡(w,w∗),∡(−w,w∗) > c3√

1−2η
· σ, and τ ≤ c2, then ∥∇wLσ(w)∥2 ≥ c1(1− 2η).

Consider the case where ∡(w,w∗) < π/2 (otherwise, perform the same argument for −w). Let
v be a unit vector orthogonal to w that can be expressed as a linear combination of w and w∗ and
for which ⟨v,w∗⟩ = 0. Then {v,w} is an orthonormal basis for V = span(w,w∗). For any
vector x ∈ Rd, we will use the following notation: xw = ⟨w,x⟩, xv = ⟨v,x⟩. It follows that
projV (x) = xww + xvv, where projV is the operator that orthogonally projects vectors on V .

Using the fact that ∇w(⟨w,x⟩/∥w∥2) = x − ⟨w,x⟩w = x − xww for any w ∈ Sd−1, the
interchangeability of the gradient and expectation operators and the fact that ℓ′σ is an even function
we get that

∇wLσ(w) = E
[
− ℓ′σ(|⟨w,x⟩|) · y · (x− xww)

]
Since the projection operator projV is a contraction, we have ∥∇wLσ(w)∥2 ≥
∥projV ∇wLσ(w)∥2, and we can therefore restrict our attention to a simpler, two dimensional
problem. In particular, since projV (x) = xww + xvv, we get

∥projV ∇wLσ(w)∥2 =
∥∥∥E[− ℓ′σ(|xw|) · y · xvv

]∥∥∥
2
=
∣∣∣E[− ℓ′σ(|xw|) · y · xv

]∣∣∣
=
∣∣∣E[− ℓ′σ(|xw|) · sign(⟨w∗,x⟩) · (1− 21{y ̸= sign(⟨w∗,x⟩)}) · xv

]∣∣∣
17
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Figure 3: Critical regions in the proofs of main structural lemmas (Lemmas 4.3, 5.2). We analyze
the contributions of the regions labeled A1, A2 to the quantities A1, A2 in the proofs. Specifically,
the regions A1 (which have height σ/3 so that the value of ℓ′σ(xw) for any x in these regions is
exactly 1/σ, by Proposition C.1) form a subset of the region G, and their probability mass underDX
is (up to a multiplicative factor) a lower bound on the quantity A1 (see Eq equation C.3). Similarly,
the region A2 is a subset of the intersection of Gc with the band of height σ, and has probability
mass that is (up to a multiplicative factor) an upper bound on the quantity A2 (see Eq equation C.4).

Let F (y,x) denote 1 − 21{y ̸= sign(⟨w∗,x⟩)}. We may write xv as |xv| · sign(xv) and let
G ⊆ R2 such that sign(xv) · sign(⟨w∗,x⟩) = −1 iff x ∈ G. Then, sign(xv) · sign(⟨w∗,x⟩) =
1{x ̸∈ G} − 1{x ∈ G}. We get

∥ projV ∇wLσ(w)∥2 =

=
∣∣∣E[ℓ′σ(|xw|) · (1{x ∈ G} − 1{x ̸∈ G}) · F (y,x) · |xv|·

]∣∣∣ ≥
≥ E

[
ℓ′σ(|xw|) · 1{x ∈ G} · F (y,x) · |xv|

]
− E

[
ℓ′σ(|xw|) · 1{x ̸∈ G} · F (y,x) · |xv|

]
Let A1 = E[ℓ′σ(|xw|) ·1{x ∈ G} ·F (y,x) · |xv|] and A2 = E[ℓ′σ(|xw|) ·1{x ̸∈ G} ·F (y,x) · |xv|].
(See Figure 3.) Note that Ey|x[F (y,x)] = 1 − 2η(x) ∈ [1 − 2η, 1], where 1 − 2η > 0. Therefore,
we have that A1 ≥ (1−2η) ·E[ℓ′σ(|xw|) ·1{x ∈ G} · |xv|] and A2 ≤ E[ℓ′σ(|xw|) ·1{x ̸∈ G} · |xv|].
Note that due to Proposition C.1, ℓ′σ(|xw|) ≤ c/σ for some constant c and ℓ′σ(|xw|) = 0 whenever
|xw| > σ/2. Therefore, if U2 is the band Bw(σ/2) = {x : |xw| ≤ σ/2} we have

A2 ≤
c

σ
· E[1{x ̸∈ G} · 1{x ∈ U2} · |xv|] (C.1)

Moreover, for each individual x, we have ℓ′σ(|xw|) · 1{x ∈ G} · |xv| ≥ 0, due to the properties of
ℓ′σ (Proposition C.1). Hence, for any set U1 ⊆ Rd we have that

A1 ≥ (1− 2η) · E[ℓ′σ(|xw|) · 1{x ∈ G} · 1{x ∈ U1} · |xv|]

Setting U1 = Bw(σ/6) = {x : |xw| ≤ σ/6}, by Proposition C.1, we get ℓ′σ(|xw|) · 1{x ∈ U1} =
1
σ · 1{x ∈ U1}.

A1 ≥
1− 2η

σ
· E[1{x ∈ G} · 1{x ∈ U1} · |xv|] (C.2)

We now observe that by the definitions of G,U1,U2, for any constant R > 0, there exist some
constants c′, c′′ > 0 such that if σ/ tan θ < c′R (the points in R2 where ∂G intersects either ∂U1 or
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∂U2 have projections on v that are Θ(σ/ tan θ)) we have that

1{x ∈ G} · 1{x ∈ U1} ≥ 1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1} and

1{x ∈ G} · 1{x ∈ U2} ≤ 1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}

By equations equation C.1 and equation C.2, we get the following bounds whose graphical repre-
sentations can be found in Figure 3.

A1 ≥
c′R(1− 2η)

σ
· E[1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1}] (C.3)

A2 ≤
c · c′′

tan θ
· E[1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}] (C.4)

So far, we have used no distributional assumptions. Now, consider the corresponding expectations
under the target marginal D∗ (which we assumed to be strongly log-concave).

I1 = E
D∗

[1{|xv| ∈ [c′R, 2c′R]} · 1{x ∈ U1}]

I2 = E
D∗

[1{|xv| ≤ c′′σ/ tan θ} · 1{x ∈ U2}]

Any strongly log-concave distribution enjoys the “well-behaved” properties defined by (DKTZ20a),
and therefore, if R is picked to be small enough, then I1 and I2 are of order Θ(σ) (due to upper and
lower bounds on the two dimensional marginal density over V within constant radius balls – aka
anti-anticoncentration and anticoncentration). Moreover, by Proposition A.2, we have P[x ∈ U1]
and P[x ∈ U2] are both of order Θ(σ). Hence we have that there exist constants c′1, c

′
2 > 0 such that

for the conditional expectations we have

E
D∗

[
1{|xv| ∈ [c′R, 2c′R]}

∣∣ 1{x ∈ U1}] ≥ c′1
E
D∗

[
1{|xv| ≤ c′′σ/ tan θ}

∣∣ 1{x ∈ U2}] ≤ c′2
By assumption, Property equation 3.3 holds and, therefore, if τ ≤ c′1/2, c′2/2 =: c2, we get that

E
DX

[
1{|xv| ∈ [c′R, 2c′R]}

∣∣ 1{x ∈ U1}] ≥ c′1/2
E
DX

[
1{|xv| ≤ c′′σ/ tan θ}

∣∣ 1{x ∈ U2}] ≤ c′2/2
Moreover, by Property equation 3.2, we have that (under the true marginal) P[x ∈ U1] and P[x ∈ U2]
are both Θ(σ). Hence, in total, we get that for some constants c̃1, c̃2, we have

A1 ≥ c̃1 · (1− 2η) and A2 ≤ c̃2 ·
σ

tan θ

Hence, if we pick σ = Θ((1− 2η) tan θ), we get the desired result.

C.2 PROOF OF PROPOSITION 4.4

For the following all the probabilities and expectations are over DXY . First we observe that

P[y ̸= sign(⟨w,x⟩)] ≤ P[y ̸= sign(⟨w,x⟩) ∩ y = sign(⟨w∗,x⟩)] + P[y ̸= sign(⟨w∗,x⟩)] ≤
≤ P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] + opt .

Then, we observe that by assumption that DXY satisfies Property equation 3.2, we have

P[|⟨w,x⟩| ≤ σ] ≤ C3σ

and that

P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩) ∩ |⟨w,x⟩| > σ] ≤ P
[
|⟨v,x⟩| ≥ σ

tan θ

]
,

where v is some vector perpendicular to w. Using Markov’s inequality, we get

P
[
|⟨v,x⟩| ≥ σ

tan θ

]
≤ (tan θ)k

σk
· E[|⟨v,x⟩|k] .
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But, by assumption that DXY satisfies Property equation 3.1, there is some constant C1 > 0 such
that E[|⟨v,x⟩|k] ≤ (C1k)

k/2. Thus

P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] ≤ P[|⟨w,x⟩| ≤ σ]
+ P[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩) ∩ |⟨w,x⟩| > σ]

≤ C3σ +
(C1k)

k/2(tan θ)k

σk
.

By picking σ appropriately in order to balance the two terms (note that this is a different σ than the
one in Lemma 4.3), we get the desired result.

D PROOFS FROM SECTION 5

D.1 PROOF OF THEOREM 5.1

We will follow the same steps as for proving Theorem 4.1. Once more, we draw a sufficiently
large sample so that our testers are ensured to accept with high probability when the true marginal
is indeed the target marginal D∗ and so that we have generalization, i.e. the guarantee that any
approximate minimizer of the empirical error (error on the uniform empirical distribution over the
sample drawn) is also an approximate minimizer of the true error. The algorithm we use is once
more Algorithm 1, but this time we make multiple calls for different parameters σ (and we run T1
with higher k, as we will see shortly) and reject if any of these calls rejects. If we accept, we output
the output of the execution of Algorithm 1 with the minimum empirical error.

The main difference between the Massart noise case and the agnostic case is that in the former we
were able to pick σ arbitrarily small, while in the latter we face a more delicate tradeoff. To balance
competing contributions to the gradient norm, we must ensure that σ is at least Θ(opt) while also
ensuring that it is not too large. And since we do not know the value of opt, we will need to search
over a space of possible values for σ that is only polynomially large in relevant parameters (similar
to the approach of (DKTZ20b)). In our case, we may sparsify the space (0, 1] of possible values for
σ up to accuracy Θ(( ϵ√

k
)1+1/k) and form a list of poly(k/ϵ) possible values for σ, one of which will

satisfy c1σ − Θ(( ϵ√
k
)1+1/k) ≤ opt ≤ c1σ. hence, we perform the same (testing-learning) process

for each of the possible values of σ and get a list of candidate vectors which is still of polynomial
size.

The final step is, again, to use Proposition 4.4, after running tester T1 with parameter k (Proposition
3.2) and tester T2 with appropriate parameters for each of the candidate weight vectors. We get that
our list contains a vector w with

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c · k1/2 · θ1−1/(k+1),

where ∡(w,w∗) ≤ θ := c2σ for σ such that c1σ −Θ(( ϵ√
k
)1+1/k) ≤ opt ≤ c1σ.

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ opt+ c
√
k·
(c2
c1

opt+Θ
(( ϵ√

k

)1+ 1
k
))1− 1

k+1 ≤ O(
√
k ·opt1−

1
k+1 )+ ϵ .

However, we do not know which of the weight vectors in our list is the one guaranteed to achieve
small error. In order to discover this vector, we estimate the probability of error of each of the
corresponding halfspaces (which can be done efficiently, due to Hoeffding’s bound) and pick the
one with the smallest error. This final step does not require any distributional assumptions and we
do not need to perform any further tests.

In order to obtain our Õ(opt) quasipolynomial time guarantee, observe first that we may assume
without loss of generality that opt ≥ 1/dC for some C; if instead opt = o(1/d2), say, then a
sample of O(d) points will with high probability be noiseless, and so simple linear programming
will recover a consistent halfspace that will generalize. Moreover, we may assume that opt ≤ 1/10,
since otherwise achieving O(opt) is trivial (we may output an arbitrary halfspace). Let us adapt our
algorithm so that we run tester T1 (see Proposition 3.2) multiple times for all k = 1, 2, . . . , ⌈log2 d⌉
(this only changes our time and sample complexity by a polylog(d) factor). Then Proposition 4.4
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holds for some k∗ such that k∗ ∈ [log(1/opt), 2 log(1/opt)], since the interval has length at least 1
(and therefore it contains some integer) and 2 log(1/opt) ≤ 2C log d ≤ log2 d (for large enough d).
Therefore, by picking the best candidate we get a guarantee of order

√
k∗ · opt1−1/k∗

=
√
k∗ · opt−1/k∗

opt

=
√
k∗ · 2

1
k∗ log 1

opt · opt

≤
√
2 log(1/opt) · 2 · opt (since log(1/opt) ≤ k∗ ≤ 2 log(1/opt))

= Õ(opt) .

This concludes the proof of Theorem 5.1.

D.2 PROOF OF LEMMA 5.2

In the agnostic case, the proof is analogous to the proof of Lemma 4.3. However, in this case,
the difference is that the random variable F (y,x) = 1 − 21{y ̸= sign(⟨w∗,x⟩)} does not have
conditional expectation on x that is lower bounded by a constant. Instead, we need to consider an
additional term A3 correcponding to the part 21{y ̸= sign(⟨w∗,x⟩)} and the term A1 will not be
scaled by the factor (1− 2η) as in Lemma 4.3. Hence, with similar arguments we have that

∥∇wLσ(w)∥2 ≥ A1 −A2 −A3 ,

whereA1 ≥ c̃1,A2 ≤ c̃2 · σ
tan θ and (using properties of ℓ′σ as in Lemma 4.3 and the Cauchy-Schwarz

inequality)

A3 = 2E[ℓ′σ(|xw|) · 1{x ∈ G} · 1{y ̸= sign(⟨w,x⟩)} · |xv|] ≤

≤ 2c

σ
· E[1{x ∈ U2} · 1{y ̸= sign(⟨w,x⟩)} · |xv|] ≤

≤ 2c

σ
·
√
E[1{x ∈ U2} · (xv)2] ·

√
E[1{y ̸= sign(⟨w,x⟩)}] =

=
2c
√
opt

σ
·
√
E[⟨v,x⟩2 | x ∈ U2] · P[x ∈ U2] .

Similarly to our approach in the proof of Lemma 4.3, we can use the assumed properties equation 3.2
and equation 3.4 to get that

A3 ≤ c̃3
√
opt√
σ
,

which gives that in order for the gradient loss to be small, we require opt ≤ Θ(σ).

D.3 PROOF OF THEOREM 5.3

Before presenting the proof of Theorem 5.3, we prove the following Proposition, which is, essen-
tially, a stronger version of Proposition 4.4 for the specific case when the target marginal distribution
D∗ is the standard multivariate Gaussian distribution. Proposition D.1 is important to get an O(opt)
guarantee for the case where the target distribution is the standard Gaussian.
Proposition D.1. Let DXY be a distribution over Rd × {±1}, w∗ ∈ argminw∈Sd−1 PDXY [y ̸=
sign(⟨w,x⟩)] and w ∈ Sd−1. Let θ ≥ ∡(w,w∗) and suppose that θ ∈ [0, π/4]. Then, for a
sufficiently large constant C, there is a tester that given δ ∈ (0, 1), θ, w and a set S of samples from
DX with size at least

(
d
θ log

1
δ

)C
, runs in time poly

(
1
θ , d, log

1
δ

)
and with probability 1− δ satisfies

the following specifications:

• If the distribution DX is N (0, Id), the tester accepts.

• If the tester accepts, then we have:

Pr
x∼S

[sign(⟨w∗,x⟩) ̸= sign(⟨w,x⟩)] ≤ O(θ)

Proof. The testing algorithm does the following:
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1. Given: Integer d, set S ⊂ Rd, w ∈ Sd−1, θ ∈ (0, π/4] and δ ∈ (0, 1).

2. Let proj⊥w : Rd → Rd−1 denote the operator that projects a vector x ∈ Rd to it’s
projection into the (d− 1)-dimensional subspace of Rd that is orthogonal to w.

3. For i in
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
(a) Si ← {x ∈ S : ⟨w,x⟩ ∈ [iθ, (i+ 1)θ]}
(b) If |Si|

|S| > 2θ, then reject.

(c) If
∥∥∥ 1
|Si|
∑

x∈Si
(proj⊥w(x))(proj⊥w(x))T − I(d−1)

∥∥∥
op
> 0.1, reject.

4. If 1
|S|
∑

x∈S 1|⟨w,x⟩|>
√

2 log 1
θ

> 5θ, then reject.

5. If reached this step, accept.

If the tester accepts, then we have the following properties for some sufficiently large constant
C ′ > 0. For the following, consider the vector v ∈ Rd to be the vector that is perpendicular to w,
lies within the plane defined by w and w∗ and ⟨v,w∗⟩ ≤ 0.

1. Px∼S [|⟨w,x⟩| ∈ [θi, θ(i+ 1)]] ≤ C ′θ, for any i ∈
{
0,±1, . . . ,± 1

θ

√
2 log 1

θ

}
.

2. Px∼Si

[
|⟨v,x⟩| > θ

tan θ · i
]
≤ C ′/i2, for any i ∈

{
0,±1, . . . ,± 1

θ

√
2 log 1

θ

}
.

3. Px∼S

[
|⟨w,x⟩| ≥

√
2 log 1

θ

]
≤ C ′θ.

Then, for k = 1
θ

√
2 log 1

θ and Stripi = {x ∈ Rd : ⟨w,x⟩| ∈ [θi, θ(i+ 1)]}, we have that

Pr
x∼S

[sign(⟨w,x⟩) ̸= sign(⟨w∗,x⟩)] ≤

k∑
i=−k

P
x∼S

[x ∈ Stripi] · P
x∼S

[
|⟨v,x⟩| > θ

tan θ
· i
∣∣∣ x ∈ Stripi

]
+ P

x∼S

[
|⟨w,x⟩| ≥

√
2 log

1

θ

]
≤

k∑
i=−k

|Si|
|S|
· P
x∼Si

[
|⟨v,x⟩| > θ

tan θ
· i
]
+ C ′θ ≤ (C ′)2θ ·

1 +
∑
i̸=0

2

i2

+ C ′θ = O(θ)

Now, suppose the distributionDX is indeed the standard GaussianN (0, Id). We would like to show
that our tester accepts with probability at least 1 − δ. Since D = N (0, Id), we see that for x ∼ D
we have that x ·w is distributed as N (0, 1). This implies that

• For all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
we have

– Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ 1√
2π
θ

– Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥ θ·min
x∈

[
−
√

2 log 1
θ−θ,
√

2 log 1
θ+θ

] 1√
2π
e−

x2

2 ≥
θ2

10

• Prx∼N (0,Id) [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ 1√
2π
θ

• Prx∼N (0,Id)

[
⟨w,x⟩ > 2

√
log 1

θ

]
=
∫∞
2
√

log 1
θ

1√
2π
e−

x2

2 dx ≤ θ
∫∞
0

1√
2π
e−

x2

2 dx = θ
2
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Therefore, via the standard Hoeffding bound, we see that for sufficiently large absolute constant C
we have with probability at least 1− δ

4 over the choice of S that

• For all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
we have

– Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≤ θ
– Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥ θ2

20

• Prx∼S

[
⟨w,x⟩ > 2

√
log 1

θ

]
≤ θ

• Prx∼S

[
⟨w,x⟩ < −2

√
log 1

θ

]
≤ θ

Finally, we would like to show that conditioned on the above, the probability of rejection in step
(3b) is small.

Fact D.2. Given a set S ⊂ Rd−1 of i.i.d. samples from N (0, Id), with probability at least 1 −
poly

(
|S|
d

)
we have ∥∥∥∥∥ 1

|S|
∑
x∈S

1⟨w,x⟩∈[iθ,(i+1)θ]xx
T − I(d−1)

∥∥∥∥∥
op

≤ 0.1

Now, since each sample xi is drawn i.i.d. from N (0, Id), we have that ⟨w,xi⟩ and proj⊥w(xi)
are all independent from each other for all i. Since all the events we conditioned on depend on
{⟨w,xi⟩} we see that {proj⊥w(xi)} are still distributed as i.i.d. samples from N (0, I(d−1)).

Recall that one of the events we have already conditioned on is that

Prx∼S [⟨w,x⟩ ∈ [iθ, (i+ 1)θ]] ≥ θ2

20 for all i ∈
{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
. This allows us

to lower bound by θ2/20 the ratio |Si|/|S|. And since, as we described, for all these elements xi

the vectors proj⊥w(xi) are distributed as i.i.d. samples from N (0, I(d−1)), we can use Fact D.2

to conclude that for sufficiently large absolute constant C, when |S| =
(
d
θ log

1
δ

)C
we have with

probability 1− δ
4 for all i ∈

{
0,±1, · · · ,±

√
2 log 1

θ

θ

}
that∥∥∥∥∥ 1

|Si|
∑
x∈Si

(proj⊥w(x))(proj⊥w(x))T − I(d−1)

∥∥∥∥∥
op

≤ 0.1

Overall, this allows us to conclude that with probability at least 1− δ the tester accepts.

We now present the proof of Theorem 5.3.

In the proof of Theorem 5.1, when the target distribution is the standard Gaussian in d dimensions,
we may apply Proposition D.1 (and run the corresponding tester), instead of Proposition 4.4, in order
to ensure that our list will contain a vector w with

P
DXY

[y ̸= sign(⟨w,x⟩)] ≤ P
DXY

[y ̸= sign(⟨w∗,x⟩)] + P
DXY

[sign(⟨w∗,x⟩) ̸= sign(⟨w,x⟩)]

≤ opt+O(θ)

where ∡(w,w∗) ≤ θ := c2σ and σ is such that c1σ − Θ(ϵ) ≤ opt ≤ c1σ, which gives the desired
O(opt) + ϵ bound. To get the value of σ with the desired property, we once again sparsified the
space (0, 1] of possible values for σ, this time up to accuracy Θ(ϵ).
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Figure 4: Figure illustrating the (normalized) first two derivatives of the function ℓσ used to define
the non convex surrogate loss Lσ . The normalization is appropriate since ℓ′σ and ℓ′′σ are homoge-
neous in 1/σ and 1/σ2 respectively. In particular, we see that ℓ′σ ≤ Θ(1/σ) and |ℓ′′σ| ≤ Θ(1/σ2)
everywhere.
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